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ABSTRACT 

Neighbourhood built environments may have the potential to impact residents’ cardio-

metabolic health through physical activity. This Thesis aims to advance the understanding 

of such potential impacts. This Thesis consists of three published peer-reviewed studies. 

 

Study One, a systematic review and meta-analyses of longitudinal studies, found strong 

evidence for longitudinal relationships of built environment attributes with cardio-

metabolic health among adults. In particular, it found strong evidence for relationships of 

higher walkability with reduced risks of obesity, type 2 diabetes and hypertension. This 

systematic review has been published in Obesity Reviews.  

 

Two empirical studies were designed to address the gaps identified in the systematic 

review. These studies were conducted using the Australian Diabetes, Obesity and Lifestyle 

(AusDiab) study data, which were collected from a national cohort at three time points 

between 1999 and 2012. The outcomes examined in the empirical studies were 12-year 

changes in eight cardio-metabolic risk markers: waist circumference; weight; systolic and 

diastolic blood pressure; fasting and 2-hr postload plasma glucose; high-density 

lipoprotein cholesterol; and triglycerides. Built environmental attributes for AusDiab study 

participants were calculated using geographic information systems as an original work of 

this Thesis. The analytical sample consisted of participants who provided 12-year follow-

up data and did not change their residence during the study period. 

 

One gap identified in the systematic review was that most longitudinal studies examined 

environmental attributes (typically composite measures such as walkability) assessed at 

one time point, disregarding environmental changes. To address this gap, Study Two 

examined the relationships of neighbourhood population density increases (densification) 

on changes in cardio-metabolic risk markers. Densification was calculated using the 

population density values measured within a 1-km straight-line buffer at three time points 

in concordance with the AusDiab data collection points. Analysing data from 2,354 

eligible participants, higher densification was found related to smaller increases in obesity 

markers, but it was adversely related to blood pressure and lipid changes. This study has 

been published in the Journal of the American Heart Association.  
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Study Three investigated the potential mediating role of physical activity (baseline and 

change) in the relationships between walkability and changes in cardio-metabolic risk 

markers, as a lack of studies rigorously examining underlying mechanisms of these 

relationships was another gap identified. For physical activity, self-reported time spent in 

moderate-to-vigorous physical activity (including walking) was used. A walkability index 

(consisting of residential density, intersection density, and destinations density) was 

calculated, within a 1-km street-network buffer using geospatial data sourced around the 

second follow-up of AusDiab. Analyses of data from 2,023 participants found that higher 

walkability was related to higher baseline physical activity, which, in turn, was related to 

smaller increases in obesity markers. There was no evidence for a relationship of higher 

walkability with a change in physical activity. This study has been published in the 

International Journal of Behavioral Nutrition and Physical Activity.  

 

Collectively, this Thesis adds evidence for potential long-term impacts of the 

neighbourhood built environment on adult residents’ cardio-metabolic health. In particular, 

higher walkability and higher densification may have protective effects against obesity risk 

over time. This Thesis also found evidence suggesting that physical activity may partly 

explain the potential long-term protective effect of higher walkability against obesity risk. 

However, there were also some unexpected findings, for instance, potential adverse 

impacts of higher densification on blood pressure and lipid, which warrants further 

investigation.  

 

The Thesis findings support the potential utility of environmental initiatives to reduce the 

burden of obesity at the population level through enhancing physical activity. To further 

advance understanding of the impacts of the built environment on cardio-metabolic health, 

future research needs to examine diverse built environmental attributes, investigate a 

broader range of cardio-metabolic health outcomes, and examine multiple pathways 

between the built environment and cardio-metabolic health. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Cardio-metabolic Diseases: Burden and Biomedical Risk Factors  

Chronic diseases are a major burden to individuals, societies, and governments (1). In 

particular, cardiovascular disease (CVD) and type 2 diabetes (T2D) are major causes of 

morbidity and mortality worldwide. It is estimated that 31.0% and 2.8% of all global 

deaths were caused by cardiovascular disease (number one leading cause) and diabetes 

(seventh leading cause), respectively, in 2016 (2). In Australia, the prevalence of CVD and 

T2D among adults were 4.8% and 4.1%, respectively, in 2017–18 (3). The total 

expenditure on health services in Australia for these ‘cardio-metabolic’ diseases was $16 

billion in 2011–12, which is expected to increase to $58 billion (14% of total health 

expenditures) in 2031–32 (4). Due to their serious burden, there have been calls for action 

to tackle the current epidemic of cardio-metabolic diseases, globally and nationally (1, 5). 

 

In the effort to prevent cardio-metabolic diseases, it is important to understand their 

biomedical risk factors and how they may be modified to reduce the likelihood of 

developing these diseases (6). Biomedical risk factors, which lead to the development of 

CVD and T2D, include obesity, hypertension, hyperglycaemia, and dyslipidaemia (7). 

Cardio-metabolic risk markers (i.e., waist circumference, body mass index, blood pressure, 

blood glucose, and blood cholesterol) and their established diagnostic cut-off values are 

used to assess individuals’ levels of risk (8).  

 

1.2 Strategies to Prevent Cardio-metabolic Diseases 

There are two types of strategies for chronic disease prevention: high-risk strategy and 

population strategy (9). The high-risk strategy focuses on and treats individuals who are 

diagnosed as being at high risk. Conversely, the population strategy addresses the root 

causes of diseases for the entire population. To illustrate the difference, Figure 1.1 depicts 

the distribution of systolic blood pressure of a certain population. The high-risk strategy 

targets those who are at high risk of developing the disease (e.g., systolic blood pressure 

over 130 mmHg) and provides treatments to reduce their risk of disease. On the other 
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hand, the population strategy aims to decrease the blood pressure levels of the whole 

population by identifying and addressing the population-level causes of the disease.  

 

 

Figure 1.1: High-Risk and Population Strategies for Chronic Disease Prevention 

 

Rose upheld the population strategy in his seminal paper, “Sick individuals and sick 

populations” (9) as he wrote: “a large number of people at a small risk may give rise to 

more cases of disease than the small number who are at a high risk”. Rose argued that 

even a small amount of reduction in risk, when achieved for the entire population, can help 

to substantially reduce the burden of the disease. Adopting the population strategy, this 

Thesis investigates the potential role of the neighbourhood built environment in reducing 

the population risk of cardio-metabolic diseases. 

 

1.3 Physical Inactivity: A Behavioural Risk Factor 

Population strategies to prevent cardio-metabolic diseases can be implemented by 

addressing behavioural risk factors. The four common behavioural risk factors relevant to 

cardio-metabolic diseases are physical inactivity, poor diet, excessive alcohol 

consumption, and tobacco smoking (10).  

 

Physical activity is defined as any bodily movement produced by the skeletal muscles that 

require substantial energy expenditure (11). Examples of physical activity include walking, 

moderate-intensity exercise (e.g., brisk walking, jogging), and vigorous-intensity exercise 
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(e.g., running) (12). Engaging in regular physical activity is known to provide numerous 

health benefits (13-15). Physical inactivity, which can be defined as not meeting 

recommended levels of physical activity for health benefits (e.g., 150 minutes of moderate 

to vigorous-intensity exercise in a typical week), has been identified as a key behavioural 

risk factor for cardio-metabolic diseases (16).  

 

Despite the well-known health benefits of physical activity, high proportions of the 

world’s population are physically inactive (17). In Australia, over half of adults (56.4%) 

did not meet the recommended level of physical activity in 2014–15 (18). Given that 

physical inactivity is prevalent and a modifiable behavioural risk factor (10), promoting 

physical activity at the population level is considered an effective strategy for reducing the 

burden of cardio-metabolic diseases (19). 

 

Conventional approaches to increasing physical activity tended to address an individual’s 

motivation to exercise through various means such as education, incentives, and self-

monitoring (20). Physical activity promotion programs focusing on these factors tended to 

be effective during the program period, but they were less successful in sustaining 

behavioural changes over time (21). They also work only for a small number of 

participants who may be interested in being more active. It is now well recognised that 

strategies focusing only on individual-level factors are unlikely to be sufficient to increase 

physical activity at the population level (22).  

 

To promote sustained participation in physical activity at a broader scale, it is important to 

address multi-level factors including individual, social, environmental, and policy factors. 

This multi-level approach, underpinned by the ecological model of health behaviour 

(Figure 1.2), has been adopted as a framework to guide interventions to increase physical 

activity at the population level (23). A key implication of the ecological model is that 

interventions involving multi-level factors are more effective than conventional individual-

level approaches in influencing behaviours (23).  
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Figure 1.2: The Ecological Model of Physical Activity Behaviour 

 [adapted from Sallis et al. 2015 (23) ] 

 

1.4 Built Environment and Physical Activity  

This Thesis seeks to advance understanding of the potential cardio-metabolic health 

impacts of built environment features through influencing physical activity. The built 

environment can be defined as “the part of the physical environment that is constructed by 

human activity” (24). The idea of “behaviour settings” is relevant to understand the role of 

environment in human behaviour: different types of behaviour settings, defined by distinct 

spatial and physical characteristics, can support or discourage different sets of behaviours 

(25). Due to the habitual nature of many human behaviours, it is considered that 

behaviours such as physical activity often occur in response to environmental cues, even in 

the absence of conscious intentions (26). Thus, features of environmental contexts can act 

to promote certain behaviours and discourage others. Several domains of the built 

environment such as housing, neighbourhood, and workplace environments are potentially 

relevant to physical activity (23). Changing characteristics of these settings has the 

potential to change people’s behaviours. This Thesis focuses specifically on the built 

environment of neighbourhoods where people live. Recent studies have provided evidence 



5 

 

that improvements in neighbourhood built environments can increase residents’ physical 

activity (27). Physical environmental characteristics, such as air quality, temperature, and 

noise, are not considered in this Thesis. 

 

The built environment features relevant to physical activity are conceptualised to be 

fundamentally composed of dimensions known as 3Ds: Density, Diversity, and Design 

(28). Density can be defined as the number of people or residences per unit area. Diversity 

refers to the spatial arrangement of different land uses (e.g., residential, commercial, 

institutional, and recreational). Design refers to the design of streets, which includes their 

spatial layout (connectivity) and infrastructure for pedestrians. Figure 1.3 depicts two types 

of neighbourhoods differing in these dimensions: a compact neighbourhood (high in 

density, diversity, and connectivity) and a sprawling neighbourhood (low in density, 

diversity, and connectivity). Residents in compact neighbourhoods are postulated to 

engage in more physical activity than those in sprawling neighbourhoods (28). 

 

 

Figure 1.3: Compact Neighbourhood vs Sprawling Neighbourhood 

 

Building on the concept of 3Ds, research has developed a measure of ‘walkability’ in 

which several built environmental features are combined to examine relationships between 

neighbourhood built environments and residents’ physical activity levels (29). Numerous 
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studies have reported associations of higher walkability with higher levels of physical 

activity (e.g., walking for transport, recreational physical activities) (28-33). Having more 

destinations in the neighbourhood and pedestrian-friendly routes to such destinations are 

considered to contribute to residents’ active lifestyles (34). 

 

1.5 Built Environment and Cardio-metabolic Health  

Given the strong evidence base for the link between neighbourhood built environment and 

physical activity, environmental initiatives to address physical inactivity are considered as 

one of the promising strategies to reduce the burden of cardio-metabolic diseases at the 

population level (35). Over the last two decades, epidemiological studies have been 

investigating relationships between built environment attributes and cardio-metabolic 

health outcomes (i.e.,  risk markers, biomedical risk factors, and incidence of T2D and 

CVD are collectively referred to as cardio-metabolic health outcomes in this Thesis) (36). 

Existing studies on this topic have produced mixed yet promising findings (37). This 

Thesis seeks to enhance understanding of this topic, building on these existing studies. A 

systematic review summarising the current state of knowledge is discussed in Chapter 2.  

 

1.6 Conceptual Framework of the Thesis  

Recently, Giles-Corti and colleagues presented a comprehensive framework for the 

relationships between the built environment and cardio-metabolic health (38). The 

framework presented is complex and involves multiple pathways that include behaviours 

(e.g., physical activity, diet) and risk exposures (e.g., air pollution, noise pollution). Within 

this framework, this Thesis focuses on the relationships between the built environment and 

cardio-metabolic health outcomes that are postulated to be linked through physical 

activity, as illustrated in Figure 1.4.  
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Figure 1.4: The Conceptual Framework of the Thesis 

 

1.7 Research Aims of the Thesis 

The broad aim of this Thesis is to advance the understanding of the potential impacts of 

the neighbourhood built environment on adult residents’ cardio-metabolic health. More 

specifically this Thesis aimed:    

1. To review existing studies to understand the current status of knowledge on the 

potential impacts of the built environment on cardio-metabolic health; 

2. To further investigate the relationships between the built environment and cardio-

metabolic health based on the gaps identified in the review; and  

3. To examine the potential mediating role of physical activity in the relationships 

between the built environment and cardio-metabolic health. 

 

A systematic review and two empirical studies were conducted to address these aims. Gaps 

identified in the systematic review informed the development of research questions for the 

empirical studies. 

 

Ultimately, findings of this Thesis are expected to provide insights into built 

environmental features that may be protective against cardio-metabolic diseases, which are 

of relevance to researchers, policy-makers, and practitioners involved in public health and 

urban planning. The findings may contribute to developing future environmental initiatives 

to reduce the burden of cardio-metabolic diseases at the population level by addressing 

physical inactivity.  
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1.8 Structure of the Thesis 

This Thesis comprises six chapters. Following the introduction (Chapter 1), Chapter 2 

presents the literature review and discusses specific research questions investigated in the 

empirical studies. Chapter 3 describes the methodology for two empirical studies 

undertaken in this Thesis. Chapters 4 and 5 present two empirical studies, in which 

specific research questions were investigated. The final chapter, Chapter 6, discusses a 

summary of the findings, their implications, and future research directions. 
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2 CHAPTER 2: LITERATURE REVIEW 

 

This Chapter is divided into four sections. First, a brief review of research on the built 

environment and cardio-metabolic health among adults is presented. This is followed by a 

published article of the systematic review that was conducted as a part of this Thesis. 

Building on the gaps identified in the systematic review, this Chapter discusses specific 

research questions investigated in the empirical studies.  

 

2.1 A Review of Research on Built Environment and Cardio-metabolic Health 

2.1.1 Background 

The following three studies, published in 2003, can be considered as the pioneer empirical 

studies in this field (39). Giles-Corti and colleagues examined the associations between a 

number of built environment attributes and obesity status among 1,755 residents in Perth, 

Australia (40). They reported that residents with poor access to recreational facilities, 

perceiving no retail stores, and perceiving no walking or cycling paths in the 

neighbourhood were more likely to be obese. Saelens and colleagues developed a 

neighbourhood walkability index using residential density, land use mix and street 

connectivity and found that residents of low-walkability neighbourhoods had higher body 

mass index (BMI) than those of high-walkability neighbourhoods, in a sample of 107 

adults who resided in San Diego, the USA (41). Analysing data from a sample of 206,992 

adults residing across 448 counties in the USA, Ewing and colleagues reported that higher 

levels of sprawl (lower population density and street connectivity) were associated with 

higher BMI and a greater prevalence of hypertension but not with the prevalence of T2D 

(42).  

 

After these early studies, empirical research investigating relationships between the built 

environment and cardio-metabolic health has grown gradually over the last 15 years (36, 

37). However, studies conducted to date are mostly cross-sectional in design, which does 

not allow causal inferences to be made for these relationships (36, 37).  
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2.1.2 Study designs in built environment and health research  

Experimental study design involving randomisation is needed to establish causal 

relationships (43). However, such a design is highly impractical in research on 

neighbourhood and health, because it requires randomly assigning different 

neighbourhoods to study participants (43). Most studies in this research field generally 

employ observational study designs. Observational study design can include both cross-

sectional and longitudinal studies. Although cross-sectional studies are useful as they can 

provide preliminary evidence to the scientific and policy-making communities (44), their 

key limitation is the inability to establish “temporal ordering” of exposures and outcomes, 

which is one of the requirements to support causality (44). For example, people with better 

cardio-metabolic health profiles may have chosen to live in neighbourhoods that are 

supportive of physical activity, rather than such neighbourhoods affecting their health (45). 

Cross-sectional studies cannot rule out such reverse causation. Longitudinal design, on the 

other hand, allows investigation of relationships of exposures with subsequent changes in 

outcomes (46). Although participants are not randomised, the longitudinal study design is 

a step closer to identifying causal relationships between the built environment and cardio-

metabolic health (43).  

 

2.1.3 Review of systematic reviews 

To determine the prevalence of longitudinal studies in the literature of the built 

environment and cardio-metabolic health among adults, the candidate conducted a review 

of systematic reviews. Two electronic databases (Medline and Web of Science) were 

searched using a combination of three sets of keywords related to “built environment”, 

“cardio-metabolic health”, and “review”, for systematic reviews published in peer-

reviewed journals up to January 2016. This search was supplemented by a review of 

systematic reviews on the built environment, physical activity, and obesity, published in 

2012 (47). Six relevant systematic reviews were identified (36, 37, 39, 48-50). Table 2.1 

summarises the characteristics of those systematic reviews identified. 
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Table 2.1: Characteristics of Systematic Reviews on Built Environment and Cardio-Metabolic 

Health among Adults 

Lead Author  

(Year Published) 

Cardio-metabolic 

health outcomes 

Number of 

Studies 

identified† 

Number of 

longitudinal  

studies 

Booth (2005) Obesity-related  4  0 

Papas (2007) Obesity-related  10  0 

Black (2008) Obesity-related 10 0 

Feng (2010) Obesity-related 35 0 

Leal (2011) Multiple outcomes 40 4 

Mackenbach (2014) Obesity-related 70 5 

Note: † In each review, different types of studies were reviewed according to the scope of 

the review. Only those studies examining relationships of built environment attributes and 

cardio-metabolic health outcomes among adults are reported here (studies investigating 

other environmental factors such as food environments and those targeting 

children/adolescents are not included).  

 

As shown in Table 2.1, studies identified by the existing systematic reviews were 

predominantly cross-sectional in design. No longitudinal study was included in the earlier 

reviews published before 2010 (39, 48-50). The two reviews published after 2011 had a 

small number of longitudinal studies (36, 37). In addition, all reviews focused on obesity 

as the health outcome, except one review (36) that included a few studies (mostly cross-

sectional) examining relationships of built environment attributes with measures related to 

hypertension (n=5), hyperglycaemia (n=4), and dyslipidaemia (n=1).  

 

Given an expected increase in the number of longitudinal studies since 2013 when the 

latest review searched the literature (37), a new systematic review of longitudinal studies 

was warranted to understand the current knowledge on the potential impacts of the built 

environment on cardio-metabolic health. 

 

2.2 Built Environment and Cardio-metabolic Health: Systematic Review and Meta-

Analysis of Longitudinal Studies (published peer-reviewed paper) 

This systematic review was conducted as the first study of this Thesis (referred to as Study 

One) by the candidate with contributions of the supervisors and three other co-authors. 
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The nature and extent of contributions of authors are shown in Appendix I. This 

manuscript has been published in Obesity Reviews.  
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Summary
Built environment attributes may be related to cardio-metabolic diseases (e.g. type
2 diabetes, heart disease and stroke) and their risk factors, potentially by influenc-
ing residents’ physical activity. However, existing literature reviews on the built en-
vironment and health for the most part focus on obesity as the outcome and rely on
cross-sectional studies. This systematic review synthesized current evidence on lon-
gitudinal relationships between built environment attributes and cardio-metabolic
health outcomes among adults and on the potential mediating role of physical inac-
tivity. By searching eight databases for peer-reviewed journal articles published in
the English language between January 2000 and July 2016, the review identified
36 articles. A meta-analysis method, weighted Z-test, was used to quantify the
strength of evidence by incorporating the methodological quality of the studies.
We found strong evidence for longitudinal relationships of walkability with obesity,
type 2 diabetes and hypertension outcomes in the expected direction. There was
strong evidence for the impact of urban sprawl on obesity outcomes. The evidence
on potential mediation by physical activity was inconclusive. Further longitudinal
studies are warranted to examine which specific built environment attributes influ-
ence residents’ cardio-metabolic health outcomes and how physical inactivity may
be involved in these relationships.
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Introduction

Type 2 diabetes (T2D) and cardiovascular disease (CVD)
are leading causes of poor health, disability and death,
and their burden is rising globally (1,2). There are
established markers of cardio-metabolic risk, including ab-
dominal adiposity, glucose intolerance, hypertension and
dyslipidaemia, which can predispose individuals to develop-
ing T2D and CVD (3). Given that T2D and CVD are
regarded as having significant preventable components
(4,5), there have been calls for population-wide public
health initiatives to address their major behavioural risk fac-
tors, which include physical inactivity, unhealthy diet and
cigarette smoking (6). Considering that physical inactivity
is highly prevalent worldwide (7), there is growing interest
in the role of neighbourhood built environments, which po-
tentially support residents’ active lifestyles, in preventing
cardio-metabolic diseases (8,9).

A number of systematic reviews of studies on relation-
ships between built environment attributes and adults’
cardio-metabolic health outcomes have been published
(10–17). However, these reviews summarized evidence
based mostly on cross-sectional studies; hence, they do not
support causal inferences. In addition, these systematic re-
views focused primarily on obesity-related outcomes, with
only a few considering a range of cardio-metabolic health
outcomes (14,16). Evidence from longitudinal studies needs
to be synthesized to identify attributes of built environments
that may be protective against the development of T2D and
CVD (9).

Built environment attributes may influence residents’
health, partly through physical activity and sedentary be-
haviour (18). The ecological model of health behaviour pos-
tulates that multilevel factors (e.g. individual, social,
environmental and policy) can influence behaviours, em-
phasizing the role of ‘behaviour settings’ – those attributes
of environmental contexts that can act to promote certain
behaviours and discourage others (19). Identifying the built
environment attributes that are supportive of habitually ac-
tive lifestyles is a public health research priority. Environ-
mentally focused initiatives are argued to have the
potential to be effective, even in the absence of a conscious
intention, e.g. to be physically active (20). Previous studies
show that lack of physical activity and prolonged sedentary
behaviour can independently elevate the risk of developing
T2D and CVD (21,22). Literature reviews also identify con-
sistent relationships between certain built environment attri-
butes (e.g. residential density, street connectivity,
availability of diverse destinations, public open space
(POS) and their composite measures such as walkability)
and different types of physical activities (e.g. walking and
leisure-time physical activity) and sedentary behaviours
(e.g. car use and television watching) in adults (23–26).
However, it is not clear to what extent these behaviours

may mediate longitudinal relationships between built envi-
ronments and cardio-metabolic health.

We systematically reviewed longitudinal studies on the re-
lationships between built environment attributes and
cardio-metabolic health outcomes in adults and quantified
the strength of evidence using a meta-analytic approach that
accounted for the methodological quality of the studies. We
also synthesized any relevant evidence on how physical ac-
tivity and sedentary behaviour may mediate the longitudinal
relationships.

Methods

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines (27) were followed in this review.

Search strategy

A reproducible systematic search of peer-reviewed journal
articles published in the English language between January
2000 and July 2016 was undertaken by the first author
(M. C.) using eight electronic databases: Medline, Web of
Science, Cochrane, Embase, PsycInfo, CINAHL, Scopus
and Transport Research International Documentation.
Three sets of search terms on built environment, cardio-
metabolic health and longitudinal design were used. Search
terms for each category were developed based on those used
in other related reviews (14,15,26,28). A full description of
the search terms is provided in Table S1.

Inclusion/exclusion criteria

Studies were included if they met the following four criteria:

1. Exposures: Objectively measured (using geographic
information systems) or perceived (using question-
naires) built environment attributes;

2. Outcomes: Objectively measured (by biomedical ex-
amination) or self-reported (using questionnaires)
cardio-metabolic health outcomes, including inci-
dence of diseases and biomarkers;

3. Study designs: Longitudinal design quantitatively ex-
amining the relationships between exposures and out-
comes; and

4. Participants: Adults, aged 18 years and older.

One exclusion criterion was based on how studies postu-
lated a link between the built environment and cardio-
metabolic health. To sustain a manageable scope and coher-
ence, we focused on studies that postulated physical activity
or sedentary behaviour as a pathway and excluded studies
postulating other mechanisms, such as food environment,
air/noise pollution, access to health care, sanitation and cli-
mate change. We also excluded studies focused specifically
on clinically defined subgroups (e.g. those who were
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pregnant, with diabetes and had stroke) and those studies
focusing on participants’ workplace and its vicinity.

Screening process

Articles were reviewed independently by three authors
(M. C., J. R. and L. G.). At all stages of the review process
(title and abstract screening, full article selection and data
extraction), M. C. reviewed 100% of the articles, with
J. R. and L. G. each reviewing 60% of the articles with an
overlap of 20%. Discrepancies between the reviewers at
each stage were mediated by T. S.

