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Coffee, a major dietary source of caffeine, is amongst the most widely consumed beverages 

in the world and has received considerable attention regarding health risks and benefits. We 

conducted a genome-wide(GW) meta-analysis of predominately regular-type coffee 

consumption (cups/day) among up to 91,462 coffee consumers of European ancestry with 

top single-nucleotide polymorphisms (SNPs) followed-up in ~30,062 and 7,964, coffee 

consumers of European and African American ancestry, respectively. Studies from both 

stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for 

putative functional and biological relevance. Eight loci, including six novel loci, met GW-

significance (log10Bayes-factor>5.64) with per allele effect sizes of 0.03-0.14 cups/day. Six 

are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR, 

CYP1A2) and pharmacodynamics (BDNF, SLC6A4) of caffeine. Two map to GCKR and 

MLXIPL, genes related to metabolic traits but lacking known roles in coffee consumption. 

Enhancer and promoter histone marks populate the regions of many confirmed loci and 

several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP 

alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee 

consumption have previously been associated with smoking initiation, higher adiposity and 

fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and 

liver enzyme profiles (P<5×10−8).Our genetic findings among European and African 

American adults reinforce the role of caffeine in mediating habitual coffee consumption and 

may point to molecular mechanisms underlying inter-individual variability in 

pharmacological and health effects of coffee.

INTRODUCTION

Coffee is amongst the most widely consumed beverages in the world1. North American 

coffee drinkers typically consume ~2 cups per day while the norm is at least 4 cups in many 

European countries1. In prospective cohort studies, coffee consumption is consistently 

associated with lower risk of Parkinson’s disease, liver disease and type 2 diabetes2. 

However, the effects of coffee on cancer development, cardiovascular and birth outcomes 

and other health conditions remain controversial2. For most populations, coffee is the 
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primary source of caffeine, a stimulant also present in other beverages, foods and 

medications1, 3. The fifth edition of the Diagnostic and Statistical Manual of Mental 

Disorders does not include a diagnosis of caffeine dependence or abuse due to a paucity of 

evidence but lists caffeine intoxication and withdrawal as Disorders4. Knowledge of factors 

contributing to coffee’s consumption and physiological effects may greatly advance the 

design and interpretation of population and clinical research on coffee and caffeine5. Genetic 

factors could be especially valuable as they offer ways to study the potential health effects of 

coffee via instrumental variables or gene-environment interactions5. Heritability estimates 

for coffee and caffeine use range between 36 and 58%6. Genome-wide association studies 

(GWAS) of habitual caffeine and coffee intake have identified variants near CYP1A2 and 

AHR7-9. Cytochrome P450 (CYP)1A2 is responsible for ~95% of caffeine metabolism in 

humans and aryl hydrocarbon receptor (AHR) plays a regulatory role in basal and substrate-

induced expression of target genes, including CYP1A1 and CYP1A210, 11.

To identify additional loci, we conducted a staged GW meta-analysis of coffee consumption 

including over 120,000 coffee consumers sourced from population-based studies of 

European and African American ancestry.

MATERIALS AND METHODS

Study design and populations

Supplementary Figure S1 depicts an overview of the current study. We performed a meta-

analysis of GWAS summary statistics from 28 population-based studies of European 

ancestry to detect single-nucleotide polymorphisms (SNPs) that are associated with coffee 

consumption. Top loci were followed-up in studies of European (13 studies) and African 

American (7 studies) ancestry and confirmed loci were explored in a single Pakistani 

population. Detailed information on study design, participant characteristics, genotyping and 

imputation for all contributing studies are provided in the Supplementary Information and 

Supplementary Tables S1-S6.

Phenotype

All phenotype data were previously collected via interviewer- or self-administered 

questionnaires (Supplementary Table S1). Our primary phenotype (‘phenotype 1’) was cups 

of predominately regular-type coffee consumed per day among coffee consumers. Coffee 

data collected categorically (e.g. 2-3 cups/day) was converted to cups/day by taking the 

median value of each category (e.g. 2.5 cups/day). A secondary analysis was performed 

comparing high to infrequent/non- coffee consumers (‘phenotype 2’). A subset of stage 1 

studies collected information on decaffeinated coffee consumption; which was examined in 

follow-up analysis of the confirmed loci.

Statistical analysis

Each stage 1 (discovery) study performed GWA-testing for each phenotype across ~2.5 

million genotyped or imputed autosomal SNPs (HapMap II, Centre d’Etude du 

Polymorphisme Humain [CEU] reference), based on linear (cups/day, phenotype-1) or 

logistic (high vs. none/low, phenotype-2) regression under an additive genetic model. 
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Analyses were adjusted for age, smoking status and, when applicable, sex, case-control 

status, study-site, family structure and/or study specific principal components of population 

substructure (Supplementary Table S7). SNPs with minor allele frequency (MAF) <0.02 or 

with low imputation quality scores were removed prior to meta-analysis (Supplementary 

Table S5). The GWAtoolbox (see Supplementary Information for URLs) was used for initial 

quality control. MAFs and a plot comparing (1/median standard error of effect size) vs. 

(square root of sample size) for each study were also reviewed for outliers and these were 

addressed prior to the final meta-analysis.

For both phenotypes, GW meta-analysis was conducted using a fixed effects model and 

inverse-variance weighting with a single genomic control (GC) correction as implemented in 

METAL12 and GWAMA13 (r>0.99 for correlation between METAL and GWAMA results). 

