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Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing
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We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We
assume S4, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton
mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac
and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower
bound on the neutrinoless double beta decay parameter mee is about two times that of the usual
lower bound, within the range of sensitivity of the next generation of experiments.

PACS numbers: 11.30.Hv 14.60.-z 14.60.Pq 14.80.Cp 14.60.St 23.40.Bw

I. INTRODUCTION

Charged particles are Dirac fermions while electrically neutral fermions, like neutrinos, can be either Dirac or
Majorana. Neutrinoless double beta decay 0νββ experiments will confirm (if observed) the Majorana nature of
neutrinos [1]. Experiments for 0νββ currently under construction will have sensitivity in the range of the inverse
hierarchy mass spectrum [2–5]. Recently, it has been observed in [6] that if the second massive neutrino is of Dirac
type (and so does not participate to the 0νββ decay) in the case of inverse mass hierarchy, the lower bound on the
0νββ parameter mee is about two times that of the usual bound. In reference [6], they forbid the Majorana mass for
the second neutrino at tree level by means of a flavor symmetry.
The parameter mee can be written as combination of neutrino masses, namely mee =

∑3
i=1 U

2
eimνi where U is the

lepton mixing matrix. In the inverse hierarchy case, when three neutrinos are of Majorana type, we have

|mee| ≈ |(cos2 θ12 + eiα sin2 θ12)matm| >
matm

3
≈ 17meV. (1)

If the second massive neutrino is of Dirac type, that is mν2 = 0 in mee we have

|mee| ≈ | cos2 θ12matm| >
2matm

3
≈ 34meV. (2)

Such a value is in the range of sensitivity of the next generation of experiments and could be ruled out very soon.
A four component spinor ψ is a Majorana spinor if ψ = ψc where ψc is the charge conjugate of ψ. The Dirac mass

term for a massive spin 1/2 fermion is given by

−mψ̄ψ (3)

where ψ = (χ, σ2φ
∗) and χ, φ are two component spinors. Assuming χ = 1√

2
(ρ2 + iρ1), φ = 1√

2
(ρ2 − iρ1), a four

component Dirac mass term (3) is equivalent to two Majorana mass terms of equal mass and opposite parity[7, 8]

−mψ̄ψ = −m
2
(ρT1 σ2ρ1 + ρT2 σ2ρ2). (4)

For an arbitrary number of Majorana neutrinos the neutrino mass matrix is given by

L = −1

2

n
∑

i,j

Mijρ
T
i σ2ρj , (5)

In general the eigenvalues of the mass matrix M can have different signs and we can assign a signature matrix
diag(+,+, ...,−,−, ..). For two neutrino states we can have diag(+,−) or diag(+,+). In the former case, if the
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absolute value of the masses is the same, the two neutrino types make up a Dirac neutrino. When the two neutrinos
are active-sterile we have the so-called quasi-Dirac neutrino [9] and when they are active-active we have the so called
pseudo-Dirac neutrino [10].
In Ref. [6] the second massive neutrino state has a quasi-Dirac mass 1, while the first and third neutrinos get a

Majorana mass a la seesaw. Since each flavor state is an admixture of quasi-Dirac and Majorana states, they call such
a case schizophrenic. For recent studies on this subject see also [11–13]. There are several models in the literature for
exact tri-bimaximal [14] based on the group of permutation of four objects S4 as flavor symmetry [15–29]. Here we
study the schizophrenic case assuming the S4 group with extra abelian symmetries as flavor symmetry. Breaking S4

into different Z2 subgroups respectively in the charged lepton and neutrino sectors we obtain tri-bimaximal mixing at
tree-level. The difference between our model and the model of Ref. [6] is that they assume the permutation of three
objects S3 flavor symmetry instead of S4 and they obtain tri-bimaximal mixing only assuming the charged lepton
mass matrix to be diagonal, while in our model the charged lepton mass matrix is diagonal at tree-level by means of S4.

The Letter is organized as follow: in section II we present the model, in section III we give the neutrino and charged
lepton mass matrices, in section IV we study the problem of the vacuum alignments and we give our conclusions.