Data extraction

The following information was extracted from each article:

1 Study: author, year (published), project/cohort name;
2 Location: country, multisite or not;
3 Sample: size, demographic information, recruitment

strategy (particularly, if study areas were purposefully
selected to have a diversity in environmental attributes
or not);

4 Design: study design (observational, natural experi-
mental), follow-up duration, number of waves, resi-
dential relocation;

5 Response rate: at baseline, retention at follow-up(s);
6 Measures: outcomes (including methods), exposures

(including methods, area unit and examined environ-
mental changes or not), mediators, moderators,
individual-level and area-level confounders;

7 Analyses: statistical methods, accounting for area-level
clustering or not, adjusting for residential self-selection
or not and drop-out analysis; and

8 Results: magnitude and direction of relationships, sta-
tistical significance, mediation (physical activity and/or
sedentary behaviour)

Coding and counting of findings

A statistically significant relationship was coded as [E] if it
was in the expected direction (i.e. built environment attri-
butes supporting physical activity, such as high walkability,
being associated with reduced cardio-metabolic risk) or [U]
if it was in the unexpected direction. A statistically non-
significant relationship was coded as null [N]. To avoid
over-representation of findings from the same data set, re-
ported relationships in the articles were counted using a
method introduced in a previous review (23): if the relation-
ship of a specific environmental exposure with a specific
cardio-metabolic outcome (e.g. walkability and obesity)
using the same data source was reported in more than one
article, the finding from the article that scored a higher
methodological quality score (detail explained in the next

section) was counted; if an article examined a specific
exposure–outcome relationship within a study using the ex-
posure calculated in different types of geographical units
(e.g. administrative units and individual buffers) or at differ-
ent scales (e.g. 400- and 1,000-m buffers), each finding was
assigned an equal fractional weight in such a way that the
sum of the weights equals to one; and if a specific
exposure–outcome relationship was examined separately
for subgroups (e.g. men and women) within a study, the
findings were considered as distinct only if they differed in
direction or statistical significance. In such cases, each find-
ing was assigned a fractional weight proportional to the
sample size of the subgroup.

Methodological quality assessment

It is recommended that systematic reviews of built environ-
ment and health research should consider the methodologi-
cal quality of the reviewed articles to synthesize and
interpret the findings (29). Cerin et al. developed a quality
assessment tool to assess the methodological quality of
cross-sectional studies on built environment attributes and
physical activity (23). Barnett et al. (30) extended this tool
by adding an item to assess the study design. The assessment
items in the original tool included [1] sample representative-
ness; [2] study design; [3] exposure variability (study areas
selected to maximize the variability in the exposure vari-
ables); [4] adjustment for individual socio-demographic co-
variates; [5] adjustment for residential self-selection; [6]
accounting for area-level clustering; and [7] appropriate
presentation of analysis results. We adapted and further ex-
tended this tool by adding items relevant to longitudinal de-
sign, measurement of built environment attributes, and
measurement of cardio-metabolic health outcomes. For as-
pects relevant to longitudinal design, we included the fol-
lowing items based on the quality assessment checklist
developed by Tooth et al. (31): [8] follow-up duration; [9]
number of data collection time points; [10] participant re-
tention rate; and [11] appropriate longitudinal data analy-
sis. We further included items specific to the measurement
of exposures and outcomes, following Giles-Corti et al.
(32). These included [12] measurement of built environment
attributes (appropriate geographical unit and size to capture
participants’ neighbourhood for objective measures or use
of validated survey instruments for perceived measures);
[13] measurement of health outcome (objectively measured
vs. self-reported); and [14] temporal match of exposure
and outcome measures.
For each assessment item, a score of 0.0 (not meeting the

quality criterion) or 1.0 (meeting the quality criterion) was
assigned. An intermediate score of 0.5 was assigned for an
acceptable level for relevant items. Items 6, 7 and 11 (used
for assessing the quality of statistical analysis) were assigned
a score of 0 or 1/3 to avoid over-scoring for statistical
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methods (23). We also assigned an additional score to each
study according to its sample size as described in Cerin et al.
(23). Each study was assigned the total assessment score
(the sum of methodological quality and sample size scores),
which was then used to assess the strength of evidence (de-
tail explained in the next section). The quality assessment
tool with rationale for scores assigned to each item is de-
scribed in Table S2.

Assessing the strength of evidence

Conducting a traditional meta-analysis using models that
include effect sizes of reported associations is difficult due
to heterogeneities in environmental exposure measures be-
tween studies. An alternative meta-analysis method, known
as weighted Z-test (33), was used to combine findings of
multiple independent studies and to assess the strength of
the evidence. This approach has been used in recent reviews
of the built environment and physical activity literature
(23,30). A conservative z-value was assigned to each re-
ported relationship according to the level of significance
(α) stated in the study (for statistically significant finding
in the expected direction: z = 1.96 for α = 0.05 and
z = 1.64 for α = 0.10; z = 0.00 for null; for statistically sig-
nificant findings in the unexpected direction: z = �1.96 for
α = 0.05 and z = �1.64 for α = 0.10). Each reported finding
was separately assessed according to the counting method
described earlier. For a specific exposure–outcome relation-
ship, a weighted Z value was calculated by summing z
scores using the total assessment scores of the studies as
weights and dividing it by the square root of the sum of
squared weights. The two-tailed p-value associated with
the weighted Z value was then calculated and used to deter-
mine the strength of the evidence using the following
criteria: p < 0.05-weak evidence; p < 0.01-strong evidence;
and p< 0.001-very strong evidence (34). This meta-analytic

approach was conducted only if a specific exposure–
outcome relationship was reported five or more distinct
times among the reviewed articles to meet the methodolog-
ical standards for meta-analysis (35). If a specific relation-
ship was reported four or less distinct times, it was
considered insufficient to determine the strength of evi-
dence. This meta-analytic approach, which accounts for
the methodological quality of the study, quantifies the
strength of evidence more accurately (in comparison with
the approach of counting the number of significant associa-
tions) and provides a better assessment of the current evi-
dence base (23).

Results

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses flow diagram outlining the process of litera-
ture searching and article screening is provided in Fig. 1.
The initial systematic search across the eight databases pro-
duced 6,749 [3,402 unique] articles. After a sequence of in-
dependent assessment steps, 36 articles (36–71) were
included in the review.

Characteristics of reviewed studies

The data extracted from all the articles included in the meta-
analysis are presented in Table S3. Key characteristics of the
articles are summarized in Table 1.

General study characteristics
More than one half of the articles were based on studies
conducted in the United States (56%), followed by
Canada (14%), Sweden (11%) and Australia (8%). Over
70% of the articles were published after 2013. With regard
to geographical settings, most studies (78%) were con-
ducted in urban areas only. The majority of studies recruited

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart. TRID, Transport Research International Documentation.
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participants from multiple sites (38% from urban areas,
19% from both urban and rural areas). The sample sizes
of the articles reviewed ranged from 262 to over 4 million.
While the majority of articles used data collected in cohort
studies (84%), six articles used data from national or state
health registries, which were not primarily established for
particular research purposes. The large-sample studies used
such health registry data.

Research design aspects
Almost all the articles reviewed were based on observational
studies. One natural-experimental study (37), which met
our inclusion criteria (a longitudinal study on built environ-
ment and cardio-metabolic health), examined body mass in-
dex (BMI) changes among those who were assigned
different residential locations (with little to no control over
their neighbourhood placement) after Hurricane Katrina.
The follow-up duration ranged from less than 1 to 18 years.
In cohort studies, data were collected at two waves in about
two-fifths of the studies, while two studies collected data
across seven waves. However, it should be noted that envi-
ronmental attributes were measured only once in most stud-
ies (over 80%). Of these, a majority (n = 23) used single
time point exposure measures that temporally matched with
the study period (often at baseline), three used exposure
data measured outside the study period and three did not re-
port the time point in which exposure data were collected.
Seven studies used built environment attributes measured

at multiple time points concurrent with health data collec-
tion. About half of the articles (n = 17) examined partici-
pants who did not relocate to a new address (stayers)
during the study period. However, 11 of these appear to
have assumed that participants did not relocate during
follow-ups without checking their relocation status. About
10% of the articles focused only on those who relocated
(movers), and one third of the articles included both stayers
and movers in their sample.

Outcomes
Obesity outcomes (incidence of obesity, BMI, waist circum-
ference and body weight) were examined in 60% of the ar-
ticles reviewed. Of the 17 articles using BMI measurements,
nine used objectively measured height and weight, and eight
used self-reported measures. T2D outcomes (incidence of
T2D, fasting glucose, HbA1c and HOMA-IR) were exam-
ined in a quarter of the articles. Hypertension outcomes (in-
cidence of hypertension and systolic/diastolic blood
pressure) were examined in 20% of the articles. CVD events
(incidence of coronary heart disease or stroke or mortality
due to CVD) were examined in 14% of the articles. All arti-
cles that examined outcomes related to T2D, hypertension
and CVD used objectively collected data (i.e. measured by
biomedical examination or retrieved from registry records),
except two studies (49,52) in which self-reported outcomes
were used. Outcome variables were characterized as either
changes in continuous measures (e.g. BMI change from

Table 1 Key characteristics of the 36 articles reviewed

Item Category (number of articles)

Country United States (20); Canada (5); Sweden (4); Australia (3); Finland (1); Germany (1); Lithuania (1); Wales (1)
Publication year 2007 (1); 2009 (4); 2010 (2); 2011 (2); 2013 (7); 2014 (8); 2015 (4); 2016 (7); 2017 (1)
Geographical setting Single-site [urban] (14); multisite [urban] (14); multisite [urban + rural] (7); not reported (1)
Gender Both (29); women only (5); men only (2)
Age group Middle-to-older aged adults (16); all adults (8); older adults (4); younger-to-middle aged adults (3); middle aged adults

(3); younger adults (2)
Baseline sample size 200–500 (3); 501–1,000 (4); 1,001–6,000 (20); 15,000–50,000 (4); 500,000–5,000,000 (5)
Study design Observational (35); natural-experimental (1)
Mean follow-up duration Less than 2 years (3); 2–5 years (8); 5+ years (25)
Number of waves 2 waves (14); 3 waves (3); 4 waves (3); 5 waves (5); 6 waves (1); 7 waves (2); regional administrative health registries

(6); not reported (2)
Relocation status Stayers only (17) [reported (6); assumed (11)]; movers only (7); both (12)
Cardio-metabolic health
outcomes

Obesity related [body mass index (14); waist circumference (6); obesity incidence (4); body weight (2)]; type 2 diabetes
related [type 2 diabetes incidence (6); fasting glucose (1); HOMA-IR (1); HbA1c (1)]; hypertension related [hypertension
incidence (4); systolic/diastolic blood pressure (3)]; cardiovascular disease events (5); others [triglycerides (2); LDL
cholesterol (2); HDL cholesterol (2); dyslipidaemia (2); metabolic syndrome (1); C-reactive protein (1)]

Built environment exposure
variables

Walkability (20); recreational facilities (13) [public open space (5)]; urban sprawl (5); destinations [public transport stops
(2); retail and community destinations (1)]; routes [street connectivity (3); traffic intensity (3); safety (2); amount of slope
(1)]; other composite measures (5); residential density (2); land-use mix (2)

Built environment measurement
methods

GIS measures (33) [scales: administrative unit (14); straight-line buffer (11); street-network buffer (8); distance measure
(7)]; perceived measures (7) [scales: within 15- to 20-min walk from home (6); residential address (1)]

Longitudinal measures Outcome [changes in health outcomes (20); incidences of health outcomes (19)]; exposure [single time point
environment measures (29); multiple time points environment measures (7)]; temporal match of single time point
exposure and outcome [matched (23); mismatched (3); not reported (3)]

GIS, geographic information system; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, Homeostatic Model Assessment of Insulin
Resistance; HbA1c, Haemoglobin A1c.
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baseline to follow-up) or incidences of adverse events (e.g.
development of T2D at follow-up).

Exposures
A variety of built environment attributes were examined in
the articles reviewed. Neighbourhood walkability, a com-
posite measure of environmental supportiveness for walk-
ing, consisting typically of objectively measured residential
density, street connectivity and land use diversity (n = 16)
or using similar self-reported items measuring perceived en-
vironments (n = 4), was the most frequently used exposure
variable. Another frequently examined exposure was the
presence/proximity of neighbourhood recreational facilities
such as gyms and parks (n = 13). Urban sprawl index, which
is another composite measure, calculated similar to
walkability but involving a degree of centring (concentra-
tion of population/employment within an area), was used
in five studies. To synthesize findings in a succinct manner,
other non-composite built environment attributes were clas-
sified into two categories: destinations and routes (25). In
the current review, the destination category included
presence/proximity of public transport stops and other local
(community and retail) destinations. The route category in-
cluded street connectivity, traffic intensity, perceived safety
and the amount of slope. Two articles (42,54) included
composite measures, which were constructed in ways that
are different from walkability and urban sprawl indices.
For example, neighbourhood development intensity
consisted of population density, road density and resource
(food, physical activity and inactivity resources such as
movie theatres) density (42).

The majority of articles used geographic information sys-
tems to measure built environment attributes (n = 33), while
seven articles used perceived environmental characteristics
(four studies used both). No audit measures were used in
the articles identified. Of the studies using geographic infor-
mation systems measures, administrative units were the
most frequently used area unit (n = 15), followed by
straight-line (circular) buffer areas around participant’s res-
idence (n = 11), street-network buffer areas that can be
reached within a certain distance from residence using street
network (n = 7) and distance measures (proximity of desti-
nations from residence, n = 7). Straight-line and street-
network buffer sizes ranged from 400 m to 3 km. Five out
of seven articles that used perceived environmental mea-
sures were from the Multi-Ethnic Study of Atherosclerosis
study. The Multi-Ethnic Study of Atherosclerosis study
asked participants to rate the suitability of the environment
for physical activity (multiple items) within 1 mile or a 20-
min walk from home.

Analytical approaches
The statistical methods used varied widely according to data
type, study characteristics and research questions. For

instance, statistical approaches included modelling continu-
ous outcome variables (linear regression models); modelling
binary outcome variables (logistic regression models);
modelling incidences of outcome events at follow-up (pro-
portional hazard models); modelling within-person changes
in exposures and outcomes by controlling for time-invariant
confounders (fixed-effects models); and modelling concur-
rent trajectories of exposures and outcomes (latent growth
models). Analysis accounted for area-level clustering
through the use of multilevel regression models or robust
(sandwich-type) standard errors. Studies adjusted for poten-
tial confounding factors including individual-level socio-
demographic covariates (n = 33); behavioural covariates
(n = 23); comorbid conditions (n = 20); area-level socioeco-
nomic variables (n = 23); and residential self-selection (di-
rectly by adjusting for preference or attitudinal measures
[n = 2] or by alternative approaches [n = 9] such as use of
fixed-effects models or propensity-score matching tech-
nique). Two-thirds of the studies examined effect modifica-
tions (n = 24). Further details of analytical approaches
used in the articles are provided in Table S3.

Methodological quality assessment
Table 2 shows the summary of quality assessment. The full
quality assessment results are provided in Table S4. The
highest possible quality score is 12.0. The mean (SD) quality
score was 7.5 (1.1).

Summary of findings

Table 3 presents the summary of findings for longitudinal
relationships between built environment attributes and
cardio-metabolic health outcomes. The table summarizes
findings for each of which the relationship was reported five
or more distinct times. The Aggregated columns list the
number of significant findings (in the expected direction)
of the total number reported, with corresponding percent-
age and number of articles that examined those relation-
ships. The Meta-analysis columns list the weighted Z-value
with the associated p-value calculated in the meta-analysis.
The complete meta-analysis results are provided in Table
S5. In the following, we use the term ‘case’ rather than
‘study’ to describe a specific finding, as one study can exam-
ine many relevant relationships.

Walkability
Meta-analysis found strong evidence for longitudinal rela-
tionships of neighbourhood walkability with obesity and
T2D outcomes. Very strong evidence was found for the im-
pact of walkability on hypertension. Other cardio-
metabolic health outcomes (CVD, triglycerides, cholesterol,
metabolic syndrome, C-reactive protein and dyslipidaemia)
were examined in a limited number of studies (<3 cases,
not reported in Table 3). Studies employed different
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methods in constructing objectives measures of walkability
(i.e. built environment attributes included, buffer type and
size, and composition method) (Table S3). The strength of
the evidence for longitudinal relationships of objective
walkability measures (i.e. excluding perceived measures)

with obesity, T2D and hypertension outcomes was attenu-
ated but remained significant. Perceived walkability was
found to be consistently related with different health out-
comes, including obesity outcomes (36,39), T2D incidence
(47) and hypertension incidence (55). However, there were

Table 2 Summary of quality assessment for the 36 articles

Quality assessment item # of studies meeting the criterion (%) Average score

1 Sample representativeness [response rate ≥ 60% or sample shown to be
representative of the population]

27 (75%) 0.75

2 Study design [natural experiment]† 1 (3%) 0.51
3 Exposure variability [recruitment stratified by key built environmental attributes] 3 (8%) 0.08
4 Individual confounding [adjustment for at least age, gender, education or similar] 33 (92%) 0.92
5 Residential self-selection [directly adjusted]† 3 (8%) 0.21
6 Area-level clustering [accounting for area-level clustering in analysis for multilevel

sampling]
25 (69%) 0.23

7 Appropriate presentation of analysis results 29 (81%) 0.27
8 Follow-up duration [5+ years]† 25 (69%) 0.81
9 Number of data collection time points [3+ waves]† 13 (36%) 0.68
10 Participant retention [retention rate ≥ 80% or drop-outs are comparable with follow-up

participants]†
18 (50%) 0.68

11 Appropriate longitudinal data analysis 36 (100%) 0.33
12 Built environment measurement [street-network buffer for objective measures or use of

validated survey instruments for perceived measures]†
9 (25%) 0.64

13 Health outcome measurement [objective measurement]† 26 (72%) 0.86
14 Temporal match of exposure-outcome measures [multiple time points exposure measures

concurrent with outcome measures]†
7 (19%) 0.51

†Intermediate score (0.5) was also given.

Table 3 Summary of findings for longitudinal relationships between built environment attributes and cardio-metabolic health outcomes

Built environment attributes Cardio-metabolic health outcomes

Obesity T2D Hypertension

Aggregated Meta-
analysis

Aggregated Meta-
analysis

Aggregated Meta-
analysis

Walkability 9/20 (45%)
[13]

2.925
p = 0.003

4/7 (57%)
[7]

2.944
p = 0.003

4/6 (67%)
[6]

3.349
p < 0.001

- Walkability (objective measures only) 7/17 (41%)
[11]

2.379
p = 0.017

3/6 (50%)
[6]

2.357
p = 0.018

3/5 (60%)
[5]

2.793
p = 0.005

Recreational facilities 6/11 (55%)
[7]

2.408
p = 0.016

–

[2]
– –

[2]
–

- Green space/parks 2/5 (40%)
[4]

1.034
p = 0.301

–

[1]
– –

[1]
–

Urban sprawl 3/6 (50%)
[4]

2.989
p = 0.003

– – – –

Destinations [public transport, retail, community] 2/6 (33%)
[2]

1.499
p = 0.134

– – – –

Route attributes [street connectivity, traffic, safety,
slope]

3/8 (38%)
[3]

1.687
p = 0.092

–

[2]
– –

[2]
–

Other composite measures 2/5 (40%)
[2]

1.764
p = 0.077

–

[2]
– –

[1]
–

Total 25/56 (45%)
[21]

– 9/14 (63%)
[9]

– 5/11 (45%)
[7]

–

Aggregated columns show the number of significant (E) findings among the total cases reported, along with corresponding percentage, [number of inde-
pendent articles] examined the specific relationship. Meta-analysis columns show the weighted Z-value, along with associated p-value calculated in the
meta-analysis. Statistically significant evidence is shown in bold. A positive weighted Z-value indicates that the relationship is in the expected direction.
Percentage and meta-analysis results are reported only if relationship was examined five or more distinct times among the reviewed articles. T2D, type
2 diabetes.
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insufficient cases to assess the strength of the evidence for
perceived walkability measures alone.

Recreational facilities
Weak evidence was found for longitudinal relationships be-
tween neighbourhood recreational facilities and obesity out-
comes. Because most of the studies that examined
recreational facilities as exposures did not provide explicit
information on whether parks and other POSs were in-
cluded or not, we combined them with the studies that fo-
cused on access to green spaces or parks. Meta-analysis
found no evidence for longitudinal relationships between
access to green spaces or parks and obesity outcomes. There
were insufficient cases that examined relationships of
neighbourhood recreational facilities with T2D, hyperten-
sion or CVD outcomes.

Urban sprawl
Meta-analysis found strong evidence for the impact of ur-
ban sprawl on obesity outcomes. Urban sprawl and
walkability were both composite measures often con-
structed using similar components. A major difference be-
tween them is that walkability was measured within a
smaller local area (e.g. census block in the USA, a buffer
area around home), while urban sprawl was measured at a
much larger scale such as counties or metropolitan statisti-
cal areas in the USA (37,49,58,64) and included a degree
of centring (72). No studies examined longitudinal relation-
ships of urban sprawl with T2D or hypertension outcomes.

Destinations, routes and other composite measures
No evidence was found for longitudinal relationships of
destinations (public transport stops, retail and community
places), route attributes (street layout, amount of slope
and traffic intensity) and other composite measures with
obesity outcomes. There were insufficient cases that exam-
ined longitudinal relationships of these environmental mea-
sures with T2D, hypertension or CVD outcomes.

Mediation by physical activity and sedentary behaviour
One fourth of the articles attempted to examine whether
longitudinal relationships between built environment attri-
butes and cardio-metabolic health outcomes were mediated
by participants’ physical activity (Table S3). However, al-
most of all of these studies tested the mediation effect simply
by checking whether adjustment for physical activity
(mostly with other potential mediators such as diet)

attenuated the associations. This analytical approach is of-
ten ineffective to accurately estimate mediating effects (73).
Thus, in the current review, the evidence for the mediating
role of physical activity in the relationships examined is in-
conclusive, due to the limitation in analytical approaches.
Nevertheless, one Australian study (71) tested the indirect
effect of walkability on 10-year change in HbA1c through
self-reported physical activity using structural equation
modelling and found a partial mediation effect. None of
the articles reviewed examined mediation by sedentary
behaviour.

Results stratified by relocation status
The studies reviewed can be categorized according to relo-
cation status: stayers (reported), stayers (assumed) and
movers. Table 4 shows the percentage of significant findings
for each relocation status. It was found that studies on
stayers (particularly, on those who were confirmed to stay
in the same location) had a higher percentage of significant
findings, compared with the studies on movers.

Discussion

Impact of built environment attributes on cardio-
metabolic health

To our knowledge, this is the first systematic review of lon-
gitudinal studies that examined relationships between built
environment attributes and cardio-metabolic health out-
comes. Studies using longitudinal designs are recommended
to better understand the potential causal effects of built en-
vironments on health outcomes (15,17). Based on meta-
analysis of existing longitudinal studies, this review found
evidence suggesting causal relationships between living in
a particular environment and change in cardio-metabolic
health.

We found very strong evidence for the longitudinal rela-
tionships of walkability with hypertension outcomes.
Strong evidence was found for the impact of walkability
on obesity and T2D outcomes and for the impact of urban
sprawl on obesity outcomes. A recent systematic review by
Mackenbach et al. (15) reported inconsistent findings for
the relationships between walkability and obesity outcomes
but consistent relationships between urban sprawl and obe-
sity in North America. Another systematic review by
Grasser et al. (13) also reported inconsistent findings for
the relationships between walkability and obesity outcomes.

Table 4 Aggregated results for studies on stayers and movers

Stayers (reported) Stayers (assumed) Movers

Total 11/19 (58%) 11/22 (50%) 6/15 (40%)
Studies on walkability only 7/12 (58%) 1/2 (50%) 3/9 (33%)

Number of significant cases/total number of cases.
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However, these reviews mostly included cross-sectional
studies and did not statistically assess the strength of the ev-
idence using meta-analytical approaches that accounted for
the methodological quality of the studies. Based on findings
of the current review, it can be argued that living in more
walkable and less-sprawled areas may provide residents
with long-term benefits for cardio-metabolic health.

We found weak evidence for the relationships between
neighbourhood recreational facilities and obesity outcomes.
This implies that, to some extent, having more places in the
neighbourhood to engage in moderate-to-vigorous physical
activity may be protective against the development of obe-
sity. No evidence was found for the relationships between ac-
cess to green space or parks and obesity outcomes. This
finding is in line with a previous systematic review of cross-
sectional studies, which reported inconsistent findings for re-
lationships between access to green space and obesity out-
comes (74). It should be noted that studies on green spaces
and cardiovascular health assuming a pathway other than
physical activity (e.g. air quality and stress) were not in-
cluded in the current review due to our inclusion criteria.
Considering that researchers and practitioners consider
POS as important and modifiable community resources that
can contribute to resident’s health (75), further longitudinal
research on POS and health is warranted. It is known that
the quality aspects of POS (size, features and amenities) are
relevant to residents’ walking to and active use of POS (76).
Research may need to incorporate the quality of POS to ex-
amine how they are associated with cardio-metabolic health.

