
 1

An Anomaly-Based Approach for Intrusion
Detection in Web Traffic

Carmen Torrano-Gimenez1, Alejandro Perez-Villegas1, and Gonzalo Alvarez1

1Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas,

Serrano 144 - 28006, Madrid, Spain
{carmen.torrano, alejandro.perez, gonzalo}@iec.csic.es

Abstract: A new system for web attack detection is presented. It
follows the anomaly-based approach, therefore known and
unknown attacks can be detected. The system relies on a XML file
to classify the incoming requests as normal or anomalous. The
XML file, which is built from only normal traffic, contains a
description of the normal behavior of the target web application
statistically characterized. Any request which deviates from the
normal behavior is considered an attack. The system has been
applied to protect a real web application. An increasing number of
training requests have been used to train the system. Experiments
show that when the XML file has enough information to closely
characterize the normal behavior of the target web application, a
very high detection rate is reached while the false alarm rate
remains very low.

Keywords: web attacks, intrusion detection system, anomaly
intrusion detection, web application firewall, web application
security.

1. Introduction
Web applications are becoming increasingly popular and
complex in all sorts of environments, ranging from e-
commerce applications to banking. As a consequence, web
applications are subject to all sort of attacks. Additionally,
web applications handle large amounts of sensitive data,
which makes web applications even more attractive for
malicious users. The consequences of many attacks might be
devastating [1], like identity supplanting, sensitive data
hijacking, access to unauthorized information, web page’s
content modification, command execution, etc. Therefore it
is fundamental to protect web applications and to adopt the
suitable security methods.

Unfortunately, conventional firewalls, operating at
network and transport layers, are usually not enough to
protect against web-specific attacks. To be really effective,
the detection is to be moved to the application layer.

An Intrusion Detection System (IDS) analyzes
information from a computer or a network to detect
malicious actions and behaviors that can compromise the
security of a computer system. When a malicious behavior is
detected, an alarm is launched. Traditionally, IDS’s have
been classified as either signature detection systems (also
called negative approach) or anomaly detection systems
(positive approach). An hybrid intrusion detection system
combines the techniques of the two approaches.

The signature-based approach looks for the signatures of
known attacks (misuse of the system resources), which
exploit weaknesses in system and application software. It
uses pattern matching techniques against a frequently

updated database of attack signatures. It is useful to detect
already known attacks or their slight variations, but not the
new ones or malicious variations that defeat the pattern
recognition engine.

The anomaly-based approach looks for behavior or use of
computer resources deviating from “normal” or “common”
behavior [1]. The underlying principle of this approach is
that “attack behavior” differs enough from “normal user
behavior” thus it can be detected by cataloging and
identifying the differences involved. First, the “normal”
behavior must be well defined, which is not an easy task.
Once normal behavior is fully qualified, irregular behavior
will be tagged as intrusive.

One of the major shortcomings of signature-based IDSs is
their susceptibility to evasion attacks, such as fragmentation,
avoiding defaults, low-bandwidth attacks, or simply pattern
changing. Additionally, attack pattern matching systems
require large signature databases constantly updated. The
comparison of incoming traffic against every signature in the
database requires a high computational effort, with the
consequence of reduced throughput.

In these scenarios where signature-based IDS's fail,
anomaly-based systems permit discerning normal traffic
from suspicious activity without signature matching.
However, in rather complex environments, such as large
networks with multiple servers and different operating
systems, to get an up-to-date and feasible picture of what
“normal” network traffic should look like, proves to be a
hard problem. As another disadvantage, the rate of false
positives (events erroneously classified as attacks) in
anomaly-based systems is usually higher than in signature
based ones. Both approaches, anomaly detection and
signature matching, are compared in Table 1, which shows
the main features of both security models.

Anomaly detection Signature matching
It contains a complete
set of valid requests and
they are identified
accurately, therefore it is
possible to detect new
attacks, zero-day attacks
and variations of attacks

Only the attacks described
in the signatures can be
detected. The set of
invalid requests is
incomplete and their
accuracy cannot be
defined. As a
consequence, new attacks
and malicious variations
cannot be detected

As the definition of the
valid requests is complete
and accurate, the

The administrative work is
high as the signatures
have to be updated to

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36050606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

administrative overhead is
low

contain the new attacks
and the new variations of
the existing attacks

Definition of normal
traffic is not an easy task
in large and complex web
applications

