Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing

S. Morisi ${ }^{1, *}$ and E. Peinado ${ }^{1, \dagger}$
${ }^{1}$ AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia, Spain

(Dated: June 20, 2011)

Abstract

We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume S_{4}, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter $m_{e e}$ is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.

PACS numbers: 11.30.Hv 14.60.-z 14.60.Pq 14.80.Cp 14.60.St 23.40.Bw

I. INTRODUCTION

Charged particles are Dirac fermions while electrically neutral fermions, like neutrinos, can be either Dirac or Majorana. Neutrinoless double beta decay $0 \nu \beta \beta$ experiments will confirm (if observed) the Majorana nature of neutrinos [1]. Experiments for $0 \nu \beta \beta$ currently under construction will have sensitivity in the range of the inverse hierarchy mass spectrum [2/5]. Recently, it has been observed in [6] that if the second massive neutrino is of Dirac type (and so does not participate to the $0 \nu \beta \beta$ decay) in the case of inverse mass hierarchy, the lower bound on the $0 \nu \beta \beta$ parameter $m_{e e}$ is about two times that of the usual bound. In reference [6], they forbid the Majorana mass for the second neutrino at tree level by means of a flavor symmetry.

The parameter $m_{e e}$ can be written as combination of neutrino masses, namely $m_{e e}=\sum_{i=1}^{3} U_{e i}^{2} m_{\nu_{i}}$ where U is the lepton mixing matrix. In the inverse hierarchy case, when three neutrinos are of Majorana type, we have

$$
\begin{equation*}
\left|m_{e e}\right| \approx\left|\left(\cos ^{2} \theta_{12}+e^{i \alpha} \sin ^{2} \theta_{12}\right) m_{\mathrm{atm}}\right|>\frac{m_{\mathrm{atm}}}{3} \approx 17 \mathrm{meV} \tag{1}
\end{equation*}
$$

If the second massive neutrino is of Dirac type, that is $m_{\nu_{2}}=0$ in $m_{e e}$ we have

$$
\begin{equation*}
\left|m_{e e}\right| \approx\left|\cos ^{2} \theta_{12} m_{\mathrm{atm}}\right|>\frac{2 m_{\mathrm{atm}}}{3} \approx 34 \mathrm{meV} \tag{2}
\end{equation*}
$$

Such a value is in the range of sensitivity of the next generation of experiments and could be ruled out very soon.
A four component spinor ψ is a Majorana spinor if $\psi=\psi^{c}$ where ψ^{c} is the charge conjugate of ψ. The Dirac mass term for a massive spin $1 / 2$ fermion is given by

$$
\begin{equation*}
-m \bar{\psi} \psi \tag{3}
\end{equation*}
$$

where $\psi=\left(\chi, \sigma_{2} \phi^{*}\right)$ and χ, ϕ are two component spinors. Assuming $\chi=\frac{1}{\sqrt{2}}\left(\rho_{2}+i \rho_{1}\right), \phi=\frac{1}{\sqrt{2}}\left(\rho_{2}-i \rho_{1}\right)$, a four component Dirac mass term (3) is equivalent to two Majorana mass terms of equal mass and opposite parity [7, 8]

$$
\begin{equation*}
-m \bar{\psi} \psi=-\frac{m}{2}\left(\rho_{1}^{T} \sigma_{2} \rho_{1}+\rho_{2}^{T} \sigma_{2} \rho_{2}\right) \tag{4}
\end{equation*}
$$

For an arbitrary number of Majorana neutrinos the neutrino mass matrix is given by

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \sum_{i, j}^{n} M_{i j} \rho_{i}^{T} \sigma_{2} \rho_{j} \tag{5}
\end{equation*}
$$

In general the eigenvalues of the mass matrix M can have different signs and we can assign a signature matrix $\operatorname{diag}(+,+, \ldots,-,-, .$.$) . For two neutrino states we can have \operatorname{diag}(+,-)$ or $\operatorname{diag}(+,+)$. In the former case, if the

[^0]absolute value of the masses is the same, the two neutrino types make up a Dirac neutrino. When the two neutrinos are active-sterile we have the so-called quasi-Dirac neutrino [9] and when they are active-active we have the so called pseudo-Dirac neutrino [10].

In Ref. [6] the second massive neutrino state has a quasi-Dirac mass ${ }^{1}$, while the first and third neutrinos get a Majorana mass a la seesaw. Since each flavor state is an admixture of quasi-Dirac and Majorana states, they call such a case schizophrenic. For recent studies on this subject see also [11-13]. There are several models in the literature for exact tri-bimaximal [14] based on the group of permutation of four objects S_{4} as flavor symmetry [15 29]. Here we study the schizophrenic case assuming the S_{4} group with extra abelian symmetries as flavor symmetry. Breaking S_{4} into different Z_{2} subgroups respectively in the charged lepton and neutrino sectors we obtain tri-bimaximal mixing at tree-level. The difference between our model and the model of Ref. [6] is that they assume the permutation of three objects S_{3} flavor symmetry instead of S_{4} and they obtain tri-bimaximal mixing only assuming the charged lepton mass matrix to be diagonal, while in our model the charged lepton mass matrix is diagonal at tree-level by means of S_{4}.