Other environmental measures (destinations, routes and
other composite measures), for which we were able to syn-
thesize findings, did not show any evidence of longitudinal
relationships with obesity outcomes. Because the presence
of local destinations is consistently associated with resi-
dents’ walking (25,77,78), it was expected that residents
of such locations would have lower risk of obesity. How-
ever, meta-analysis did not find any evidence for longitudi-
nal relationships of access to local destinations with obesity
outcomes. Because a large volume of walking (over
300 min week�1) is needed to reduce obesity risk (79),
walking to local proximate destinations may not be long
enough. Several measures related to route aspects (street
connectivity, traffic, safety and slope) were combined to
carry out meta-analysis in this review. We found no evi-
dence for the combined impact of such route characteristics
on obesity outcomes. This may be because these route at-
tributes differed in their associations with cardio-metabolic
health outcomes. For example, neighbourhood traffic was
found to be consistently associated with BMI increase
(40), T2D incidence (52) and hypertension incidence (57),
but neighbourhood safety was not associated with T2D in-
cidence (47) or hypertension incidence (55). This review
found a relatively large number of studies examining com-
posite environmental measures, such as walkability and

urban sprawl. However, less research has been carried
out on specific environmental attributes (such as residential
density and street connectivity). There is a need for
further longitudinal studies to identify specific built envi-
ronment attributes that affect health outcomes to inform
future urban design guidelines for new and established
communities.
With regard to the outcome variables, obesity was still the

most prevalent health outcome in this review (58%). How-
ever, the current review found that more than one third of
the articles examined other cardio-metabolic health out-
comes such as T2D and hypertension outcomes. Research
in exercise science has shown that active lifestyle changes
can be effective in reducing the risk of T2D and hyperten-
sion and can improve cardio-metabolic health profiles, even
when there is no effective change in adiposity (80). This sug-
gests that environmental attributes found to have weak or
no evidence of longitudinal relationships with obesity (rec-
reational facilities, POS, destinations and routes) may be
strongly or weakly related to T2D and hypertension out-
comes. Future research needs to investigate about what as-
pects of built environments might be protective against
broader cardio-metabolic diseases.

Issues on research design

Longitudinal studies of built environments involve either
people who stayed in the same address (stayers) or those
who relocated (movers). For studies on stayers, it is impor-
tant to ensure that participants did not change their address
during the study period. However, as shown in Table 1,
many of the studies on stayers assumed that participants
did not relocate or not explicitly reported about their reloca-
tion status. It is possible that the lower percentage of signifi-
cant findings for assumed stayers (Table 4) may be due to the
error introduced by including some participants who moved
to a different neighbourhood during the study period.
Examining environmental changes is considered to pro-

vide useful knowledge. In most cases, studies on stayers
are unlikely to be suitable for examining environmental
changes, as any changes in established neighbourhoods are
normally modest and slow. To better understand the health
impact of significant environmental changes, research can
use natural experiments (e.g. examining the effect of new
transport infrastructure) or examine environmental changes
among those who relocated. However, as shown in Table 4,
the studies on movers had a lower percentage of significant
findings compared with the studies on stayers. Some movers
may have relocated not long before the follow-up measure-
ment thus may have had only a limited exposure to the new
environment. To accurately examine the effects of environ-
mental changes among movers, the time of relocation is
needed to identify how long participants were exposed to
the old and new environments, but only one study
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considered when during the study period participants
relocated (44). This may be a reason for finding fewer sig-
nificant results in the studies on movers.

Longer periods are considered beneficial for examining
cardio-metabolic outcomes, because it takes time to develop
these conditions (81). Data collection from multiple time
points can be also advantageous, as it facilitates an exami-
nation of whether changes occurred consistently across time
(82,83). The majority of the studies had follow-up periods
of 5 years or longer, and many of these had data collection
at three or more time points. However, longer follow-ups
may also incur higher and systematic attrition, which can
cause bias in the estimates (84). A quantitative comparison
on key characteristics of those who dropped out to those
who remained in the study can be helpful to identify system-
atic attrition and to account for it. Another issue with a lon-
ger follow-up is that some environmental attributes can
change over a long period of time (e.g. loss/addition of des-
tinations and new residential development). However, less
than 20% of the studies in this review measured environ-
mental attributes at the same time with outcome measures.
It is important that environmental attributes were measured
at multiple points concurrent with health data collection,
even for studies on stayers.

Built environment measurement methods

Objective and perceived measures capture distinct aspects of
the built environment (85). Mismatches between perceived
and objectives measures of walkability attributes in the pro-
spective relationships with BMI were reported previously
(86). It was found that the strength of evidence for relation-
ships between walkability and health outcomes was attenu-
ated when the meta-analysis was restricted to objective
measures of walkability, which suggests that perceived
walkability may be more strongly related to health out-
comes. It is possibly because of the match between partici-
pants’ perceived local area and area where their daily
behaviours take place. In contrast, objective walkability
was assessed within a buffer area around the home or an ad-
ministrative area, which may or may not match the area
where participants’ daily behaviours take place. Street-
network buffers are considered as more likely to capture
an accessible local area for residents, compared with alter-
native straight-line buffers or administrative units (87).
However, less than a quarter of the studies reviewed
employed street-network buffers. Similarly, buffer sizes also
need to be appropriate for different types of attributes (e.g.
POS compared with utilitarian destinations) (32) and for
different subgroups (e.g. older adults compared with youn-
ger adults) (88). Not capturing local areas accurately in ob-
jective measures may have contributed to weakening the
relevant evidence (89).

Residential self-selection

The relationship between built environment attributes and
cardio-metabolic outcomes may be confounded by partici-
pants’ self-selection of residential location (e.g. health con-
scious people chose to live in environments supportive of
physical activity). If not appropriately adjusted, this may
magnify the relationships between built environments and
health outcomes (90). However, as shown in this review,
cohort studies that are designed to collect health-related
data do not often measure participants’ attitudes about
or preferences for residential location. In the absence of
self-selection data, alternative analytical approaches (i.e.
propensity score matching and fixed effects models) can
be used (90) to address confounding due to residential
self-selection as was done in some reviewed studies
(43,44,46,49,52–54,67,68).

Mediation by physical activity

We postulated in this review that the relationships between
built environment attributes and cardio-metabolic health
outcomes are partly mediated by physical activity. How-
ever, we did not find conclusive evidence for mediation by
physical activity, mainly due to limitations in traditional
statistical mediation analysis that has been shown to pro-
vide incorrect findings (91). For example, traditional
methods require that the total effect of an exposure on an
outcome must be non-zero and larger than the direct effect,
to observe a significant indirect effect. However, recent sta-
tistical mediation analysis literature argue that it is possible
to have a non-significant total effect yet a significant indi-
rect effect (i.e. when multiple mediating pathways exist
and cancel out each other) (92). In relationships between
built environment exposures and cardio-metabolic health
outcomes, it is hypothesized that multiple mediating path-
ways exist (e.g. physical activity, dietary behaviours and
air pollution) (9). Thus, care must be taken to disentangle
the individual mediating mechanisms. In addition, when
estimating the total effect of an exposure on an outcome,
inappropriate adjustment for intermediate behavioural var-
iables may lead to overadjustment and can produce incor-
rect null findings (93). Further, despite some increased
attention in recent years to understand environmental cor-
relates of sedentary behaviour, and the health impacts of
daily sedentary behaviour such as TV viewing and car driv-
ing (94,95), no studies have examined how this behaviour
is involved in longitudinal relationships between built envi-
ronments and cardio-metabolic health. To better under-
stand how environmental attributes influence residents’
health, future studies need to examine the role of multiple
potential behaviours using the recent developments in medi-
ation analysis methods (73).
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Strengths and limitations

The present systematic review has several strengths. We ex-
clusively reviewed longitudinal studies by systematically
searching eight databases. We assessed the methodological
quality of the articles using a quality assessment tool that
accounted for methodological issues including study design,
measurement and analysis, and synthesized the evidence
using meta-analysis. One of the limitations of this study is
that the quality assessment tool, which was adapted from
Cerin et al. (23), was extended mainly using inputs from
the co-authors. A Delphi study aiming to obtain consensus
among experts about key criteria for assessing quality in
built environment and health studies can produce a more
robust synthesis of the literature in future systematic re-
views. We grouped exposure variables to succinctly summa-
rize current knowledge. However, the reviewed studies
varied in how environmental attributes were measured,
and that variation may have influenced the summary find-
ings shown in Table 3. In particular, the studies differed in
calculating the composite index of walkability. Future re-
search can explore further how different walkability indices
are associated with health outcomes, to produce composite
environmental measures that can better predict long-term
impacts on cardio-metabolic health. This review focused
on studies that examined the health impact of areas where
participants resided, typically using a buffer or an adminis-
trative area around participant’s residence. However, it is
possible that environment outside such areas may also affect
health. Future research/review can investigate the health im-
pact of other specific environments, such as workplace (and
its vicinity) and access to a regional centre. We may have
missed some studies on greenness and cardio-metabolic
health, because diverse research fields, using terms that were
not included in search terms of this review (e.g. vegetation,
land cover and forest), have investigated this topic. The
presence of multiple pathways between greenspace and
health made it difficult for this review to include all the stud-
ies on this topic in a realistic manner. A future review, focus-
ing on greenspace yet incorporating multiple pathways, is
needed to better understand the overall health benefits of
greenspace. Most of the studies reviewed were conducted
in a limited number of Western countries, which limits the
generalizability of the findings to non-Western countries
and to other developed/developing countries. Considering
that developing countries may experience greater environ-
mental changes in a shorter timeframe, further longitudinal
studies from various parts of the world are needed.

Conclusion

The systematic review with meta-analysis of longitudinal
studies found that living in more walkable and less-
sprawled areas is likely to have protective effects against

the development of obesity, T2D and hypertension. Future
longitudinal studies need to examine relationships of spe-
cific attributes of built environments with a range of
cardio-metabolic outcomes including T2D, hypertension
and CVD. Research on behavioural mechanisms is also
warranted to identify underlying behaviours involved in re-
lationships between built environments and cardio-
metabolic health.
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2.3 Research Gaps Identified in the Systematic Review 

The systematic review with meta-analysis found strong evidence for potential long-term 

impacts of some built environment attributes on cardio-metabolic health outcomes. Living 

in high walkable neighbourhoods, in particular, was found to be linked to lower cardio-

metabolic risk over time. The systematic review highlighted a number of research gaps, 

which are summarised below.  

 

2.3.1 Outcome measures  

A majority of existing longitudinal studies identified in the systematic review examined 

obesity-related outcomes (60%), with a relatively smaller portion of the studies examining 

hypertension (20%) and T2D (25%) related outcomes. However, they were mostly 

examined as events (i.e., incidences of hypertension or T2D). Investigating continuous 

changes in the markers of cardio-metabolic risk is important to better understand the 

potential population-level health impacts of built environments. Also, other cardio-

metabolic risk factors (e.g., dyslipidaemia) were less examined in the studies reviewed.  

 

2.3.2 Exposure measures 

A majority of studies reviewed examined composite indices of built environment attributes 

(e.g., walkability). There has been limited research examining specific built environment 

attributes. Over 80% of the studies identified in the systematic review measured built 

environment attributes at one point in time (often at baseline). Given that neighbourhood 

built environments can change over time and the degree of such changes may differ 

between localities (51, 52), it is of interest to investigate the relationships between changes 

in built environmental attributes and changes in cardio-metabolic risk. Further, most of the 

existing longitudinal studies used predefined administrative units to define 

neighbourhoods, which may not accurately capture residents’ accessible local areas (53).  

 

2.3.3 The role of physical activity 

The systematic review reported inconclusive findings for the potential mediating role of 

physical activity in the relationships between the built environment and cardio-metabolic 

health. It was observed that inappropriate analytical methods were used for assessing 
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mediation, despite that new mediation analysis methods have been developed over the last 

two decades (54). Thus, it is important to employ recent developments in mediation 

analysis to better assess the role of physical activity in the relationships between the built 

environment and cardio-metabolic health. In particular, although there is evidence for 

potential long-term beneficial impacts of walkability on cardio-metabolic health, the role 

of physical activity in those relationships is less clear. Further, physical activity levels can 

change over time. Mediation analysis examining physical activity changes can also be 

informative.  

 

2.3.4 Lack of Australian studies with multiple sites 

The systematic review identified that a majority of studies had participants recruited from 

multiple sites, but most of those studies were conducted in the USA. All three Australian 

articles reviewed were based on the North West Adelaide Health Study, which recruited 

participants from a single site (the north-western metropolitan region of Adelaide). 

Investigating multiple sites across Australia is important to increase the variability of 

environmental attributes and the generalisability of the findings in the Australian context.  

 

2.4 Specific Research Questions for Empirical Studies 

Two empirical studies were designed to address the research gaps discussed above. The 

first empirical study (referred to as Study Two, reported in Chapter 4) examined the 

impacts of changes in a specific built environment attribute (i.e., population density 

increase) on changes in multiple cardio-metabolic risk markers among Australian adults. 

The second empirical study (referred to as Study Three, reported in Chapter 5) 

investigated the potential mediating role physical activity in the relationship between 

walkability and changes in multiple cardio-metabolic risk markers among Australian 

adults. Figures 2.1 and 2.2 illustrate the relationships examined in Study Two and Study 

Three, respectively. Both studies used data collected from multiple sites in Australia.  
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Figure 2.1: Conceptual Model for Study Two 

 

 

 

Figure 2.2: Conceptual Model for Study Three 
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3 CHAPTER 3: METHODS 

 

This Chapter explains the data used and the methods employed in the two empirical 

studies. More specifically, it describes the following four topics: (1) data collection 

methods of the AusDiab study; (2) calculation of built environment attributes for the 

AusDiab study participants; (3) description of the analytical sample and specific variables 

used; and (4) statistical analyses.  

 

3.1 The Australian Diabetes, Obesity and Lifestyle Study 

3.1.1 Background  

The empirical studies of this Thesis were conducted using data from the Australian 

Diabetes, Obesity and Lifestyle (AusDiab) study. The AusDiab study is the first Australian 

national cohort study examining the prevalence, incidence and risk factors of diabetes and 

cardiovascular disease among Australian adults. The AusDiab study commenced in 1999–

2000 with the baseline data collection (AusDiab1), had a 5-year follow-up data collection 

in 2004–2005 (AusDiab2), and a 12-year follow-up data collection in 2011–12 

(AusDiab3). The International Diabetes Institute and Alfred Hospital Ethics Committee 

provided ethics approvals for the AusDiab study (# 39/11). The details of the AusDiab 

study were previously described by Dunstan et al. (55) and in the three reports published 

after each data collection (56-58). The following subsections describe the details of the 

AusDiab study methods relevant to this Thesis. 

 

3.1.2 Study areas and recruitment of participants 

The inclusion criteria for the AusDiab1 sample recruitment were non-institutionalised 

adults aged over 25 years, without any physical or intellectual disabilities, and residing in 

private dwellings for a minimum of six months prior to data collection. The minimum 

sample size was determined to be 10,500, to provide a precise estimate of the national 

diabetes prevalence rate of 7% (95% CI: 6.2-7.8) at the time of AusDiab1.  
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A two-stage stratified cluster sampling method was used to recruit study participants. 

Within each of six states and the Northern Territory of Australia, six study areas in 

metropolitan and regional cities were selected to give a total of 42 study areas. Study areas 

consisted of up to four contiguous Census Collector District (CCD) geographical units. A 

CCD was the smallest geographical unit for census data collection (averaging 

approximately 225 dwellings) at the time of AusDiab1 (59). Any CCDs that met any of the 

following were excluded:  

• fewer than 100 adults over 25 years; 

• defined as 100% rural according to the 1996 Australian census; 

• contained more than 10% indigenous population (to avoid the bias of having CCDs 

with an unrepresentative number of people with diabetes); 

• defined predominantly an industrial/business zone; 

• no eligible ‘neighbouring’ CCDs; and  

• involved in a large-scale diabetes-related health survey recent to the time of the 

baseline.  

 

Initially, six CCDs were randomly selected from eligible CCDs with a selection 

probability proportional to the size of population aged 25+ years from each state and 

territory. Then, to meet the minimum sample size threshold for each study area (i.e., 

10,500/42 = 250) within the logistic and economic constraints, each original CCD was 

supplemented with contiguous neighbouring CCDs when required. Three study areas 

comprised single CCDs, 22 study areas comprised pairs of CCDs, 16 study areas 

comprised triplets of CCDs, and one study area comprised a quartet of CCDs. Figure 3.1 

shows the locations of the study areas. The names of the administrative areas that contain 

study areas are listed in Table 3.1. 
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Figure 3.1: Locations of the AusDiab Study Areas 

 

Table 3.1: The List of Administrative Areas containing the AusDiab Study Areas 

State / territory Administrative Areas 

New South Wales (NSW) West Pennant Hills, Hurstville, Auburn, Grays Point, Orange, 

Berkeley Vale 

Northern Territory (NT) Driver, Marrara, Nightcliff, Wagaman, Larrakeyah, Parap 

Queensland (QLD) Cairns, Chapel Hill, Nambour, East Toowoomba, Stafford 

Heights, Currumbin 

South Australia (SA) Hyde Park, Netley, Glenelg, Port Lincoln, Millicent, Parafield 

Gardens 

Tasmania (TAS) Alanvale, Ravenswood, Georgetown, Ulverstone, Taroona, 

Blackmans Bay 

Victoria (VIC) Parkdale, Blackburn North, Burwood East. Wattle Glen, 

Bendigo, Mildura 

Western Australia (WA) Trigg, Scarborough, Kardinya, High Wycombe, Mt Helena, 

Oakford 

 

The baseline data collection was conducted between May 1999 and December 2000. In all 

study areas, following local media campaigns, a letter and a brochure that provided 

Tasmania 
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information about the AusDiab study were hand-delivered to all private dwellings. 

Following this, AusDiab interviewers approached 25,984 households from which 20,347 

people were identified as being eligible to participate in the study. Of these, 11,247 people 

participated in the baseline biomedical data collections by attending a testing site located 

within each study area. The baseline response rate (for biomedical examinations) was 

55.3% (= 11,247/20,347). Figure 3.2 shows the flowchart of baseline participant 

recruitment.  

 

Figure 3.2: Flowchart for AusDiab1 Participant Recruitment 
[Adapted from Dunstan et al., 2002 (55)] 

 

3.1.3 The 5-year follow-up data collection (AusDiab2) 

The 5-year follow-up data collection of the AusDiab study (AusDiab2) was conducted 

between June 2004 and December 2005. All eligible study participants were invited to the 

follow-up. Of the 11,247 AusDiab1 participants, 10,937 were identified as eligible for 

participation to AusDiab2. Of these, 6,400 participants attended for biomedical 

examinations, yielding a follow-up rate of 58.5%. Figure 3.3 shows a flowchart of 

AusDiab2 participant recruitment. The AusDiab study coordinators maintained an up-to-

date database of study participants’ addresses to maximise participation in the follow-up 
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surveys. This database was updated annually using a range of resources including next-of-

kin, the Australian electoral roll database, White Pages® directory, and other online 

telephone directories. As some study participants had changed their residence between 

AusDiab1 and AusDiab2, one additional testing site was added in the Australian Capital 

Territory (Canberra), totalling 43 testing sites in AusDiab2.  

 

 
Figure 3.3: Flowchart for AusDiab2 Participant Recruitment  

[Adapted from AusDiab Report 2005 (57)] 
 

3.1.4 The 12-year follow-up data collection (AusDiab3) 

The 12-year follow-up data collection of the AusDiab study (AusDiab3) was conducted 

between August 2011 and June 2012. All eligible study participants, including those who 

did not participate in AusDiab2, were invited to the 12-year follow-up. Of the 11,247 

AusDiab1 participants, 10,337 were identified as eligible for participation to AusDiab3. Of 

these, 4,614 participants attended for biomedical examinations, yielding a follow-up rate 

of 44.6%.  Figure 3.4 shows the flowchart of AusDiab3 participant recruitment. AusDiab3 

had 46 testing sites (four additional sites as compared to AusDiab1), due to relocations of 

participants after AusDiab2.  
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Figure 3.4: Flowchart for AusDiab3 Participant Recruitment 

[Adapted from AusDiab Report 2012 (58)] 

 

3.1.5 Data collection procedures 

At each data collection of the AusDiab study, all eligible participants were invited to 

attend a local testing site for biomedical examinations and completion of a series of 

questionnaires. All study participants gave informed consent to participate in the study 

upon arrival at the testing site. The biomedical data collected were: blood samples after an 

overnight fast; anthropometric measures; blood pressure measures; morning spot urine 

samples; and blood sample after a 2-hour oral glucose tolerance test (OGTT). A series of 

interviewer-administered and self-administrated questionnaires were used to collect 

information such as participants’ demographics, socio-economic status, lifestyle factors, 

and self-reported health status. Relevant details of the instruments used to measure the 

variables used in this Thesis are provided in section 3.3.  

 

3.2 Built Environment Data for the AusDiab Study Participants 

The AusDiab study was not primarily designed to examine the health impacts of built 

environments. To investigate such impacts, environmental data calculated for each 
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participant were linked to AusDiab individual data. This process started in 2014 as a 

subproject of the AusDiab study undertaken by the Centre for Research Excellence (CRE) 

in Healthy, Liveable Communities, of which the candidate is a member. This subproject 

focused on calculating built environment attributes for AusDiab3 participants. The 

candidate expanded the work of the CRE team by calculating new environmental measures 

at the time of AusDiab1 and AusDiab2 and additional environmental measures for 

AusDiab3. The following subsections describe the process of calculating environmental 

attributes using Geographic Information Systems (GIS) (60). This was an original work of 

this Thesis undertaken by the candidate with guidance from GIS experts in the CRE team. 

A flow chart outlining the process of calculating environmental attributes is provided in 

Appendix III (AIII.1).  

 

3.2.1 Identifying eligible participants and their residential addresses  

The Baker Heart and Diabetes Institute maintained an up-to-date residential addresses 

database of AusDiab study participants. However, participants’ addresses corresponding to 

each of the three data collection time points were unavailable in a single database. The 

candidate, with the help of researchers who were involved in previous AusDiab studies, 

gathered participants’ addresses data files corresponding to each data collection time point. 

As noted before, some participants had changed their residences during the study period, 

but their relocation dates were unavailable. Thus, it was decided not to include those who 

relocated (movers) in the empirical studies, as it was not possible to identify for how long 

they were exposed to different neighbourhoods within the 12-year study period. The 

empirical studies of this Thesis focused on those who stayed in the same address during 

the study period (stayers).  

 

In processing participants’ address data, a number of security procedures were adopted to 

protect the identity of AusDiab study participants. A protocol explaining these security 

procedures is provided in Appendix III (AIII.2).  
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3.2.2 Geocoding participants’ residential addresses  

 Geocoding (i.e., converting text description of an address into geographic coordinates) of 

participants’ residential addresses was the first step to calculate environmental attributes 

for each participant. It was initially done using Geocoding toolbox of the ArcGIS v.10.6 

(ESRI, Redlands, CA) software. This process requires an appropriate reference file to look 

up and match an address to retrieve its geographic coordinates. The Geocoded National 

Address File (G-NAF) supplied by PSMA Australia was used for this purpose. The G-

NAF is an authoritative list of physical addresses in Australia, being published since 2004. 

The geocoding hit rate (proportion of records that were geocoded) was 85% when both the 

G-NAF (the 2012 release) was used. To complement the initial process, Google Maps 

Geocoding Application Programming Interface (API) (61) was used as the second 

geocoding method. This method extracted longitude and latitude from Google maps, using 

a location query in an R software package ‘ggmap’ v.2.7.9. The geocoding hit rate was 

98% in the second method. For the purpose of validation, geocoded results obtained from 

the two methods (G-NAF and Google Maps API) were compared. This was done by 

calculating the straight-line distances between the locations obtained using the two 

methods. If they were at least 100m apart, it was considered as a geocoding error (62). For 

115 addresses that met this criterion, a third geocoding method, Bing Maps REST Services 

using a JavaScript (63), was applied. The geocode (G-NAF or Google Maps API methods) 

closer to the one obtained from the Bing Maps method was used for the subsequent 

calculation.  