Signatures are easy to
develop and understand if
the behavior to be
identified is known

The normal behavior is
defined, it is not needed to
define a signature for
every attack and their
variations

A signature has to be
defined for every attack
and their variations

It works well against self-
modifying attacks

Usually, it does not work
very accurately against
attacks with self-
modifying behavior. Such
attacks are usually
generated by humans and
polymorphic worms

It is not easy to know
exactly which issue
caused the alert

The events generated by a
signature-based IDS can
inform very precisely
about what caused the
alert, which makes it
easier to research on the
causing issue

The resource usage is low There is a heavy usage of
the resources

It is scalable It is not scalable

Table 1. Comparison between the anomaly-based and the
signature-based security models.

The results of signature-based IDSs depend on the actual
signature configuration for each web application, hence it is
complicated to compare these results with anomaly-based
IDS’s ones.

Multiple and varied techniques have been used to solve
the general intrusion detection problem [3], such as
clustering [4], [5] Markov models [6], [7], neural networks
[8], [9], fuzzy logic [10],[11], genetic algorithms [12], [18],
artificial immune systems [14], etc. Even though there are
still some open challenges in intrusion detection.

Web Application Firewalls (WAF) analyzes the HTTP
traffic (application layer) in order to detect malicious
behaviors that can compromise the security of web
applications.

In this paper, a simple and effective anomaly-based WAF
is presented. This system relies on an XML file to describe
what a normal web application is. Any irregular behavior is
flagged as intrusive. The XML file must be tailored for every
target application to be protected. Further details about the
system will be explained in the next sections of this paper.

Up to now, some of the most important works developed
to solve the web attacks detection problem are [6], [15] and
[16].

[6] presents an anomaly-based system which uses Markov
chains to model the HTTP traffic. The packet payload is
parameterised for the evaluation of the incoming traffic: it is
segmented into a certain number of contiguous blocks,
which are subsequently quantized according to a previously
trained scalar codebook. Then, the temporal sequence of the

symbols obtained is evaluated by means of a Markov model
obtained from the training phase.

The system presented in [15] is also anomaly-based. It
analyzes client queries that reference server-side programs.
More precisely, the analysis techniques used by the tool take
advantage of the particular structure of HTTP queries that
contain parameters. The system creates models for a wide-
range of different features of these queries, such as attribute
length, attribute character distribution, attribute presence or
absence, attribute order, access frequency, inter-request time
delay, etc. The access patterns of such queries and their
parameters are compared with established profiles that are
specific to the program or active document being referenced.

[16] introduces an intrusion detection software component
based on text-mining techniques. By using text
categorisation, it is capable of learning the characteristics of
both normal and malicious user behaviour from the log
entries generated by the web application server. This IDS is
evaluated on a real web-based telemedicine system.

The rest of the paper is organized as follows. In Sect. 2,
concepts of web applications and web attacks are exposed,
as well as a description of the most important web
vulnerabilities. In Sect. 3 a system overview is given, where
system architecture, normal behavior modeling and attack
detection are explained. Section 4 refers to experiments. This
section includes XML file generation, artificial traffic
generation, the training phase, the test phase, WAF
protection mechanisms, performance measurement and
results. Section 5 describes system limitations and suggests
future work. Finally, in Sec. 6, the conclusions of this work
are captured.

2. Web Applications and Web Attacks

2.1 Web applications
Web applications are usually divided into three logical tiers:
presentation, application and storage. Typically, a web server
is the first tier (presentation), an engine using some web
content technology is the middle tier (application logic) and
finally, a database is the third tier (storage). Some examples
can be cited: IIS and Apache are popular web servers, Web
Logic Server and Apache Tomcat are well known
applications servers and finally, Oracle and MySQL are
frequently used databases. Separating the presentation tier
from the storage one facilitates the design and the
maintenance of the web site. The web server sends requests
to the middle tier, which services them by making queries
and updates against the database and generates a user
interface.
 Most of the Web contents are dynamic. Dynamic pages,
in contrast to static pages, retrieve its content from the
database on demand. There are a number of platform-
specific technologies to achieve the on-the-fly generation of
web content, such as CGI programming in Perl, Python, or
C/C++, as well as JSP, ASP.NET, or PHP pages,
programmed in a variety of languages such as Java, VB, C#,
etc. Dynamic pages require access to the back-end database
where the application information is stored, hence attacks
against these pages usually aim at the data stored in the
database.

