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a b s t r a c t

The prediction of the shear capacity of reinforced concrete beams retrofitted in shear by means of exter-
nally bonded FRP is very complex as demonstrate the studies carried out up to date. As alternative to the
conventional methods two approaches based on artificial intelligence are proposed for the first time.
Firstly, the use of neural networks as a means of predicting shear capacity without the need of using com-
plex models and, secondly, the use of genetic algorithms as a means of determining suitably how the
shear mechanism works. Predictions obtained with both approaches are compared to experimental
values.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial intelligence (AI) is a term that in its broadest sense
would indicate the ability of a machine to perform the same kind
of functions that characterize human thought. Several artificial
intelligence techniques are used increasingly as alternatives to
more classical or conventional techniques. They have been used
to solve complicated practical problems in different sectors, such
as engineering, economics, medicine, military, marine, etc., and
are becoming more popular nowadays. Into the structural engi-
neering field, they have been successfully applied to different areas
such as structural analysis and design [1,2], damage assessment
[3–5] and constitutive modelling [6].

On the other hand, it is well-known that the understanding of
concrete structures designed for strengthening in shear using fi-
bre-reinforced polymers (FRP) is still an area where uniform design
rules do not exist or are treated very briefly. The cause of shear fail-
ure is a result of a complicated mechanism even for simple RC ele-
ments, so it would be even more complex when external FRP
reinforcement is added to the concrete [7–9]. Because of this, the
prediction of the ultimate shear strength of reinforced concrete
(RC) beams is critical especially when the value is used in the de-
sign and, therefore, a lot of theoretical and experimental work is
still in progress to solve open questions.

In contrast with the usual regression analysis of experimental
data [7,9,10] and with the classical strut-and-tie models [11]

employed to predict the capacity of an FRP shear-strengthened
RC beam, this paper outlines an understanding of how artificial
intelligence systems, in particular neural networks and genetic
algorithms, can be used to improve the predictive capacity.

For it, firstly, sixteen reinforced concrete beams shear strength-
ened with FRP external reinforcement have been tested consider-
ing different configurations. These results together with other
experimental results taken from the literature have been taken
as a basis to construct an artificial neural network to predict the
ultimate shear strength of this kind of repaired beams. Due to their
unique features, the neural networks can be used to solve complex
problems that cannot be handled by analytical approaches, even
problems whose underlining physical and mathematical models
are not well-known. From this point of view, they result suitable
for determining the shear capacity of RC beams strengthened with
FRP shear reinforcement as the results have demonstrated.

Other way of focusing the posed problem through artificial
intelligence is by using genetic algorithms to solve an optimization
problem. The shear mechanism of RC beams with FRP externally
bonded reinforcements can be assumed to a variable angle truss
model, also known as strut-and-tie model. However, in spite of
its conceptual simplicity there is not a clear guide to define the
geometry of the strut-and-tie model. Its major complexity is about
how to transform a continuous structural domain to a strut-and-tie
model. By using genetic algorithms, a simple automatic procedure
for determining the optimal configuration of the strut-and-tie
mechanism of an FRP shear-strengthened RC beam is developed.
For it, the procedure is set out as an optimization problem based
on the minimization of the total strain energy solved by using ge-
netic algorithms. Unlike traditional gradient-based optimization
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methods, genetic algorithms use multiple points to search for the
solution rather than a single point. Starting from an initial random
generation of possible configurations of the strut-and-tie model for
the reinforced beam subjected to study, new populations of possi-
ble configurations are generated iteratively using typical genetic
operators with the purpose of improving the best individuals of
the previous populations by the application of the principle of min-
imum strain energy. The algorithm progresses with successive
generations to reach an optimum solution for the studied problem
which corresponds to the optimal strut-and-tie configuration. Un-
like the conventional truss approaches, in the optimal configura-
tion, compressive struts are not enforced to be parallel, which
represents more consistently the physical reality of the flow of
forces.

The two proposed approaches are validated successfully against
the results of the experimental tests performed. Furthermore, a
comparison with the predictions of some design proposals has
been also performed with the purpose of remarking the advantages
of both proposals.