 

3.2.3 Creating buffers around the participant’s residential address 

In the empirical studies of this Thesis, neighbourhoods were operationalised as ‘buffers’ 

around participants’ home addresses geocoded in GIS. Straight-line buffer (i.e., Euclidean 

or circular buffer) and street-network buffer are two commonly used buffers to define 

neighbourhoods in the neighbourhood and health research (53). A straight-line buffer 

places a circular area with a specific radius around the participant’s home location (Figure 

3.5 [a]). The Buffer tool in ArcGIS was used to create straight-line buffers. A street-

network (sausage-type) buffer contains an area that can be reached within a specific 

distance along streets from the home with a certain bandwidth from the street centre line 

(Figure 3.5 [b]). The road network data from PSMA Australia’s Transport & Topography 
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dataset (the 2012 release) was used for creating street-network buffers. Pedestrian non-

accessible roads (e.g., expressways, freeways, motorways) were removed by filtering out 

those roads using “transport hierarchy codes” assigned to each road segment. Tools in 

Network Analyst Extension in ArcGIS were used to create street-network buffers. Straight-

line buffers were used in Study Two (Chapter 4) and street-network buffers (sausage-type) 

were used in Study Three (Chapter 5). The rationales for the use of two different buffer 

types are provided in the respective chapters. 

 

 

Figure 3.5: Straight-line Buffer and Street-network Buffer 

 

For both types of buffers, 400-m, 1-km, 1.6-km distance buffers were created and built 

environmental attributes were calculated within each buffer. However, only those 

attributes within straight-line buffers of 1-km radius and street-network buffer of 1-km 

distance with 150-m band either side of the street centre line (64) were used in the 

corresponding empirical studies due to a large volume of analyses conducted in these 

studies. The distance of 1 km was chosen because it was shown to be a typical distance 

that adults walk to get to local destinations (65).  
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3.2.4 Calculating built environment attributes 

Environmental attributes can be calculated once buffers are drawn around the geocode. 

Table 3.2 shows the list of built environmental attributes calculated in this Thesis with the 

source data used and their correspondence to AusDiab data collection time points. 

Measurement methods for each of them are described in the following subsections.  
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Table 3.2: Details of Built Environmental Attributes Calculated as Part of this Thesis 

Built environment attributes Geospatial data source Source data corresponding to 

AusDiab1 AusDiab2 AusDiab3 

Population density† Census  ✓ ✓ ✓ 

Residential density* Census  ✓ ✓ 

Intersection density (street connectivity)* PSMA Australia (Transport & Topography)    ✓ 

Destinations density*    ✓ 

Supermarkets  Supermarkets, Pitney Bowes Ltd   ✓ 

Convenience stores Axiom Business Points, Pitney Bowes Ltd   ✓ 

Train stations PSMA Australia (Transport & Topography)   ✓ 

Bus and tram stops www.transitfeeds.com   ✓ 

Parks (count, area, proximity) PSMA Australia (Greenspace)  ✓  

PedShed ratio PSMA Australia (Transport & Topography)   ✓ 

Street-network distance to the city centre PSMA Australia (Transport & Topography)   ✓ 

Walk Score® www.walkscore.com    2016+ 

Note: † used in Study Two (Chapter 4), * used in Study Three (Chapter 5) 

 

http://www.transitfeeds.com/
http://www.walkscore.com/
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 Population and residential densities 

Population or residential densities are defined as the number of inhabitants or dwellings in 

the neighbourhood divided by its area, respectively (28). Australian Census (the national 

Census of Population and Housing) data collected by the Australian Bureau of Statistics 

(ABS) were used to calculate population and residential densities (66, 67). Census, which 

held in 2001, 2006, and 2011, align with the three AusDiab study data collection periods. 

The ABS releases population and dwellings count data for the smallest building blocks 

(without gaps or overlap) covering all Australia. In the 2001 Census, a Census Collection 

District (CCD) was the smallest building block and only the population count data were 

available. In the 2006 and 2011 Census, a Mesh Block (MB) was the smallest building 

block, and both population and dwellings count data were available. The total 

population/dwellings count for a buffer was calculated by summing the respective counts 

of the Census units included in the buffer. If the buffer intersected a Census unit, that 

unit’s count corresponding to the percentage of the area within the buffer was added using 

a spatial intersection method in ArcGIS (Figure 3.6). The population densities measured 

correspondence to the three AusDiab data collection time points were used in Study Two, 

the residential density measured correspondence to AusDiab3 period was used in Study 

Three.  

 

 

Figure 3.6: A Street-network Buffer Overlayed on Census Mesh Blocks 

 



42 

 

 Street connectivity   

Street connectivity was measured using intersection density, defined as the number of 

street intersections in the neighbourhood divided by its area (28). The road network data 

from PSMA Australia’s Transport & Topography dataset (the 2012 release) was used to 

calculate intersections density. In GIS databases, streets are entered as a series of line 

segments that end at each intersection or connect to form a long street. The Intersect tool 

in ArcGIS was used to find locations of street intersections. Steps were taken to correctly 

identify the locations of street intersections (e.g., removing roundabouts circular lines 

using “transport hierarchy codes”, manually checking locations of intersections within 

study areas and deleting duplicates). A density of 4-or-more way intersections was used in 

Study Three because it was observed that it can be a better measure of street connectivity 

than the density of 3-or-more way intersections (see Appendix AIII.3). 

 

 Destination Density  

Destination density was defined as the total count of different types of destinations in the 

neighbourhood divided by its area. Destinations included were supermarkets, convenience 

stores, and public transport stops, which are considered as local destinations to which 

residents may travel daily/regularly (68). This destination-based measure was developed in 

Australia to assess land use diversity at the national scale and found to be correlated with 

an entropy measure of land use mix (68). Axiom Business Points data and Supermarkets 

data from Pitney Bowes Ltd (the 2014 release, sourced in 2012–2013) were used to obtain 

locations of convenience stores and supermarkets. PSMA Australia’s Transport and 

Topography data (the 2012 release) was used to obtain locations of railway stations for 

commuters. General Transit Feed Specification online repository data 

(http://transitfeeds.com, sourced in 2015) were used to obtain locations of bus and tram 

stops. 

 

 Other Environmental Attributes  

In addition to the above mentioned built environment attributes, a number of other 

attributes were also calculated for AusDiab participants, during the candidature. These 

include park measures (count, area, and proximity), PedShed ratio (ratio of the area within 

http://transitfeeds.com/
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street-network buffer to the area within straight-line buffer), street-network distance from 

participant’s residence to the city centre, and Walk Score® (a web-based measure of 

walkability). However, these were not used in the empirical studies of this Thesis. In 

addition, ‘Remoteness Area Index’ was also obtained from the Census data. This area-

level measure was used for performing stratified analyses according to the level of 

remoteness in Study Two. Methods used to measure these additional variables are 

described in Appendix III (AIII.4).  

 

3.3 Analytical Sample and Variables Used  

3.3.1 Analytical sample  

The analytical sample used in this Thesis was defined as the AusDiab study participants 

who provided 12-year follow-up biomedical data and did not change their residence during 

the study period (stayers). There were 3,968 participants who provided data at all the three 

data collections and 646 participants who provided data at AusDiab1 and AusDiab3 only 

(4,614 with 12-year follow-up biomedical data). Of these, 2,369 were stayers, 2,164 were 

movers, and 81 had no address or addresses that could not be geocoded. Among the 

stayers, 15 participants who reported being pregnant at any data collection point were 

excluded from the analyses. The final sample retained for analyses in Study Two was 

2,354. For Study Three, participants with chronic health conditions (n=331) were further 

excluded, since the study investigated the mediating role of physical activity, for which 

health conditions may have had stronger influences (rather than physical activity affecting 

cardio-metabolic health). The final analytical sample size for Study Three was 2,023. A 

flow chart describing the analytical sample is shown in Figure 3.7.  
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Figure 3.7: Flowchart of Analytical Samples 

Note: † 151had heart disease; 209 had difficulties in walking; 11 were older than 78 years 

(numbers are not mutually exclusive) 

 

3.3.2 Outcomes  

In Chapter 2, it was identified that the lack of longitudinal studies investigating a broader 

range of cardio-metabolic risk markers is a research gap in this field. To address this gap, 

eight cardio-metabolic risk markers were examined in the empirical studies of this Thesis. 

These included waist circumference (WC), body weight (weight), systolic blood pressure 

(SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), 2-hour postload 

plasma glucose (2-hr PG), high-density lipoprotein cholesterol (HDL-C), and triglycerides 

(TG). The methods used to measure these markers in the AusDiab study are described in 

Table 3.3. The outcomes of the two empirical studies are changes in these risk markers 

over 12 years. The methods used to calculate changes in risk markers, using values 

measured at three points, are described in Section 3.4.  
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Table 3.3: Measurement of Cardio-metabolic Risk Markers 

Cardio-metabolic 

risk marker 

Measurement method 

Waist circumference 

(WC)  

WC was measured using a measuring tape. Two measures were 

taken at halfway between the lower border of the ribs and the iliac 

crest on a horizontal plane. If the two measures varied by >2 cm, 

a third measure was taken; the mean of the two closest 

measurements was used.  

Body weight Weight was measured to the nearest 0.1 kg using a mechanical 

beam balance in 1999–2000 and digital weighing scales in 2004–

05 and 2011–12. 

Systolic blood 

pressure (SBP) and 

diastolic blood 

pressure (DBP) 

Blood pressure was measured using automated blood pressure 

monitors (Dinamap® Pro-series Monitor) except for a manual 

sphygmomanometer used in Victoria in 1999–2000. Three 

sequential measurements were taken, with a 30-second interval 

between them. The mean of the two closest readings was used.  

Fasting plasma 

glucose (FPG) and 2-

hour postload plasma 

glucose (2-hr PG) 

FPG was measured using the blood sample collected after an 

overnight fast. 2-hr PG was measured using the blood sample 

collected 2 hours after an oral glucose tolerance test (OGTT), 

which was performed to all participants except for those on 

diabetes medication. Plasma glucose levels were determined 

using automated analysers (Olympus AU600 in 1999–2000, 

Roche  Modular in 2004–05, Siemens Advia 2400 in 2011-12)  

High-density 

lipoprotein cholesterol 

(HDL-C) and 

triglycerides (TG) 

HDL-C and TG were measured using the blood sample collected 

after an overnight fast. Serum levels were determined using 

automated analysers (Olympus AU600 in 1999–2000, Roche  

Modular in 2004–05, Siemens Advia 2400 in 2011–12) 
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3.3.3 Exposures  

 Population densification  

The systematic review identified that a majority of studies examined the cardio-metabolic 

health impacts of built environment attributes, which are measured at one point in time 

(often at baseline). Also, there has been limited research examining the cardio-metabolic 

health impacts of a specific built environment attribute. To address these gaps, the 

exposure variable investigated in Study Two was population densification, which was 

defined as the change in population density during the study period. Population density 

measures calculated at the three time points concordant with the AusDiab study’s data 

collections were used to calculate the change in population density. The statistical method 

used to calculate the population densification variable is described in Section 3.4.  

 

 Walkability index  

The systematic review found strong evidence for potential long-term protective effects of 

walkability against cardio-metabolic risk. However, the role of physical activity in these 

relationships was less clear. To address this gap, the exposure variable investigated in 

Study Three was a neighbourhood walkability index, which consisted of residential 

density, intersection density, and destination density. The walkability index was calculated 

by standardizing (z-score) the summed standardized scores of the three individual 

variables.  As described above, these individual variables were calculated using geospatial 

data that were sourced around the time of AusDiab3.  

 

3.3.4 Potential mediator   

To assess the mediating role of physical activity, the total time spent in moderate-to-

vigorous physical activity (including walking) was used. At each AusDiab data collection, 

participants were asked to report the time they spent in a range of physical activities during 

the previous week, using the Active Australia Survey (AAS) instrument (69). The specific 

items used to measure physical activity are presented in Appendix III (AIII.5). The total 

time (minutes per week) was calculated as the sum of the time spent in walking (for 

recreation and transport), moderate-intensity physical activity, plus double the time spent 

in vigorous-intensity physical activity (69). The AAS instrument has been shown to have 

acceptable levels of reliability and validity for the measure of weekly total physical 
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activity duration among adults (70, 71).  

 

3.3.5 Potential confounders  

The AusDiab study participants reported gender, age, education, marital status, 

employment status, household income, household children status (having a child or 

children in the household), medication use, and tobacco smoking. Their energy intake and 

alcohol intake were assessed using a food frequency questionnaire. These variables were 

considered as potential confounders, further details are provided in the corresponding 

chapters.  

 

In addition, the Index of Relative Socioeconomic Disadvantage (IRSD), which is used to 

characterise area-level socioeconomic status in Australia, was used as a potential area-

level confounder. The IRSD is a composite score defined for administrative areas, derived 

by ABS, using measures such as income, education, employment, household structure, and 

car ownership (72). Higher IRSD scores indicate lower levels of disadvantage. Statistical 

Local Area (SLA) of participants’ residence, for which only IRSD scores were consistently 

available at the three corresponding Censuses, was used as the administrative area unit to 

obtain those scores.  

 

3.4 Statistical Analysis  

Study Two examined the impacts of changes in population density on changes in cardio-

metabolic risk markers. Study Three investigated the mediating role of physical activity in 

the relationship between walkability and changes in cardio-metabolic risk markers. To 

carry out regression analyses in both studies, multilevel linear growth models were used. 

To assess mediation in Study Three, the joint-significance test was used. Details and 

rationale for the choice of these methods are described in the following subsections. To 

interpret regression results, statistical significance was set at P<0.05 and the corresponding 

95% confidence intervals were presented; and P<0.10 was also considered as marginal 

significance (i.e., weaker evidence).  
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3.4.1 Multilevel linear growth models  

The data used in the empirical studies of this Thesis has a three-level structure:  repeated 

observations are nested within study participants who are nested within study areas (Figure 

3.8). Failure to account for spatial clustering and temporal dependence in the regression 

modelling can increase the probability of committing Type I Error (i.e., likely to result in 

false ‘significant’ findings) (73). Use of the multilevel linear growth model is one way to 

appropriately analyse such multi-level data structure (73).  

 

 

 

Figure 3.8: Three-level Structure of the Data used in Empirical Studies 

 

In this multi-level data structure, the cardio-metabolic risk marker was assigned at Level 1 

(at most, three repeated measures for each participant). The participant-specific exposure 

variable (in each study) was assigned at Level 2 (explained below). Participant-specific 

‘Time-Constant Confounders’ (TCC), i.e. factors that do not change with time (e.g., 

gender), were assigned at Level 2. ‘Time-Varying Confounders’ (TVC) that are changing 

with time (e.g., income) were assigned at Level 1. Any area-level confounders that do not 

change with time can be assigned at Level 3 (in the current data, there were none). The 

multilevel linear growth model was developed as: 

• Level 1 (time-level) model ⇒ 

𝑦𝑡𝑖𝑗 = 𝑏0𝑖𝑗 + 𝑏1𝑖𝑡 + 𝑏2𝑇𝑉𝐶𝑡𝑖+𝑒𝑡𝑖𝑗  

• Level 2 (participant-level) models ⇒  

𝑏0𝑖𝑗 =  𝛽00𝑗 + 𝛽01  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑖 + 𝛽02  𝑇𝐶𝐶 𝑖  + 𝑢0𝑖𝑗 
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𝑏1𝑖 =  𝛽1 + 𝛽11 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑖 + 𝛽11 𝑇𝐶𝐶 𝑖  + 𝑢1𝑖 

• Level 3 (area-level) model ⇒ 

𝛽00𝑗 =  𝛾000 + 𝑣00𝑗 

Here, 𝑦𝑡𝑖𝑗 is the value of the risk marker measured at time point 𝑡 for study particpant 𝑖 

who resides in study area 𝑗. The random intercept 𝑏0𝑖𝑗  is the mean of 𝑦𝑡𝑖𝑗 across the time 

points for a particpant 𝑖 who resides in a study area 𝑗. 𝑏0𝑖𝑗  is allowed to vary between 

particpants at Level 2 around 𝛽00𝑗  (mean of 𝑦𝑡𝑖𝑗  across the time points for all particpants in 

a study area 𝑗). 𝛽00𝑗  is allowed to vary between areas at Level 3 around the overall mean 

𝛾000. The within-particpant change in the risk marker was operationalised by entering the 

time metric (i.e., measurement year, t=0, 5, or 12 in the study) at Level 1 and allowing its 

coefficient (slope of time) to vary at Level 2 (74). The random slope of the time metric 

(𝑏1𝑖 ) represents the linear change in the risk marker for one unit incease in time, for 

particpant 𝑖 (i.e., annual change in the risk marker) (74). The time-specifc residual is 𝑒𝑡𝑖, 

and the particpant-specific random errors are 𝑢0𝑖𝑗  and 𝑢1𝑖, and the area-specific random 

error is 𝑣00𝑗 .  

 

By incorporating the Level 3 and Level 2 equations in the Level 1 equation, a single 

equation model was obtained. The maximum likelihood estimation method was used to 

estimate the regression coefficients(73). The estimated value of the regression coefficient 

𝛽11 and its confidence interval were used to report the relationship between the exposure 

variable and the annual change in the cardio-metabolic risk marker.  

 

Also, an unconditional linear growth model (without conditioning on any covariates) was 

fitted for population density with corresponding Census years as time metrics (t=1 for 

2001, t=6 for 2006, t=11 for 2011). The participant-specific random slope of the time 

metric in that model was used as the annual population densification in the corresponding 

participant’s neighbourhood.  

 

3.4.2 Mediation analysis  

Figure 3.8 depicts an indirect effect of an exposure on the outcome through a mediator. 

Corresponding regression equations are also presented. To assess the mediating role of 



50 

 

physical activity in the relationship between walkability and changes in cardio-metabolic 

risk markers in Study Three, the joint-significance test was employed (75).  

 

 

 

Figure 3.9: Diagrams and Regression Equations for Mediation Analysis 

 

This test requires the following two conditions to hold to claim a significant mediating 

effect (75): 

I. A statistically significant effect of the exposure on the mediator (i.e., 𝛼  is 

significant) 

II. A statistically significant exposure-adjusted effect of the mediator on the outcome 

(i.e., 𝛽 is significant) 

Several alternative statistical methods exist to assess mediating effects (75). MacKinnon et 

al. compared 14 such methods through a Monte Carlo study (simulation) and reported that 

the best balance of low Type I Error rate and the statistical power to detect a true 

mediating effect was found in the joint-significance test (75). Thus, it was decided to use 

this method in Study Three. 
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4 CHAPTER 4: NEIGHBOURHOOD POPULATION 

DENSIFICATION AND CARDIO-METABOLIC RISK 

 

4.1 Urban Densification and 12-Year Changes in Cardiovascular Risk Markers 

(published peer-reviewed paper) 

This chapter presents Study Two, which examined the potential impacts of changes in a 

specific built environment attribute on changes in cardio-metabolic risk markers among 

Australian adults. More specifically, as depicted in Figure 4.1, this study examined the 

impacts of population density increases in urban areas (referred to as urban densification) 

on the 12-year changes in multiple cardio-metabolic risk markers.  

 

 

Figure 4.1: Conceptual Model for Study Two (Updated from Figure 2.1) 

 

This manuscript has been published in the Journal of the American Heart Association. The 

nature and extent of contributions of authors are shown in Appendix I. To match with the 

scope of the journal, cardio-metabolic risk markers were referred to as cardiovascular risk 

markers in this manuscript.  
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Urban Densification and 12-Year Changes in Cardiovascular Risk
Markers
Manoj Chandrabose, MPhil; Neville Owen, PhD; Billie Giles-Corti, PhD; Gavin Turrell, PhD; Alison Carver, PhD; Takemi Sugiyama, PhD

Background-—Population densities of many cities are increasing rapidly, with the potential for impacts on cardiovascular health.
This longitudinal study examined the potential impact of population-density increases in urban areas (urban densification) on
cardiovascular risk markers among Australian adults.

Methods and Results-—Data were from the Australian Diabetes, Obesity and Lifestyle Study, in which adult participants’
cardiovascular risk markers were collected in 3 waves (in 1999–2000, 2004–2005, and 2011–2012). We included 2354
participants with a mean age of 51 years at baseline who did not change their residence during the study period. Outcomes were
12-year changes in waist circumference, weight, systolic and diastolic blood pressure, fasting and 2-hour postload plasma glucose,
high-density lipoprotein cholesterol, and triglycerides. The exposure was neighborhood population densification, defined as 12-year
change in population density within a 1-km radius buffer around the participant’s home. Multilevel linear growth models, adjusting
for potential confounders, were used to examine the relationships. Each 1% annual increase in population density was related with
smaller increases in waist circumference (b=�0.043 cm/y; 95% CI, �0.065 to �0.021 [P<0.001]), weight (b=�0.019 kg/y; 95%
CI, �0.039 to 0.001 [P=0.07]), and high-density lipoprotein cholesterol (b=�0.035 mg/dL per year; 95% CI, �0.067 to �0.002
[P=0.04]), and greater increases in diastolic blood pressure (b=0.032 mm Hg/y; 95% CI, �0.004 to 0.069 [P=0.08]).

Conclusions-—Our findings suggest that, at least in the context of Australia, urban densification may be protective against obesity
risk but may have adverse effects on blood lipids and blood pressure. Further research is needed to understand the mechanisms
through which urban densification influences cardiovascular health. ( J Am Heart Assoc. 2019;8:e013199. DOI: 10.1161/JAHA.
119.013199.)

Key Words: environmental epidemiology • heart disease • population health • type 2 diabetes mellitus • urbanization

T he global burden of cardiometabolic disease is increas-
ing.1,2 In 2015, an estimated 423 million people world-

wide experienced cardiovascular disease1 and 415 million
had diabetes mellitus.3 A basic premise of preventive
medicine is that a large number of people at low risk will
contribute more to the burden of disease than a small number
who are at high risk.4 Thus, along with clinical approaches for
those who are at high risk, community-wide strategies are
also necessary to lower the risk for the total population. In

this context, investigating the role of contextual factors has
been identified as one of the key directions for the future of
cardiovascular epidemiology.5,6

Population density—the number of people living per unit
area can be a fundamental health-related attribute of
neighborhood environments.7 A number of studies, mostly
conducted in Western countries, have reported associations
of population density with health behaviors and outcomes. For
example, an Australian study reported that higher-density
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urban neighborhoods with better access to local stores and
services can facilitate active modes of travel, such as
walking,8 which are associated with lower cardiovascular
risk.9 Car use is predominant in sprawling lower-density outer
suburbs in Australia.10 Living in outer suburban neighbor-
hoods has also been shown to increase obesity risk in
Australia.11 Cross-sectional studies have shown associations
of higher population density with lower risk of obesity and
type 2 diabetes mellitus in North America12,13 and with lower
risk of hypertension in France.14 A longitudinal study has
found that higher density at baseline was associated with
reduced incidence of cardiovascular events in women in the
United States.15 A systematic review of longitudinal studies
found evidence for potential long-term protective effects of
higher walkability, typically consisting of measures related to
population density, land use, and street layout, against
cardiometabolic disease risk.16

Little is known, however, about how changes in population
density in neighborhoods may influence residents’ cardiovas-
cular health. Examining the potential impacts of population-
density increases (densification) is timely in the global context
of widespread, rapid urbanization.17 Urban dwellers increased
from 30% of the world population in 1950 to 54% in 2015, and
this is expected to reach 60% in 2030.18 Although urban
densification is a global trend, only a few studies have examined
the cardiovascular health impacts of population density change
over time.16 For example, an increase in population density,
measured at a large scale (metropolitan statistical area), was
found to be inversely associated with an increase in body mass
index over 30 years in the United States.19 Also, increases in a
composite environmental index (consisting of population
density, land use, and density of destinations) have been found
to be associated with smaller increases in body mass index and
waist circumference over 9 years in the United States.20 To

better understand such impacts, research is needed on
whether population-density increases at a local scale can
influence indices of cardiovascular risk.

We examined longitudinal relationships of urban population
densification with changes in Australian adults’ cardiovascular
risk markers over 12 years.

Methods

Data Source and Study Participants
We used data from the AusDiab (Australian Diabetes, Obesity
and Lifestyle Study), an Australian national cohort study
examining the risk factors, prevalence, and incidence of
diabetes mellitus and cardiovascular disease. Survey and
biomedical data were collected in 3 waves: 1999–2000
(AusDiab1), 2004–2005 (AusDiab2), and 2011–2012 (Aus-
Diab3). Detailed descriptions of study design, recruitment
procedures, and measurement methods have been pub-
lished.21 Briefly, AusDiab1 used a 2-stage stratified cluster
sampling method in which study participants were randomly
selected from 42 urban sites chosen from each of six Australian
states and Northern territory. Each site consisted of contiguous
Census Collection Districts (CCDs). A CCD was the smallest
geographic area unit for the collection of Census data at the
time of AusDiab1, averaging�225 dwellings.22 In total, 11 247
adults aged 25 years and older with no physical or intellectual
disabilities and who resided at their addresses for 6 months or
longer before the survey were recruited. The overall response
rate for biomedical examinations at baseline was 55.3%.21

From the baseline cohort, 6400 (59.3%) and 4614 (44.6%)
participants completed surveys and biomedical examination
for AusDiab2 and AusDiab3, respectively. There were 3968
participants who provided data in all 3 waves, and 646 who
attended both AusDiab1 and AusDiab3. We excluded partic-
ipants whose addresses were not accurately geocoded
(n=81), those who were pregnant (n=39) during the data
collection, and those who changed their residence during the
study period (n=2140). “Movers” were excluded because their
relocation date was not recorded, which prevented us from
accurately examining neighborhood effects. The final sample
retained for analyses was 2354 (2119 provided data at 3
waves, and 235 at the first and third waves only). The
International Diabetes Institute and the Alfred Hospital ethics
committee (no. 39/11) approved the study, and written
informed consent was obtained from all participants.