 3

2.2 Web Attacks
Web attacks can be classified as static or dynamic,
depending on whether they are common to all web
applications hosted on the same platform or depend on the
specific application [2].

Static web attacks look for security vulnerabilities in the
web application platform: web server, application server,
database server, firewall, operating system, and third-party
components, such as shopping carts, cryptographic modules,
payment gateways, etc. These security pitfalls comprise
well-known vulnerabilities and erroneous configurations.
There are both commercial and free automated tools capable
of scanning a server in search of such known vulnerabilities
and configuration errors. A common feature of all these
vulnerabilities is that they request pages, file extensions, or
elements that do not form part of the web application as
intended for the end user. Therefore it is very easy to detect
suspicious behavior when any resource which does not
belong to the application visible by the user is requested.

Dynamic web attacks only request legal pages of the
application but they subvert the expected parameters.
Manipulation of input arguments can lead to several attacks
with different consequences: disclosure of information
about the platform, information about other users theft,
command execution, etc. In this case, provided with
information regarding the type and range of values expected
as user input, it is possible to detect any request trying to
manipulate normal inputs.

The WAF presented in this paper incorporates techniques
which make possible to detect both static and dynamic web
attacks.

In the next subsection some of the most important web
attacks are exposed.

2.3 Web Vulnerabilities
There is a large amount of web vulnerabilities. In this
subsection the most important ones are explained,
considering the frequency of exploitation and the impact.
The attacks listed are included in some way in the Owasp
Top Ten Project [17, 13], which presents the most critical
web application security vulnerabilities. Next, a description
of the most relevant web vulnerabilities is presented.

• Obsolete file existence. Obsolete files can reveal

information about the application and show facilities to
access to the server data.

• Default file or example file existence. Default and
example files make easier the access to the server data.

• Server source file disclosure. An attacker could access to
the server files.

• HTTP method validity. Some HTTP methods allow the
modification of the application, hence these methods
should never be available for an attacker.

• CRLF injection. By including control characters used by
operating systems to indicate the end of a line, it is
possible to execute illegal commands in the system.

• Failure to restrict URL Access. Frequently, an
application only protects sensitive functionality by
preventing the display of links or URLs to unauthorized
users. Attackers can use this weakness to access and
perform unauthorized operations by accessing those
URLs directly.

• Invalid parameters. Parameters in the URL or in the
body of the request can be manipulated. If the
information from web requests is not validated before
being used by a web application, attackers can use these
flaws to attack backside components through a web
application.

• Command injection. Web applications pass parameters
when they access external systems or the local operating
system. If an attacker can embed malicious commands in
these parameters, the external system may execute those
commands on behalf of the web application.

• Cross site scripting (XSS). It can be perfomed when an
application takes user supplied data and sends it to a web
browser without first validating or encoding that content.
XSS allows attackers to execute javascript in the victim's
browser which can hijack user sessions, deface web sites,
possibly introduce worms, etc.

• SQL injection. It occurs in the database layer of an
application. The vulnerability is present when user input
is either incorrectly filtered for string literal escape
characters embedded in SQL statements or user input is
not strongly typed and thereby unexpectedly executed in
the database.

• Buffer overflows. Web application components in some
languages that do not properly validate input (in this
case, specially its length) can be forced to crash and, in
some cases, used to take control of a process. These
components can include CGI, libraries, drivers, and web
application server components.

• Broken Authentication and Session Management.
Account credentials and session tokens are often not
properly protected. Attackers compromise passwords,
keys, or authentication tokens to assume other users'
identities.

• Broken Access control. Restrictions on what
authenticated users are allowed to do are not properly
enforced. Attackers can exploit these flaws to access
other users’ accounts, view sensitive files, or use
unauthorized functions.

• Remote administration flaws. Many web applications
allow administrators to access the site using a web
interface. If these administrative functions are not very
carefully protected, an attacker can gain full access to all
aspects of a site.

• Web application and server misconfiguration. Having a
strong server configuration standard is critical to a secure
web application. These servers have many configuration
options that affect security and are not always secure
after the default installation.

• Malicious File Execution. Code vulnerable to remote file
inclusion allows attackers to include hostile code and
data, resulting in devastating attacks, such as total server
compromise. Malicious file execution attacks affect PHP,
XML and any framework which accepts filenames or
files from users.