The Letter is organized as follow: in section II we present the model, in section III we give the neutrino and charged lepton mass matrices, in section IV we study the problem of the vacuum alignments and we give our conclusions.

II. THE MODEL

We extend the Standard Model (SM) with a $G_{f}=S_{4} \times Z_{3} \times Z_{3}^{\prime} \times Z_{3}^{\prime \prime}$ flavor symmetry where S_{4} is the permutation group of four objects, $Z_{3}, Z_{3}^{\prime}, Z_{3}^{\prime \prime}$ are abelian groups characterized respectively by $\omega^{3}=1, \omega^{\prime 3}=1$ and $\omega^{\prime \prime 3}=1$. In order to simplify the study of the S_{4}-alignments of the scalar fields we assume supersymmetry, therefore all the fields are assumed to be superfields. We also add three right-handed neutrinos and eight scalar isosinglets called flavons. We assume ν_{2}^{c} to be a singlet of S_{4} and ν_{1}^{c}, ν_{3}^{c} to form a doublet ν_{D}^{c} of S_{4}. The $S U_{L}(2)$ doublet L and singlet l^{c} are both triplets 3_{1} of S_{4}. The matter content of the model is given in table

	L	l^{c}	ν_{2}^{c}	ν_{D}^{c}	$h^{u, d}$	ϕ_{ν}	ξ_{ν}	φ_{l}	χ_{l}	$\tilde{\chi}_{l}$	φ_{ν}	σ	$\tilde{\sigma}$
S_{4}	3_{1}	3_{1}	1_{1}	2	1_{1}	3_{1}	1_{1}	2	1_{1}	1_{1}	2	1_{1}	1_{1}
Z_{3}	1	ω^{2}	1	1	1	1	1	ω	ω	ω^{2}	1	1	1
Z_{3}^{\prime}	$\omega^{\prime 2}$	ω^{\prime}	ω^{\prime}	1	1	ω^{\prime}	$\omega^{\prime 2}$	1	1	1	1	1	1
$Z_{3}^{\prime \prime}$	1	1	1	$\omega^{\prime \prime}$	1	1	1	1	1	1	$\omega^{\prime \prime}$	$\omega^{\prime \prime 2}$	$\omega^{\prime \prime}$

TABLE I: Matter content of the model.

The relevant Yukawa terms of the superpotential invariant under G_{f} are

$$
\begin{align*}
& w_{l}=\frac{y_{1 l}}{M_{\Lambda}} L l^{c} h^{d} \chi_{l}+\frac{y_{2 l}}{M_{\Lambda}} L l^{c} h^{d} \varphi_{l} \\
& w_{\nu}=\frac{y_{2 \nu}}{M_{\Lambda}^{2}} L \nu_{2}^{c} h^{u} \phi_{\nu} \xi_{\nu}+\frac{y_{1 \nu}}{M_{\Lambda}^{2}} L \nu_{D}^{c} h^{u} \phi_{\nu} \sigma+y_{\sigma} \nu_{D}^{c} \nu_{D}^{c} \tilde{\sigma}+y_{\varphi} \nu_{D}^{c} \nu_{D}^{c} \varphi_{\nu} \tag{6}
\end{align*}
$$

Since ν_{2}^{c} is charged under Z_{3}^{\prime} the mass term $\nu_{2}^{c} \nu_{2}^{c}$ is forbidden. The scalar flavons take vacuum expectation value (vev) along the following direction of S_{4} (see section IV)

$$
\begin{equation*}
\left\langle\phi_{\nu}\right\rangle \sim(1,1,1), \quad\left\langle\varphi_{\nu}\right\rangle \sim(0,1), \quad\left\langle\varphi_{l}\right\rangle \sim(-\sqrt{3}, 1) \tag{7}
\end{equation*}
$$

When the scalar flavons take such vevs, the elements $S T^{2}, S^{2} T S, T S, S^{3} T^{2}$ leave invariant the charged leptons while the elements $T S T, T S T S^{2}, S, S^{3}$ leave invariant the neutrino sector. Here S and T are generators of S_{4}, see the Appendix A. The different breaking in the charged lepton and neutrino sectors gives (at tree-level) tri-bimaximal mixing. The scalar S_{4} singlets $\xi_{\nu}, \chi_{l}, \tilde{\chi}_{l}, \sigma$ and $\tilde{\sigma}$ take vevs different from zero.