Outcome Measures
The outcomes of this study were the changes in cardiovas-
cular risk markers over 12 years. These included waist
circumference (WC), body weight (weight), systolic blood

Clinical Perspective

What Is New?

• In the global context of urbanization, where cities are
growing in size and urban population densities are increas-
ing, this longitudinal study identified the potential impacts of
urban densification on Australian adults’ cardiovascular risk.

What Are the Clinical Implications?

• Characteristics of urban environments may have complex
impacts on the susceptibility to cardiovascular disease:
population-density increase may be protective against
obesity but may elevate risk of hypertension.

• Clinicians can take into account such emerging risk
exposures, which are broader and ubiquitous determinants
of cardiovascular health.
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pressure (BP), diastolic BP (DBP), fasting plasma glucose (fpg),
2-hour postload plasma glucose (2-hour PG), high-density
lipoprotein cholesterol (HDL-C), and triglycerides. They were
measured at local data collection centers at each time point.
Details of the instruments used to measure these markers
have been described elsewhere.21 Methods to calculate the
annual change for each outcome are described below in the
Statistical Analysis section.

Exposure Measure
The exposure variable was population densification, which
was defined as the change in population density during the
study period. Population density is defined as the number of
individuals living in a geographical unit divided by its area.23 In
this study, we calculated population density for each partic-
ipant for the area within a 1-km radius buffer around his/her
residence using Census data corresponding to each data
collection time point. We used a straight-line buffer rather
than a street-network buffer to have the same geographical
area across all the waves. The population count data in the
smallest geographical units covering all Australia (CCDs in
2001 for AusDiab1; mesh blocks in 2006 and 2011 for
AusDiab2 and AusDiab3) were obtained from the relevant
Census unit. Population counts for an individual buffer were
calculated by summing the population counts of the Census
areas included in the buffer. If the buffer intersected a Census
unit (CCD or mesh block), that unit’s population count
corresponding to the percentage of the area within the buffer
was added. Population density was expressed as persons per
hectare (pph). Methods to calculate population densification
are explained below in Statistical Analysis. We expressed the
population densification as a relative measure in percentage
[(density change/baseline density)9100] so that a unit
increase had the same magnitude relative to the baseline
density. We also used an absolute measure of densification,
pph per year, as a secondary unit. ArcGIS (version 10.6) was
used for calculating population density.

Covariates
Potential covariates included time, which corresponded to
repeated measures of outcome variables; time-constant
covariates: sex, education, height (only for weight), family
history of diabetes mellitus, baseline population density; and
time-varying covariates assessed at each wave: age, marital
status, employment status, household income, household
children status (having a child or children in the household),
medication use for hypertension, medication use for high
cholesterol, energy intake, tobacco smoking, alcohol intake,
and area-level socioeconomic status. For area-level socioe-
conomic status, we used the Index of Relative Socio-

Economic Disadvantage (IRSD),24 which is a composite
variable defined for geographic areas, derived using measures
such as income, education, employment, household structure,
and car ownership, with higher scores indicating lower levels
of disadvantage. The IRSD was defined at the Statistical Local
Area of participants’ residence and obtained for each AusDiab
wave from the corresponding Censuses. Because of potential
overadjustment, we did not adjust for physical activity
variables (eg, walking) that may mediate the relationships
examined.25

Statistical Analysis
To calculate participants’ annual change in cardiovascular risk
markers, we fitted an unconditional linear growth model, in
which we used fixed continuous time metrics: t=0 for
AusDiab1 (baseline); t=5 for AusDiab2 (5-year follow-up);
and t=12 for AusDiab3 (12-year follow-up). The participant-
specific random slopes of this growth model were used as the
annual changes in the risk marker.26 We also fitted an
unconditional linear growth model of population density with
corresponding Census years as time metrics (t=1 for 2001,
t=6 for 2006, and t=11 for 2011). The participant-specific
random intercepts (at t=0) and the random slopes of this
growth model were used as the baseline population density at
year 2000 and annual population densification, respectively.
This method enabled us to obtain robust estimates of annual
changes in outcomes and exposure by utilizing the informa-
tion available at all 3 waves and corresponding Census
years.27

Multilevel linear growth models28 were used to examine
associations of population densification with changes in
cardiovascular risk markers. In the multilevel models, the
model intercept was allowed to vary between participants and
between study sites, to account for intraindividual correla-
tions attributable to repeated measures and area-level
clustering attributable to stratified cluster sampling. Three
sets of models were fitted for each outcome. Model 1
adjusted for baseline population density. Model 2 further
adjusted for individual-level sociodemographic variables and
IRSD. Model 3 further adjusted for health- and behavior-
related factors including family history of diabetes mellitus
(only for fpg and 2-hour PG), medication use for hypertension
(only for systolic BP and DBP), medication use for high
cholesterol (only for HDL-C and triglycerides), energy intake,
tobacco smoking, and alcohol intake. Further details of
multilevel growth models are explained in accompanying text
S1 and Figure S1.

We conducted sensitivity analyses focusing on residents of
metropolitan areas. The AusDiab study included sites from
both metropolitan and regional cities of Australia. Since
population densification can be considered more prominent in

DOI: 10.1161/JAHA.119.013199 Journal of the American Heart Association 3

Urban Densification and Cardiovascular Risk Chandrabose et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 19, 2019



metropolitan areas, we ran model 3 after excluding partici-
pants who resided in regional cities (n=1080), as defined by
Australian Statistical Geography Standard Remoteness Area
Classification.29

Multilevel modeling of repeated measures over time
assumes a missing at random mechanism implying that
models will result in unbiased estimates if all variables related
to attrition are included in the model.28 Statistical analyses
were performed in STATA (version 15.0; StataCorp). Statisti-
cal significance was set at P<0.05.

Results
Table 1 shows the baseline characteristics of study partici-
pants. The mean follow-up duration was 11.9 years (range:
11.0 to 12.4 years). The comparison of baseline character-
istics of those included in the current study (stayers),
excluded from the study (movers), and who dropped out of
the AusDiab study is shown in Table S1. Compared with the
stayers, the movers consisted of slightly more women and
more workers, and the dropouts were more likely to be older,
had lower educational qualifications, had lower income levels,
did not work, did not live with a partner or children, and had
poorer health profiles at baseline.

Table 2 shows the mean overall change (from AusDiab1 to
AusDiab3) and the mean annual change (estimated from the
unconditional growth models) of each cardiovascular risk
marker. On average, participants increased their WC, weight,
BP, and glucose levels but improved their lipid profiles
(increased HDL-C and decreased triglycerides) over the 12-
year period.

The mean baseline population density was 13.0 pph
(SD=7.4, median=12.1, range: 0.5 to 52 pph). The mean
annual relative population densification estimated from the
unconditional growth model was 0.8% per year (SD=1.3,
median=0.7, range: �4.1 to 7.8% per year). The mean annual
absolute population densification was 0.09 pph/y (SD=0.13,
median=0.08, range: �0.20 to 1.23 pph/y). Approximately
one fifth of participants (19%) lived in areas where population
density decreased during the study period. It should be noted
that the relative and absolute densification are distinct
measures of population-density changes. Although they were
correlated (r=0.65, P<0.01), higher relative densification
tended to occur in areas with lower baseline density, while
higher absolute densification was more likely to take place in
areas with higher baseline density (Figure S1 and S2).

Table 3 shows the results of multilevel linear growth
models, examining linear associations of annual relative
densification with annual changes in cardiovascular risk
markers. After adjusting for baseline population density
(model 1), a 1% annual increase in population density was

associated with smaller increases in WC (b=�0.047 cm/y;
95% CI, �0.067 to �0.026 [P<0.001]), weight
(b=�0.025 kg/y; 95% CI, �0.044 to �0.006 [P=0.01]), and
HDL-C (b=�0.038 mg/dL per year; 95% CI, �0.067 to

Table 1. Selected Characteristics of Study Participants
(N=2354) at Baseline in AusDiab (1999–2012)

Baseline Characteristics Mean�SD or Percentage

Age, y 51.1�10.8

Women 53.6

Education

High school or less 34.5

Technical or less 43.3

Bachelor’s degree or higher 22.2

Employment status

Working 70.7

Not working 28.8

Other 0.4

Weekly household income

<$600 31.0

$600 to 1500 46.2

>$1500 22.8

Marital status, couple 85.2

Children in household 45.2

Cardiovascular risk markers

WC, cm 89.7�13.4

Weight, kg 76.2�15.6

SBP, mm Hg 128.3�17.5

DBP, mm Hg 70.8�11.5

FPG, mg/dL 99.5�18.9

2-h PG, mg/dL 109.2�37.4

HDL-C, mg/dL 55.4�14.4

Triglycerides, mg/dL 131.5�87.9

Health-related behaviors

Energy intake, kJ/d 8131�3277

Tobacco smoking, current or past smoker 38

Alcohol intake, g/d 14.3�17.9

Family history of diabetes mellitus 19.6

Medication use

For hypertension 12.1

For high cholesterol 7.7

Index of relative socioeconomic disadvantage 1023�62

2-h PG indicates 2-hour postload plasma glucose; AusDiab, Australian Diabetes Obesity
and Lifestyle Study; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C,
high-density lipoprotein cholesterol; SBP, systolic blood pressure; WC, waist
circumference.
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�0.009 [P=0.009]). Statistical adjustment for sociodemo-
graphic (model 2) and behavior- and health-related factors
(model 3) did not markedly alter the regression coefficients
and statistical significance for WC but slightly attenuated the
associations for weight (P=0.07 in model 3) and HDL-C
(P=0.04 in model 3). Additionally, in model 3, a 1% annual
increase in population density was marginally associated with
a greater increase in DBP (b=0.032 mm Hg/y; 95% CI,
�0.004 to 0.069 [P=0.08]).

The regression results obtained using the absolute mea-
sure of densification (pph/y) are shown in Table S2. We

observed consistent but more statistically significant inverse
associations for WC, weight, and HDL-C, and an additional
significant association for 2-hour PG. In model 3, each 1-pph
annual increase in population density was associated with
smaller increases in WC (b=�0.38 cm/y; 95% CI, �0.60 to
�0.15 [P<0.001]), weight (b=�0.19 kg/y; 95% CI, �0.40 to
0.02 [P=0.08]), 2-hour PG (b=�1.96 mg/dL per year; 95% CI,
�3.16 to �0.77 [P=0.001]), and HDL-C (b=�0.59 mg/dL per
year; 95% CI, �0.93 to �0.25 [P=0.001]).

The results of the sensitivity analyses, focusing only on
participants who resided in metropolitan areas (n=1274), are
shown in Table S3. Similar to those reported in Table 3
(model 3), relative densification was associated with changes
in WC and HDL-C (borderline significant). However, relative
densification in metropolitan areas was also associated with
greater increases in DBP and systolic BP (borderline signif-
icant). The absolute population densification in metropolitan
areas was associated with changes in HDL-C (same as model
3 in Table S2) but was not associated with WC and 2-hour PG
changes.

Discussion
In this cohort of Australian adults, participants’ cardiovascular
risk increased on average during the 12-year study period,
with the exception of a slight improvement in lipid profiles. In
Australia, the mean annual increase in WC is about 0.45 cm
among adults,30 which is consistent with the estimated
annual increase in our sample. We found that changes in
some cardiovascular risk markers varied by population
densification. Increases in urban population density were

Table 2. Overall Changes and Annual Change Rates in
Cardiovascular Risk Markers in AusDiab (1999–2012)

Cardiovascular
Risk Marker

Mean�SD Overall
Changes*

Mean�SD Annual
Change Rates†

WC, cm 5.20�7.53 0.433�0.237

Weight, kg 2.02�7.08 0.163�0.322

SBP, mm Hg 2.77�18.18 0.283�0.167

DBP, mm Hg 1.81�12.69 0.169�0.462

FPG, mg/dL 0.37�20.32 0.042�0.855

2-h PG, mg/dL 2.73�36.01 0.307�0.988

HDL-C, mg/dL 3.39�10.63 0.292�0.278

Triglycerides, mg/dL �12.66�75.53 �1.076�2.377

2-h PG indicates 2-hour postload plasma glucose; DBP, diastolic blood pressure; FPG,
fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; SBP, systolic blood
pressure; WC, waist circumference.
*Measure at AusDiab3 (Australian Diabetes Obesity and Lifestyle Study)—measure at
AusDiab1.
†Estimated from the unconditional growth model.

Table 3. Associations of Annual Relative Population Densification With Changes in Cardiovascular Risk Markers in AusDiab (1999
–2012)

Cardiovascular Risk Markers

Unstandardized Regression Coefficients (95% CI)

Model 1 Model 2 Model 3

WC, cm �0.047 (�0.067 to �0.026)* �0.048 (�0.069 to �0.026)* �0.043 (�0.065 to �0.021)*

Weight, kg �0.025 (�0.044 to �0.006)† �0.018 (�0.038 to 0.002)‡ �0.019 (�0.039 to 0.001)‡

SBP, mm Hg 0.020 (�0.029 to 0.070) 0.021 (�0.031 to 0.073) 0.018 (�0.037 to 0.072)

DBP, mm Hg 0.025 (�0.01 to 0.059) 0.028 (�0.007 to 0.063) 0.032 (�0.004 to 0.069)‡

FPG, mg/dL �0.018 (�0.073 to 0.038) �0.019 (�0.071 to 0.033) �0.008 (�0.062 to 0.045)

2-h PG, mg/dL �0.077 (�0.182 to 0.027) �0.084 (�0.193 to 0.026) �0.076 (�0.191 to 0.039)

HDL-C, mg/dL �0.038 (�0.067 to �0.009)§ �0.036 (�0.067 to �0.006)† �0.035 (�0.067 to �0.002)†

Triglycerides, mg/dL 0.007 (�0.197 to 0.211) 0.058 (�0.155 to 0.271) 0.034 (�0.190 to 0.258)

Regression coefficients correspond to 1% annual increase in population density relative to the baseline population density. Model 1: adjusted for baseline population density and corrected
for clustering. Model 2: further adjusted for age, sex, education, employment status, household income, marital status, household children status, height (only for weight), and Index of
Relative Socio-Economic Disadvantage. Model 3: further adjusted for energy intake, tobacco smoking, alcohol intake, family history of diabetes mellitus (for fasting plasma glucose [FPG]
and 2-hour plasma glucose [2-hour PG] only), hypertensive medication use (for systolic blood pressure [SBP] and diastolic blood pressure [DBP] only), and cholesterol medication use (for
high-density lipoprotein cholesterol [HDL-C] and triglycerides only). AusDiab indicates Australian Diabetes Obesity and Lifestyle Study; WC, waist circumference.
*P<0.001; †P<0.05; ‡P<0.10; §P<0.01.
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beneficially associated with changes in obesity-related mea-
sures, after adjusting for multiple potential confounders
including energy intake. The estimated effect size was greater
for WC change than for body weight change, suggesting that
increasing urban densification may have a protective effect
against abdominal obesity, which is a strong marker of
cardiometabolic disease risk.31

We found that the study areas varied by 12% in their annual
population densification (range: �4% to 8%). Since the regres-
sion coefficient for WC change was �0.043 cm for 1% annual
density increase, those living in areas with �4% densification
would have an additional 0.52 cm (=0.043912) greater
increase in WC per year, relative to those living in areas with
8% densification. At the population level, such differences inWC
increases accumulated over years would be substantial. The
potential protective effects of increasing population density
against obesity may be greater in Australian capital cities such
as Sydney and Melbourne, where large populations reside in
neighborhoods with increasing density, which was around 4%
annually in the past 5 years.32

Our findings on the associations between population
densification and obesity measures are consistent with 2
previous longitudinal studies conducted in the United
States.19,20 Although these studies did not use a direct
measure of population-density change measured at a local
scale, our findings along with these studies suggest that
increasing population density may reduce the risk of obesity in
localities with lower population density. Increasing population
density can increase access to more walkable destinations in
the neighborhood.17 Residents in such neighborhoods may, for
example, engage in more active travel and rely less on cars for
transport, which can have a protective effect against chronic
diseases over time.33,34 Further research is needed to examine
the potential role of active travel and car use in the impact of
densification on obesity.

We did not find associations of relative or absolute
densification with BP changes, except for a borderline adverse
association between relative densification and DBP. However,
in the sensitivity analysis undertaken on metropolitan partic-
ipants, we found higher relative densification to be associated
with greater increases in the BP measures. This finding was
unexpected. There is strong longitudinal evidence for the
relationships between higher walkability (a composite mea-
sure including population density) and lower risk of hyper-
tension.16,35 Thus, it was anticipated that increasing
population density would have beneficial effects on BP. It is
not possible to explain our present findings (no associations
for the whole sample, but adverse associations for the
metropolitan sample). Potential explanations may include
nonlinear relationships between densification and BP
changes, or detrimental impacts by unmeasured factors
related to urban densification (eg, increased air and noise

pollution from traffic, reduced exposure to green space, and
enhanced access to unhealthy food and alcohol). If the
beneficial impact of densification on obesity-related measures
is attributable to physical activity, there may be other
pathways for BP that overshadow the benefits from being
active. Given that cities across the globe are increasing their
density, further studies are needed to examine multiple
pathways and quantify each of their potential mediating
effects to fully understand both the beneficial and detrimental
impacts of urban densification. Future research can explore
further how to avoid or mitigate harmful cardiovascular health
effects of densification.

No associations were found between relative densification
and blood glucose measures. However, absolute densification
was beneficially associated with 2-hour PG in all models, but
not with fasting plasma glucose (Table S2). Overall, it can be
argued that increasing population density has some modest
benefits for blood glucose, potentially attributable to physical
activity increases. On the contrary, we found that both relative
and absolute densification measures had adverse effects on
HDL-C, but they were not associated with triglycerides
(Table 3 and Table S2). It is unclear as to why densification
had differential impacts on blood glucose and lipid measures.
It is also unclear why the 2 densification measures produced
distinct results for postload blood glucose (significant results
found for absolute densification). It is not possible to
disentangle the effects of densification on blood glucose
and lipids, but these findings suggest that densification may
be both beneficial and detrimental to cardiometabolic health.
Studies on potential mediating factors may provide insights
into the way population densification influences residents’
blood glucose and lipid measures.

Study Strengths and Limitations
Our study has several strengths. We used robust objective
measures for both the outcomes and exposure at 3 time
points with a 12-year follow-up duration. The study sites
ranged from metropolitan to regional cities, which provided a
wide range of variation in population density changes. We
used multilevel growth models to analyze the relationships
between densification and within-participant changes in
cardiovascular risk markers, sequentially adjusting for poten-
tial time-constant and time-varying confounders. A limitation
is that while our findings may be generalizable to localities
with lower population density, they may not be applicable to
very high-density cities. Future research needs to investigate
the impacts of density increase in higher-density localities as
further densification may produce adverse cardiovascular
health effects. The attrition rate was relatively high because of
the longer follow-up period (55%). Our modeling approach
assumes a “missing at random” mechanism, where it has

DOI: 10.1161/JAHA.119.013199 Journal of the American Heart Association 6

Urban Densification and Cardiovascular Risk Chandrabose et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 19, 2019



been shown that up to 60% attrition was less likely to produce
biased estimates under this missingness mechanism.36

However, if attrition was caused by a “missing not at random”

mechanism, the effect sizes may have been underesti-
mated.36 Further selection of participants as a result of their
relocation status could also lead to selection bias, if the
relocation status is patterned by participants’ cardiovascular
risk status.36 Since the aim of our study was to examine the
total effects (through direct and potential pathways) of
population densification on cardiovascular risk changes over
time, we did not examine the mediating mechanisms or effect
modifications. Understanding mechanisms (contextual vari-
ables such as access to public transport or individual
behaviors such as physical activity) through which urban
densification influences cardiovascular health is an important
future research topic. Research is also needed to examine
whether the potential cardiovascular impacts of densification
varies by population subgroups (eg, sex, socioeconomic
status, and ethnicity) and among different levels of area-level
socioeconomic status, for whom disparities in cardiovascular
health has been observed.37

Conclusions
Urban densification is a global phenomenon, which also
applies to Australian cities. The expansion of growth bound-
aries to allow low-density residential development in urban
peripheries is a commonly used strategy to accommodate
urban population increases. Our findings suggest that
increasing population in existing neighborhoods (while not
expanding the growth boundary) may be protective against
obesity. However, we also found potential detrimental effects
of densification on BP and on blood lipids. Further studies in
different localities with higher baseline density such as Asian
and European cities and investigating behavioral and other
factors that may mediate the effects are warranted to better
understand the potential cardiovascular impacts of urban
densification. Research is also needed to test whether there
are population-density thresholds above which further popu-
lation increases may elevate cardiovascular disease risk.
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Neighborhood walkability and 12-year
changes in cardio-metabolic risk: the
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Abstract

Background: Living in walkable neighborhoods may provide long-term cardio-metabolic health benefits to
residents. Little empirical research has examined the behavioral mechanisms in this relationship. In this longitudinal
study, we examined the potential mediating role of physical activity (baseline and 12-year change) in the
relationships of neighborhood walkability with 12-year changes in cardio-metabolic risk markers.

Methods: The Australian Diabetes, Obesity and Lifestyle study collected data from adults, initially aged 25+ years, in
1999–2000, 2004–05, and 2011–12. We used 12-year follow-up data from 2023 participants who did not change
their address during the study period. Outcomes were 12-year changes in waist circumference, weight, systolic and
diastolic blood pressure, fasting and 2-h postload plasma glucose, high-density lipoprotein cholesterol, and
triglycerides. A walkability index was calculated, using dwelling density, intersection density, and destination density,
within 1 km street-network buffers around participants’ homes. Spatial data for calculating these measures were
sourced around the second follow-up period. Physical activity was assessed by self-reported time spent in
moderate-to-vigorous physical activity (including walking). Multilevel models, adjusting for potential confounders,
were used to examine the total and indirect relationships. The joint-significance test was used to assess mediation.

Results: There was evidence for relationships of higher walkability with smaller increases in weight (P = 0.020),
systolic blood pressure (P < 0.001), and high-density lipoprotein cholesterol (P = 0.002); and, for relationships of
higher walkability with higher baseline physical activity (P = 0.020), which, in turn, related to smaller increases in
waist circumference (P = 0.006), weight (P = 0.020), and a greater increase in high-density lipoprotein cholesterol
(P = 0.005). There was no evidence for a relationship of a higher walkability with a change in physical activity during
the study period (P = 0.590).