• Insecure Direct Object Reference. A direct object
reference occurs when a developer exposes a reference to
an internal implementation object, such as a file,
directory, database record, or key, as a URL or form
parameter. Attackers can manipulate those references to

 4

access other objects without authorization.
• Information Leakage and Improper Error Handling.

Applications can unintentionally leak information about
their configuration, internal workings, or violate privacy
through a variety of application problems. Attackers use
this weakness to steal sensitive data, or conduct more
serious attacks.

Attacks exploiting these vulnerabilities will be used to test
the performance of the WAF being presented, thus these
attacks are included in the malicious traffic generated to test
the system. Traffic generation is explained in Sec. 4.3 and
the test phase is described in Sec. 4.5. The mechanisms used
by the WAF to protect all the before mentioned
vulnerabilities are listed in Sec. 4.6.

3. System Overview

3.1 Architecture
Our WAF analyzes HTTP requests sent by a client browser
trying to get access to a web server. The analysis takes place
exclusively at the application layer. The system follows the
anomaly-based approach, detecting known and unknown
web attacks, in contrast with existing signature-based WAFs.
ModSecurity [19] is a popular signature-based WAF.

In our architecture, the system operates as a proxy located
between the client and the web server. Likewise, the system
might be embedded as a module within the server. However,
the first approach enjoys the advantage of being independent
of the web platform.

This proxy analyzes all the traffic sent by the client. The
input of the detection process consists of a collection of
HTTP requests {r1, r2, . . . rn}. The output is a single bit ai
for each input request ri, which indicates whether the request
is normal or anomalous. The proxy is able to work in two
different modes of operation: as an IDS or as an IPS.

In detection mode, the proxy simply analyzes the
incoming packets and tries to find suspicious patterns. If a
suspicious request is detected, the proxy launches an alert;
otherwise, it remains inactive. In any case, the request will
reach the web server. When operating in detection mode,
attacks could succeed, whereas false positives do not limit
the system functionality.

In prevention mode, the proxy receives requests from
clients and analyzes them. If the request is valid, the proxy
routes it to the server, and sends back the received response
to the client. If not, the proxy blocks the request, and sends
back a generic denied access page to the client. Thus, the
communication between proxy and server is established only
when the request is deemed as valid.

A diagram of WAF’s architecture is shown in Fig. 1.

Figure 1. Web Application Firewall architecture

3.2 Normal Behavior Description
Prior to the detection process, the system needs a precise
picture of what the normal behavior is in a specific web
application. For this purpose, our system relies on an XML
file which contains a thorough description of the web
application’s normal behavior. Once a request is received,
the system compares it with the normal behavior model. If
the difference exceeds the given thresholds, then the request
is flagged as an attack and an alert is launched.

The XML file contains rules regarding to the correctness
of HTTP verbs, HTTP headers, accessed resources (files),
arguments, and values for the arguments. This file
contains three main nodes:

Verbs. The verbs node simply specifies the list of allowed
HTTP verbs.

Headers. The headers node specifies a list of some HTTP
headers and their allowed values.

Directories. The directories node has a tree-like structure, in
close correspondence to the web application’s directory
structure.
1. Each directory in the web application space is represented
in the XML file by a directory node, allowing nesting of
directories within directories. The attribute name defines
these nodes.
2. Each file in the web application space is represented by a
file node within a directory node and is defined by its
attribute name.
3. Input arguments are represented by argument nodes
within the corresponding file node. Each argument is defined
by its name and a boolean value requiredField indicating
whether the request should be rejected if the argument is
missing.
4. Legal values for arguments should meet some statistical
rules, which are represented by a stats node within the
corresponding argument node. These statistical properties
together give a description of the expected values.
Each relevant property is defined by an attribute within the
stats node. In our approach we considered the following
relevant properties:
• special: set of special characters (different from letters

and digits) allowed
• lengthMin: minimum input length
• lengthMax: maximum input length

 5

• letterMin: minimum percentage of letters
• letterMax: maximum percentage of letters
• digitMin: minimum percentage of digits
• digitMax: maximum percentage of digits
• specialMin: minimum percentage of special characters

(of those included in the property “special”)
• specialMax: maximum percentage of special characters

(of those included in the property “special”)

These properties allow the definition of four intervals

(length, letters, digits and special characters) for the allowed
values for each argument. Only the values within the interval
are accepted. Requests with argument values exceeding their
corresponding normal intervals will be rejected.

The adequate construction of the XML file with the
suitable intervals is crucial for a good detection process. An
example of XML configuration file is shown in Fig. 2.