[^1]
III. MASS MATRICES

From the superpotential w_{ν} and the vevs alignments given in eq. (7) the Dirac couplings for the neutrinos are proportional to the following S_{4} contractions

$$
\begin{align*}
(L \phi)_{1_{1}} \nu_{2}^{c} & \sim\left(L_{e}+L_{\mu}+L_{\tau}\right) \nu_{2}^{c} \tag{8}\\
(L \phi)_{2} \nu_{D}^{c} & \sim\binom{\frac{1}{\sqrt{2}}\left(L_{\mu}-L_{\tau}\right)}{\frac{1}{\sqrt{6}}\left(-2 L_{e}+L_{\mu}+L_{\tau}\right)} \times\binom{\nu_{1}^{c}}{\nu_{3}^{c}} . \tag{9}
\end{align*}
$$

Then the Dirac neutrino mass matrix is given by

$$
m_{D}=\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \tag{10}\\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
m_{\nu_{1}}^{D} & 0 & 0 \\
0 & m_{\nu_{2}}^{D} & 0 \\
0 & 0 & m_{\nu_{3}}^{D}
\end{array}\right)
$$

where

$$
\begin{equation*}
m_{\nu_{2}}^{D}=\frac{y_{2 \nu}}{M_{\Lambda}^{2}}\left\langle h^{u}\right\rangle\left\langle\phi_{\nu}\right\rangle\left\langle\xi_{\nu}\right\rangle, \quad m_{\nu_{1}}^{D}=m_{\nu_{3}}^{D}=\frac{y_{1 \nu}}{M_{\Lambda}^{2}}\left\langle h^{u}\right\rangle\left\langle\phi_{\nu}\right\rangle\langle\sigma\rangle \tag{11}
\end{equation*}
$$

The right-handed Majorana neutrino mass matrix is given by

$$
M_{R}=\left(\begin{array}{ccc}
y_{\sigma}\langle\tilde{\sigma}\rangle+y_{\varphi}\left\langle\varphi_{\nu}\right\rangle & 0 & 0 \tag{12}\\
0 & 0 & 0 \\
0 & 0 & y_{\sigma}\langle\tilde{\sigma}\rangle-y_{\varphi}\left\langle\varphi_{\nu}\right\rangle
\end{array}\right) \equiv\left(\begin{array}{ccc}
M_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & M_{3}
\end{array}\right)
$$

where $M_{1} \neq M_{3}$. The neutrino mass matrix is diagonalized by the tri-bimaximal mixing matrix, see eq. (10). One neutrino has a quasi-Dirac mass ${ }^{2} m_{\nu_{2}} \equiv m_{\nu_{2}}^{D}$ (see eq. (11)) and two neutrinos have Majorana masses

$$
\begin{equation*}
m_{\nu_{1}}=-\frac{m_{\nu_{1}}^{D^{2}}}{M_{1}}, \quad m_{\nu_{3}}=-\frac{m_{\nu_{1}}^{D^{2}}}{M_{3}} . \tag{13}
\end{equation*}
$$

Note that the masses $m_{\nu_{3}}$ and $m_{\nu_{1}}$ are proportional one to each other, so the atmospheric mass spliting arises from the M_{1} and M_{3} mass splitting.

Assuming Yukawa couplings of order one and the following value for the scales where the scalar fields take vev

$$
\begin{array}{ccccccc}
\left\langle h^{u, d}\right\rangle<\left\langle\xi_{\nu}\right\rangle \sim\langle\tilde{\sigma}\rangle \sim\left\langle\varphi_{\nu}\right\rangle<\langle\sigma\rangle \sim\left\langle\phi_{\nu}\right\rangle \sim\left\langle\chi_{l}\right\rangle \sim\left\langle\varphi_{l}\right\rangle \sim\left\langle\tilde{\chi}_{l}\right\rangle<M_{\Lambda} \\
\text { scales }(\mathrm{GeV}): & 10^{2}, & 10^{5} \quad 10^{13} \tag{14}
\end{array}
$$

then the neutrino masses $m_{\nu_{1}}, m_{\nu_{2}}$ and $m_{\nu_{3}}$ are at the eV scale with $M_{R} \sim 10^{5} \mathrm{GeV}$. As a particular example, taking

$$
\begin{equation*}
y_{1 \nu}=0.2200, \quad y_{2 \nu}=0.6345, \quad y_{\varphi}=1, \quad y_{\sigma}=-0.2300 \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|m_{\nu_{1}}\right|=0.0628 \mathrm{eV}, \quad\left|m_{\nu_{2}}^{D}\right|=0.0634 \mathrm{eV}, \quad\left|m_{\nu_{3}}\right|=0.0393 \mathrm{eV} \tag{16}
\end{equation*}
$$

giving about $\Delta m_{\mathrm{sol}}^{2} \approx 7.5 \cdot 10^{-5} \mathrm{eV}^{2}$ and $\Delta m_{\mathrm{atm}}^{2} \approx 2.4 \cdot 10^{-3} \mathrm{eV}^{2}$ in agreement with data. We observe that the next to leading order term $\nu_{2}^{c} \nu_{2}^{c} \xi_{\nu}^{2} / M_{\Lambda}$ is allowed giving a contribution to M_{R} of order $10^{-5} \mathrm{GeV}$ that is negligible.