Conclusions: Our mediation analysis has shown that the protective effects of walkable neighborhoods against
obesity risk may be in part attributable to higher baseline physical activity levels. However, there was no evidence
of mediation by increases in physical activity during the study period. Further research is needed to understand
other behavioral pathways between walkability and cardio-metabolic health, and to investigate any effects of
changes in walkability.
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Background
Due to the increasing global burden of cardio-metabolic
diseases, such as type 2 diabetes (T2D) and cardiovascu-
lar disease, urgent preventive action has been advocated
[1]. In addition to individual-level approaches to redu-
cing risk factors, greater attention is now being given to
community-level approaches that address the contextual
factors where people live [2]. A growing body of research
has examined the role of the built environment in
cardio-metabolic disease prevention [3–6]. A recent re-
view of longitudinal studies found that residents living in
higher walkability neighborhoods (characterized by high
residential density, mixed land use, and high street con-
nectivity) are less likely to develop obesity, T2D, and
hypertension over time, compared with those who live
in lower walkability neighborhoods [3]. Environmental
initiatives to reduce cardio-metabolic disease risk are
promising as they are likely to have sustained effects at
the community level [7].
It is important to identify behavioral pathways that

may underlie the relationships between the built envir-
onment and cardio-metabolic disease [3–7]. This could
inform the development of effective environmental and
policy initiatives for targeting chronic disease prevention
[7]. Physical activity is a strong candidate for mediating
these relationships. Neighborhood environmental attri-
butes including walkability are associated with residents’
physical activity levels [8–11], and regular participation
in physical activity reduces cardio-metabolic disease risk
[12–14]. However, existing studies examining the medi-
ating role of physical activity in the relationships be-
tween walkability and cardio-metabolic health have in
most part focused on cross-sectional associations with
obesity-related outcomes [15–17]. The findings of those
studies suggest indirect associations between walkability
and obesity-related outcomes through physical activity.
In order to further advance our understanding, it is im-
portant to examine how physical activity, which may
change over time, accounts for the long-term health
benefits of neighborhood walkability [3]. Further, it is
known that active lifestyles can be effective in improving
other cardio-metabolic health profiles (blood pressure,
blood glucose, and blood lipids), independent of their ef-
fects on obesity-related measures [18]. Thus, research
needs to further examine the potential mediating effects
of physical activity in the relationship of walkability with
multiple markers of cardio-metabolic disease.
Three longitudinal studies have examined the mediating

role of physical activity in relationships between walkabil-
ity and cardio-metabolic health outcomes [19–21]. Two
tested mediation by using the Barron and Kenny’s ap-
proach [22], examining the attenuation in the relationship
between walkability and cardio-metabolic health by com-
paring regression coefficients before and after adjusting

for physical activity [20, 21]. This approach, however, is
not in line with recent advances in methods of mediation
analysis [23, 24]. Indeed, tests of mediation based on the
Barron and Kenny’s approach have been found to provide
incorrect findings [25, 26]. Further, this approach relies on
the total effect (direct and through all possible mediating
pathways) of the exposure on the outcome being statisti-
cally significant in order to assess mediation (indirect) ef-
fects. However, it is now recognized that an indirect effect
of the exposure on the outcome through mediators can
exist even in the absence of a significant total effect (i.e.,
multiple opposite directional mediators exist and cancel
each other out) [23, 24]. One recommended way to test
mediating effects is to separately assess the effects of expo-
sures on mediators and the exposure-adjusted effects of
mediators on outcomes [23, 25]. An Australian study used
this method to assess the mediating role of physical activ-
ity measured at a single time point in the relationship of
walkability with 10-year changes in glycosylated
hemoglobin (HbA1c, a marker of cardio-metabolic dis-
ease) and found a partial mediation effect [19]. However,
the mediating role of physical activity change in the rela-
tionship of walkability with residents’ cardio-metabolic
health over time has not been examined.
The aims of our study were twofold: first, to exam-

ine the total effects of neighborhood walkability on
12-year changes of cardio-metabolic risk markers (es-
timating γ in Fig. 1a); second, to examine the indirect
effects of neighborhood walkability on changes in the
outcomes, mediated through physical activity at base-
line and changes in physical activity (estimating α and
β in Fig. 1b). We hypothesized that high walkability
would be protective against increasing cardio-
metabolic risk over time, and that those protective ef-
fects would be partly attributable to high baseline
levels and subsequent increases in physical activity.

Methods
Data source
Data were from the Australian Diabetes, Obesity and
Lifestyle Study (AusDiab), which is an Australian na-
tional longitudinal cohort study [27]. The primary aim
of AusDiab is to examine the prevalence and determi-
nants of obesity, diabetes, and cardiovascular disease.
AusDiab collected survey and biomedical data in three
waves: baseline in 1999–2000 (AusDiab1), first follow-up
in 2004–05 (AusDiab2), and second follow-up in 2011–
12 (AusDiab3). Details about the AusDiab1 study design
and recruitment procedures have been published else-
where [27]. Briefly, a two-stage stratified cluster sam-
pling design was used to select 42 study areas in the
metropolitan and regional cities of six states and the
Northern Territory. From each study area, a random
sample of adults (aged 25 years and over, with no
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physical or intellectual disabilities, and residing at their
addresses for 6 months or longer prior to the survey)
was selected. A study area consisted of contiguous Cen-
sus Collector District (CCD) geographical area units. A
CCD was the smallest area unit for the collection of
Census data at the time of AusDiab1, averaging approxi-
mately 225 dwellings [28]. In total, 11,247 participants
provided both survey and biomedical data in AusDiab1
(response rate = 55.3%). From the baseline cohort, 6400
(retention rate = 59.3%) and 4614 (retention rate =
44.6%) participants provided both survey and biomedical
data in AusDiab2 and AusDiab3, respectively. The Inter-
national Diabetes Institute and the Alfred Hospital Eth-
ics Committee approved the study (approval no. 39/11).
All participants provided written informed consent to
participate in the study.

Study participants
Our sample consisted of participants for whom data
were available over 12 years. There were 3968 who pro-
vided data at all three observation points, and 646 who
provided data for AusDiab1 and AusDiab3 only. Of
these, we excluded those whose addresses were not ac-
curately geocoded (N = 81) and who moved residence
during the study period (N = 2140). The reason for ex-
cluding movers was that it is unknown for how long
they were exposed to different neighborhoods between
observation points since their relocation date was not re-
corded. Further, we excluded 15 participants who re-
ported being pregnant during data collection; 151 who
reported that they had coronary heart disease or stroke
prior to or during the study period; 209 who reported
difficulties in walking more than 500 m at any of three

observation points; and 11 who were older than 78 years
at baseline [29] (numbers are not mutually exclusive).
The reason for excluding these subgroups was to reduce
possible reverse causality bias, as their health status may
have had stronger influences on their physical activity
behaviors during the study period [30]. The final analyt-
ical sample size was 2023.

Outcome variables
The outcomes examined were annual changes in cardio-
metabolic risk markers over 12 years: waist circumfer-
ence (WC), body weight (weight), systolic blood pressure
(SBP), diastolic blood pressure (DBP), fasting plasma
glucose (FPG), 2-h postload plasma glucose (2-h PG),
high-density lipoprotein cholesterol (HDL-C), and tri-
glycerides (TG). These markers were measured at local
data-collection centers at each time point. The details of
the measurement methods and instruments used were
described previously [27].

Exposure variables
The primary exposure variable of our study was a neigh-
borhood walkability index. The walkability index typic-
ally consists of measures of residential density, street
connectivity, and land use mix [31]. Given the difficulty
of obtaining nationally consistent fine-scale land use
data for calculating land use mix (entropy) measures in
Australia, Mavoa et al. [32] developed an alternative
measure using access to daily living destinations. Follow-
ing their method, we created a walkability index using
residential density, street connectivity, and daily living
destinations. They were calculated for each participant
within a 1 km street-network buffer (sausage-type, with

Fig. 1 Relationships of walkability with changes in cardio-metabolic risk markers (a), mediated through the baseline and the change in physical
activity (b)
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150 m radius from street centerline) around their resi-
dential location [33]. We chose a 1 km buffer to repre-
sent residential neighborhoods because this distance was
shown to be a typical distance within which most neigh-
borhood walking trips by adults take place [34]. In the
current study, it was not possible to obtain retrospective
spatial data, for calculating walkability, that corresponds
to the baseline of the study (1999–2000). We, thus,
sourced spatial data around the second follow-up period.
The details of each of the walkability components are
given below. ArcGIS v.10.6 (ESRI, Redlands) was used
for geographic information system (GIS) data processing
and spatial analysis.

Residential density
Residential density was defined as the number of dwell-
ings within the buffer divided by its area. The dwelling
count data in the mesh blocks (smallest census geo-
graphical units) were obtained from the Australian Bur-
eau of Statistics 2011 Census [35] to calculate an
individual buffer based dwelling density measure [36].

Street connectivity
We used intersection density as the measure of street
connectivity. Intersection density was defined as the
number of 4-or-more way intersections within the buffer
divided by its area, which has previously been shown to
be associated with walking in the context of Australia
[37]. Road network data from PSMA Australia’s 2012
Transport & Topography dataset were used to calculate
this measure.

Daily living destinations
Access to daily living destinations was measured as the
density (total count divided by buffer area) of different
types of neighborhood destinations to which residents
may travel daily/regularly: supermarkets, convenience
stores, and public transport stops. This destination-
based measure was developed in Australia to assess land
use diversity at the national scale, and found to be corre-
lated with an entropy measure of land use mix and asso-
ciated with walking for transport [32]. Axiom Business
Points data and Supermarkets data from Pitney Bowes
Ltd. (sourced in 2013) were used to obtain locations of
convenience stores and supermarkets. PSMA Australia’s
2012 Transport data were used to obtain locations of
railway stations for commuters. General Transit Feed
Specification online repository data (http://transitfeeds.
com, sourced in 2015) were used to obtain locations of
tram stops. Bus stops were not used in this study be-
cause their inclusion inflates this measure (about 90% of
participants had at least one bus stop and over 25% of
participants had 25+ bus stops within 1 km buffer).

Walkability index
A walkability index was calculated by standardizing (z-
score) the summed standardized measures of residential
density, intersections density, and daily living destina-
tions density.

Mediating variables
Participant’s self-reported time spent in physical activity
was used to obtain the two potential mediator variables.
At each wave of the AusDiab study, participants were
asked to report the time they spent in a range of physical
activities during the previous week using the Active
Australia Survey (AAS) [38, 39]. The items used were
shown in Additional file 1: Material S1. Total time (mins
per week) was calculated as the sum of the time spent in
walking (for recreation and transport), moderate-
intensity physical activity, plus double the time spent in
vigorous-intensity physical activity [39]. The AAS instru-
ment has been shown to have acceptable levels of reli-
ability and validity for the measure of weekly total
physical activity duration among adults [40, 41]. To
avoid measurement error due to over-reporting, we
truncated the weekly total physical activity duration at
1680 min (28 h) per week following the AAS procedure
[39]. Total time at AusDiab1 was used as the baseline
measure. To estimate the annual change in physical ac-
tivity, we calculated the 12-year change in physical activ-
ity geometrically, as shown in Additional file 1: Material
S2. This method allowed us to incorporate all three time
points in assessing the change in physical activity. This
is superior to a simpler method of subtracting the base-
line value from the 12-year follow-up value, which disre-
gards the 5-year follow-up value and assumes a constant
change throughout the study period.

Potential confounders
We included the following variables (assessed at base-
line) as potential confounders: gender, age, education,
marital status, employment status, household income,
household children status (having a child or children in
the household), and height (for weight only). Since a
change in participants’ socio-demographic status over
time may influence their long-term physical activity and
cardio-metabolic health profiles, we also included
changes (from baseline to wave 3) in marital status, em-
ployment status, household income, and household chil-
dren status as potential confounders of the relevant
longitudinal models. For instance, change in employ-
ment status was classified as: kept working, stopped
working, started working, or not working. Further,
hypertension medication use (for SBP and DBP only),
medication/insulin treatment for diabetes or family his-
tory of diabetes (for FPG and 2-h PG only), and choles-
terol medication use (for HDL-C and TG only) were
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included as potential confounders in the relevant
models. These variables are defined as binary variables
(yes: participant was on medication in at least one of the
three observation points; no: participant was not on
medication at any observation point). For area-level so-
cioeconomic status, we used the Index of Relative Socio-
economic Disadvantage (IRSD), which is a census-based
composite variable consisting of measures such as in-
come, education, employment, household structure, and
car ownership [42]. The 2011 IRSD scores correspond-
ing to the Australian Standard Geographical Classifica-
tion’s Statistical Local Area (SLA) units were used. For
the study areas that sat across multiple SLAs, the mean
IRSD value was employed (12 study areas sat across two
SLAs and one study area sat across three SLAs).

Statistical analyses
Calculating changes in cardio-metabolic risk markers
We used multilevel unconditional linear growth models
to estimate each participant’s annual change in cardio-
metabolic risk markers by utilizing measures at three ob-
servation points [43]. Briefly, for each risk marker, re-
peated measures (of individuals who were nested within
study sites) were modeled with the time at which the
corresponding measure was obtained as a predictor. We
used continuous time metrics: t = 0 for AusDiab1 (base-
line); t = 5 for AusDiab2 (5-year follow-up); and t = 12
for AusDiab3 (12-year follow-up). These multilevel
(three-level) growth models included random intercepts
at the participant and the study area level and random
slopes for time metrics at the participant level. Inclusion
of random intercepts for participants allowed those ob-
servations from the same participants (repeated mea-
sures) to be correlated, and inclusion of random
intercepts for study areas allowed those participants liv-
ing in the same areas (participants recruited from pre-
selected CCDs) to be correlated. Participant-specific ran-
dom intercept and random slope of time metric (corre-
sponding to participant’s linear trajectory line) estimated
the starting point and the annual change of the risk
marker, respectively [see Additional file 1: Material S2].
An unstructured covariance matrix was specified be-
tween participant-specific random intercepts and ran-
dom slopes to allow them to correlate. The point
estimate of the regression coefficient of time represents
the annual change for the average participant.

Examining the total effects
To examine the total effect of the walkability index on
changes in cardio-metabolic risk markers (corresponding
to γ in Fig. 1a), the above described multilevel linear
growth models were extended by adding the walkability
index and other potential confounders as participant-

level and area-level predictors (see Additional file 1: Ma-
terial S3 for further details) [44].

Testing mediation
To test mediation, we estimated regression coefficients α
and β in Fig. 1b. For α, we used a two-level generalized
linear mixed model with a Gamma distribution and log
link function to examine the relationship of the walkabil-
ity index with baseline physical activity (right-skewed);
and a two-level linear mixed model with a Normal dis-
tribution and identity link function to examine the rela-
tionship of the walkability index with changes in
physical activity (Normally distributed). In both models,
random intercepts were included at the study area level
to account for area-level clustering. The model for base-
line physical activity was adjusted for the baseline socio-
demographic variables only; while the model for change
in physical activity was adjusted for both baseline and
change in socio-demographic variables, and baseline
physical activity. For β, the above described multilevel
linear growth models to estimate the total effects were
extended by further adding the baseline and changes in
physical activity along with the walkability index and po-
tential confounders. To assess the statistical significance
of the mediating effect, we used the joint-significance
test [26], in which simultaneous significance of the re-
gression coefficients α and β provides evidence for medi-
ating effects.

Missing data and loss to follow-up
In multi-level linear growth models, for each risk marker
outcome variable, all participants with at least a baseline
measurement for the corresponding marker were in-
cluded in the analyses. Multilevel modeling of repeated
measures over time assumes missing at random (MAR)
mechanism for missing data, implying that missingness
can be ignored if all variables related to attrition are in-
cluded in the model [44].
Statistical analyses were performed in STATA (v.15.0)

and R (v.3.5.0).

Results
Table 1 shows the characteristics of the study sample.
The mean follow-up duration was 11.9 years (range: 11.0
to 12.4 years). The comparison of baseline characteristics
of those included in the current study (stayers), excluded
(movers), and who withdrew from the AusDiab study is
shown in Additional file 1: Table S1. Compared with
those who provided 12-years follow-up data, movers
were more likely to be younger and not living with a
partner, while drop-outs were more likely to be older,
less educated, had lower income levels, not working, not
living with a partner or children, had poorer health pro-
files and having lower physical activity levels at baseline.
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Table 2 shows descriptive statistics for the walkabil-
ity index and its components, and Pearson’s correl-
ation coefficients between each pair of them.
Correlation coefficients between walkability compo-
nents ranged from 0.4 to 0.6.

Table 3 shows the mean change from AusDiab1 to
AusDiab3 and the mean annual change (estimated from
the unconditional growth models) of each cardio-
metabolic risk marker. Overall, on average, participants
increased their WC, weight, blood pressure, and glucose
levels, but improved their lipid profiles over the 12-year
period. The mean (SD) weekly total physical activity dur-
ation at baseline was 5.0 (6.1) hours/week and its mean
change over the 12-year study period was 1.2 (9.3)
hours/week (i.e., increase).
Table 4 shows the results of regression models exam-

ining the total effects of walkability index on annual
changes in cardio-metabolic risk markers (γ regression
coefficients). After adjusting for potential confounders,
there was evidence for relationships of higher walkability
index with smaller annual increases in weight (P =
0.028), SBP (P < 0.001), and HDL-C (P = 0.002); and
there was also some weaker evidence for relationships of
higher walkability index with smaller annual increases in
WC (P = 0.092) and FPG (P = 0.053).
With regard to the associations of walkability index

with the baseline and the annual change in physical ac-
tivity (α coefficients), after adjusting for potential con-
founders, there was evidence for the relationship of
higher walkability index with higher baseline physical ac-
tivity (exp(α) [95% CI] = 1.09 [1.01, 1.16], P = 0.020); but
not with the annual change in physical activity (α [95%
CI] = 0.01 [− 0.03, 0.05] hours/week, P = 0.590).
Table 5 shows the results of regression models exam-

ining the effects of the baseline and the annual change
in physical activity on annual changes in cardio-
metabolic risk markers (β regression coefficients). After
adjusting for walkability index and other potential con-
founders, there was evidence for relationships of higher
baseline physical activity with smaller increases in WC
(P = 0.006), weight (P = 0.020), and a greater increase in
HDL-C (P = 0.005). In the corresponding regression
models, there was evidence for relationships of an in-
crease in physical activity related with smaller increases
in WC (P < 0.001), weight (P = 0.005), DBP (P = 0.050),
FPG (P = 0.019), TG (P = 0.004), and a greater increase
in HDL-C (P < 0.001).

Discussion
This study examined the total effects of neighborhood
walkability on cardio-metabolic risk changes over 12
years, and whether physical activity mediated these rela-
tionships. Below, we first discuss our findings on the
total effects, mediation by physical activity (baseline and
change), followed by limitations and strengths.

Total effects
For the total effect of walkability on cardio-metabolic
risk markers, we found evidence that higher walkability

Table 1 Baseline characteristics of study participants, AusDiab
study, 1999–2000, (N = 2023)

Baseline characteristics Means (SD) or
Percentages

Age, years 49.8 (10.2)

Gender, % Women 54.5

Education

% High school or less 33.1

% Technical or vocation 43.1

% Bachelor’s degree or more 23.8

Employment status

% Working 74.3

% Not working 25.1

% Others 0.6

Weekly household income

% Less than $600 27.4

% $600–1500 48.0

% > $1500 24.7

Marital status, % couple 86.1

Children in household, % yes 48.3

Cardio-metabolic risk markers

WC (cm) 88.7 (13.1)

Weight (kg) 75.5 (15.4)

SBP (mmHg) 127.0 (16.7)

DBP (mmHg) 70.4 (11.3)

FPG (mg/dL) 98.7 (17.6)

2-h PG (mg/dL) 107.3 (35.6)

HDL-C (mg/dL) 55.9 (14.6)

TG (mg/dL) 127.8 (87.4)

Total physical activity (hours/week) 5.0 (6.1)

Walking (hours/week) 2.1 (2.7)

Moderate-intensity physical activity (hours/week) 1.0 (2.7)

Vigorous-intensity physical activity (hours/week) 0.9 (2.0)

Medication use (reported at least at one wave)

For hypertension, % yes 32.1

For type 2 diabetes (including insulin), % yes 4.8

For high cholesterol, % yes 23.5

Family history of diabetes (pooled across waves), % yes 29.0

Index of Relative Socioeconomic Disadvantage (2011
Census)

1021.4 (58.6)

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP
Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload
Plasma Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides

Chandrabose et al. International Journal of Behavioral Nutrition and Physical Activity           (2019) 16:86 Page 6 of 11



index was related to smaller increases in weight and re-
lated to smaller increases in WC (weaker evidence).
These findings suggest that living in high walkable areas
may be protective against the development of obesity.
We observed that one standard deviation (SD) higher
walkability index was related to smaller annual weight
gain by 0.03 kg (Table 4). Considering that the mean an-
nual weight gain for this sample was 0.18 kg (Table 3),
the total effect of one SD higher walkability on residents’
weight gain was around 17%, which can be interpreted
as being a substantial effect at the population level [45].
A recent systematic review of longitudinal studies found
strong evidence for a protective effect of higher walkabil-
ity against the development of obesity [3]. Our study
thus contributes to this growing evidence base, which
suggests that initiatives to improve neighborhood walk-
ability could make an important contribution to redu-
cing the burden of obesity [46].
For blood pressure markers, we found that a higher

walkability index was related to smaller increases in SBP,
but not DBP. A recent study conducted in the UK also
reported similar findings [47]. Further, the finding on
the effect of higher walkability on SBP change was also
consistent with two studies conducted in the USA [48,

49]. For blood glucose markers, we found that higher
walkability index was related to smaller increases in
FPG, but not with 2-h PG. Other studies have also pro-
duced mixed findings for relationships of walkability
with changes in T2D risk markers [19, 48, 50]. The sys-
tematic review of longitudinal studies found strong evi-
dence for potential protective effects of higher
walkability against the development of hypertension and
T2D [3]. Our current findings partly support the benefi-
cial relationship of walkability with blood pressure and
blood glucose found in existing studies. For blood lipid
markers, we found that higher walkability index was re-
lated to a smaller increase in HDL-C, but not with TG.
Notably, the relationship between walkability and HDL-
C was in the unexpected direction (living in a high walk-
able neighborhood leading to poorer blood lipid pro-
files). This finding is, to some extent, consistent with a
previous longitudinal study conducted in the USA that
found a greater increase in TG for those who moved to
higher walkability neighborhoods from lower walkability
neighborhoods [50]. A recent systematic review of
mostly cross-sectional studies also found less favorable
blood lipid levels among urban residents as compared
with rural residents [51]. These inconsistent or

Table 2 Descriptive statistics for walkability and its components within participants’ 1 km street-network residential buffers, AusDiab
study, 1999–2012, (N = 2023)

Walkability
components

Mean (SD) Min Q1 Median Q3 Max Correlation Matrix

Res. density Int.density Des.density Walkability

Res. density a 7.1 (3.6) 0.1 4.5 6.6 9.4 26.2 1.0 0.6* 0.4* 0.8*

Int. density b 4.0 (4.5) 0.0 0.8 2.3 5.2 20.7 1.0 0.4* 0.8*

Des. density c 1.5 (1.5) 0.0 0.0 1.2 2.3 8.1 1.0 0.7*

Walkability 0.0 (1.0) −1.6 −0.7 − 0.2 0.6 5.1 1.0

Abbreviations: Res Residential, Int Intersections, Des Destinations;
*P < 0.001
aNumber of dwellings/hectare within 1 km of each residence
bNumber of 4-way intersections/km2 within 1 km of each residence
cNumber of daily living destinations/km2 within 1 km of each residence

Table 3 Mean changes cardiometabolic risk markers, AusDiab study, 1999–2012, (N = 2023)

Cardiometabolic
Risk markers

No of participants included in models Mean (95% CI) change from AusDiab1 to 3 Meana (95% CI) annual change

WC (cm) 2023 5.35 (5.02, 5.67) 0.45 (0.42, 0.47)

Weight (kg) 2019 2.25 (1.95, 2.54) 0.18 (0.16, 0.21)

SBP (mmHg) 2019 3.00 (2.25, 3.74) 0.30 (0.24, 0.36)

DBP (mmHg) 2019 2.20 (1.66, 2.74) 0.20 (0.16, 0.25)

FPG (mg/dL) 2023 −0.08 (− 0.93, 0.77) 0.01 (− 0.06, 0.08)

2-h PG (mg/dL) 1997 1.97 (0.39, 3.56) 0.15 (0.02, 0.29)

HDL-C (mg/dL) 2023 3.58 (3.12, 4.05) 0.31 (0.27, 0.35)

TG (mg/dL) 2023 −10.24 (− 13.54, −6.94) −0.87 (− 1.15, − 0.6)

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma
Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides
aEstimated from the unconditional growth model
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unexpected findings may be due to other potentially
relevant exposures not measured in this study, such
as easier access to unhealthy food outlets [52], which
may have some detrimental effects on blood pressure,
glucose, and lipids. Future research might consider
examining the spatial co-location of walkability and
other environmental exposures to investigate their
independent and joint relationships with cardio-
metabolic disease risk.