<?xml version="1.0" encoding="iso-8859-1"
standalone="no"?>

<configuration>
<verbs>
<verb>GET</verb>
<verb>POST</verb>

</verbs>
<headers>
<rule name="Accept-Charset"

value="ISO-8859-1"/>
</headers>
<directories>
<directory name="shop">
<file name="index.jsp"/>

<directory name="public">
<file name="add.jsp">
<argument name="quantity"

requiredField="true">
<stats maxDigit="100"
 maxLength="3"
 maxLetter="0"
 maxOther="0"

 minDigit="100"
 minLength="1"
 minLetter="0"
 minOther="0"
 special="" />

</argument>
<argument name="product_name"

requiredField="true">
<stats maxDigit="0"
 maxLength="15"
 maxLetter="92.94"
 maxOther="10.01"
 minDigit="0"
 minLength="5"
 minLetter="89.91"
 minOther="7.15"
 special="" />

 <argument name="price"
requiredField="true">

<stats maxDigit="100"
 maxLength="3"
 maxLetter="0"
 maxOther="0"
 minDigit="100"
 minLength="1"
 minLetter="0"
 minOther="0"
 special="" />

...

</directories>

</configuration>

Figure 2. XML file example

3.3 Detection Process
In the detection process, our system follows an approach of
the form “deny everything unless explicitly allowed”, also
known as positive security model.

The detection process takes place in the proxy. It consists
of several steps, each constituting a different line of defense,
in which the different parts of the request are checked with
the aid of the XML file. If an incoming request fails to pass
one of these lines of defense, an attack is assumed: a
customizable error page is returned to the user and the
request is logged for further inspection. It is important to
stress that these requests will never reach the web server
when operating in prevention mode.

The detection process is composed of the following steps:
1. Verb check. The verb must be present in the XML file,
otherwise the request is rejected. For example, in the
applications in which only GET, POST and HEAD are
required to work correctly, the XML file could be configured
accordingly, thus rejecting requests that use any other verb.
2. Headers check. If the header appears in the XML file, its
value must be included too. Different values will not be
accepted, thus preventing attacks embedded in these
elements.
3. Resource test. The system checks whether the requested
resource is valid. For this purpose, the XML configuration
file contains a complete list of all files that are allowed to be
served. If the requested resource is not present in the list, a
web attack is assumed.
4. Arguments test. If the request has any argument, the
following aspects are checked:
a) It is checked that all arguments are allowed for the
resource. If the request includes arguments not listed in the
XML file for the corresponding resource, a manipulation of
the arguments is assumed and thus the request is rejected.
b) It is confirmed that all mandatory arguments are present in
the request. If any mandatory argument
(requiredField=”true”) is not present in the request, it is
rejected.
c) Argument values are cheched. An incoming request will
be allowed if all parameter values are identified as normal.
Argument values are decoded before being checked. For the
argument value test, the statistical properties of the
corresponding argument are used. If any property of the
argument is outside the corresponding interval or contains
any forbidden special character, the request is rejected.

 These steps allow the detection of both static attacks,
which request resources that do not belong to the
application, and dynamic attaks, which manipulate the
arguments of the request. Figure 3 depicts the detection
process.

 6

Figure 3. Detection process flow

4. Experiments

4.1 Case Study: Web Shopping
The WAF has been configured to protect a specific web
application, consisting of an e-commerce web store, where
users can register and buy products using a shopping cart.

4.2 XML File Generation
As already stated, the XML file describes the normal
behavior of the web application. Therefore, to train the
system and configure this file, only normal (non-malicious)
traffic directed to the target web application is required.
Nevertheless, how to obtain only normal traffic may not be
an easy task. To obtain good detection results thousands of
requests are needed. There are some alternatives to obtain
normal traffic:
1. Thousands of legitimate users can surf the target web
application and generate normal traffic. However, getting
thousands of people to surf the web might not be easy.

2. The application can be published in the Internet.
Unfortunately, attacks will be mixed with normal traffic, so
this traffic cannot be used to train the system.
3. Traffic can be generated artificially. Although the traffic is
not real, we can be sure that only normal traffic is included.

For our purposes, we considered artificial traffic
generation to be the most suitable approach.

4.3 Artificial Traffic Generation
In our approach, normal and anomalous request databases
are generated artificially with the help of dictionaries.