[^2]The charged lepton mass matrix is given from the superpotential w_{l}. It is not difficult to show that the resulting mass matrix is diagonal. This arises from the S_{4} symmetry and the masses are given as ${ }^{3}$

$$
\begin{align*}
m_{e} & =\frac{y_{1 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\chi_{l}\right\rangle-\frac{2 y_{2 l}}{\sqrt{6} M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\varphi_{l_{2}}\right\rangle \tag{17}\\
m_{\mu} & =\frac{y_{1 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\chi_{l}\right\rangle+\frac{y_{2 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left(\frac{1}{\sqrt{6}}\left\langle\varphi_{l_{2}}\right\rangle+\frac{1}{\sqrt{2}}\left\langle\varphi_{l_{1}}\right\rangle\right) \tag{18}\\
m_{\tau} & =\frac{y_{1 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\chi_{l}\right\rangle+\frac{y_{2 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left(\frac{1}{\sqrt{6}}\left\langle\varphi_{l_{2}}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\varphi_{l_{1}}\right\rangle\right) \tag{19}
\end{align*}
$$

If $\left\langle\varphi_{l_{1}}\right\rangle$ and $\left\langle\varphi_{l_{2}}\right\rangle$ are free, we have three combinations of free parameters and we can fit the charged lepton masses as given below

$$
\begin{align*}
\frac{y_{1 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\chi_{l}\right\rangle & =\frac{m_{e}+m_{\mu}+m_{\tau}}{3} \tag{20}\\
\frac{y_{2 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\varphi_{l_{1}}\right\rangle & =\frac{m_{\mu}-m_{\tau}}{\sqrt{2}} \tag{21}\\
\frac{y_{2 l}}{M_{\Lambda}}\left\langle h^{d}\right\rangle\left\langle\varphi_{l_{2}}\right\rangle & =\frac{-2 m_{e}+m_{\mu}+m_{\tau}}{\sqrt{6}} \tag{22}
\end{align*}
$$

that are of order of the mass of the τ, in agreement with the assumption in eq. (14). In the limit $m_{e, \mu} \rightarrow 0$ from eqs. (21) and (22) we have

$$
\begin{equation*}
\frac{\left\langle\varphi_{l_{1}}\right\rangle}{\left\langle\varphi_{l_{2}}\right\rangle}=-\sqrt{3} \tag{23}
\end{equation*}
$$

in agreement with the vev alignment given in eq. (7). The mass of the muon m_{μ} arises from a small deviation the alignment $\left\langle\varphi_{l}\right\rangle \sim(-\sqrt{3}(1+\epsilon), 1)$. Such a deviation can arise from next to leading order terms in the scalar superpotential as well as by assuming S_{4} soft breaking terms in the superpotential. While the electron mass m_{e} arises by means of a fine-tuning of the coupling $y_{1 l}$. We can easily accommodate the three charged lepton masses in our model, in particular $m_{\mu} \ll m_{\tau}$ arises from the alignment $\left\langle\varphi_{l}\right\rangle \sim(-\sqrt{3}, 1)$.

IV. VACUUM ALIGNMENTS

In the previous sections we showed that assuming the alignments in eq. (77) we obtain tri-bimaximal neutrino mixing and diagonal charged lepton mass matrix. Here we show that the alignment of the flavon fields can arise from the minimization of the superpotential.

The superpotential invariant under $S_{4} \times Z_{3} \times Z_{3}^{\prime} \times Z_{3}^{\prime \prime}$ for the flavon fields of table (I) is given by

$$
\begin{align*}
w & =\lambda_{1} \varphi_{l} \varphi_{l} \varphi_{l}+\lambda_{2} \varphi_{l} \varphi_{l} \chi_{l}+\lambda_{3} \chi_{l} \chi_{l} \chi_{l}+\lambda_{4} \chi_{l} \tilde{\chi}_{l}+\lambda_{5} \tilde{\chi}_{l} \tilde{\chi}_{l} \tilde{\chi}_{l}+ \\
& +\lambda_{6} \varphi_{\nu} \varphi_{\nu} \varphi_{\nu}+\lambda_{7} \varphi_{\nu} \varphi_{\nu} \tilde{\sigma}+\lambda_{8} \sigma \tilde{\sigma}+\lambda_{9} \tilde{\sigma} \tilde{\sigma} \tilde{\sigma}+\lambda_{10} \sigma \sigma \sigma+ \\
& +\lambda_{11} \phi_{\nu} \phi_{\nu} \phi_{\nu}+\lambda_{12} \xi_{\nu} \xi_{\nu} \xi_{\nu}+\mu_{\phi} \phi_{\nu} \phi_{\nu}+\mu_{\xi} \xi_{\nu} \xi_{\nu} \tag{24}
\end{align*}
$$

where the terms proportional to μ_{ϕ} and μ_{ξ} break softly the auxiliary Z_{3}^{\prime} symmetry while the Z_{3} and $Z_{3}^{\prime \prime}$ are preserved in the superpotential. We denote the vevs of the flavon fields as below

$$
\begin{gather*}
\left\langle\varphi_{l}\right\rangle=\left(u_{1}, u_{2}\right), \quad\left\langle\varphi_{\nu}\right\rangle=\left(v_{1}, v_{2}\right), \quad\left\langle\phi_{\nu}\right\rangle=\left(r_{1}, r_{2}, r_{3}\right), \tag{25}\\
\left\langle\chi_{l}\right\rangle=v_{\chi}, \quad\left\langle\tilde{\chi}_{l}\right\rangle=\tilde{v}_{\chi}, \quad\langle\sigma\rangle=v_{\sigma}, \quad\langle\tilde{\sigma}\rangle=\tilde{v}_{\sigma}, \quad\left\langle\xi_{\nu}\right\rangle=v_{\xi} .
\end{gather*}
$$