2. Neural networks

2.1. Description

Neural networks are a very simple implementation of local
behaviour observed within our own brains. Hopfield [12] provided
the mathematical foundation for understanding the dynamics of an
important class of networks. Kohonen [13] developed unsuper-
vised learning networks for feature mapping into regular arrays
of neurons. From 1986, many neural networks research programs
have been developed in such a way that the list of applications that
can be solved by neural networks has expanded from small test
size examples to large practical problems.

A neural network is a collection of small individually intercon-
nected processing units. Information is passed through these units
along interconnections. An incoming connection has two values
associated with it, an input value and a weight. The output of the
unit is a function of the summed value. The main characteristic
of ANNs is its ability to learn and generalize from experience and
examples and to adapt to changing situations. For it, a previous
training of the NN is needed. The training or learning process in-
volves presenting a set of examples (input patterns) with known
outputs (target output). The system adjusts the weights of the
internal connections to minimize errors between the network out-
put and target output. Data presented for training can be theoret-
ical data, empirical data based on reliable experience or a
combination of both. Once the NN has been trained, new patterns
may be presented to them for prediction or classification. ANNs can
automatically learn to recognize patterns in data from real systems
or from physical models, computer programs, or other sources. The
learning process avoids the need to use complex mathematically

explicit formulas, computer models and impractical and costly
physical models. In fact, neural network analysis can be conceived
of as a black box approach and the user does not require sophisti-
cated mathematical knowledge.

In a typical configuration, the network has an input layer, an
output layer and any number of hidden layers. Layers are fully
interconnected (Fig. 1). The input layer receives inputs from the
outside world, the output layer gives the predictions to the outside
world and the hidden layer links the input layer to the output layer
extracting and remembering the main features of the input pat-
terns to predict the outcome of the network. The main difference
between the network types lies in the type of activation function
used by the hidden neurones. Common types of activation function
include the sigmoid transfer function and the Gaussian radial basis
function.

2.2. Application to FRP shear-strengthened RC structures

As commented above, ANNs are useful in solving problems
where the algorithm or rules to solve the problem are unknown
as is the case of the prediction of the shear capacity of RC beams
shear strengthened with FRP composites. One of the keypoints to
guarantee the success of the procedure is referred to the choice
of the optimal configuration of the NN. Although the number of in-
put parameters should be large enough to represent the system
properly, a large number might reduce the efficiency and accuracy
of the training process in case of using a small training set. For this
particular problem, 46 U-wrapping beams [11,14,15] were used for
the configuration and learning of the NN. The choice of the input
parameters has been guided based on the predictions obtained
with the shear capacity equations of different design proposals
[16–19]. Those design equations whose predictions are closer to
the experimental values have been taken as a basis to define the
input variables. In particular, best predictions were obtained when
the design guidelines contained in Fib Bulletin 14 [16] combined
with Eurocode 2 [20] were used and, although this does not allow
concluding that this guide is the most suitable for FRP strengthen-
ing design, has been adopted as a basis for selecting the input
parameters to the ANN. After this previous study, the network
was finally configured with nine input neurons, one output neuron
showing the shear strength of the reinforced beam and one hidden
layer with eleven hidden neurons. The variables associated to each
one of the input neurons are the breadth of the beam (bw; mm), the
height of the beam section (h; mm), the ratio of the FRP transversal
reinforcement (qf), the angle between the principal fibre orienta-
tion and the longitudinal axis of the member (b), the elastic mod-
ulus of the FRP reinforcement (Ef; MPa), the ratio of the
longitudinal steel reinforcement (ql), the cross sectional area of
transverse steel per length unit (A90; mm2/mm), the design yield-
ing stress of the shear steel reinforcement (fy90,d), and the charac-
teristic compression strength of the concrete (fck; MPa).

Once the NN configuration has been chosen, the network has
been trained using the 46 beams specified above and back-propa-
gation training algorithm with momentum factor of 0.9, learning
rate of 0.15 and 3000 training cycles.