II. THE MODEL

We extend the Standard Model (SM) with a Gf = S4×Z3×Z ′
3×Z ′′

3 flavor symmetry where S4 is the permutation

group of four objects, Z3, Z
′
3, Z

′′
3 are abelian groups characterized respectively by ω3 = 1, ω′3 = 1 and ω′′3 = 1. In

order to simplify the study of the S4-alignments of the scalar fields we assume supersymmetry, therefore all the fields
are assumed to be superfields. We also add three right-handed neutrinos and eight scalar isosinglets called flavons.
We assume νc2 to be a singlet of S4 and νc1 , ν

c
3 to form a doublet νcD of S4. The SUL(2) doublet L and singlet lc are

both triplets 31 of S4. The matter content of the model is given in table I.

L lc νc
2 νc

D hu,d φν ξν ϕl χl χ̃l ϕν σ σ̃

S4 31 31 11 2 11 31 11 2 11 11 2 11 11

Z3 1 ω2 1 1 1 1 1 ω ω ω2 1 1 1

Z′
3 ω′2 ω′ ω′ 1 1 ω′ ω′2 1 1 1 1 1 1

Z′′
3 1 1 1 ω′′ 1 1 1 1 1 1 ω′′ ω′′2 ω′′

TABLE I: Matter content of the model.

The relevant Yukawa terms of the superpotential invariant under Gf are

wl = y1l

MΛ
Llchdχl +

y2l

MΛ
Llchdϕl,

wν = y2ν

M2

Λ

Lνc2h
uφνξν + y1ν

M2

Λ

LνcDh
uφνσ + yσν

c
Dν

c
Dσ̃ + yϕν

c
Dν

c
Dϕν .

(6)

Since νc2 is charged under Z ′
3 the mass term νc2ν

c
2 is forbidden. The scalar flavons take vacuum expectation value (vev)

along the following direction of S4 (see section IV)

〈φν〉 ∼ (1, 1, 1), 〈ϕν〉 ∼ (0, 1), 〈ϕl〉 ∼ (−
√
3, 1). (7)

When the scalar flavons take such vevs, the elements ST 2, S2TS, TS, S3T 2 leave invariant the charged leptons while
the elements TST, TSTS2, S, S3 leave invariant the neutrino sector. Here S and T are generators of S4, see the
Appendix A. The different breaking in the charged lepton and neutrino sectors gives (at tree-level) tri-bimaximal
mixing. The scalar S4 singlets ξν , χl, χ̃l, σ and σ̃ take vevs different from zero.

1 At leading order mν2 is a Dirac state, but at next to leading order it takes a small Majorana mass resulting in a quasi-Dirac state.
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III. MASS MATRICES

From the superpotential wν and the vevs alignments given in eq. (7) the Dirac couplings for the neutrinos are
proportional to the following S4 contractions

(Lφ)11ν
c
2 ∼ (Le + Lµ + Lτ ) ν

c
2 (8)

(Lφ)2ν
c
D ∼

(

1√
2
(Lµ − Lτ )

1√
6
(−2Le + Lµ + Lτ )

)

×
(

νc1
νc3

)

. (9)

Then the Dirac neutrino mass matrix is given by

mD =









− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2















mD
ν1

0 0

0 mD
ν2

0

0 0 mD
ν3






, (10)

where

mD
ν2

=
y2ν
M2

Λ

〈hu〉 〈φν〉 〈ξν〉 , mD
ν1

= mD
ν3

=
y1ν
M2

Λ

〈hu〉 〈φν〉 〈σ〉 . (11)

The right-handed Majorana neutrino mass matrix is given by

MR =







yσ 〈σ̃〉+ yϕ 〈ϕν〉 0 0

0 0 0

0 0 yσ 〈σ̃〉 − yϕ 〈ϕν〉






≡







M1 0 0

0 0 0

0 0 M3






. (12)

where M1 6= M3. The neutrino mass matrix is diagonalized by the tri-bimaximal mixing matrix, see eq. (10). One
neutrino has a quasi-Dirac mass2 mν2 ≡ mD

ν2
(see eq. (11)) and two neutrinos have Majorana masses

mν1 = −m
D
ν1

2

M1
, mν3 = −m

D
ν1

2

M3
. (13)