[^3]We show below that $r_{1}=r_{2}=r_{3}=r, v_{1}=0, v_{2}=v, u_{1}=-\sqrt{3} u$ and $u_{2}=u$ is a possible solution of the minimization of the superpotential. Then we have to solve the set of equations

$$
\begin{align*}
\frac{\partial w}{\partial u_{1}} & =-\lambda_{1} 6 \sqrt{3} u^{2}-\lambda_{2} 2 \sqrt{3} u v_{\chi}=0 \tag{26}\\
\frac{\partial w}{\partial u_{2}} & =\lambda_{1} 6 u^{2}+\lambda_{2} 2 u v_{\chi}=0 \tag{27}\\
\frac{\partial w}{\partial v_{\chi}} & =\lambda_{1} 4 u^{2}+\lambda_{3} 3 v_{\chi}^{2}+\lambda_{4} \tilde{v}_{\chi}=0 \tag{28}\\
\frac{\partial w}{\partial \tilde{v}_{\chi}} & =\lambda_{4} v_{\chi}+\lambda_{5} 3 \tilde{v}_{\chi}^{2}=0 \tag{29}\\
\frac{\partial w}{\partial v_{1}} & =0 \tag{30}\\
\frac{\partial w}{\partial v_{2}} & =-\lambda_{6} 3 v^{2}+\lambda_{7} 2 v \tilde{v}_{\sigma}=0 \tag{31}\\
\frac{\partial w}{\partial v_{\sigma}} & =\lambda_{10} 3 v_{\sigma}^{2}+\lambda_{8} \tilde{v}_{\sigma}=0 \tag{32}\\
\frac{\partial w}{\partial \tilde{v}_{\sigma}} & =\lambda_{7} v^{2}+\lambda_{8} \tilde{v}_{\sigma}+\lambda_{9} 3 \tilde{v}_{\sigma}^{2}=0 \tag{33}\\
\frac{\partial w}{\partial r_{1}} & =\lambda_{11} r^{2}+\mu_{\phi} 2 r=0 \tag{34}\\
\frac{\partial w}{\partial r_{2}} & =\lambda_{11} r^{2}+\mu_{\phi} 2 r=0 \tag{35}\\
\frac{\partial w}{\partial r_{3}} & =\lambda_{11} r^{2}+\mu_{\phi} 2 r=0 \tag{36}\\
\frac{\partial w}{\partial v_{\xi}} & =\lambda_{12} 3 v_{\xi}^{2}+\mu_{\xi} 2 v_{\xi}=0 \tag{37}
\end{align*}
$$

where we have assumed $r_{1}=r_{2}=r_{3}=r, v_{1}=0, v_{2}=v, u_{1}=-\sqrt{3} u$ and $u_{2}=u$. It is easy to show that such a system admits a solution with r, v and u different from zero and fixed by the coupling constants of the superpotential in eq. (24).

In summary, we present a realization of the so-called bimodal/schizophrenic ansatz, that is one of the massive neutrino state is of Dirac-type and the remaining two are Majorana. Then each flavor state is an admixture of Dirac and Majorana states giving distinct predictions for the neutrinoless double beta decay rate. The model consist of a supersymmetric extension of the SM based on the $S_{4} \times Z_{3}^{3}$ flavor symmetry, where we add three right-handed neutrinos, the second of them transforming as a singlet of S_{4} and the other two as a doublet of S_{4}, and eight scalar singlets of the SM. The model also gives tri-bimaximal mixing for neutrinos at leading order. As was pointed out in [6] this kind of models can be ruled out very soon by neutrinoless double beta decay experiments.

V. ACKNOWLEDGMENTS

We thank Martin Hirsch for reading the manuscript and helpful comments. This work was supported by the Spanish MICINN under grants FPA2008-00319/FPA and MULTIDARK CSD2009-00064 (Consolider-Ingenio 2010 Programme), by Prometeo/2009/091 (Generalitat Valenciana), by the EU Network grant UNILHC PITN-GA-2009237920. S. M. is supported by a Juan de la Cierva contract. E. P. is supported by CONACyT (Mexico).