Mediation by baseline physical activity
Based on the joint-significance test, we found evi-
dence suggesting that baseline physical activity medi-
ates the relationship between walkability and changes
in obesity-related measures (i.e., higher walkability
index was related with higher baseline physical activ-
ity, which predicted smaller annual increases in WC
and weight). This finding is consistent with previous

cross-sectional studies on mediation by physical activ-
ity in the relationship between walkability and obesity
[15–17], using mediation analysis methods similar to
those used in this study. However, our study extends
the previous findings by showing the mediating role
of physical activity in the long-term protective effect
of higher walkability against obesity. The mediation
analysis also found that higher baseline physical activ-
ity, which was related to higher walkability, had a
beneficial impact on cholesterol. This is contradictory to
the observed total effect, where higher walkability led to ad-
verse cholesterol changes over time. It is possible that
higher walkability itself has positive effects on blood lipids
through facilitating physical activity. But, as discussed
above, walkable neighborhoods may also provide easy ac-
cess to unhealthy food outlets [52]. The detrimental effects
of greater energy intake may have outweighed the benefits
provided by greater physical activity. This warrants further

Table 4 Total effects of walkability index on annual changes in cardio-metabolic risk markers, AusDiab study, 1999–2012, (N = 2023)

Cardio-metabolic risk marker γ- regression coefficients (95%CI) P-value

WC (cm) −0.02 (− 0.05, 0.00) 0.092

Weight (kg) −0.03 (− 0.05, 0.00) 0.028

SBP (mmHg) −0.15 (− 0.21, − 0.08) < 0.001

DBP (mmHg) 0.01 (− 0.03, 0.05) 0.552

FPG (mg/dL) −0.06 (− 0.13, 0.00) 0.053

2-h PG (mg/dL) 0.01 (− 0.11, 0.14) 0.826

HDL-C (mg/dL) −0.06 (− 0.10, − 0.02) 0.002

TG (mg/dL) 0.04 (− 0.18, 0.26) 0.702

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma
Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides
Models adjusted for baseline age, gender, education, baseline work status, baseline household income, baseline marital status, baseline household children status,
changes in socio-demographic factors (work status, household income, marital status, and household children status), height (only for weight), hypertension medication
use (for SBP and DBP only), treatment for diabetes and family history of diabetes (for FPG and 2-h PG only), cholesterol medication use (for HDL-C and TG only), and
Index of Relative Socio-economic Disadvantage. Regression coefficients correspond to 1 SD increment in walkability index. P-value < 0.05 in boldface

Table 5 Relationships of the baseline and the annual change in physical activity with annual changes in cardio-metabolic risk
markers, adjusted for walkability index, AusDiab study, 1999–2012 (N = 2023)

Cardio-
metabolic risk
markers

β− regression coefficients

Baseline physical activity (hours/week) Change in physical activity (hours/week)

β (95%CI) P-value β (95%CI) P-value

WC (cm) −0.008 (− 0.014, − 0.002) 0.006 −0.096 (− 0.139, − 0.053) < 0.001

Weight (kg) −0.006 (− 0.011, − 0.001) 0.020 −0.056 (− 0.094, − 0.017) 0.005

SBP (mmHg) −0.001 (− 0.013, 0.012) 0.926 0.023 (− 0.070, 0.116) 0.624

DBP (mmHg) −0.004 (− 0.011, 0.004) 0.372 −0.058 (− 0.116, 0.000) 0.050

FPG (mg/dL) −0.005 (− 0.016, 0.006) 0.382 −0.099 (− 0.181, − 0.016) 0.019

2-h PG (mg/dL) −0.011 (− 0.038, 0.015) 0.397 −0.155 (− 0.354, 0.044) 0.126

HDL-C (mg/dL) 0.012 (0.004, 0.020) 0.005 0.158 (0.095, 0.221) < 0.001

TG (mg/dL) −0.028 (− 0.074, 0.018) 0.236 − 0.516 (− 0.863, − 0.169) 0.004

Abbreviations: WCWaist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma Glucose,
HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides. Models adjusted for walkability index, baseline age, gender, education, baseline work status, baseline
household income, baseline marital status, baseline household children status, changes in lifestyle factors (work status, household income, marital status, and household
children status), height (only for weight), hypertension medication use (for SBP and DBP only), treatment for diabetes and family history of diabetes (for FPG and 2-h PG
only), cholesterol medication use (for HDL-C and TG only), and Index of Relative Socio-economic Disadvantage. P-value < 0.05 in boldface
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investigation. Research incorporating multiple relevant
health behaviors is needed to understand the seemingly
contradictory findings.
Notably, no evidence was found for relationships of

physical activity measured at baseline with changes in
blood pressure, blood glucose, and triglycerides. A pos-
sible explanation may be that in the context that phys-
ical activity changes over a longer follow-up period, the
baseline physical activity may fail to predict the long-
term beneficial health gains [53–55].

Mediation by changes in physical activity
We also examined whether changes in physical activ-
ity levels over time may be a factor mediating the re-
lationships between neighborhood walkability and
changes in cardio-metabolic risk. Although physical
activity changes were related to changes in most of
the risk markers examined in the study, walkability
(measure at a single time point) was not related to
physical activity changes. Thus, according to the
joint-significance test, physical activity changes may
not be considered as a mechanism through which
neighborhood walkability influences cardio-metabolic
risk over time. A recent review on the longitudinal
relationships of built environments with physical ac-
tivity reported that environmental attributes measured
at one point of time may not contribute to changes
in physical activity [10]. People’s behavior choice is
known to be habitual, often triggered by environmen-
tal cues [56]. Given that this study focused on partici-
pants who stayed in the same residence, it is possible
that increasing physical activity may require additional
non-environmental stimuli, such as advice from health
professionals, new incentives to use active modes of
travel, and social pressure to exercise. Natural experi-
mental studies examining changes in environments
(due to relocation or environmental modification) are
needed to explore the mediating role of physical ac-
tivity changes in the environmental impacts on
cardio-metabolic health. It is possible that the behav-
ioral changes observed are attributable to environ-
mental changes, which we could not measure in this
study.

Limitations and strengths
Limitations of this study include the use of self-
reported physical activity measures: measurement
error may have resulted in incorrect estimations. The
association observed between walkability and baseline
physical activity may be confounded by self-selection
of neighborhoods [57]. Neighborhood walkability is
more closely related to transport-related walking [58],
which is typically lower in intensity than exercise.
However, inclusion of leisure-time physical activity

and exercise may have contributed to weakening the
relationship between walkability and total physical ac-
tivity. Future research needs to examine the role of
physical activity in specific domains and intensity
levels. The attrition rate was relatively high due to
the longer follow-up period (55%). Under the assump-
tion of MAR mechanism, up to 60% loss to follow-up
was less likely to produce biased estimates of effects
[59]. However, if attrition was “missing not at ran-
dom” (i.e., loss to follow-up depends on the outcome
variable), the estimated effects may have been biased
and led to invalid conclusions [59]. We used a walk-
ability index that was created based on geospatial data
sourced around the time of AusDiab3. This was due
to the unavailability of relevant data for the baseline
period (1999–2000). It is possible that some study
areas may have changed little, while others may have
undergone further development during the study
period [60]. Future longitudinal research may have to
consider how baseline and change in walkability can
influence residents’ cardio-metabolic risk.
Strengths of our study include sufficiently large sample

size, longitudinal design with a 12-year follow-up period
(three measurement points), the use of objective mea-
sures of cardio-metabolic risk markers, the use of GIS-
based walkability measure, and a broad range of study
areas from multiple urban settings across Australia. The
study tested mediation following recent advancements in
mediation analysis methods. We also used a sophisti-
cated statistical method, multilevel growth model, in
analyzing the complex data (repeated measures within
individuals, who were recruited using stratified cluster
sampling).

Conclusions
Our findings suggest that neighborhood environments
designed to encourage residents’ physical activity may
help reduce the risk of obesity and related disease
over time. Improving neighborhood walkability may
be a potential strategy to enhance population health
by encouraging more physical activity. Further studies
are recommended to examine specific environmental
attributes that may contribute to reducing cardio-
metabolic risk (not only obesity but also hypertension,
hyperglycemia, and hyperlipidemia) through physical
activity. Such understanding would support policy-
makers and practitioners in urban design and plan-
ning to develop healthier neighborhoods. Our study
found an adverse effect of high walkability on blood
lipids, suggesting the presence of other unhealthy ex-
posures in high walkable areas. Research is needed to
examine other behavioral pathways (e.g. diet) through
which walkability may influence residents’ cardio-
metabolic health.
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6 CHAPTER 6: GENERAL DISCUSSION 

 

This Thesis aimed to advance the understanding of the potential impacts of the 

neighbourhood built environment on cardio-metabolic health among adults. This was 

achieved through a systematic review (Study One, the manuscript was reported in Chapter 

2) and two empirical studies (Study Two and Study Three, the manuscripts were reported 

in Chapters 4 and 5, respectively). Each of these three studies has its own Discussion 

section that provided interpretations of the study findings, comparisons with existing 

studies in the literature, and descriptions of strengths and limitations. This final chapter 

draws together the key findings of these studies and discusses the implications of this body 

of research. It is organised into six sections. In the first section (6.1), an overview of the 

findings of each study is provided. The second section (6.2) synthesises these studies by 

comparing the findings of each specific study. The overall strengths and limitations of the 

Thesis are discussed in the third section (6.3). The fourth section (6.4) outlines potential 

future research directions. The implications of the Thesis findings for public health 

initiatives and urban planning policies are presented in the fifth section (6.5). The final 

section (6.6) concludes the Thesis.  

 

6.1 Overview of the Findings  

6.1.1 Study One: the systematic review 

Study One was a systematic review and meta-analysis of longitudinal studies on the built 

environment and cardio-metabolic health. Previous systematic reviews on this topic mostly 

summarised findings of cross-sectional studies and focused largely on obesity-related 

outcomes (36, 37, 47). A new systematic review was conducted to synthesise evidence 

from longitudinal studies that examined a range of cardio-metabolic health outcomes (76). 

This systematic review summarised findings from 36 published articles. To quantify the 

strength of the evidence, the systematic review used a meta-analytic approach that 

accounted for the methodological quality of the studies reviewed. The key findings of the 

systematic review are presented in Figure 6.1.  
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Figure 6.1: Key Findings of the Systematic Review: Evidence for Potential Long-term Impacts of 

Built Environments on Cardio-metabolic Health 
Note:† Type 2 diabetes; – insufficient studies to determine the strength of evidence 

 

This systematic review of longitudinal studies identified that studies conducted to date 

have focused mostly on obesity-related outcomes; other risk factors related to T2D and 

hypertension were examined only in relation to walkability. Overall, the meta-analysis 

found strong evidence for potential long-term protective effects of higher walkability 

against the risk of obesity, type 2 diabetes (T2D), and hypertension. The meta-analysis 

also found strong evidence for a potential long-term impact of urban sprawl on obesity 

risk. There was weak evidence for a potential protective effect of better access to 

recreational facilities against obesity. No evidence was found for relationships of access to 

destinations (e.g., public transport stops, retail stores) or route attributes (e.g., street 

connectivity, traffic intensity) with obesity risk. In addition, there was inconclusive 

evidence for the mediating role of physical activity in the long-term impacts of the 

neighbourhood built environment on cardio-metabolic health.  

 

6.1.2 Study Two: urban densification and cardio-metabolic risk 

Study Two examined the potential impacts of neighbourhood population-density increases 

(densification) on changes in cardio-metabolic risk. This is the first known study to have 

examined the broader cardio-metabolic health impacts of densification. This study used 
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objective measures for population density and cardio-metabolic risk markers measured at 

three time points over a 12-year period. The study areas were diverse in population density 

change; ranging from -4.1% to 7.8% annually during the study period. The key findings of 

Study Two are presented in Figure 6.2. 

 

 
 

Figure 6.2: Key Findings of Study Two: Relationships between Population Densification and 

Changes in Cardio-metabolic Risk 

Note: † 2-hr PG, 2-hour postload plasma glucose; HDL-C, high-density lipoprotein cholesterol 

 

Higher levels of densification (both relative and absolute measures) were related to smaller 

increases in obesity markers (weight and waist circumference). Densification had adverse 

effects on changes in blood pressure measures, but these relationships were only 

consistently found in metropolitan areas. No consistent pattern was observed for 

relationships between densification and hyperglycaemia markers, with higher levels of 

densification (absolute measures) only related to smaller increases in 2-hour postload 

plasma glucose, but not with fasting plasma glucose. The results for dyslipidaemia markers 

were also mixed: higher levels of densification were detrimentally related to changes in 

high-density lipoprotein cholesterol, but not with triglycerides.  
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6.1.3 Study Three: walkability, cardio-metabolic risk, and the role of physical 

activity 

Study Three examined the potential mediating role of physical activity in the relationships 

between neighbourhood walkability and changes in cardio-metabolic risk. The potential 

mediator, physical activity, was assessed by self-reported time spent in moderate-to-

vigorous physical activity (including walking), at three time points over the 12-year 

period. The mediating roles of both baseline and 12-year change in physical activity were 

examined. The key findings of Study Three are presented in Figure 6.3 and Figure 6.4.  

 

 

Figure 6.3: Key Findings of Study Three: Relationships of Walkability with Physical Activity 

 
 

Figure 6.4: Key Findings of Study Three: Relationships of Baseline Physical Activity with Changes 

in Cardio-metabolic Risk.  Note: † HDL-C, high-density lipoprotein cholesterol 
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Higher walkability was related to higher baseline physical activity levels but not with a 

change in physical activity. Baseline physical activity, in turn, was related to smaller 

increases in obesity markers (weight and waist circumference) and a greater increase in 

high-density lipoprotein cholesterol but was not related to changes in blood pressure or 

blood glucose measures.  

 

6.2 Synthesis of the Overall Findings 

Bringing together the findings of the three studies, it can be broadly understood that the 

neighbourhood built environment attributes are likely to have long-term effects on 

residents’ cardio-metabolic health. The built environment features that the empirical 

studies of this Thesis focused are population density and walkability, which are posited to 

facilitate physical activity (28, 29). Given that regular physical activity participation is 

known to reduce cardio-metabolic risk (13, 15), these built environmental attributes can be 

postulated to confer cardio-metabolic health benefits over time. However, the findings of 

the two empirical studies suggest that densification and walkability may have both 

beneficial and adverse long-term effects on cardio-metabolic health. The following 

subsections synthesise findings for specific cardio-metabolic risk categories: obesity; 

hypertension; hyperglycaemia and type 2 diabetes; and dyslipidaemia. 

 

6.2.1 Obesity 

The systematic review and the two empirical studies consistently suggested that 

neighbourhood built environment features, which facilitate physical activity, are likely to 

have long-term protective effects against the risk of obesity.  

 

The systematic review (Study One) found strong evidence for beneficial effects of 

composite built environmental indices (walkability, urban sprawl) against obesity risk over 

time (76). A previous systematic review reported that urban sprawl measures were 

consistently associated with body weight status, but mixed findings for the relationships 

between walkability and weight status (37). However, that systematic review mostly 

included cross-sectional studies and did not assess the strength of the evidence using a 

meta-analysis that accounted for methodological quality of the studies reviewed (37). 
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Given that Study One exclusively reviewed longitudinal studies and meta-analysed the 

study findings, it can be argued that living in neighbourhoods with higher walkability or 

lower urban sprawl may provide long-term protective effects against obesity. 

 

Study Two found that, in the context of Australia, residents of neighbourhoods with higher 

densification levels were more likely to have smaller increases in obesity risk markers than 

those living in neighbourhoods with lower densification levels. Similar to these findings, a 

previous American study also found that an increase in population density, measured at 

larger geographical areas (metropolitan statistical area), was inversely related to an 

increase in body mass index over 30 years (77). Study Two along with this American 

study suggest potential long-term protective effects of population densification against 

obesity. 

 

Study Three also observed relationships of higher walkability with smaller increases in 

obesity markers, which further adds to the evidence-base alongside Study One (76). This 

study also found that those relationships between walkability and obesity risk may be in 

part attributable to higher physical activity levels. Thus, this Thesis found evidence of 

physical activity as a behavioural mechanism through which walkability mitigates the risk 

of obesity over time, making an additional contribution to the literature. 

 

6.2.2 Hypertension 

The systematic review found strong evidence for potential long-term protective effects of 

neighbourhood walkability against hypertension risk, derived from studies with a follow-

up period ranging from 1 to 7 years. Study Three, which examined the impacts of 

walkability on 12-year blood pressure changes, also noted smaller increases in systolic 

blood pressure for residents of high walkability neighbourhoods, relative to those of low 

walkability neighbourhoods (non-significant findings for diastolic blood pressure). Similar 

to Study Three, a recent study on walkability and hypertension risk conducted in the UK 

(78), which was not included in the systematic review, also found higher walkability to be 

related to smaller increases in systolic blood pressure but non-significant findings for 

diastolic blood pressure. It has been reported that systolic blood pressure can be a better 

predictor of hypertension, relative to other blood pressure measures (diastolic or pulse 
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pressure) (79). There was no evidence found to claim physical activity as the possible 

behavioural mechanism between walkability and blood pressure changes in Study Three. 

Nevertheless, this Thesis strengthened the evidence base by showing potential long-term 

protective effects of living in high walkability neighbourhoods against the risk of 

hypertension, with further research required to understand the mechanisms. 

 

Importantly, population density increase was found to be related to greater increases in 

blood pressure in metropolitan areas. Given that population density is posited to facilitate 

physical activity (28), it was expected that densification would beneficially impact on 

blood pressure changes. It is not possible to explain the current findings within the scope 

of this Thesis. However, population density increases can involve various changes in 

neighbourhood environments, which were not investigated in this Thesis. They include 

increased motor vehicle traffic congestion, increased noise and air pollution, and reduced 

green space, some of which may contribute to increases in blood pressure. To disentangle 

the potential impacts of densification on hypertension risk, research examining multiple 

pathways is needed.  

 

6.2.3 Hyperglycaemia and type 2 diabetes 

The systematic review provided strong evidence for potential long-term protective effects 

of neighbourhood walkability against the risk of hyperglycaemia and T2D. Most studies in 

the systematic review examined the incidence of T2D rather than its markers. Another 

recent systematic review and meta-analysis (including both cross-sectional and 

longitudinal studies) also found that higher walkability was consistently associated with 

lower T2D prevalence/incidence (80). However, the systematic review of this Thesis 

(Study One) observed that studies which examined markers of T2D produced mixed 

findings. For instance, a study demonstrated that moving to higher walkability 

neighbourhoods was not related to a change in fasting plasma glucose in the USA (81), 

while another Australian study found that higher walkability was related to smaller 

increases in HbA1c (another marker of T2D) (82). The empirical studies of this Thesis also 

produced inconsistent findings on walkability and blood glucose. Study Three found that 

higher walkability was related to smaller increases in fasting plasma glucose, but not with 

2-hr postload plasma glucose. Study Three also did not find physical activity as a potential 
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mediator linking walkability and changes in blood glucose measures. In addition, Study 

Two found that population densification was related to smaller increases only in 2-hr 

postload plasma glucose, but not with fasting plasma glucose. Thus, it is observed that 

findings are consistent when studies examined a categorical T2D outcome (i.e., based on 

the cut-off for diagnosis), but findings are mixed when examining continuous risk maker 

changes. This warrants further investigations of the relationships between walkability and 

markers of T2D, including whether non-linear relationships exist.  

 

6.2.4 Dyslipidaemia 

The systematic review identified only a few studies examining potential long-term impacts 

of the built environment on the risk of dyslipidaemia. Three existing studies, examining 

the relationships between walkability and dyslipidaemia risk over time, produced mixed 

findings (81, 83, 84). Braun et al (81) found that moving to higher walkability 

neighbourhoods was related to a greater increase in triglycerides (i.e., an adverse effect), 

whereas the other two studies did not find relationships between walkability and the risk of 

dyslipidaemia. Study Two found that higher levels of population densification were related 

to smaller increases in high-density lipoprotein cholesterol (HDL-C), but not with 

triglycerides. Study Three also found that higher walkability levels were related to smaller 

increases in HDL-C, but not with triglycerides. Since HDL-C is inversely related to cardio-

metabolic risk (85), these findings suggest that higher walkability and population 

densification would increase the risk of dyslipidaemia. On the contrary, Study Three found 

that higher walkability neighbourhoods were likely facilitating more physical activity, 

which was, in turn, related to a greater increase in HDL-C (i.e., a beneficial effect).  

 

The potential adverse effects of walkability and population densification on dyslipidaemia 

observed in the empirical studies of this Thesis may be due to the availability of 

‘unhealthy’ food outlets in higher walkable and higher densification neighbourhoods. In 

Study Three, a component used to calculate the walkability index was the density of ‘daily 

living destinations’, which included supermarkets and convenience stores. It may be 

possible that better access to these destinations can also mean better access to unhealthy 

food (characteristics of food sold in these destinations are unknown). Convenience stores, 

in particular, may carry foods that are high in trans-unsaturated fatty acids (e.g. snacks), 
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which are related to a reduction in HDL-C (86). However, given that the same walkability 

index was found to have potentially beneficial effects on other cardio-metabolic risk 

markers, further research is needed to understand why detrimental effects on blood lipid 

measures were observed for higher walkability and higher densification.  

 

6.3 Strengths and Limitations 

This Thesis investigated complex longitudinal relationships of built environment attributes 

with a broader range of cardio-metabolic risk outcomes. Its overall strengths and 

limitations are detailed below.  

 

6.3.1 Strengths of the Thesis 

 Systematic review  

This is the first known systematic review that exclusively reviewed longitudinal studies on 

the relationships between built environment attributes and a broader range of cardio-

metabolic health outcomes in adults. This review quantified the strength of evidence using 

a meta‐analytic approach that accounted for the methodological quality of the studies. The 

quality assessment tool evaluated relevant characteristics: study design, exposure 

variability, adjustment for individual and area-level confounding factors, longitudinal 

design characteristics, temporal match and measurement of built environmental exposures 

and cardio-metabolic outcomes. In particular, assessing the quality of built environment 

exposure measurement methods is a major strength of this systematic review (87).  

 

 Source of data for empirical studies 

The two empirical studies of this Thesis used longitudinal data from the AusDiab study. In 

this study, data were collected at three waves over a 12-year follow-up period. Participants 

were recruited from a range of urban settings across Australia, which increases the 

variability of environmental measures and makes the study findings more generalisable in 

the context of Australia, in comparison to previous studies conducted in a single 

metropolitan city. The use of eight cardio-metabolic risk markers measured through 
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standard biomedical protocols was another strength of this Thesis. The two empirical 

studies included sufficiently large sample sizes (> 2,000) from the AusDiab study data. 

 

 Spatial analysis 

A large proportion of the time devoted to this PhD research was spent in the preparation 

and cleaning of geospatial data, followed by calculation and validation of built 

environment attributes for AusDiab participants. The AusDiab study collected data in 

multiple regions across Australia. Thus, national-level retrospective geospatial datasets, 

corresponding to the three data collection periods, were required to create concordant 

neighbourhood built environment measures for study participants. This process was 

assisted by the Centre for Research Excellence (CRE) in Healthy, Liveable Communities, 

of which the candidate is a member (88). High-quality retrospective national geospatial 

data available in the CRE were used to calculate environmental attributes in this Thesis. 

The current best practice was used in the process of GIS operations with guidance from 

GIS experts in the CRE team. For instance, participants’ residential addresses were 

geocoded using two different approaches and validated for location accuracy. Participants’ 

neighbourhoods were defined by individual buffers, as they are more likely to capture 

local areas of residents as opposed to administrative units, which may not necessarily be 

aligned with participants’ neighbourhoods (53).  

 

 Statistical analysis 

The AusDiab data has a multi-level structure due to the two-stage stratified cluster 

sampling and longitudinal data collection. Multilevel linear growth models were used in 

regression analyses to account for both the dependence between repeated measures within 

participants and the spatial clustering within study areas. Study Three assessed the 

potential mediating effects of physical activity using the joint-significance test in response 

to a research gap identified in the systematic review, i.e., existing longitudinal studies on 

this topic, for the most part, used a traditional mediation analysis approach (i.e., Barron 

and Kenny’s approach) (89) that can provide incorrect findings. A study reported that the 

joint-significance test achieves the best balance of low Type I Error and the high statistical 

power to detect a true mediating effect among a number of other methods compared (75).  
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6.3.2 Limitations of the Thesis  

 Response rate, follow-up rate and selection bias 

The baseline response rate of the AusDiab study was 55.3%. Compared with the general 

Australian population at baseline, females and middle-to-older adults aged over 45 years 

were over-represented among respondents (56). The 12-year follow-up rate was 44.6%. 

For the analytical sample, participants who relocated during the study period were 

excluded. Differences were observed between those who were included in the analytical 

sample (stayers), those who were excluded (movers), and those who withdrew (dropped-

outs) in relation to some of their baseline socio-demographic and health characteristics. 

Those characteristics were adjusted in the regression analyses, adhering to ‘traditional’ 

methods of dealing with confounding bias (90, 91). However, further sensitivity analyses, 

using ‘counterfactual’ methods such as propensity score matching, were not conducted to 

assess the impact of the response rate, loss to follow-up, and selection bias on study 

findings (91).  

 

 Challenges in obtaining retrospective geospatial data  

It was found that geospatial data available for the baseline study period (1999–2000) were 

highly limited. Study Two used population density changes partly because the 

corresponding data were available from Census data aligning with the three AusDiab study 

data collection points (66, 67). The exposure for Study Three was walkability, for which a 

wide range of geospatial data (density, diversity and design) are necessary. More recent 

geospatial data corresponding to AusDiab3 (2011‒12) were used in Study Three due to the 

unavailability of relevant data for AusDiab1 or AusDiab2. It is unknown whether 

walkability changed substantially during the study period, which may have affected the 

results of Study Three.  

 

 Self-reported measures of physical activity 

To assess the mediation by physical activity in Study Three, self-reported total time spent 

in moderate- and vigorous-intensity physical activity (including walking) was assessed. 

The questionnaire items used to ask physical activity durations were derived from the 

Active Australia Survey, which has been shown to have acceptable levels of reliability and 
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validity (70, 71). However, self-reported measures of physical activity are known to 

involve recall error and bias (92), which may have affected the results of Study Three.  

 

 Generalisability of findings 

Since AusDiab collected data from diverse urban settings within Australia, the findings 

empirical studies of this Thesis may be generalisable to urban areas of Australia. However, 

the findings of the empirical studies as well as the findings of the systematic review (as all 

studies reviewed were conducted in Western countries) may not be applicable to other 

localities, in particular, high-density Asian cities.  