3. Genetic algorithms

3.1. Description

A GA is implemented as a computerized search and optimiza-
tion procedure that uses the principles of natural genetics and nat-
ural selection [21]. The basic approach is to work with a population
of candidate solutions that are encoded as chromosomes or strings
of ones and zeros. Various portions of these bit-strings representFig. 1. Typical configuration of a three layer feed forward neural network.
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parameters in the search problem. From an initial population ran-
domly generated, better populations will be generated iteratively
through selection of fit chromosomes from the population and
use of reproduction genetic operators. Selection is according to fit-
ness of individual solutions, i.e. the best individuals are more often
selected. Reproduction operators include crossover and mutation.
Crossover produces offspring by exchanging chromosome seg-
ments from two parents. Mutation randomly changes part of one
parent’s chromosome. This occurs infrequently and introduces
new genetic material. Although mutation plays a smaller part than
crossover in advancing the search, it is critical in maintaining ge-
netic diversity.

Unlike most stochastic search techniques, which adjust a single
solution, GA keeps a population of solutions. Maintaining several
possible solutions reduces the probability of reaching a false (local)
optimum. Therefore GAs can be very useful in searching noisy and
multimodal relations.

3.2. Application to FRP shear-strengthened RC structures

In all existing design proposals, the design shear strength, VRd, of
an FRP-strengthened RC beam is evaluated from

VRd ¼ Vc þ Vs þ Vf ð1Þ

where Vc is the contribution of concrete, Vs is the contribution of the
steel stirrups and Vf is the contribution of the FRP. Vc may be calcu-
lated according to the provisions in existing RC design codes using
the expressions for shear strength provided by concrete without
web reinforcement which are based on empirical data. The contri-
bution of vertical steel stirrups Vs and FRP external reinforcement
Vf and, therefore, the evaluation of the shear strength in a cracked
RC beam with external reinforcement can be carried out by using
an ideal strut-and-tie model which approximates the stress fluxes
in the material domain of the beam. The key idea of the equilibrated
truss structure is that, after the formation of cracks, the transmis-
sion of forces to the supports is performed through a diagonal com-
pression field linking in a proper way the bottom reinforced chord
and the top compressed chord. The key point to idealize the beam
as a truss structure is the solution of the local inclination of the
compression struts approximating the real stress field. Usually,
when the truss variable angle approach is used, the angle of inclina-
tion is considered constant for all the diagonal struts. This involves,

undoubtedly, a simplification of the real forces flow. A more consis-
tent approach to the physical reality would require the consider-
ation of different angles of inclination for the different
compression struts.

To generate the optimal two-dimensional strut-and-tie model
for a beam structure allowing to evaluate Eq. (1), an optimization
problem has been implemented in which as objective function
the minimization of the total strain energy has been chosen, i.e.

minimize
X

Filiei ð2Þ

where Fi is the axial force and li and ei are the length and axial strain
of the truss elements, respectively. The value of the strain energy for
each configuration is dependent on the angles of inclination hi of the
diagonal struts. These angles constitute the design variables of the
procedure to be determined.

To be consistent with the physical reality, according to the typ-
ical trajectory of stresses for beams (Fig. 2), one constraint has been
imposed over the design variables. This constraint implies assum-
ing that the strut angles from the support to the midsection of the
beam increase (Fig. 3), i.e.:

h1 6 h2 6 h3 6 . . . 6 hM ð3Þ

where M is the number of struts.
By implementing GAs in our problem, different strut-and-tie

configurations are randomly generated and, then, by the applica-
tion of the operators, crossover and mutation, new configurations
are generate iteratively until reaching the optimal configuration
minimizing the chosen objective function. The constraints are
incorporated into the optimization problem through the inclusion
of a penalty in the objective function whose value is dependent on
the amount of each constraint violation present in a certain solu-
tion. More details can be found in [22].

The variables of the problem, the angles hi, are encoded in a bin-
ary form by assuming that only can take discrete values within a
practical range (26–68�). Chromosomes grouping the binary
strings associated to each one of the struts of the possible strut-
and-tie mechanism represent the candidate solutions for the de-
sign problem.