Dictionaries. Dictionaries are data files which contain real
data to fill the different arguments used in the target
application. Names, surnames, addresses, etc., are examples
of dictionaries used.

A set of dictionaries containing only allowed values is
used to generate the normal request database. A different set
of dictionaries is used to generate the anomalous request
database. The latter dictionaries contain both known attacks
and illegal values with no malicious intention.

Normal Traffic Generation. Allowed HTTP requests are
generated for each page in the web application. Arguments
and cookies in the page, if any, are also filled in with values
from the normal dictionaries. The result is a normal request
database (NormalDB). Some requests from NormalDB will
be used in the training phase and some others will be used in
the test phase.

Anomalous Traffic Generation. Illegal HTTP requests are
generated with the help of anomalous dictionaries. Examples
of the attacks trying to exploit the vulnerabilities listed in
Sec. 2.3 are included in the anomalous traffic in order to test
the system. There are three types of anomalous requests:

1. Static attacks fabricate the resource requested. These
requests include attacks like obsolete files, configuration
files, default files, etc.
2. Dynamic attacks modify valid request arguments: SQL
injection, cross-site scripting, invalid parameters, command
injection, buffer overflows, broken authentication and
session tampering, etc.
3. Unintentional illegal requests. These requests should
also be rejected even though they do not have malicious
intention.

The result is an anomalous request database
(AnomalousDB), which will be used only in the test phase.

4.4 Training Phase
During the training phase, the system learns the web
application normal behavior. The aim is to obtain the XML
file from normal requests. In the construction of the XML
file, different HTTP aspects must be considered:
• Argument values are characterized by extracting their

statistical properties from the requests.
• Verbs, resources and certain headers found in the

requests are included directly in the XML file as allowed
elements.

4.5 Test Phase
During the test phase, depicted in Fig. 4, the proxy accepts
requests from both databases, NormalDB and AnomalousDB,

 7

and relies on the XML file to decide whether the requests are
normal or anomalous. Considering the amount of correctly
and incorrectly classified requests, the performance of the
system can be measured and the results obtained.

Figure 4. System test phase

4.6 WAF Protection Mechanisms
As previously stated, attacks trying to explote the
vulnerabilities described in Sec.2.3 have been included into
the malicious traffic (Sec. 4.3) and they have been used to
test the performance of the system.

When the normal behavior is correctly identified, all the
previously mentioned attacks can be detected (and therefore
all the vulnerabilities protected) by the WAF presented in
this paper. This section shows how the characteristics and
mechanisms used by the WAF are effective to protect
against these attacks. The WAF’s mechanisms can detect
both static and dynamic attacks.

When allowed directories and files are completely
specified, the system protects against third party
misconfiguration and known vulnerabilities. Attacks against
these vulnerabilities are usually very well documented and
publicized. They rely on requesting resources present by
default in web servers which a legitimate user will never
request directly and thus are easy to spot. Therefore, the
directories and files enumeration can prevent from attacks
exploiting obsolete file existence, default file or example file
existence, server source file disclosure, HTTP method
validity, failure to restrict URL access, web application and
server misconfiguration, etc.

Attacks manipulating parameters are fenced off by the
proper definition of the statistical intervals. In the case of
buffer overflow, the length property is of paramount
importance. Many attacks make use of special characters
(typically different from letters and from digits) in order to
perform malicious actions. For instance, this is the case of
SQL injection, which uses characters with special meaning
in SQL to get queries or commands unexpectedly executed.
For this reason, the minimum and maximum percentage of
letters, digits and special characters are crucial for
recognizing these attacks. Even more, any special character
present in the input argument is not allowed unless it is
included in the property called “special”. The interval check
help to frustrate attacks exploting vulnerabilities such as
CRLF injection, invalid parameters, command injection,
XSS, SQL injection, buffer overflow, broken authentication
and session management, etc.

4.7 Performance measurement
The performance of the detector is then measured by
Receiver Operating Characteristic (ROC) curves [20]. A
ROC curve plots the attack detection rate (true positives, TP)
against the false alarm rate (false positives, FP).

TPDetectionRate
TP FN

=
+

 (1)

FPFalseAlarmRate

FP TN
=

+
 (2)

The parameter of the ROC curve is the number of requests

used in the training phase.

4.8 Results
Several experiments have been performed using an increased
amount of training requests in the training phase. For each
experiment, the proxy received 1000 normal requests and
1000 attacks during the test phase.