Note that the masses mν3 and mν1 are proportional one to each other, so the atmospheric mass spliting arises from
the M1 and M3 mass splitting.
Assuming Yukawa couplings of order one and the following value for the scales where the scalar fields take vev

〈

hu,d
〉

< 〈ξν〉 ∼ 〈σ̃〉 ∼ 〈ϕν〉 < 〈σ〉 ∼ 〈φν〉 ∼ 〈χl〉 ∼ 〈ϕl〉 ∼ 〈χ̃l〉 < MΛ

scales (GeV) : 102 , 105 , 1013 , 1015
(14)

then the neutrino masses mν1 , mν2 and mν3 are at the eV scale with MR ∼ 105GeV . As a particular example, taking

y1ν = 0.2200, y2ν = 0.6345, yϕ = 1, yσ = −0.2300, (15)

we have

|mν1 | = 0.0628 eV, |mD
ν2
| = 0.0634 eV, |mν3 | = 0.0393 eV, (16)

giving about ∆m2
sol ≈ 7.5 · 10−5eV 2 and ∆m2

atm ≈ 2.4 · 10−3eV 2 in agreement with data. We observe that the next
to leading order term νc2ν

c
2ξ

2
ν/MΛ is allowed giving a contribution to MR of order 10−5GeV that is negligible.

2 Next to leading order terms as well as loop corrections generate a negligible mass term for ν
c
2
then we have a quasi-Dirac state instead

of a Dirac one.
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The charged lepton mass matrix is given from the superpotential wl. It is not difficult to show that the resulting
mass matrix is diagonal. This arises from the S4 symmetry and the masses are given as3

me =
y1l
MΛ

〈

hd
〉

〈χl〉 −
2y2l√
6MΛ

〈

hd
〉

〈ϕl2〉 , (17)

mµ =
y1l
MΛ

〈

hd
〉

〈χl〉+
y2l
MΛ

〈

hd
〉

(
1√
6
〈ϕl2〉+

1√
2
〈ϕl1〉), (18)

mτ =
y1l
MΛ

〈

hd
〉

〈χl〉+
y2l
MΛ

〈

hd
〉

(
1√
6
〈ϕl2〉 −

1√
2
〈ϕl1〉). (19)

If 〈ϕl1〉 and 〈ϕl2〉 are free, we have three combinations of free parameters and we can fit the charged lepton masses
as given below

y1l
MΛ

〈

hd
〉

〈χl〉 =
me +mµ +mτ

3
, (20)

y2l
MΛ

〈

hd
〉

〈ϕl1〉 =
mµ −mτ√

2
, (21)

y2l
MΛ

〈

hd
〉

〈ϕl2〉 =
−2me +mµ +mτ√

6
, (22)

that are of order of the mass of the τ , in agreement with the assumption in eq. (14). In the limit me,µ → 0 from
eqs. (21) and (22) we have

〈ϕl1〉
〈ϕl2〉

= −
√
3, (23)

in agreement with the vev alignment given in eq. (7). The mass of the muon mµ arises from a small deviation

the alignment 〈ϕl〉 ∼ (−
√
3(1 + ǫ), 1). Such a deviation can arise from next to leading order terms in the scalar

superpotential as well as by assuming S4 soft breaking terms in the superpotential. While the electron mass me arises
by means of a fine-tuning of the coupling y1l. We can easily accommodate the three charged lepton masses in our
model, in particular mµ ≪ mτ arises from the alignment 〈ϕl〉 ∼ (−

√
3, 1).

IV. VACUUM ALIGNMENTS

In the previous sections we showed that assuming the alignments in eq. (7) we obtain tri-bimaximal neutrino mixing
and diagonal charged lepton mass matrix. Here we show that the alignment of the flavon fields can arise from the
minimization of the superpotential.
The superpotential invariant under S4 × Z3 × Z ′

3 × Z ′′
3 for the flavon fields of table (I) is given by

w = λ1ϕlϕlϕl + λ2ϕlϕlχl + λ3χlχlχl + λ4χlχ̃l + λ5χ̃lχ̃lχ̃l +

+ λ6ϕνϕνϕν + λ7ϕνϕν σ̃ + λ8σσ̃ + λ9σ̃σ̃σ̃ + λ10σσσ +

+ λ11φνφνφν + λ12ξνξνξν + µφφνφν + µξξνξν , (24)

where the terms proportional to µφ and µξ break softly the auxiliary Z ′
3 symmetry while the Z3 and Z ′′