Once the optima strut-and-tie mechanism has been determined
by using the optimization procedure described above and assum-
ing that the steel reinforcement yields previously to the failure,
shear capacity corresponds with either failure of the external shear
reinforcement or crushing of one of the truss struts. Therefore,
according to the superposition hypothesis of the concrete and
the reinforcement shear strength (Eq. (1)), the resisting shear force
design value is

VRd ¼minðV strut;V tie þ VcÞ ð4Þ

where Vstrut and Vtie are evaluated by applying equilibrium condi-
tions on the optimal strut-and-tie mechanism and are dependent
on the design strength of the concrete and on the effective FRP
strain efd. Numerous predictions for efd can be found in the literature
and, in fact, the design guidelines adopt some of them [16–19].Fig. 2. Typical trajectory of stresses.

Fig. 3. Truss configuration used in this work particularized when a = 90�.
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4. Experimental tests

The experimental program includes the testing of sixteen RC
beams with insufficient shear capacity. The experimental tests
were performed in the Eduardo Torroja Institute for Construction
Science (Spain). The dimensions of the beams are as follows:
length, 4500 mm, width, 250 mm and height, 420 mm. The bottom
longitudinal reinforcement consists of 6£20 mm bars arranged in
2 layers with 4 bars in the first layer and 2 in the second one, the
top longitudinal reinforcement is made of 2£10 mm and the shear
reinforcement consists of £8 mm stirrups, placed at a spacing of
380 mm. The beams have been externally shear reinforced with
unidirectional carbon fibre sheets adhered to the beam my means
of epoxy resin using the configurations shown in Table 1. Each lam-
inate has 300 mm wide and 1 mm thick. Two different types of
laminate were used. One with a fibre amount of 530 g/m2 and
the other with 300 g/m2. The properties of the fibre in the first case
are: elastic modulus equal to 240 GPa and tensile strength equal to
4000 MPa. For the second type, these values are 227 GPa and
3800 MPa, respectively.

In order to avoid the early FRP failure, the beam has rounded
corners with a 25 mm radius, which was achieved during manufac-
turing by placing concave wooden wedges in the frameworks.

Before bonding the sheet, the beam surface is prepared, remov-
ing the top cement layer by using a sand jet and cleaning the
resulting waste in order to guarantee a greater bonding between
the concrete and the FRP.

In accordance with the above table, the following nomenclature
is adopted: the first two characters indicate the reference of each
beam; the third letter indicates the configuration of the external
reinforcement, in this case U-jacketing for all the specimens; the
main orientation angle of the fibres with respect to the longitudi-
nal axis of the beams is denoted by the number written after the
type of configuration; the following character indicates whether
the strengthening is placed with spacing (S) or it is continuous
(C); after that the weight for square meter of FRP is indicated
and finally the last letter indicates whether the beam at issue is
a long (L) or short (C) span one.

For the tests carried out on long span beams, a single load was
applied at a distance from the support that equals three times the
beam depth. Tests on short span beams were performed over the
long span beams, once they were previously tested, by shifting
the support to the point where the load was placed in the first test
and by applying the load at a distance from the support that equals
2.5 times the beam depth. Experimental values of shear capacity
reached for each beam are shown in Table 1.

5. Application of NNS and GAs to evaluate shear capacity of FRP
shear-strengthened RC beams

Predictions of the experimental results were performed with
the two proposed approaches, NNs and GAs, in order to evaluate
their performance. The estimation of the shear capacity using the
first proposal, NN, requires only the introduction of the corre-
sponding input parameters of each beam into the trained neural
network. As commented above, this procedure is very simple since
it does not require of the application of any formula or expression.
On the contrary, the application of the second proposal requires
evaluating Eq. (5) from the optimal strut-and-tie mechanism ob-
tained by solving the proposed optimization problem by using
GAs. To perform this, the estimation of the FRP effective strain of
the experimental beams collected in the previous section has been
calculated with three design proposals, those proposed by the
International Federation for Structural Concrete (FIB14) [16], the
American Concrete Institute (ACI 440) [17], and the Italian National
Research Council (CNR-DT 200) [19]. Furthermore, in accordance
with the different proposals, the following design rules were used
to calculate the contribution of concrete Vc in Eq. (4): (a) Spanish
code for concrete EHE [23]; (b) Eurocode2: Part 1 [20]; (c) ACI
318-02 [24].