Appendix A: The group S_{4}

The discrete group S_{4} is given by the permutations of four objects and it is composed by 24 elements. It can be defined by two generators S and T that satisfy

$$
\begin{equation*}
S^{4}=T^{3}=1, \quad S T^{2} S=T \tag{A1}
\end{equation*}
$$

The 24 elements of S_{4} belong to five classes

$$
\begin{array}{ll}
\mathcal{C}_{1} & : I \\
\mathcal{C}_{2} & : \\
\mathcal{C}_{3} & : T, T S^{2} T^{2}, S^{2} T S^{2} T^{2} ; \\
\mathcal{C}_{2} T, S^{2} T^{2}, S T S T^{2}, S T S, S^{2} T S^{2}, S^{3} T S \\
\mathcal{C}_{4} & : S T^{2}, T^{2} S, T S T, T S T S^{2}, S T S^{2}, S^{2} T S \tag{A2}\\
\mathcal{C}_{5} & : S, T S T^{2}, S T, T S, S^{3}, S^{3} T^{2} .
\end{array}
$$

The elements of $\mathcal{C}_{2,4}$ define two different sets of Z_{2} subgroups of S_{4}, the ones of the class \mathcal{C}_{4} a set of Z_{3} abelian discrete symmetries and those belonging to \mathcal{C}_{5} a set of Z_{4} abelian discrete symmetries. The S_{4} irreducible representations are two singlets, $1_{1}, 1_{2}$, one doublet, 2 , and two triplets, 3_{1} and 3_{2}. We adopt the following basis

$$
S=\left(\begin{array}{cc}
-1 & 0 \tag{A3}\\
0 & 1
\end{array}\right), \quad T=-\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right)
$$

for the doublet representation and

$$
S_{ \pm}= \pm\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{A4}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

for the triplet representations 3_{1} and 3_{2} respectively. Clearly the generators $\left(S_{+}, T\right)$ and $\left(S_{-}, T\right)$ define the two triplet representations $3_{1}, 3_{2}$ respectively. All the product rules can be straightforwardly derived. We remind the reader to the product rules reported in [30] (see also [31]).

The product of S_{4} representation:

$$
\begin{aligned}
3_{i} \times 2 & =3_{1}+3_{2} \quad \forall \mathrm{i} \\
3_{1} \times 3_{2} & =1_{2}+2+3_{1}+3_{2}
\end{aligned}
$$

$$
[2 \times 2]=1_{1}+2, \quad\{2 \times 2\}=1_{2} \quad \text { and } \quad\left[3_{i} \times 3_{i}\right]=1_{1}+2+3_{1}, \quad\left\{3_{i} \times 3_{i}\right\}=3_{2} \quad \forall \mathrm{i}
$$

where we introduced the notation $[\mu \times \mu]$ for the symmetric and $\{\mu \times \mu\}$ for the anti-symmetric part of the product $\mu \times \mu$.
Note that $\nu \times \mu=\mu \times \nu$ for all representations μ and ν. For the irreducible representations:

$$
\begin{aligned}
A \sim 1_{1}, \quad B \sim 1_{2}, & \binom{a_{1}}{a_{2}},\binom{a_{1}^{\prime}}{a_{2}^{\prime}} \sim 2,\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right),\left(\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right) \sim 3_{1} \text { and } \\
& \left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right),\left(\begin{array}{c}
c_{1}^{\prime} \\
c_{2}^{\prime} \\
c_{3}^{\prime}
\end{array}\right) \sim 3_{2} .
\end{aligned}
$$

The explicit products for 1_{1} representation with any μ representation:

$$
\binom{A a_{1}}{A a_{2}} \sim 2 \quad, \quad\left(\begin{array}{c}
A b_{1} \\
A b_{2} \\
A b_{3}
\end{array}\right) \sim 3_{1} \quad, \quad\left(\begin{array}{c}
A c_{1} \\
A c_{2} \\
A c_{3}
\end{array}\right) \sim 3_{2}
$$

$$
\begin{aligned}
& 1_{i} \times 1_{j}=1_{(\mathrm{i}+\mathrm{j}) \bmod 2+1} \quad \forall \mathrm{i} \text { and } \mathrm{j}, \\
& 2 \times 1_{i}=2 \quad \forall \mathrm{i}, \\
& 3_{i} \times 1_{j}=3_{(\mathrm{i}+\mathrm{j}) \bmod 2+1} \quad \forall \mathrm{i} \text { and } \mathrm{j},
\end{aligned}
$$

and the product of 1_{2} with the any μ representation:

$$
\binom{-B a_{2}}{B a_{1}} \sim 2, \quad\left(\begin{array}{c}
B \\
b_{1} \\
B \\
b_{2} \\
B
\end{array}\right) \sim b_{3} \quad, \quad\left(\begin{array}{c}
B c_{1} \\
B c_{2} \\
B
\end{array}\right) \sim c_{3}
$$