The phenotypic variance explained by additive SNP effects was estimated in the Women’s 

Genome Health Study (WGHS, n=15,987 with identity-by-state <0.025) using GCTA 14. 

Stage 1 summary statistics were also subject to pathway analysis using MAGENTA15 

(Supplementary Information).

For regions achieving association P values <5×10−8 (7p21, 7q23.11, 11p13, 15q24) we 

performed conditional analysis using the summary statistics from the meta-analysis to test 

for the association of each SNP while conditioning on the top SNPs, with correlations 

between SNPs due to linkage disequilibrium (LD) estimated from the imputed genotype data 

from the Atherosclerosis Risk in Communities cohort16, a large and representative cohort of 

men and women of European ancestry.

Our approach to selecting SNPs for replication (stage 2) is described in Supplementary 

Information. Stage 2 meta-analyses were performed separately for European and African 

American populations, using the same statistical models and methods as described for stage 

1, but without GC (Supplementary Information).

Studies from all stages were included in an overall meta-analysis using Meta-ANalysis of 

TRans-ethnic Association studies (MANTRA)17; which adopts a Bayesian framework to 

combine results from different ethnic groups by taking advantage of the expected similarity 

in allelic effects between the most closely related populations. MANTRA was limited to 

SNPs selected for replication thus no GC was applied. A random effects analysis using 

GWAMA was performed in parallel to obtain effect estimates, which are not generated by 

MANTRA. The GW-significance threshold of log10 BF >5.64 approximates a traditional 

GW P-value threshold of 5×10−8 under general assumptions18, 19. Subgroup analysis and 

meta-regression were performed to investigate possible sources of between-study 

heterogeneity (Supplementary Information). Fine-mapping: To assess the improvement in 

fine-mapping resolution due to trans-ethnic meta-analysis we applied the methods of 

Franceschini et al 17 to stage 1 and stage 2 (African Americans only) GW-summary level 

data (Supplementary Information).

Potential SNP-function and biological and clinical inferences

Details pertaining to follow-up of confirmed loci are provided in the Supplementary 

Information. Briefly, all confirmed index SNPs and their correlated proxies were examined 
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for putative function using publicly available resources. Bioinformatics and computational 

tools were used to systematically mine available knowledge and experimental databases to 

inform biological hypotheses underlying the link between loci and coffee consumption as 

well as connections between loci. For these analyses all genes mapping to the confirmed 

regions were considered potential candidates. Finally, we searched the National Human 

Genome Research Institute GWAS catalogue20 and Metabolomics GWAS server 21 for all 

GW-significant associations with our confirmed coffee-SNPs. Complete GWAS summary 

data for coffee-implicated diseases or traits were additionally queried.

RESULTS

SNPs associated with coffee consumption

Discovery stage—Results from the discovery stage are summarized in Supplementary 

Figs S2-S5. Little evidence for genomic inflation (<1.07) was observed for either phenotype. 

The two analyses yielded similarly ranked loci and significant enrichment of ‘xenobiotic’ 

genes (MAGENTA’s FDR<0.006), suggesting no major difference in the genetic influence 

on coffee drinking initiation compared with the level of coffee consumption among coffee 

consumers at these loci. Overall, approximately 7.1% (standard error: 2%) of the variance in 

coffee cups consumed per day (phenotype-1) could be explained by additive and common 

SNP effects in the WGHS.

Conditioning on the index SNPs of each region achieving association P values <5×10−8 

(7p21, 7q23.11, 11p13, 15q24) in the discovery stage provided little evidence for multiple 

independent variants (Supplementary Figure S6). Only four of the SNPs on chromosome 7 

were potentially independent and carried forward with other promising SNPs.

Replication and trans-ethnic meta-analysis—Forty-four SNPs spanning 33 genomic 

regions met significance criteria for candidate associations and were followed-up in stage 2 

(Supplementary Tables S8-S13). Eight loci, including six novel, met our criteria for GW-

significance (log10 BF>5.64) in a trans-ethnic meta-analysis of all discovery and replication 

studies (Table 1, Supplementary Tables S14-S16, Supplementary Figs S7 and S8). 

Confirmed loci have effect sizes of 0.03-0.14 cups/day per allele and together explain ~1.3% 

of the phenotypic variance of coffee intake. We were underpowered to replicate these 

associations in a Pakistani population (Supplementary Information).

Functional and biological inferences

Enhancer (H3K4me1) and promoter (H3K4me3) histone marks densely populate many of 

these regions and several nonsynonymous and potential regulatory SNPs are highly 

correlated (r2>0.8) with the lead SNP and thus strong candidates for being a causal variant 

(Table 2, Supplementary Information, Supplementary Tables S17-S19). Candidate genes 

form a highly connected network of interactions, featuring discernible clusters of genes 

around BDNF and AHR (Figure 1, Supplementary Information, Supplementary Tables S20 

and S21). At least one gene in each of the eight regions i) is highly expressed in brain, liver 

and/or taste buds, ii) results in phenotype abnormalities relevant to coffee consumption 

behavior when modified in mice, and iii) is differentially expressed in human hepatocytes 
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when treated with high (7500 M) but not low (1500 M) doses of caffeine (Table 2, 

Supplementary Tables S22-S24).