3 are preserved
in the superpotential. We denote the vevs of the flavon fields as below

〈ϕl〉 = (u1, u2), 〈ϕν〉 = (v1, v2), 〈φν〉 = (r1, r2, r3),

〈χl〉 = vχ, 〈χ̃l〉 = ṽχ, 〈σ〉 = vσ, 〈σ̃〉 = ṽσ, 〈ξν〉 = vξ.
(25)

3 It is very easy to see that corrections of second order arise by couplings with the flavon χ̃l but those can be reabsorbed in the y1l

coupling.
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We show below that r1 = r2 = r3 = r, v1 = 0, v2 = v, u1 = −
√
3u and u2 = u is a possible solution of the

minimization of the superpotential. Then we have to solve the set of equations

∂w

∂u1
= −λ16

√
3u2 − λ22

√
3uvχ = 0, (26)

∂w

∂u2
= λ16u

2 + λ22uvχ = 0, (27)

∂w

∂vχ
= λ14u

2 + λ33v
2
χ + λ4ṽχ = 0, (28)

∂w

∂ṽχ
= λ4vχ + λ53ṽ

2
χ = 0, (29)

∂w

∂v1
= 0, (30)

∂w

∂v2
= −λ63v2 + λ72vṽσ = 0, (31)

∂w

∂vσ
= λ103v

2
σ + λ8ṽσ = 0, (32)

∂w

∂ṽσ
= λ7v

2 + λ8ṽσ + λ93ṽ
2
σ = 0, (33)

∂w

∂r1
= λ11r

2 + µφ2r = 0, (34)

∂w

∂r2
= λ11r

2 + µφ2r = 0, (35)

∂w

∂r3
= λ11r

2 + µφ2r = 0, (36)

∂w

∂vξ
= λ123vξ

2 + µξ2vξ = 0, (37)

where we have assumed r1 = r2 = r3 = r, v1 = 0, v2 = v, u1 = −
√
3u and u2 = u. It is easy to show that such a

system admits a solution with r, v and u different from zero and fixed by the coupling constants of the superpotential
in eq. (24).

In summary, we present a realization of the so-called bimodal/schizophrenic ansatz, that is one of the massive
neutrino state is of Dirac-type and the remaining two are Majorana. Then each flavor state is an admixture of Dirac
and Majorana states giving distinct predictions for the neutrinoless double beta decay rate. The model consist of
a supersymmetric extension of the SM based on the S4 × Z3

3 flavor symmetry, where we add three right-handed
neutrinos, the second of them transforming as a singlet of S4 and the other two as a doublet of S4, and eight scalar
singlets of the SM. The model also gives tri-bimaximal mixing for neutrinos at leading order. As was pointed out in
[6] this kind of models can be ruled out very soon by neutrinoless double beta decay experiments.
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Appendix A: The group S4

The discrete group S4 is given by the permutations of four objects and it is composed by 24 elements. It can be
defined by two generators S and T that satisfy

S4 = T 3 = 1, ST 2S = T . (A1)
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The 24 elements of S4 belong to five classes

C1 : I ;

C2 : S2, TS2T 2, S2TS2T 2 ;

C3 : T, T 2, S2T, S2T 2, STST 2, STS, S2TS2, S3TS ;

C4 : ST 2, T 2S, TST, TSTS2, STS2, S2TS ;

C5 : S, TST 2, ST, TS, S3, S3T 2 . (A2)

The elements of C2,4 define two different sets of Z2 subgroups of S4, the ones of the class C4 a set of Z3 abelian discrete
symmetries and those belonging to C5 a set of Z4 abelian discrete symmetries. The S4 irreducible representations are
two singlets, 11, 12, one doublet, 2, and two triplets, 31 and 32. We adopt the following basis

S =

(

−1 0

0 1

)

, T = −1

2

(

1
√
3

−
√
3 1

)