The products of $\mu \times \mu$:
for 2

$$
\begin{gathered}
a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime} \sim 1_{1} \\
-a_{1} a_{2}^{\prime}+a_{2} a_{1}^{\prime} \sim 1_{2} \\
\binom{a_{1} a_{2}^{\prime}+a_{2} a_{1}^{\prime}}{a_{1} a_{1}^{\prime}-a_{2} a_{2}^{\prime}} \sim 2
\end{gathered}
$$

$$
\begin{gathered}
\text { for } 3_{1} \\
\sum_{j=1}^{3} b_{j} b_{j}^{\prime} \sim 1_{1} \\
\binom{\frac{1}{\sqrt{2}}\left(b_{2} b_{2}^{\prime}-b_{3} b_{3}^{\prime}\right)}{\frac{1}{\sqrt{6}}\left(-2 b_{1} b_{1}^{\prime}+b_{2} b_{2}^{\prime}+b_{3} b_{3}^{\prime}\right)} \sim 2
\end{gathered}
$$

$$
\binom{\frac{1}{\sqrt{2}}\left(c_{2} c_{2}^{\prime}-c_{3} c_{3}^{\prime}\right)}{\frac{1}{\sqrt{6}}\left(-2 c_{1} c_{1}^{\prime}+c_{2} c_{2}^{\prime}+c_{3} c_{3}^{\prime}\right)} \sim 2
$$

$$
\left(\begin{array}{l}
b_{2} b_{3}^{\prime}+b_{3} b_{2}^{\prime} \\
b_{1} b_{3}^{\prime}+b_{3} b_{1}^{\prime} \\
b_{1} b_{2}^{\prime}+b_{2} b_{1}^{\prime}
\end{array}\right) \sim 3_{1}, \quad\left(\begin{array}{c}
b_{3} b_{2}^{\prime}-b_{2} b_{3}^{\prime} \\
b_{1} b_{3}^{\prime}-b_{3} b_{1}^{\prime} \\
b_{2} b_{1}^{\prime}-b_{1} b_{2}^{\prime}
\end{array}\right) \sim 3_{2}, \quad\left(\begin{array}{c}
c_{2} c_{3}^{\prime}+c_{3} c_{2}^{\prime} \\
c_{1} c_{3}^{\prime}+c_{3} c_{1}^{\prime} \\
c_{1} c_{2}^{\prime}+c_{2} c_{1}^{\prime}
\end{array}\right) \sim 3_{1}, \quad\left(\begin{array}{c}
c_{3} c_{2}^{\prime}-c_{2} c_{3}^{\prime} \\
c_{1} c_{3}^{\prime}-c_{3} c_{1}^{\prime} \\
c_{2} c_{1}^{\prime}-c_{1} c_{2}^{\prime}
\end{array}\right) \sim 3_{2}
$$

For $2 \times 3_{1}$:

$$
\left(\begin{array}{c}
a_{2} b_{1} \\
-\frac{1}{2}\left(\sqrt{3} a_{1} b_{2}+a_{2} b_{2}\right) \\
\frac{1}{2}\left(\sqrt{3} a_{1} b_{3}-a_{2} b_{3}\right)
\end{array}\right) \sim 3_{1} \quad\left(\begin{array}{c}
a_{1} c_{1} \\
\frac{1}{2}\left(\sqrt{3} a_{2} c_{2}-a_{1} c_{2}\right) \\
-\frac{1}{2}\left(\sqrt{3} a_{2} c_{3}+a_{1} c_{3}\right)
\end{array}\right) \sim 3_{1}
$$

$$
\left(\begin{array}{c}
a_{1} b_{1} \\
\frac{1}{2}\left(\sqrt{3} a_{2} b_{2}-a_{1} b_{2}\right) \\
-\frac{1}{2}\left(\sqrt{3} a_{2} b_{3}+a_{1} b_{3}\right)
\end{array}\right) \sim 3_{2} \quad\left(\begin{array}{c}
a_{2} c_{1} \\
-\frac{1}{2}\left(\sqrt{3} a_{1} c_{2}+a_{2} c_{2}\right) \\
\frac{1}{2}\left(\sqrt{3} a_{1} c_{3}-a_{2} c_{3}\right)
\end{array}\right) \sim 3_{2}
$$

For $3_{1} \times 3_{2}$

$$
\begin{gathered}
\sum_{j=1}^{3} b_{j} c_{j} \sim 1_{2} \\
\binom{\frac{1}{\sqrt{6}}\left(2 b_{1} c_{1}-b_{2} c_{2}-b_{3} c_{3}\right)}{\frac{1}{\sqrt{2}}\left(b_{2} c_{2}-b_{3} c_{3}\right)} \sim 2 \\
\left(\begin{array}{c}
b_{3} c_{2}-b_{2} c_{3} \\
b_{1} c_{3}-b_{3} c_{1} \\
b_{2} c_{1}-b_{1} c_{2}
\end{array}\right) \sim 3_{1}, \quad\left(\begin{array}{l}
b_{2} c_{3}+b_{3} c_{2} \\
b_{1} c_{3}+b_{3} c_{1} \\
b_{1} c_{2}+b_{2} c_{1}
\end{array}\right) \sim 3_{2}
\end{gathered}
$$