Additional genomic characterization of the top loci allows further biological inference as 

follows:

i. Previously identified loci near AHR (7p21) and CYP1A2 (15q24)

Consistent with previous reports in smaller samples7-9, the intergenic 7p21 and 

15q24 loci near AHR and CYP1A1/CYP1A2 respectively remained the most 

prominent and highly heterogeneous loci associated with coffee consumption. The 

same index SNPs were identified in European and African Americans suggesting 

they are robust HapMap proxies for causal variants in these two populations. 

Cohort-wide mean coffee consumption explained part of the heterogeneity in study 

results for both loci (Supplementary Table S25, Supplementary Information). The 

rs2472297 T and rs4410790 C alleles associated with increased coffee consumption 

have recently been associated with lower plasma caffeine levels 21 and shown to 

increase CYP1A2-mediated metabolism of olanzapine22. The C allele of rs4410790 

is also positively correlated with cerebellum AHR methylation, suggesting a novel 

role of Ahr in motor or learning pathways that may trigger coffee consumption. 

The most significant variants at 15q24 reside in the CYP1A1-CYP1A2 bidirectional 

promoter where AHR response elements have been identified and shown to be 

important for transcriptional activation of both CYP1A1 and CYP1A223. The 

rs2472297 T variant putatively weakens the binding of SP1, a co-activator in the 

Ahr-Arnt complex regulating CYP1 locus transcription24 and is also implicated in 

the expression of several neighboring genes. The latter observation, together with 

this region’s high LD and long range chromatin interactions (Supplementary Figure 

S9), suggests a regulatory network among these genes.

ii. Novel loci at 7q11.23 (POR) and 4q22 (ABCG2) likely function in caffeine 

metabolism

Variants at 7q11.23 (rs17685) and 4q22 (rs1481012) map to novel yet biologically 

plausible candidate genes involved in xenobiotic metabolism. rs17685 maps to the 

3′UTR of POR, encoding P450 oxidoreductase which transfers electrons to all 

microsomal CYP450s enzymes25. The rs17685 A variant associated with higher 

coffee consumption is linked to increased POR expression and potentially weakens 

the DNA binding of several transcriptional regulatory proteins including 

BHLHE40, which inhibits POR expression26. The same SNP is in LD (CEU: 

r2=0.93) with POR*28 (rs1057868, Ala503Val), which is associated with 

differential CYP activity depending on the CYP isoform, substrate and 

experimental model used27. rs1481012 at 4q22 maps to ABCG2, encoding a 

xenobiotic efflux transporter. rs1481012 is in LD (CEU: r2=0.92) with rs2231142 

(Gln141Lys), a functional variant at an evolutionarily constrained residue28. 

However, fine-mapping of this region on the basis of reduced LD in the African 

American sample limited an initial 189102 kb region to a credible span of 6249 kb 

(Supplementary Table S16), that excluded rs2231142.
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iii. Novel loci at 11p13 (BDNF) and 17q11.2 (‘SLC6A4’) likely mediate the positive 

reinforcing properties of coffee constituents

The index SNP at 11p13 is the widely investigated missense mutation (rs6265, 

Val66Met) in BDNF (Supplementary Table S26). Brain-derived neurotrophin 

factor (BDNF) modulates the activity of serotonin, dopamine and glutamate, 

neurotransmitters involved in mood-related circuits and plays a key role in memory 

and learning29. The Met66 allele impairs neuronal activity-dependent BDNF 

secretion30 and thus may attenuate the rewarding effects of coffee and, in turn, 

motivation to consume coffee. The increasingly recognized roles of BDNF in the 

chemosensory system and conditioned taste preferences may also be relevant31. 

The index SNP (rs9902453) at 17q11.2 maps to the EFCAB5 gene and is in LD 

(CEU: r2>0.8) with SNPs that alter regulatory motifs for AhR32 in the neighboring 

gene NSRP1, but neither gene is an obvious candidate for coffee consumption. 

Upstream of rs9902453 lies a possibly stronger candidate: SLC6A4 encoding the 

serotonin transporter. Serotonergic neurotransmission affects a wide range of 

behaviors including sensory processing and food-intake33.

iv. Novel loci at 2p24 (GCKR) and 17q11.2 (MLXIPL)

Variants at 2p24 (rs1260326) and 7q11.23 (rs7800944) map to GCKR and 

MLXIPL, respectively. The former has been associated with plasma glucose and 

multiple metabolic traits and the latter with plasma triglycerides (Table 3, 

Supplementary Table S27). Adjustment of regression models for plasma lipids in 

the Women’s Genome Health Study (WGHS, n~17,000) and plasma glucose in 

TwinGene (n~8,800) did not significantly change the relationship between SNPs at 

these two loci and coffee consumption (P>0.48, Supplementary Tables S28 and 

S29). The rs1260326 T allele encodes a nonsynonymous change in the encoded, 

glucokinase regulatory protein (GKRP) leading to increased hepatic glucokinase 

activity34. GKRP and glucokinase may also cooperatively function in the glucose-

sensing process of the brain35 that may, in turn, influence central pathways 

responding to coffee constituents. A direct link between MLXIPL and coffee 

consumption remains unclear, except for the interactions with other candidate 

genes (Figure 1). Experimental evidence and results from formal prioritization 

analyses also warrants consideration of other candidates in these regions (Table 2, 

Figure 1, Supplementary Tables S23, S26, S30, S31). For example, in the frontal 

cortex, the rs1260326 allele positively associated with coffee consumption 

correlates with lower methylation of PPM1G; a putative regulatory target for AhR 

and binding target for PPP1R1B, which mediates psychostimulant effects of 

caffeine36.