By suitably combining the values of FRP effective strains given
by the different design guidelines for strengthening using FRP with
the different codes for concrete, four predictions of the shear capac-
ity were obtained with the proposed model by using GAs. Further-
more, the following parameters were chosen for the application of
the proposed genetic algorithm: (a) size of population = 100; (b)
crossover probability = 0.6; (c) mutation probability = 0.03; (d)
maximum number of generations = 50. These values are typical in
GAs and were chosen after some previous numerical tests. Further-
more, taking into account the stochastic nature of GAs, twenty inde-
pendent runs were performed per GA and test problem in order to
decrease the influence of random effects.

Comparisons of all predictions with experimental results are
shown in Table 2. The statistical performance of all predictions
upon the whole of the experimental data is also shown in Table
2. For comparison, in Table 2, all strength reduction factors in the
equations used for design have been set equal to one.

In the same way, predictions with the two proposed approaches
have been compared with those ‘theoretical’ predictions calculated
directly from the concrete codes and the FRP guidelines. To apply
ACI 318 codes in the ‘theoretical’ estimations, the concrete contri-
bution Vc has been included and, furthermore, a strut-and-tie
mechanism with struts inclined to 45� has been adopted. On the

Table 1
Test scheme.

SPECIMEN Configuration Fibre amount (g/m2) Spacing (mm) Span (mm) Vtest (kN)

V2-U90-S530-L U 530 200 4300 241
V2-U90-S530-C U 530 200 3040 214
V3-U90-C530-L U 530 0 4300 211
V3-U90-C530-C U 530 0 3040 199
V5-U90-C530-L U 530 0 4300 238
V5-U90-C530-C U 530 0 3040 254
V8-U90-S300-L U 300 200 4300 202
V8-U90-S300-C U 300 200 3040 224
V9-U90-S300-L U 300 200 4300 168
V9-U90-S300-C U 300 200 3040 257
V11-U90-S530-L U 530 200 4300 230
V11-U90-S530-C U 530 200 3040 259
V13-U90-C300-L U 300 0 4300 203
V13-U90-C300-C U 300 0 3040 247
V14-U90-C300-L U 300 0 4300 196
V14-U90-C300-C U 300 0 3040 233
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contrary, since in the ‘theoretical’ predictions with Eurocode 2 con-
crete contribution is not included, a limiting value of coth = 2.5 has
been considered for the inclination of the struts. However, in spite
of the fact that Eurocode 2 does not consider the concrete contribu-
tion in the ‘theoretical’ estimation of the shear capacity of a shear
reinforced beam, in the model predictions performed here this
term has been added by considering that its cumulative capacity
is essential to the correct interpretation of the shear resistance
mechanism of the RC beam.

All the comparisons are also shown graphically in Fig. 4. The pre-
dictions lie above or below the target line, i.e., the line where the pre-
dicted value is equal to the experimental value. The nearer the points
gather around the diagonal line, the better the predicted values.

From the tables and figures above, it is clear that, in general
terms, the predictions with the two proposed approaches improve
the ‘theoretical’ predictions. Statistical parameters in Table 2 show
that predictions carried out with the proposed optimization proce-
dure are better than those obtained using the equations of the de-
sign guidelines since the shear mechanism has been considered in
a more realistic way. On the other hand, predictions obtained with
the NN approach show the best mean value of all the predictions
carried out. However its standard deviation value is the highest
one. This demonstrates that the proposed method appears to be
very promising although by using more beam tests to train the neu-
ral network the predictions might improve considerably. The more
the amount of experimental data used to train the NN, the fitter the
predicted values since the neural network model will improve.

In the proposed techniques, sometimes, the predictions of the
shear capacity are unconservative which is logical in both cases.
In the first case, neural networks are directly trained with the
experimental results and, therefore, predictions will be sometimes
higher than experimental values and other times lower. In the sec-
ond case, GAs are an stochastic optimization technique and in the
optimization procedure the design equations have been applied
considering unit strength reduction factors; therefore, GAs predic-
tions can result sometimes unconservative.

6. Proposal for a new shear design equation

Basing on the observed behaviour from the analyses carried out
with the neural networks and genetic algorithms, some modifica-
tions might be proposed for the equations defining the shear
capacity of concrete beams strengthened in shear with FRP exter-

nal reinforcement. As an example to illustrate the procedure ACI
design equations and GAs predictions have been be taken as a
reference.