, (A3)

for the doublet representation and

S± = ±







−1 0 0

0 0 −1

0 1 0






, T =







0 0 1

1 0 0

0 1 0






, (A4)

for the triplet representations 31 and 32 respectively. Clearly the generators (S+, T ) and (S−, T ) define the two triplet
representations 31, 32 respectively. All the product rules can be straightforwardly derived. We remind the reader to
the product rules reported in [30] (see also [31]).
The product of S4 representation:

1i × 1j = 1(i+j)mod2+1 ∀ i and j,

2× 1i = 2 ∀ i,

3i × 1j = 3(i+j)mod2+1 ∀ i and j,

3i × 2 = 31 + 32 ∀ i,

31 × 32 = 12 + 2 + 31 + 32,

[2× 2] = 11 + 2 , {2× 2} = 12 and [3i × 3i] = 11 + 2 + 31 , {3i × 3i} = 32 ∀ i,

where we introduced the notation [µ× µ] for the symmetric and {µ× µ} for the anti-symmetric part of the product
µ× µ.
Note that ν × µ = µ× ν for all representations µ and ν. For the irreducible representations:

A ∼ 11 , B ∼ 12 ,

(

a1
a2

)

,

(

a′1
a′2

)

∼ 2 ,







b1
b2
b3






,







b′1
b′2
b′3






∼ 31 and







c1
c2
c3






,







c′1
c′2
c′3






∼ 32 .

The explicit products for 11 representation with any µ representation:

(

Aa1
Aa2

)

∼ 2 ,







Ab1
Ab2
Ab3






∼ 31 ,







Ac1
Ac2
Ac3






∼ 32 .
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and the product of 12 with the any µ representation:

(

−B a2
B a1

)

∼ 2 ,







B b1
B b2
B b3






∼ 32 ,







B c1
B c2
B c3






∼ 31 .

The products of µ× µ:

for 2

a1a
′
1 + a2a

′
2 ∼ 11,

−a1a′2 + a2a
′
1 ∼ 12,

(

a1a
′
2 + a2a

′
1

a1a
′
1 − a2a

′
2

)

∼ 2,

for 31

3
∑

j=1

bjb
′
j ∼ 11,

(

1√
2
(b2b

′
2 − b3b

′
3)

1√
6
(−2b1b

′
1 + b2b

′
2 + b3b

′
3)

)

∼ 2,







b2b
′
3 + b3b

′
2

b1b
′
3 + b3b

′
1

b1b
′
2 + b2b

′
1






∼ 31 ,







b3b
′
2 − b2b

′
3

b1b
′
3 − b3b

′
1

b2b
′
1 − b1b

′
2






∼ 32,

for 32

3
∑

j=1

cjc
′
j ∼ 11,

(

1√
2
(c2c

′
2 − c3c

′
3)

1√
6
(−2c1c

′
1 + c2c

′
2 + c3c

′
3)

)

∼ 2,







c2c
′
3 + c3c

′
2

c1c
′
3 + c3c

′
1

c1c
′
2 + c2c

′
1






∼ 31 ,







c3c
′
2 − c2c

′
3

c1c
′
3 − c3c

′
1

c2c
′
1 − c1c

′
2






∼ 32 .

For 2× 31:







a2b1
− 1

2 (
√
3a1b2 + a2b2)

1
2 (
√
3a1b3 − a2b3)






∼ 31







a1b1
1
2 (
√
3a2b2 − a1b2)

− 1
2 (
√
3a2b3 + a1b3)






∼ 32

and for 2× 32







a1c1
1
2 (
√
3a2c2 − a1c2)

− 1
2 (
√
3a2c3 + a1c3)






∼ 31







a2c1
− 1

2 (
√
3a1c2 + a2c2)

1
2 (
√
3a1c3 − a2c3)






∼ 32.

For 31 × 32

3
∑

j=1

bjcj ∼ 12

(

1√
6
(2b1c1 − b2c2 − b3c3)

1√
2
(b2c2 − b3c3)

)

∼ 2







b3c2 − b2c3
b1c3 − b3c1
b2c1 − b1c2






∼ 31 ,







b2c3 + b3c2
b1c3 + b3c1
b1c2 + b2c1






∼ 32 .
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