Pleiotropy and clinical inferences

None of the eight loci was significantly associated with caffeine taste-intensity (P>0.02) or 

caffeine-induced insomnia (P>0.08), according to previously published GWAS of these 

traits 37-39. SNPs near AHR associated with higher coffee consumption were also 

significantly associated with higher decaffeinated coffee consumption (~0.05 cups/day, 
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P<0.0004, n=24,426); perhaps a result of Pavlovian conditioning among individuals 

moderating their intake of regular coffee or the small amounts of caffeine in decaffeinated 

coffee1.

Across phenotypes in the GWAS catalog20, the alleles leading to higher coffee consumption 

at 2p24, 4q22, 7q11.23, 11p13 and 15q24 have been associated with one or more of the 

following: smoking initiation, higher adiposity and fasting insulin and glucose but lower 

blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5×10−8, 

Table 3, Supplementary Table S27). Focused on metabolic, neurologic and psychiatric traits 

for which coffee has been implicated (Table 3, Supplementary Table S32), there were 

additional sub-GW significant associations in published GWAS. Variants associated with 

higher coffee consumption increased adiposity (rs1481012, P=4.85×10−3), birth weight 

(rs7800944, P=2.10×10−3), plasma high-density lipoprotein (HDL, rs7800944, 

P=2.24×10−3), risk of Parkinson’s disease (rs1481012, P=7.11×10−3), reduced blood 

pressure (rs6265, P=6.58×10−4; rs2472297, P<6.80×10−5 and rs9902453, P=6.05×10−3), 

HDL (rs6968554, P=1.18×10−3), risk of major depressive disorder (rs17685, P=6.98×10−3) 

and bipolar disorder (rs1260326, P=2.31×10−3). Associations with adiposity, birth weight, 

blood pressure, HDL and bipolar disorder remain significant after correcting for the number 

of SNPs tested.

DISCUSSION

Coffee’s widespread popularity and availability has fostered public health concerns of the 

potential health consequences of regular coffee consumption. Findings from epidemiological 

studies of coffee consumption and certain health conditions remain controversial2. 

Knowledge of genetic factors contributing to coffee’s consumption and physiological effects 

may inform the design and interpretation of population and clinical research on coffee5. In 

the current report, we present results of the largest GWAS of coffee intake to-date and the 

first to include populations of African American ancestry. In addition to confirming 

associations with AHR and CYP1A2, we have identified six new loci, not previously 

implicated in coffee drinking behavior.

Our findings highlight an important role of the pharmacokinetic and pharmacodynamic 

properties of the caffeine component of coffee underlying a genetic propensity to consume 

the beverage. Loci near BDNF and SLC6A4 potentially impact consumption behavior by 

modulating the acute behavioral and reinforcing properties of caffeine. Others near AHR, 

CYP1A2, POR, and ABCG2 act indirectly by altering the metabolism of caffeine and thus 

the physiological levels of this stimulant. The strength of these four associations with coffee 

intake, along with results from pathway analysis showing significant enrichment for 

‘xenobiotic’ genes, emphasize an especially pronounced role of caffeine metabolism in 

coffee drinking behavior. The current study is the first to link GCKR and MLXIPL variation 

to a behavioral trait. The nonsynonymous rs1260326 SNP in GCKR has been a GW-signal 

for various metabolic traits particularly those reflecting glucose-homeostasis (Table 3). 

GCKR variation may impact the glucose-sensing process of the brain35 that may, in turn, 

influence central pathways responding to coffee constituents. mQTL and binding motif 

analysis suggests PPM1G may be another candidate underlying the association between 
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rs1260326 and coffee consumption. Variants near MLXIPL have also topped the list of 

variants associated with plasma triglycerides (Table 3), but their link to coffee consumption 

remains unclear. Future studies on the potential pleiotropic effects of these two loci are 

clearly warranted. Interestingly, several candidate genes implicated in coffee consumption 

behavior, but not confirmed in our GWAS, interact with one or more of the eight confirmed 

loci (Figure 1). While these findings are encouraging for ongoing efforts they also 

emphasize the need to study sets or pathways of genes in the future.

Specific SNPs associated with higher coffee consumption have previously been associated 

with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood 

pressure and favorable lipid, inflammatory and liver enzyme profiles. Whether these 

relationships reflect pleiotropy, confounding, or offer insight to the potential causal role 

coffee plays in these traits merits further investigation. Future research, particularly 

Mendelian Randomization and gene-coffee interaction studies, will need to consider the 

direct and indirect roles that each SNP has in altering coffee drinking behavior as well as the 

potential for interactions between loci (Figure 1). The heterogeneous effects specific to 

AHR- and CYP1A2-coffee associations point to SNP-specific interactions with the 

environment or population characteristics that might also warrant consideration 

(Supplementary Information).

The strong cultural influences on norms of coffee drinking may have reduced our power for 

loci discovery. This might, in part, underlie our lack of replication in a Pakistani population, 

wherein coffee consumption is extremely rare. Methodological limitations specific to our 

approach may also have reduced our power for loci discovery or precision in estimating 

effect sizes (Supplementary Information). For example, some studies collected coffee data in 

categories of cups/day (e.g. 2-3 cups/day) rendering a less precise record of intake as well as 

a non-Gaussian distributed trait for analysis. The precise chemical composition of different 

coffee preparations is also not captured by standard FFQs and is likely to vary within and 

between populations. Nevertheless, the eight loci together explain ~1.3% of the phenotypic 

variance, a value at least as great as that reported for smoking behavior and alcohol 

consumption which are subject to similar limitations in GWAS40, 41.