Figure 5 (a) and (b) show the results obtained by the WAF
while protecting the tested web application. As can be seen
in Fig. 5 (a), very satisfactory results are obtained: the false
alarm rate is close to 0 whereas the detection rate is close to
1. As shown in Fig. 5 (b), at the beginning, with a low
amount of training requests, the proxy rejects almost all
requests (both normal and attacks). As a consequence, the
detection rate is perfect (1) and the false positive rate is high.
As the training progresses, the false alarm rate decreases
quickly and the detection rate remains reasonably high.

Therefore, this WAF is adequate to protect from web
attacks due to its capacity to detect different attacks
generating a very little amount of false alarms.

It is important to notice that when the XML file closely
characterizes the web application normal behavior, the
different kinds of attacks can be detected and few false
alarms are raised.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Alarm Rate

D
et

ec
tio

n
R

at
e

0 1

0.99

1

Figure 5 (a). ROC curve of WAF protecting the web store

 8

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

False Alarm Rate
Detection Rate

Figure 5 (b). The false alarm rate and the detection rate vs
the number of training requests is plotted

5. Limitations and Future Work
As shown in the previous section, when the XML file is
configured correctly, the system succeeds in detecting any
kind of web attacks. Thus, the main issue is how to
automatically configure the XML description file. In our
approach, the XML file is built from a set of allowed
requests in the target web application. An important
advantage of this solution is that the XML file is built
automatically from the normal traffic, thus the directory
structure of the web application and the statistical
characterization of the arguments is automatically inferred
from the input requests. However, obtaining only normal and
non-malicious traffic may not be an easy task, as was
discussed in Sec. 4.2. Therefore, the main limitation consists
in correctly implementing the training phase for any web
application.

Other limitations arise when protecting complex web
applications. For instance, web sites that create and remove
pages dynamically, generate new URLs to access resources,
or allow users for updating contents, may difficult the XML
file configuration. Further modifications of the system will
attempt to solve these problems, by statistically
characterizing the URLs of allowed resources.

Future work refers to signing cookies and hidden fields in
order to avoid cookie poisoning and hidden field
manipulation attacks. Also, URL patterns will be used in
describing sites with dynamic resources.

6. Conclusions
We presented a simple and efficient web attack detection
system or Web Application Firewall (WAF). As the system
is based on the anomaly-based methodology it proved to be
able to protect web applications from both known and
unknown attacks. The system analyzes input requests and
decides whether they are anomalous or not. For the decision,
the WAF relies on an XML file which specifies web
application normal behavior.

The experiments show that as long as the XML file
correctly defines normality for a given target application,
near perfect results are obtained. Thus, the main challenge is
how to create an accurate XML file in a fully automated
manner for any web application. We show that inasmuch

great amounts of normal (non-malicious) traffic are available
for the target application, this automatic configuration is
possible using a statistical characterization of the input
traffic.

Acknowledgement
We would like to thank the Ministerio de Industria, Turismo
y Comercio, project SEGUR@ (CENIT2007-2010), the
Ministerio de Ciencia e Innovacion, project CUCO
(MTM2008-02194), and the Spanish National Research
Council (CSIC), programme JAE/I3P.