[1] J. Schechter and J. W. F. Valle, Phys. Rev. D 25 (1982) 2951.
[2] A. Osipowicz et al. [KATRIN Collaboration], "KATRIN: A Next generation tritium beta decay experiment with sub-eV arXiv:hep-ex/0109033.
[3] V. E. Guiseppe et al. [Majorana Collaboration], arXiv:0811.2446 [nucl-ex].
[4] A. A. Smolnikov [GERDA Collaboration], "Status of the GERDA experiment aimed to search for neutrinoless double beta arXiv:0812.4194 [nucl-ex].
[5] J. J. Gomez-Cadenas et al., arXiv:1010.5112 [hep-ex].
[6] R. Allahverdi, B. Dutta and R. N. Mohapatra, Phys. Lett. B 695, 181 (2011) arXiv:1008.1232 [hep-ph]].
[7] H. Nunokawa, S. J. Parke and J. W. F. Valle, Prog. Part. Nucl. Phys. 60, 338 (2008) arXiv:0710.0554] [hep-ph]].
[8] P. Langacker, J. Erler and E. Peinado, J. Phys. Conf. Ser. 18 (2005) 154 arXiv:hep-ph/0506257.
[9] J. W. F. Valle, Phys. Rev. D 27, 1672 (1983).
[10] L. Wolfenstein, Nucl. Phys. B 186, 147 (1981).
[11] A. C. B. Machado and V. Pleitez, Phys. Lett. B 698 (2011) 128 arXiv:1008.4572 [hep-ph]].
[12] J. Barry, R. N. Mohapatra and W. Rodejohann, arXiv:1012.1761 [hep-ph].
[13] C. S. Chen and C. M. Lin, arXiv:1101.4362 [hep-ph].
[14] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530 (2002) 167 arXiv:hep-ph/0202074.
[15] C. S. Lam, Phys. Rev. D 78 (2008) 073015 arXiv:0809.1185 [hep-ph]].
[16] F. Bazzocchi and S. Morisi, Phys. Rev. D 80 (2009) 096005 arXiv:0811.0345 [hep-ph]].
[17] H. Ishimori, Y. Shimizu and M. Tanimoto, Prog. Theor. Phys. 121, 769 (2009) arXiv:0812.5031 [hep-ph]].
[18] F. Bazzocchi, L. Merlo and S. Morisi, Nucl. Phys. B 816, 204 (2009) arXiv:0901.2086 [hep-ph]].
[19] W. Grimus, L. Lavoura and P. O. Ludl, J. Phys. G 36, 115007 (2009) arXiv:0906.2689 [hep-ph]].
[20] F. Bazzocchi, L. Merlo and S. Morisi, Phys. Rev. D 80, 053003 (2009) [arXiv:0902.2849 [hep-ph]].
[21] G. J. Ding, Nucl. Phys. B 827 (2010) 82 arXiv:0909.2210 [hep-ph]].
[22] D. Meloni, J. Phys. G 37, 055201 (2010) arXiv:0911.3591 [hep-ph]].
[23] S. Morisi, E. Peinado, Phys. Rev. D81, 085015 (2010). arXiv:1001.2265 [hep-ph]].
[24] A. Adulpravitchai and M. A. Schmidt, JHEP 1101, 106 (2011) arXiv:1001.3172 [hep-ph]].
[25] C. Hagedorn, S. F. King and C. Luhn, JHEP 1006, 048 (2010) arXiv:1003.4249 [hep-ph]].
[26] H. Ishimori, K. Saga, Y. Shimizu and M. Tanimoto, Phys. Rev. D 81 (2010) 115009 arXiv:1004.5004] [hep-ph]].
[27] H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, Phys. Rev. D 83, 033004 (2011) [arXiv:1010.3805 [hep-ph]].
[28] P. V. Dong, H. N. Long, D. V. Soa and V. V. Vien, Eur. Phys. J. C 71, 1544 (2011) arXiv:1009.2328 [hep-ph]].
[29] N. W. Park, K. H. Nam and K. Siyeon, arXiv:1101.4134 [hep-ph].
[30] C. Hagedorn, M. Lindner and R. N. Mohapatra, JHEP 0606 (2006) 042 arXiv:hep-ph/0602244.
[31] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1 arXiv:1003.3552 [hep-th]].

[^0]: *Electronic address: morisi@ific.uv.es
 ${ }^{\dagger}$ Electronic address: epeinado@ific.uv.es

[^1]: 1 At leading order $m_{\nu_{2}}$ is a Dirac state, but at next to leading order it takes a small Majorana mass resulting in a quasi-Dirac state.

[^2]: ${ }^{2}$ Next to leading order terms as well as loop corrections generate a negligible mass term for ν_{2}^{c} then we have a quasi-Dirac state instead of a Dirac one.

[^3]: ${ }^{3}$ It is very easy to see that corrections of second order arise by couplings with the flavon $\tilde{\chi}_{l}$ but those can be reabsorbed in the $y_{1 l}$ coupling.