The additive genetic variance (or narrow-sense heritability) of coffee intake as estimated by 

GCTA in WGHS (7%) is considerably lower than estimates based on pedigrees (36 to 

57%) 6. The marked discrepancies between the GCTA and pedigree estimates of heritability 

may be due to one or more of the following: the potential contribution of rare variants to 

heritability (not captured by GCTA’s ‘chip-based heritability’), biases in pedigree analysis 

resulting in overestimates of heritability, differences in phenotype ascertainment or 

definition, and cultural differences in the populations studied42.

In conclusion, our results support the hypothesis that metabolic and neurological 

mechanisms of caffeine contribute to coffee consumption habits. Individuals adapt their 

coffee consumption habits to balance perceived negative and reinforcing symptoms that are 

affected by genetic variation. Genetic control of this potential ‘titrating’ behavior would 

incidentally govern exposure to other potentially ‘bioactive’ constituents of coffee that may 

be related to the health effects of coffee or other sources of caffeine. Thus, our findings may 
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point to molecular mechanisms underlying inter-individual variability in pharmacological 

and health effects of coffee and caffeine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

The members and affiliations of the International Parkinson Disease Genomics Consortium 

(IPDGC) are as follows: Michael A Nalls (Laboratory of Neurogenetics, National Institute 

on Aging, National Institutes of Health, Bethesda, MD, USA), Vincent Plagnol (UCL 

Genetics Institute, London, UK), Dena G Hernandez (Laboratory of Neurogenetics, National 

Institute on Aging; and Department of Molecular Neuroscience, UCL Institute of 

Neurology, London, UK), Manu Sharma (Department for Neurodegenerative Diseases, 

Hertie Institute for Clinical Brain Research, University of Tübingen, and DZNE, German 

Center for Neurodegenerative Diseases, Tübingen, Germany), Una-Marie Sheerin 

(Department of Molecular Neuroscience, UCL Institute of Neurology), Mohamad Saad 

(INSERM U563, CPTP, Toulouse, France; and Paul Sabatier University, Toulouse, France), 

Javier Simón-Sánchez (Department of Clinical Genetics, Section of Medical Genomics, VU 

University Medical Centre, Amsterdam, Netherlands), Claudia Schulte (Department for 

Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research), Suzanne Lesage 

(INSERM, UMR_S975 [formerly UMR_S679], Paris, France; Université Pierre et Marie 

Curie-Paris, Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, Paris, 

France; and CNRS, Paris, France), Sigurlaug Sveinbjörnsdóttir (Department of Neurology, 

Landspítali University Hospital, Reykjavík, Iceland; Department of Neurology, MEHT 

Broomfield Hospital, Chelmsford, Essex, UK; and Queen Mary College, University of 

London, London, UK), Sampath Arepalli (Laboratory of Neurogenetics, National Institute 

on Aging), Roger Barker (Department of Neurology, Addenbrooke’s Hospital, University of 
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Cambridge, Cambridge, UK), Yoav Ben-Shlomo (School of Social and Community 

Medicine, University of Bristol), Henk W Berendse (Department of Neurology and 

Alzheimer Center, VU University Medical Center), Daniela Berg (Department for 

Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and DZNE, 

German Center for Neurodegenerative diseases), Kailash Bhatia (Department of Motor 

Neuroscience, UCL Institute of Neurology), Rob M A de Bie (Department of Neurology, 

Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands), Alessandro 

Biffi (Center for Human Genetic Research and Department of Neurology, Massachusetts 

General Hospital, Boston, MA, USA; and Program in Medical and Population Genetics, 

Broad Institute, Cambridge, MA, USA), Bas Bloem (Department of Neurology, Radboud 

University Nijmegen Medical Centre, Nijmegen, Netherlands), Zoltan Bochdanovits 

(Department of Clinical Genetics, Section of Medical Genomics, VU University Medical 

Centre), Michael Bonin (Department of Medical Genetics, Institute of Human Genetics, 

University of Tübingen, Tübingen, Germany), Jose M Bras (Department of Molecular 

Neuroscience, UCL Institute of Neurology), Kathrin Brockmann (Department for 

Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and DZNE, 

German Center for Neurodegenerative diseases), Janet Brooks (Laboratory of 

Neurogenetics, National Institute on Aging), David J Burn (Newcastle University Clinical 

Ageing Research Unit, Campus for Ageing and Vitality, Newcastle upon Tyne, UK), Gavin 

Charlesworth (Department of Molecular Neuroscience, UCL Institute of Neurology), 

Honglei Chen (Epidemiology Branch, National Institute of Environmental Health Sciences, 

National Institutes of Health, NC, USA), Patrick F Chinnery (Neurology M4104, The 

Medical School, Framlington Place, Newcastle upon Tyne, UK), Sean Chong (Laboratory of 

Neurogenetics, National Institute on Aging), Carl E Clarke (School of Clinical and 

Experimental Medicine, University of Birmingham, Birmingham, UK; and Department of 

Neurology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, 

Birmingham, UK), Mark R Cookson (Laboratory of Neurogenetics, National Institute on 

Aging), J Mark Cooper (Department of Clinical Neurosciences, UCL Institute of 

Neurology), Jean Christophe Corvol (INSERM, UMR_S975; Université Pierre et Marie 

Curie-Paris; CNRS; and INSERM CIC-9503, Hôpital Pitié-Salpêtrière, Paris, France), Carl 