References
[1] García-Teodoro P., Díaz-Verdejo J., Maciá-Fernández
G., Vázquez E. Anomaly-based network intrusion detection:
Techniques, systems and challenges, Computers and
Security, 28, 1-2, 18-28 (2009)
[2] Alvarez G., Petrovic S.: A new taxonomy of Web attacks
suitable for efficient encoding, Computers and Security, 22,
5, 453-449 (2003)
[3] Patcha, A., Park J.: An overview of anomaly detection
techniques: Existing solutions and latest technological
trends. Computer Networks. 51, 12, 3448–3470 (2007)
[4] Petrović S., Álvarez G., Orfila A., Carbó J.: Labelling
Clusters in an Intrusion Detection System Using a
Combination of Clustering Evaluation Techniques.
Proceedings of the 39th Hawaii International Conference on
System Sciences, 129b-129b (8 pages), IEEE Computer
Society Press, Kauai, Hawaii, USA (2006)
[5] Pouget F., Dacier M., Zimmerman J., Clark A., Mohay
G.: Internet Attack Knowledge Discovery via Clusters and
Cliques of Attack Traces. Journal of Information Assurance
and Security, 1, 21-32 (2006)
[6] Estévez-Tapiador J., García-Teodoro P., Díaz-Verdejo J.:
Measuring normality in HTTP traffic for anomaly-based
intrusion detection. Computer Networks, 45, 2, 175–193
(2004)
[7] Tokhtabayev A., Skormin V.: Increasing Confidence of
IDS through Anomaly Propagation Analysis. Journal of
Information Assurance and Security, 2, 107-116 (2007)
[8] Tong X. , Wang Z. , Yu H. A research using hybrid
RBF/Elman neural networks for intrusion detection system
secure model. Computer Physics Communications 180, 10,
1795–1801 (2009)
[9] Yang Y., Jiang D. ,Xia M.: Using Improved GHSOM for
Intrusion Detection. Journal of Information Assurance and
Security, 5, 232-239 (2010)
[10] Tajbakhsh A., Rahmati M., Mirzaei A. Intrusion
detection using fuzzy association rules. Applied Soft
Computing, 9, 2, 462-469(2009)
[11] Akbarpour Sekeh M., Aizaini bin Maarof M., Yazid
Idris M., Motiei M.: Fuzzy Intrusion Detection System via
Data Mining Technique With Sequences of System Calls.
Journal of Information Assurance and Security, 5, 224-231
(2010)
[12] Saniee Abadeh M., Habibi J., Barzegar Z., Sergi M. A
parallel genetic local search algorithm for intrusion detection
in computer networks. Engineering Applications of Artificial
Intelligence, 20, 8, 1058-1069 (2007)
[13] Banković Z., Moya J.M., Araujo A., Bojanić S., Nieto-
Taladriz O.: A Genetic Algorithm-based Solution for

 9

Intrusion Detection. Journal of Information Assurance and
Security, 4, 192-199 (2009)
[14] Aickelin U., Greensmith J. Sensing danger: Innate
immunology for intrusion detection. Information Security
Technical Report, 12, 4, 218-227(2007)
[15] Kruegel C., Vigna G., Robertson W.: A multi-model
approach to the detection of web-based attacks. Computer
Networks, 48, 5, 717–738 (2005)
[16] García Adeva J. J., Pikaza Atxa J. M.: Intrusion
detection in web applications using text mining. Engineering
Applications of Artificial Intelligence, 20, 4, 555-566 (2007)
[17] Top 10 2007. Owasp Foundation.
http://www.owasp.org/index.php/Top_10_2007 (2009)
[18] Owasp Top Ten Project. Owasp Foundation.
http://www.owasp.org/index.php/Category:OWASP_Top_T
en_Project (2009)
[19] ModSecurity. Open Source signature-based Web
Application Firewall. http://www.modsecurity.org (2009)
[20] Provost F., Fawcett T., Kohavi R.: The case against
accuracy estimation for comparing induction algorithms.
Proceedings of the 15th International Conference on
Machine Learning, Morgan Kaufmann, San Mateo, CA
(1998)

Author Biographies

Carmen Torrano-Gimenez. The author was born
in Murcia (Spain), in 1982. She received the
Computer Science Engineering degree from the
Complutense University of Madrid (Spain) in
2005. Additionally, she received M.Sc. degree in
Computer Science and Technology from the
Carlos III University of Madrid (Spain) in 2008.
At the moment, she is a Ph.D student at the
Spanish National Research Council (CSIC), at the
Information Processing and Coding department at
the Applied Physics Institute. The author’s major
fields of study are security in web applications

and intrusion detection systems.

Alejandro Perez-Villegas. He was born in
Granada (Spain) in 1982. He received his B.S.
degree in Computer Science from the University
of Granada (Spain) in 2006. He received his M.S.
degree in Computer Science and Technology from
the University Carlos III of Madrid (Spain) in
2009. At present, he is holding a Ph.D grant from
the Spanish National Research Council (CSIC), at
the Information Processing and Coding
Department at the Applied Physics Institute. The
author’s research interests are security in web

applications and intrusion detection systems.

Gonzalo Alvarez. He was born in the Basque
Country (Spain) in 1971. He received his M.S.
degree in Telecommunications Engineering from
the University of the Basque Country (Spain) in
1995. His Ph.D. degree in Computer Science from
the Polytechnic University of Madrid (Spain) was
received in 2000. He is a tenured scientist at the
Spanish National Research Council (CSIC), at the
Information Processing and Coding department at
the Applied Physics Institute. He is interested in
cryptology and Internet security, fields in which

he has a large experience.