 

 Study design limitations 

This Thesis focused on longitudinal observational studies. In comparison to cross-sectional 

observational studies, which are predominant in the current body of evidence on built 

environment and health, longitudinal observational studies provide a better understanding 

of potential causal relationships by establishing “temporal ordering” between 

environmental exposures and health outcomes (41). However, longitudinal observational 

studies do also have important limitations in making causal inferences. Residential self-

selection (i.e., healthy people may choose to live in environments supportive of physical 

activity) is a potential confounder of the relationship between built environment attributes 

and cardio-metabolic health outcomes in observational studies (42). Since in AusDiab 

study participants were not asked about their reasons for choosing their current residential 

location at baseline, it was not possible to adjust for self-selection in Study Two and Study 

Three. However, a US study found the effect of built environment changes on walking 

behaviour changes even after adjusting for preferences for neighbourhood characteristics 

or attitudes toward travel modes (93). It is also worth pointing out that empirical studies of 

this thesis analysed data only of those who stayed in the same residence for over 10 years. 

It can be argued that the confounding due to residential self-selection in these empirical 

studies may not be substantial when compared to shorter term studies or those involving 

movers.  
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As discussed in Chapter 2 (section 2.1.2), it is unfeasible to conduct experimental studies 

in which participants are randomly assigned to different levels of built environmental 

exposures. Quasi-experimental studies or natural experiments where participants are 

exposed to changes in the built environment (either through the construction of new 

infrastructure or through residential relocation) are more practical approaches. Further 

discussion on the importance of implementing quasi-experimental studies is provided in 

section 6.4.6. 

 

6.4 Future Research Directions 

6.4.1 Examining diverse built environment attributes  

As identified in the Systematic Review, there are a relatively large number of studies 

examining the impacts of composite measures (such as walkability) on cardio-metabolic 

health outcomes. However, less research has been carried out on specific environmental 

attributes. In particular, examining long-term health impacts of specific built environment 

attributes (e.g., population/residential density, street connectivity, land use mix, 

destinations accessibility) may be useful to identify the ‘dose’ of interventions required to 

provide cardio-metabolic health benefits. Other specific environmental attributes such as 

public open space (parks, recreational facilities) and pedestrian infrastructure (e.g., 

availability of sidewalks and bicycle lanes, presence of street trees and crossing signals) 

could also be further considered. Examining these environmental features is worthwhile 

particularly in established neighbourhoods, as they may be easier to modify compared with 

structural components such as population density and street connectivity.  

 

Investigating perceived built environmental characteristics may complement studies using 

objective measures. Perceptions are relevant because some environmental factors such as 

aesthetics and sense of safety are difficult to assess objectively. In addition, the systematic 

review found that perceived walkability may be more strongly related to health outcomes 

(i.e. attenuation in the strength of evidence after excluding perceived measures). A 

potential reason for such a finding is that participants’ daily behaviours take place in their 

perceived neighbourhoods. A longitudinal study reported a mismatch between perceived 

and objectives measures of walkability in relationship with weight gain (94). However, in 
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a recent study, Cerin et al (95), using data from 14 cities across 10 countries, found that the 

relationship of certain objective built environmental characteristics with physical activity 

was mediated by their conceptually-comparable perceived indicators. Thus, investigating 

both objective and perceived environmental characteristics may help to better understand 

the relationships between the built environment, physical activity, and cardio-metabolic 

health outcomes.  

 

6.4.2 Investigating broader cardio-metabolic health outcomes 

The systematic review found that most studies conducted to date examined obesity-related 

outcomes. It is important to further investigate the relationships of built environments with 

a range of cardio-metabolic health outcomes including the biomedical risk factors and their 

markers, disease incidence, and mortality. In addition, examinations of clustered cardio-

metabolic risk indices, calculated using multiple risk markers (96), are advantageous to 

better understand the impacts of the built environment on overall cardio-metabolic risk.  

 

6.4.3 Defining neighbourhoods 

How to define a neighbourhood, within which environmental attributes are calculated, is a 

key consideration in studies on built environments, physical activity and health outcomes. 

Empirical studies of this Thesis employed 1-km straight-line and street-network buffers 

around home as the relevant spatial units for ‘neighbourhoods’, with a rationale that this 

was shown to be a typical distance within which most neighbourhood walking trips take 

place among adults (65). However, the “modifiable areal unit problem” (MAUP) implies 

that different buffer types and scales may produce different relationships between 

environmental attributes and outcomes (97). As there is no known solution to MAUP, 

future studies can test whether study findings differ for different neighbourhood types and 

scales. 

 

Another issue in defining neighbourhoods is the “uncertain geographic context problem” 

(UGCoP) (98). The size and shape of neighbourhoods depend to some extent on 

behaviours of interest as well as the spatial realities of where participants travel (99). This 

suggests that there are uncertainties in using a single buffer to determine any individual’s 
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applicable neighbourhood. Assessing environmental attributes within an “activity space”, 

which is defined by locations visited by participants and the routes connecting them, may 

overcome the issue of UGCoP (98). One approach to delineate an “activity space” is the 

use of Global Positioning System (GPS) devices, which can accurately capture where 

participants travel during the study period (53). Considering that defining a buffer within 

which environmental attributes are calculated is the fundamental step in research on the 

built environment and health, and different spatial units produce distinct results for their 

associations (100), future studies need to consider employing multiple methods in defining 

neighbourhoods to produce more robust evidence. 

 

6.4.4 Investigating non-linear relationships and thresholds 

This Thesis examined linear relationships between built environmental attributes and 

cardio-metabolic risk. However, it should be noted that non-significant linear relationships 

may be due to the presence of non-linear relationships, rather than no relationships at all. It 

is, thus, important to further investigate if meaningful and interpretable non-linear 

relationships can be found. Such investigations may even be useful to find any threshold 

values of built environment attributes that may provide optimal cardio-metabolic health 

benefits.  

 

For instance, it has been previously hypothesised that certain population density may have 

non-linear relationships with physical activity (101). A comparative study found that better 

access to destinations was related to a higher likelihood of walking in Brisbane (a low-

density city), whereas better access to destinations was associated with a lower amount of 

walking in Hong Kong (a high-density city), where better access may mean very short 

distances to destinations (102). Similarly, such non-linear associations may be applicable 

to the relationship between population density and cardio-metabolic risk. Figure 6.5 

depicts a hypothesised non-linear relationship between population density and overall 

cardio-metabolic risk.  

 



87 

 

 
Figure 6.5: A Hypothesised Relationship between Population Density and Overall Cardio-

metabolic Risk 

 

Low-density neighbourhoods (population density < P1) have limited access to destinations. 

On the other end, very high-density neighbourhoods (population density > P2) may have 

access to destinations at shorter distances. Thus, both ends of population density would 

result in lower levels of physical activity (101). In addition, higher density neighbourhoods 

may also have other factors that may have adverse effects on health, such as higher traffic 

congestion, higher levels of air and noise pollution, poorer access to green spaces, and 

better access to unhealthy food destinations (103). Ideally, there would be a range of 

population density values (P1 – P2) that provide optimal cardio-metabolic health benefits 

without incurring adverse effects. Investigating whether such population density thresholds 

exist is a future research topic. 

 

6.4.5 Assessing multiple pathways  

The mechanisms through which the built environment affects residents’ cardio-metabolic 

health are complex, with physical activity as just one of many pathways (38). Other 

potential pathways include behaviours (e.g., diet, sedentary behaviour) and environmental 

risk exposures (e.g., air and noise pollution) (38). Future studies should examine multiple 

potential pathways between the built environment and cardio-metabolic health outcomes.  

 

An issue when examining multiple potential mediators is the use of an appropriate 

statistical mediation analysis method. Examining a single mediator individually without 

taking account of confounding of other potential mediators may result in inaccurate 

findings (54). Statistical methods, such as Structural Equation Models (SEMs), can be used 



88 

 

to assess multiple mediating effects when assumptions about linearity and normality hold 

for all variables in models (104). Advancements in statistical methods are currently 

underway in which multiple mediating effects can be assessed in multilevel regression 

models with non-normal (e.g. binary, counts, right skewed) variables in models (54). 

Application of such statistical methods in studies on the built environment and cardio-

metabolic health helps to better understand the mechanisms between them. 

 

6.4.6 Implementing quasi-experimental study designs 

Most studies examining the built environmental impact on cardio-metabolic risk were 

observational in design. The next step towards making causal inference could be to 

implement quasi-experimental designs (43). To date, only one known study on this topic 

used a natural experiment (one type of quasi-experiment); it examined the impacts of 

relocation to areas with different levels of urban sprawl on the obesity risk among those 

who were displaced (with little to no control over their neighbourhood placement) after 

Hurricane Katrina in the USA (105). There are quasi-experimental studies that examined 

changes in physical activity due to infrastructure changes such as a park refurbishment 

(106), a public transit construction (107), or an urban greenway instalment (108). 

Similarly, there are quasi-experimental studies such as the Australian RESIDE study, 

which examined the changes in physical activity due to relocating to new housing 

developments with infrastructure supportive/unsupportive of physical activity (109). 

Future quasi-experimental studies should also examine changes in cardio-metabolic health 

outcomes due to neighbourhood infrastructure changes or relocations to planned housing 

developments.  

 

6.4.7 Linking food environments and walkability 

This Thesis found some unexpected results, such as walkability and population 

densification being adversely related to changes in blood lipid measures. It was speculated 

that the availability of destinations selling unhealthy food in higher walkability/densifying 

neighbourhoods may be a potential reason for such findings. Future research might 

consider examining the spatial co-location of walkable neighbourhoods and unhealthy 

food outlets to investigate their independent and joint effects on cardio-metabolic health. 
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6.4.8 Analysing subgroups  

Individual demographic and socioeconomic factors (e.g., age, gender, education, income) 

are determinants of cardio-metabolic health (110), and may also influence individuals’ 

decisions about where to live (45). In addition, area-level factors, such as neighbourhood 

socioeconomic disadvantage, are also known to be determinants of cardio-metabolic health 

(111), and related to local built environment factors (38). These may suggest that the way 

neighbourhood environments affect cardio-metabolic health may differ between 

subgroups. Future research needs to identify subgroups in which the built environment 

affects health outcomes differently, as examining them separately can help to assess the 

effects more accurately.  

 

6.4.9 Conducting studies in non-Western countries 

The systematic review found that all longitudinal studies reviewed were conducted in 

Western countries, typically in North America, Europe, and Australia. A number of cross-

sectional studies have been conducted in non-Western countries such as China or Japan 

(112, 113). However, these studies mostly examined obesity-related outcomes. There is a 

need to examine longitudinal relationships of built environment attributes with a broader 

range of cardio-metabolic health outcomes in such settings, where environmental 

characteristics and behavioural patterns may be different from the countries where existing 

studies have been conducted.  

 

6.4.10 Conducting policy-relevant research 

Research findings are more useful to policymakers when scientific research is targeted to 

strategic policy goals (114). For instance, there are numerous studies examining the 

impacts of specific urban planning policy based measures of built environment attributes 

on physical activity (115). Little attention has been given to examining the impacts of such 

measures on cardio-metabolic health outcomes (116). Future research examining the effect 

of potentially relevant urban planning policies, such as smart growth, urban growth 

boundary policy, and green city, on cardio-metabolic health is warranted.  
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6.5 Implications for Public Health Initiatives and Urban Planning Policies  

This section discusses the implications of the findings of this Thesis to policy and practice 

in public health and urban planning.  

 

6.5.1 Public health initiatives 

Globally and nationally, leading public health organisations advocate the importance of 

creating environments that support active living to reduce the population-level risk of 

cardio-metabolic diseases. The World Health Organization’s ‘Global Action Plan for the 

Prevention and Control of Noncommunicable Diseases (NCDs) 2013-2020’ recognises the 

need ‘to reduce modifiable risk factors for non-communicable diseases and underlying 

social determinants through creation of health-promoting environments’ (1). The National 

Heart Foundation of Australia has developed a ‘Blueprint for an Active Australia’ report, 

in which it stresses the importance of built environments to support active living to reduce 

the burden of cardiovascular and related diseases in Australia (117). The findings of this 

Thesis provide further justification for such public health initiatives by providing ‘state-of-

the-art’ synthesis of current knowledge and more robust empirical evidence regarding the 

impacts of neighbourhood built environments on cardio-metabolic health. More 

specifically, the key messages of this Thesis to public health sectors are: 

• Living in higher walkability neighbourhoods, where active living is supported, is 

likely to help residents in reducing the risk of cardio-metabolic diseases over time; 

• Population density increases (densification), which is happening across many cities 

worldwide due to the global trends of urbanisation, is likely to have protective 

effects against obesity; however, densification may also have adverse cardio-

metabolic health effects (i.e., elevating hypertension risk), which requires 

monitoring and understanding; and 

• Physical activity participation is a potential behavioural mechanism that can 

explain protective effects of higher walkability against obesity. 

 

6.5.2 Urban planning policies 

This Thesis also has implications for urban planning policies and practices. In particular, 

population density is determined by urban planning policies (118). Study Two found that 
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densification is likely to have protective effects on the risk of obesity. This suggests that 

allowing more people to live in a neighbourhood is likely to be a promising strategy for 

helping to reduce the burden of obesity in the context of Australia. Major cities across 

Australia (both capital cities and other regional cities) are experiencing population 

increases (119). However, population increases do not automatically translate into 

population densification, if cities accommodate inhabitants by expanding the urban growth 

boundaries. In order to achieve optimal health benefits, cities need to have urban planning 

policies that restrict urban sprawl and promote higher density mixed-use development: in 

short, cities should be made up of walkable neighbourhoods. However, this Thesis also 

found potential adverse cardio-metabolic health impacts of densification. Thus, caution 

needs to be exercised when implementing densification strategies in urban settings in order 

to achieve optimal health benefits.  

 

6.6 Conclusions 

In conclusion, this Thesis expands the current knowledge regarding the potential long-term 

impacts of built environments on cardio-metabolic health. Research on built environment 

and cardio-metabolic health has relied mostly on evidence from cross-sectional studies, 

with some emerging evidence from longitudinal studies. This Thesis systematically 

reviewed longitudinal studies and synthesized the research evidence. Employing cutting-

edge spatial and statistical analyses methods, two empirical studies were conducted to 

address the gaps identified in the review. Broadly, the systematic review found strong 

evidence for potential long-term protective effects of living in walkable neighbourhoods 

against the risk of obesity, hypertension, and type 2 diabetes, which were partly supported 

by empirical research. However, there are complexities in the relationships between built 

environments and cardio-metabolic health. Given the global context of rapid urbanisation 

and a growing interest in creating environment that support active living to reduce the 

burden of chronic diseases, there is an urgent need for further research addressing gaps in 

the literature, including examining joint effects of multiple environmental exposures and 

investigating whether any threshold values of built environment attributes would exist that 

provide optimal cardio-metabolic health benefits. Such investigations could assist 

researchers, policy-makers, and practitioners involved in public health and urban planning 
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to develop strategies to maximise the overall health benefits and minimise potential harms 

of environmental interventions.  
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APPENDIX II: SUPPLEMENTARY MATERIALS FOR 

CHAPTER 2 

The following supplementary tables, corresponding to the systematic review (Study One) 

published in the Obesity Reviews journal, are accessible through 

https://doi.org/10.1111/obr.12759  

• Table S1: Search terms used 

• Table S2: Methodological Quality-Assessment Tool 

• Table S3: Summary of data extracted from reviewed articles 

• Table S4:  Methodological quality and sample size assessment scores 

• Table S5:  Complete meta-analysis results 
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APPENDIX III: SUPPLEMENTARY MATERIALS FOR 

CHAPTER 3 

AIII.1: A Flow Chart of Spatial Analysis Process  

The following flow chart outlines the spatial analysis process undertook by the candidate 

as a part of this Thesis to develop built environment data for the AusDiab study 

participants.  

 

 

Figure AIII.1: A Flow Chart of Spatial Analysis Process 

  

Linking the calculated environmental attributes to the AusDiab data (outcomes and 

covariates)

Validating the calculated environmental attributes using secondary geospatial data sources 

(i.e.,  comparing primary geospatial data layers with secondary geospatial data layers such 

as historic OpenStreetMap layers and checking for agreements) 

Calculating neighbourhood environmental attributes (exposure and covariates)

Cleaning geospatial data (e.g., removing pedestrian non-accessible routes, removing 

duplicates)

Identifying primary geospatial data sources for calculating built environment data 

(corresponding to three data collection periods, when available)

Constructing different types of individual buffers at different scales

Geocoding addresses and validating for location accuracy  

Identifying participants’ residential addresses corresponding to three data collection 

periods
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AIII.2: Security Protocol for Linking Environmental Data to the AusDiab Data 

The AusDiab data, including participant address data, were available at the Baker Heart 

and Diabetes Institute (Baker). A subproject was undertaken by the Centre for Research 

Excellence (CRE) in Healthy, Liveable Communities to develop Geographic Information 

Systems (GIS)-based built environment data for AusDiab study participants. The CRE was 

led by Professor Billie Giles-Corti (associate supervisor), Centre for Urban Research, 

Royal Melbourne Institute of Technology (RMIT). The CRE’s GIS project (including the 

candidate’s GIS related works) was conducted at RMIT. Since participant address data is 

sensitive and confidential, Baker and RMIT implemented a security protocol to protect the 

identity of AusDiab study participants. The security protocol is described in Figure A2.1. 

Each box is labelled with the institute where the corresponding task was performed.  

 

 

Figure AIII.2: The Security Protocol for Handling Address Data when Calculating Built 

Environment Attributes 

Note: * random errors were small enough to have no discernible influence on statistical analyses 
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AIII.3: A Comparison of Intersection Density Measures 

For calculating a walkability index, the following two intersection density measures were 

compared:  

• 3-way measure: number of 3-or-more-way intersections/ buffer area 

• 4-way measure: number of 4-or-more-way intersections/ buffer area 

The following maps compare these two measures in two buffers in AusDiab study areas.  

Buffer A 

 

3-way measure  = 130 intersections/ km2 

 

4-way measure = 5 intersections/ km2 

Buffer B 

 

3-way measure  = 77 intersections/ km2 

 

4-way measure = 15 intersections/ km2 

Figure III.3: A Comparison of Two Intersection Density Measures 

Buffer A has low street connectivity than Buffer B (visual examination). But, the 3-way 

measure of Buffer A was greater than the 3-way measure of Buffer B. In contrary, the 4-

way measure of Buffer B was greater than the 4-way measure of Buffer A. Thus, it’s 

decided to use the 4-way measure as an appropriate measure of street connectivity. 
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AIII.4: Measurement of Additional Built Environment Variables  

Parks  

PSMA Australia’s Transport & Topography dataset includes a GREENSPACE theme, 

which contains polygons representing locations and shapes of local urban parks, through to 

state and national parks. PSMA’s GREENSPACE data from both the 2005 and 2012 

releases were compared with historical Open Street Map park data (the validation data), 

and it was found that the 2005 release was relatively more comprehensive (in comparison 

to the 2012 release), and comparable with the validation data. Thus, PSMA’s 

GREENSPACE 2005 release data was used to calculate the following park related 

measures: 

• Number of parks within the participant’s individual buffer 

• Street distance to the nearest park access point from the participant’s residence 

• Area of the nearest park to the participant’s residence 

• The sum of the areas of the parks that can be reached by the participant’s individual 

buffer 

 

Street-network distance to the city centre  

For each of the seven states and Northern Territory, the location of the General Post Office 

(GPO) of each capital city was considered as the corresponding city centre location. 

PSMA Australia’s Transport & Topography road network dataset (the 2012 release) was 

used to calculate road distance measures. Pedestrian non-accessible roads were not 

removed as in the case of creating street-network buffers.   

 

PedShed ratio 

PedShed ratio (ratio of the area within street-network buffer to the area within straight-line 

buffer) was calculated as an additional measure of street connectivity. A higher ratio 

indicates more connectivity.  

 

Walk Score® 

Walk Score® is a web-based measure of walkability, which can be obtained from 

www.walkscore.com.  This score uses publicly available web-based geospatial data 

sources (e.g., Google Maps, Open Street Maps) to derive a walkability index (ranges from 

http://www.walkscore.com/
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0 to 100) to a location based on the road distance to nearby commercial and public 

frequently-visited destinations (1). The R package walkscoreAPI v 1.2 (2) was used query 

the Walk Score database for participants’ residential locations (distance offsetted locations 

were used for querying). It was observed that, for most participants’ locations, these scores 

have been calculated using geospatial data sources that have been updated in 2016 or later. 

 

Remoteness area index 

The Remoteness Area (RA) index is a measure used by the Australian Bureau of Statistics 

(ABS) to define remoteness of locations (3). This measure is calculated using an algorithm  

(Accessibility Remoteness Index of Australia, ARIA) developed by the University of 

Adelaide's National Centre for Social Applications of Geographic Information Science 

(GISCA). The following five categories are used to determine remoteness of locations: 

• Major Cities of Australia  

• Inner Regional Australia  

• Outer Regional Australia  

• Remote Australia; and 

• Very Remote Australia  

The ABS releases RA index digital boundaries in GIS data formats, which were used to 

assign those indices to participants’ locations.   

 

References:  

1. Duncan DT, Aldstadt J, Whalen J, Melly SJ, Gortmaker SL. Validation of Walk 

Score® for estimating neighborhood walkability: an analysis of four US 

metropolitan areas. International journal of environmental research and public 

health. 2011 Nov;8(11):4160-79. 

2. Whalen J. walkscoreAPI: Walk Score and Transit Score API v 1.2. https://cran.r-

project.org/web/packages/walkscoreAPI/index.html 

3. ABS. Statistical geography -Australian standard geographical classification 

(ASGC), digital boundaries, 2006 (cat. no. 1259.0.30.002). Canberra: Australian 

Bureau of Statistics; 2006.  
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AIII.5: Active Australia Survey Items Used to Measure Physical Activity  

 

AusDiab: The Australian Diabetes, Obesity and Lifestyle Study 

General Questionnaire  

 

Physical activity 

In this section, I will ask you some questions about the time that you may have spent doing 

physical activities as part of your everyday lives.   

The following questions are about any physical activities that you may have done in the last week. 

Walking 

In the last week, how many times have you walked continuously, for at least 10 minutes, 

for recreation, exercise or to get to or from places? 

  times 

 

What do you estimate was the total time that you spent walking in this way in the last 

week? 

(In hours and/or minutes - fill in all circles on answer sheet) 

  hours   minutes 

 

Vigorous physical activity 

The next question does not include household chores, gardening or yard work. 

In the last week, how many times did you do any vigorous physical activity which made 

you breathe harder or puff and pant? (e.g. tennis,  jogging, cycling, keep fit exercises). 

  times 

 

What do you estimate was the total time that you spent doing this vigorous physical 

activity in the last week? 

(In hours and/or minutes - fill in all circles on answer sheet) 

  hours   minutes 

 

Moderate physical activity 

The next question does not include household chores, gardening or yard work. 

In the last week, how many times did you do any other more moderate physical activities 

that you have not already mentioned? (e.g. lawn bowls, golf, gentle swimming, etc.) 

  times 

 

What do you estimate was the total time that you spent doing these activities in the last 

week? 

(In hours and/or minutes - fill in all circles on answer sheet) 

  hours   minutes 
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APPENDIX IV: SUPPLEMENTARY MATERIALS FOR 

CHAPTER 4 

The following supplementary materials, corresponding to the Study Two published in the 

Journal of the American Heart Association, are accessible through 

https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.013199  

• Material S1: Explaining Multilevel Growth Models  

• Table S1: Baseline characteristics of stayers, movers, and drop-outs, AusDiab 

study  

• Table S2: Associations of annual absolute population densification with changes in 

cardiovascular risk markers, AusDiab study  

• Table S3: Associations of annual population densification with changes in 

cardiovascular risk markers among metropolitan residents, AusDiab study 

• Figure S1: Three-level data structure of the study 

• Figure S2: Scatterplots for relationships of annual relative population densification 

and annual absolute population densification with baseline population density. 

  

https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.013199
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APPENDIX V: SUPPLEMENTARY MATERIALS FOR 

CHAPTER 5 

The following supplementary materials, corresponding to the Study Three published in the 

International Journal of Behavioral Nutrition and Physical Activity, are accessible through 

https://doi.org/10.1186/s12966-019-0849-7.  

• Table S1: Baseline characteristics of stayers, movers, and drop-outs, AusDiab 

study (1999-2012) 

• Material S1: Active Australia Survey items used to measure physical activity 

• Material S2: Calculating changes using values measured at three observation 

points 

• Material S3: Details of the three-level linear growth model used in the study   

https://doi.org/10.1186/s12966-019-0849-7
https://doi.org/10.1186/s12966-019-0849-7
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