Counsell (University of Aberdeen, Division of Applied Health Sciences, Population Health 

Section, Aberdeen, UK), Philippe Damier (CHU Nantes, CIC0004, Service de Neurologie, 

Nantes, France), Jean-François Dartigues (INSERM U897, Université Victor Segalen, 

Bordeaux, France), Panos Deloukas (Wellcome Trust Sanger Institute, Wellcome Trust 

Genome Campus, Cambridge, UK), Günther Deuschl (Klinik für Neurologie, 

Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität 

Kiel, Kiel, Germany), David T Dexter (Parkinson’s Disease Research Group, Faculty of 

Medicine, Imperial College London, London, UK), Karin D van Dijk (Department of 

Neurology and Alzheimer Center, VU University Medical Center), Allissa Dillman 

(Laboratory of Neurogenetics, National Institute on Aging), Frank Durif (Service de 

Neurologie, Hôpital Gabriel Montpied, Clermont-Ferrand, France), Alexandra Dürr 

(INSERM, UMR_S975; Université Pierre et Marie Curie-Paris; CNRS; and AP-HP, Pitié-

Salpêtrière Hospital), Sarah Edkins (Wellcome Trust Sanger Institute), Jonathan R Evans 

(Cambridge Centre for Brain Repair, Cambridge, UK), Thomas Foltynie (UCL Institute of 

Neurology), Jing Dong (Epidemiology Branch, National Institute of Environmental Health 
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Sciences), Michelle Gardner (Department of Molecular Neuroscience, UCL Institute of 

Neurology), J Raphael Gibbs (Laboratory of Neurogenetics, National Institute on Aging; 

and Department of Molecular Neuroscience, UCL Institute of Neurology), Alison Goate 

(Department of Psychiatry, Department of Neurology, Washington University School of 

Medicine, MI, USA), Emma Gray (Wellcome Trust Sanger Institute), Rita Guerreiro 

(Department of Molecular Neuroscience, UCL Institute of Neurology), Clare Harris 

(University of Aberdeen), Jacobus J van Hilten (Department of Neurology, Leiden 

University Medical Center, Leiden, Netherlands), Albert Hofman (Department of 

Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands), Albert 

Hollenbeck (AARP, Washington DC, USA), Janice Holton (Queen Square Brain Bank for 

Neurological Disorders, UCL Institute of Neurology), Michele Hu (Department of Clinical 

Neurology, John Radcliffe Hospital, Oxford, UK), Xuemei Huang (Departments of 

Neurology, Radiology, Neurosurgery, Pharmacology, Kinesiology, and Bioengineering, 

Pennsylvania State University– Milton S Hershey Medical Center, Hershey, PA, USA), 

Isabel Wurster (Department for Neurodegenerative Diseases, Hertie Institute for Clinical 

Brain Research and German Center for Neurodegenerative diseases), Walter Mätzler 

(Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research 

and German Center for Neurodegenerative diseases), Gavin Hudson (Neurology M4104, 

The Medical School, Newcastle upon Tyne, UK), Sarah E Hunt (Wellcome Trust Sanger 

Institute), Johanna Huttenlocher (deCODE genetics), Thomas Illig (Institute of 

Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental 

Health, Neuherberg, Germany), Pálmi V Jónsson (Department of Geriatrics, Landspítali 

University Hospital, Reykjavík, Iceland), Jean-Charles Lambert (INSERM U744, Lille, 

France; and Institut Pasteur de Lille, Université de Lille Nord, Lille, France), Cordelia 

Langford (Cambridge Centre for Brain Repair), Andrew Lees (Queen Square Brain Bank for 

Neurological Disorders), Peter Lichtner (Institute of Human Genetics, Helmholtz Zentrum 

München, German Research Centre for Environmental Health, Neuherberg, Germany), 

Patricia Limousin (Institute of Neurology, Sobell Department, Unit of Functional 

Neurosurgery, London, UK), Grisel Lopez (Section on Molecular Neurogenetics, Medical 

Genetics Branch, NHGRI, National Institutes of Health), Delia Lorenz (Klinik für 

Neurologie, Universitätsklinikum Schleswig-Holstein), Alisdair McNeill (Department of 

Clinical Neurosciences, UCL Institute of Neurology), Catriona Moorby (School of Clinical 

and Experimental Medicine, University of Birmingham), Matthew Moore (Laboratory of 

Neurogenetics, National Institute on Aging), Huw R Morris (MRC Centre for 

Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, 

UK), Karen E Morrison (School of Clinical and Experimental Medicine, University of 

Birmingham; and Neurosciences Department, Queen Elizabeth Hospital, University 

Hospitals Birmingham NHS Foundation Trust, Birmingham, UK), Ese Mudanohwo 

(Neurogenetics Unit, UCL Institute of Neurology and National Hospital for Neurology and 

Neurosurgery), Sean S O’Sullivan (Queen Square Brain Bank for Neurological Disorders), 

Justin Pearson (MRC Centre for Neuropsychiatric Genetics and Genomics), Joel S 

Perlmutter (Department of Neurology, Radiology, and Neurobiology at Washington 

University, St Louis), Hjörvar Pétursson (deCODE genetics; and Department of Medical 

Genetics, Institute of Human Genetics, University of Tübingen), Pierre Pollak (Service de 