In the ACI proposal [17] the shear contribution of the FRP shear
reinforcement in Eq. (1) is given by:

Vf ¼
2ntf wf Ef efd;eðcos bþ senbÞdf

sf
ð5Þ

where n = number of plies of FRP reinforcement, efd,e = design value
of effective FRP strain, df = depth of FRP shear, tf = thickness of the
FRP transversal reinforcement, sf = spacing of the FRP transversal
reinforcement, wf = breadth of the FRP transversal reinforcement.
The other symbols were defined previously.

To illustrate the influence of some of the parameters which af-
fect Eq. (5) a parametric study was carried out initially by using the
proposed genetic algorithm. The most important conclusions are
presented next.

6.1. Influence of the FRP reinforcement ratio (qf)

The FRP reinforcement ratio qf is calculated like 2tfsena/bw for
continuously bonded shear reinforcement and 2(tf/bw) (wf/sf) for
strips or sheets of width bf at a spacing sf; a is the angle of diagonal
crack with respect to the member axis. This ratio has a very impor-
tant influence on the failure shear strength. Fig. 5 shows the influ-
ence of this parameter on the predictions calculated using the
proposed GA model and the ACI design guideline for a ratio a/d
equal to 2.5. Both curves follow a similar tendency although,
observing the slope of the curves, the model gives a slightly higher
relative importance to this parameter than the ACI guideline.

6.2. Influence of the elastic modulus of the FRP reinforcement (Ef)

Fig. 6 shows the influence of the FRP elastic modulus. As with
the previous parameter, the GA model and the ACI design guide-
lines follow a similar tendency. However, unlike the previous case,
the model does not give a higher relative importance to this
parameter when compared to the ACI predictions.

6.3. Influence of the inclination of the FRP fibres (b)

In the study of the influence of the inclination of the FRP fibres,
angles between 30� and 90� have been considered. Results are

Table 2
Comparison between experimental results and predictions.

Vtest/Vpred Theoretical GAs Theoretical GAs Theoretical GAs Neural networks

EHE+FIB14 EC2+FIB14 EHE+FIB14 EC2+FIB14 EC2+CNR EC2+CNR ACI+ACI ACI+ACI

V2-U90-S530-L 1.16 1.16 1.15 0.91 1.37 1.04 1.14 1.09 0.72
V2-U90-S530-C 1.02 1.02 0.91 0.74 1.21 0.86 1.01 0.87 0.64
V3-U90-C530-L 0.97 0.93 1.01 0.82 1.23 0.87 0.93 0.91 0.76
V3-U90-C530-C 0.92 0.88 0.88 0.72 1.16 0.77 0.88 0.72 0.71
V5-U90-C530-L 1.15 1.09 1.19 0.97 0.87 0.81 0.77 0.71 0.98
V5-U90-C530-C 1.23 1.17 1.12 0.93 0.93 0.78 0.82 0.63 1.05
V8-U90-S300-L 1.16 1.09 1.23 0.97 1.26 1.08 1.21 1.21 1.27
V8-U90-S300-C 1.29 1.20 1.16 0.94 1.40 1.08 1.35 1.20 1.41
V9-U90-S300-L 0.96 0.90 1.00 0.78 1.05 0.89 0.99 0.99 0.96
V9-U90-S300-C 1.47 1.38 1.16 0.96 1.61 1.21 1.51 1.38 1.47
V11-U90-S530-L 1.27 1.23 1.30 1.01 1.10 0.93 0.94 0.89 0.90
V11-U90-S530-C 1.43 1.39 1.18 0.96 1.23 0.94 1.06 0.96 1.01
V13-U90-C300-L 1.02 1.00 1.05 0.83 1.07 0.87 0.96 0.93 0.83
V13-U90-C300-C 1.24 1.21 1.02 0.84 1.30 0.94 1.17 1.01 1.01
V14-U90-C300-L 0.98 0.96 1.01 0.80 1.03 0.86 0.93 0.91 0.80
V14-U90-C300-C 1.17 1.14 1.00 0.82 1.23 0.94 1.10 0.96 0.95

l 1.15 1.11 1.08 0.88 1.19 0.93 1.05 0.96 0.97
r 0.17 0.16 0.12 0.09 0.18 0.12 0.19 0.19 0.23
COV 14.43 14.02 11.01 10.47 15.52 13.01 18.54 20.15 24.18
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shown in Fig. 7. Both, GA model and ACI follow a similar tendency
reaching the maximum value when b = 45�.