Neurologie, CHU de Grenoble, Grenoble, France), Bart Post (Department of Neurology, 
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Radboud University Nijmegen Medical Centre), Simon Potter (Wellcome Trust Sanger 

Institute), Bernard Ravina (Translational Neurology, Biogen Idec, MA, USA), Tamas 

Revesz (Queen Square Brain Bank for Neurological Disorders), Olaf Riess (Department of 

Medical Genetics, Institute of Human Genetics, University of Tübingen), Fernando 

Rivadeneira (Departments of Epidemiology and Internal Medicine, Erasmus University 

Medical Center), Patrizia Rizzu (Department of Clinical Genetics, Section of Medical 

Genomics, VU University Medical Centre), Mina Ryten (Department of Molecular 

Neuroscience, UCL Institute of Neurology), Stephen Sawcer (University of Cambridge, 

Department of Clinical Neurosciences, Addenbrooke’s hospital, Cambridge, UK), Anthony 

Schapira (Department of Clinical Neurosciences, UCL Institute of Neurology), Hans 

Scheffer (Department of Human Genetics, Radboud University Nijmegen Medical Centre, 

Nijmegen, Netherlands), Karen Shaw (Queen Square Brain Bank for Neurological 

Disorders), Ira Shoulson (Department of Neurology, University of Rochester, Rochester, 

NY, USA), Ellen Sidransky (Section on Molecular Neurogenetics, Medical Genetics 

Branch, NHGRI), Colin Smith (Department of Pathology, University of Edinburgh, 

Edinburgh, UK), Chris C A Spencer (Wellcome Trust Centre for Human Genetics, Oxford, 

UK), Hreinn Stefánsson (deCODE genetics), Francesco Bettella (deCODE genetics), Joanna 

D Stockton (School of Clinical and Experimental Medicine), Amy Strange (Wellcome Trust 

Centre for Human Genetics), Kevin Talbot (University of Oxford, Department of Clinical 

Neurology, John Radcliffe Hospital, Oxford, UK), Carlie M Tanner (Clinical Research 

Department, The Parkinson’s Institute and Clinical Center, Sunnyvale, CA, USA), Avazeh 

Tashakkori-Ghanbaria (Wellcome Trust Sanger Institute), François Tison (Service de 

Neurologie, Hôpital Haut-Lévêque, Pessac, France), Daniah Trabzuni (Department of 

Molecular Neuroscience, UCL Institute of Neurology), Bryan J Traynor (Laboratory of 

Neurogenetics, National Institute on Aging), André G Uitterlinden (Departments of 

Epidemiology and Internal Medicine, Erasmus University Medical Center), Daan Velseboer 

(Department of Neurology, Academic Medical Center), Marie Vidailhet (INSERM, 

UMR_S975, Université Pierre et Marie Curie-Paris, CNRS, UMR 7225), Robert Walker 

(Department of Pathology, University of Edinburgh), Bart van de Warrenburg (Department 

of Neurology, Radboud University Nijmegen Medical Centre), Mirdhu Wickremaratchi 

(Department of Neurology, Cardiff University, Cardiff, UK), Nigel Williams (MRC Centre 

for Neuropsychiatric Genetics and Genomics), Caroline H Williams-Gray (Department of 

Neurology, Addenbrooke’s Hospital), Sophie Winder-Rhodes (Department of Psychiatry 

and Medical Research Council and Wellcome Trust Behavioural and Clinical Neurosciences 

Institute, University of Cambridge), Kári Stefánsson (deCODE genetics), Maria Martinez 

(INSERM UMR 1043; and Paul Sabatier University), Nicholas W Wood (UCL Genetics 

Institute; and Department of Molecular Neuroscience, UCL Institute of Neurology), John 

Hardy (Department of Molecular Neuroscience, UCL Institute of Neurology), Peter Heutink 

(Department of Clinical Genetics, Section of Medical Genomics, VU University Medical 

Centre), Alexis Brice (INSERM, UMR_S975, Université Pierre et Marie Curie-Paris, 

CNRS, UMR 7225, AP-HP, Pitié-Salpêtrière Hospital), Thomas Gasser (Department for 

Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and DZNE, 

German Center for Neurodegenerative Diseases), Andrew B Singleton (Laboratory of 

Neurogenetics, National Institute on Aging).

et al. Page 16

Mol Psychiatry. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The members and affiliations of the North American Brain Expression Consortium 

(NABEC) are as follows: Andrew Singleton (Laboratory of Neurogenetics, National 

Institute on Aging, National Institutes of Health, Bethesda, MD, USA); Mark Cookson 

(Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 

Bethesda, MD, USA); J. Raphael Gibbs (Laboratory of Neurogenetics, National Institute on 

Aging, National Institutes of Health, Bethesda, MD, USA and Reta Lila Weston Institute 

and Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, 

London WC1N 3BG, UK); Dena Hernandez (Laboratory of Neurogenetics, National 

Institute on Aging, National Institutes of Health, Bethesda, MD, USA and Reta Lila Weston 

Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, Queen 

Square, London WC1N 3BG, UK); Allissa Dillman (Laboratory of Neurogenetics, National 

Institute on Aging, National Institutes of Health, Bethesda, MD, USA and Department of 

Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden); Michael Nalls (Laboratory 

of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 

USA) Alan Zonderman (Research Resources Branch, National Institute on Aging, National 

Institutes of Health, Bethesda, MD, USA); Sampath Arepalli (Laboratory of Neurogenetics, 

National Institute on Aging, National Institutes of Health, Bethesda, MD, USA); Luigi 

Ferrucci (Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA); 

Robert Johnson (NICHD Brain and Tissue Bank for Developmental Disorders, University of 

Maryland Medical School, Baltimore, Maryland 21201, USA); Dan Longo (Lymphocyte 

Cell Biology Unit, Laboratory of Immunology, National Institute on Aging, National 

Institutes of Health, Baltimore, MD, USA); Richard O’Brien (Brain Resource Center, Johns 

Hopkins University, Baltimore, MD, USA); Bryan Traynor (Laboratory of Neurogenetics, 

National Institute on Aging, National Institutes of Health, Bethesda, MD, USA); Juan 

Troncoso (Brain Resource Center, Johns Hopkins University, Baltimore, MD, USA); Marcel 

van der Brug (Laboratory of Neurogenetics, National Institute on Aging, National Institutes 

of Health, Bethesda, MD, USA and ITGR Biomarker Discovery Group, Genentech, South 

San Francisco, CA, USA); Ronald Zielke (NICHD Brain and Tissue Bank for 

Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland 

21201, USA).

The members and affiliations of the United Kingdom Brain Expression Consortium are as 

follows (UKBEC): John Hardy (Reta Lila Weston Institute and Department of Molecular 

Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK); 

Michael Weale (Department of Medical and Molecular Genetics, King’s College London, 

8th Floor, Tower Wing, Guy1s Hospital, London SE1 9RT, UK); Mina Ryten (Reta Lila 

Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, 

Queen Square, London WC1N 3BG, UK); Adaikalavan Ramasamy (Department of Medical 

and Molecular Genetics, King’s College London, 8th Floor, Tower Wing, Guy’s Hospital, 

London SE1 9RT, UK and Reta Lila Weston Institute and Department of Molecular 

Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK); 

Daniah Trabzuni (Reta Lila Weston Institute and Department of Molecular Neuroscience, 

UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK and Department of 

Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 

11211, Saudi Arabia); Colin Smith (Department of Neuropathology, MRC Sudden Death 
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Brain Bank Project, University of Edinburgh, Wilkie Building, Teviot Place, Edinburgh 

EH8 9AG); Robert Walker (Department of Neuropathology, MRC Sudden Death Brain 

Bank Project, University of Edinburgh, Wilkie Building, Teviot Place, Edinburgh EH8 

9AG).
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Figure 1. 
Network describing direct interactions between candidate genes of confirmed loci. 

Relationships were retrieved from databases of transcription regulation and protein-protein 

interaction experiments (Supplementary Table S21). Genes are represented as nodes that are 

colored according to locus. Candidate genes for loci identified in the current study were 

supplemented with known candidate genes related to caffeine pharmacology (grey nodes). 

Edges indicate known interactions.
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Table 3

Associations between coffee consumption loci and other traits

Lead SNP,
allele ↑ coffee

consumption
a

closest gene

Other Traits
b

higher levels/risk
c

lower levels/risk
c

rs1260326, C
GCKR

non-albumin protein
fasting glucose
HOMA-IR
fasting insulin
mannose

serum albumin
2-hr glucose challenge
metabolic syndrome
glucose/mannose ratio
total cholesterol
triglycerides
hypertriglyceridemia
chronic kidney disease
uric acid
SHBG Crohn’s disease
C-reactive protein
platelet counts
GGT docosapentaenoic acid
alanine/glutamine ratio
alanine

LDL (P=2.33×10−4)
waist-to-hip-ratio (P=3.40×10−4)
bipolar disorder (P=2.31×l0−3)

rs1481012, A
ABCG2

LDL response to statins (‘responders’)
uric acid

body mass index (P=4.85×10−3)

rs6968554 , G
AHR

caffeine

HDL (P=1.18×10−3)

rs7800944, C
MLXIPL

triglycerides

HDL (P=2.24×10−3)
birth weight (P=2.10×10−3)

rs6265, C
BDNF

smoking initiation
body mass index

DBP (P=6.58×10−4)

rs2472297
d
, T

CYP1A1_CYP1A2
caffeine 

e

SBP (P=6.81×10−5)
DBP (P=6.75×10−6)

rs9902453,G
EFCAB5

SBP (P=6.05×10−3)

Abbreviations: DBP, diastolic blood pressure; GGT, gamma-glutamyltransferase; HDL, high density lipoprotein; LDL, low density lipoprotein; 
SBP, systolic blood pressure; SHBG, sex hormone binding globulin

a
Lead SNP-allele associated with higher coffee consumption.

b
Traits associated with lead SNP (or close proxies: r2>0.80) according to previous GWAS20(Shin et al, 2014). Grey cells denote all GW-

significant significant associations (P<5.00 ×l0−8 20 or P<1.03 ×l0−10 (Shin et al, 2014) and white cells denote coffee-relevant trait associations 

(P<;6.25×l0−3). See Supplementary Information for details and references to original GWAS.

c
Relative to allele associated with higher coffee consumption.

d
rsl378942 A, also associated with higher coffee consumption (P< 1.46×10−17) in stage 1 of the current report but in low LD with rs2472297 

(CEU: r2=0.10), was previously associated with lower DBP in GWAS (P<5,00× 10−8).
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e
Borderline significant (P<1.51 ×10−10) according to Shin et al21.

Mol Psychiatry. Author manuscript; available in PMC 2016 May 01.