6.4. Proposed shear design equation

After considering the conclusions of the parametric study, the
original form of the shear equation in Eq. (5) has been modified
with the purpose of representing more suitably the dependence
on the ratio qf. For it, Eq. (5) has been rewritten as follows

Vf ¼ c1qc2
f nEf efd;eðcos bþ senbÞdf bw ð6Þ

where c1 and c2 are unknown coefficients to be determined.
Of course, this study should be only considered as a first illus-

trative attempt of improving the original shear design equation
and not like a wide and detailed study.

The optimum values of c1 and c2 are obtained by solving a min-
imization problem of the objective function defined from the dif-
ference between the measured shear strength of RC beams
externally shear strengthened with FRP and that calculated using
the Eqs. (1) and (6). Genetic algorithms have been used to solve
the optimization problem. The final form of the optimized equa-
tions is:

Vf ¼ 4:44q1:11
f nEf efd;eðcos bþ senbÞdf bw ð7Þ

With the modifications proposed, new predictions have been
carried out for the beams tested in the Eduardo Torroja Institute
for Construction Science (Spain). The comparison with experimen-

a

b

Fig. 4. (a) Comparison of shear strength predictions with experimental results. (b)
Comparison of shear strength predictions with experimental results.
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Fig. 5. Influence of the ratio qf in the predicted failure shear force.

Fig. 6. Influence of Ef in the predicted failure shear force.

Fig. 7. Influence of b in the predicted failure shear force.
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tal values is shown in Table 3. As may be observed, the agreement
of the predictions with the experimental tests is satisfactory and
for almost all the specimens the estimations have improved when
compared to the standard ACI predictions in Table 2.

7. Conclusions

Two artificial intelligence techniques have been applied for the
first time to the problem of estimating the capacity of FRP shear-
strengthened RC beams which remains as an open question nowa-
days. The AI-based simulation techniques offer an alternative ap-
proach to conventional techniques and, from them, some
advantages can be obtained. Conventional models are based on
the assumption of predefined empirical equations dependent on
unknown parameters. However, in problems for which the model-
ling rules are either not known or extremely difficult to discover,
like our problem, the conventional methods do not work well. By
using artificial neural networks these difficulties are overcome
since they are based on the learning and generalization from
experimental data; furthermore, they are able to adapt solutions
over time to consider the added experience.

On the other hand, by using genetic algorithms the basic char-
acteristics of the strut-and-tie models, taken as a basis to estimate
the shear capacity of RC beams strengthened with FRP, have been
revised with the purpose of representing models more consistent
with the physical reality of the shear mechanism.

Based on the work presented here and the obtained predictions
it is believed the two proposed approaches offer a potential alter-
native method to predict the shear strength of externally strength-
ened beams, which should not be underestimated for the future.

Finally, taking as a basis the proposed GA model and the ACI de-
sign guidelines, a design formula has been developed with success-
ful results although more exhaustive studies should be carried out
about this approach.
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Table 3
Comparison between experimental results and modified ACI predictions.

Vtest/Vpred Standard ACI+ACI Proposal ACI+ACI

V2-U90-S530-L 1.14 0.99
V2-U90-S530-C 1.01 0.88
V3-U90-C530-L 0.93 0.87
V3-U90-C530-C 0.88 0.84
V5-U90-C530-L 0.77 0.94
V5-U90-C530-C 0.82 1.01
V8-U90-S300-L 1.21 1.22
V8-U90-S300-C 1.35 1.36
V9-U90-S300-L 0.99 0.98
V9-U90-S300-C 1.51 1.5
V11-U90-S530-L 0.94 1
V11-U90-S530-C 1.06 1.15
V13-U90-C300-L 0.96 0.85
V13-U90-C300-C 1.17 1.03
V14-U90-C300-L 0.93 0.82
V14-U90-C300-C 1.10 0.97

l 1.05 1.02
r 0.19 0.18
COV 18.54 18.20
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