Brain immune interactions after stroke

Anna M. Planas

Cerebrovascular Research IIBB-CSIC, IDIBAPS

ICN 2010 Salzburg, Austria September 11 – 15, 2010

STROKE

Relations between the immune system, inflammation, and stroke

Inflammation as a stroke risk factor

Acute stroke: brain damage and immune responses

Infection in stroke: immunosuppresion vs inflammation

Therapeutic strategies

Inflammation as stroke risk factor: atherosclerosis

Metaloproteinases 1, 2, 8, 9 Oxidative products of A lipoprotein

Inflammatory and immune responses in atherosclerosis

Atherosclerosis is a chronic disease in which inflammatory and immune responses contribute to the initiation, progression, and destabilization of atherosclerotic lesions

Infection can trigger vascular events and stroke

Chronic Th1-type peripheral infection contributes to brain injury after stroke

Inflammation and innate immunity after brain ischemia

- 1) Reaction of resident cells: glial reaction
- 2) Adhesion and infiltration of leukocytes
- 3) Molecular players: cytokines, chemokines, adhesion molecules, TLR, complement...

μPET

¹¹C-PK11195

Dirnagl et al. 1999; TINS 22:391-7

Rojas et al, 07 JCBF 27:1975

Cytokines as clinical predictors of outcome in the clinics

-Eritrocyte sedimentation rate

-Reactive C protein (CRP)

-Interleukin-6

-Tumor necrosis fator (TNF)

-Intercellular adhesion molecule (ICAM-1)

Low plasma levels of IL-10 predict bad outcome and neurological impairment Vila et al. (2003) *Stroke*

High plasma levels of IL-6 and TNF-α predict bad outcome and neurological impairment Castellanos et al. (2002) *Stroke*

Stroke activates an innate immune response that contributes to brain injury

Polly Matzinger vol 8 (1) 2007 NATURE IMMUNOLOGY

Vila et al (2003) Stroke

Pattern recognition receptors trigger inflammation

Kariko et al 2004 *JCBF* 24:1288

Innate Immunity Cell Associated Receptors

de Puig

TLRs in monocytes of stroke patients Urra et al., Stroke 2009

Xabier Urra

The Complement System

The complement system is activated in rodents after brain ischemia De Simoni et al., 2004, Am J Pathol 164:1857-63

The complement system is activated in patients with acute stroke Mocco et al., 2006, *Neurosurgery* 59:28-33 and *Circ Res* 99:209-17

The Lectin Pathway Experimental

Carles Justicia ischemia/reperfusion in Manose-Binding Lectin (MBL) null and wt mice

Α

Infarct volume (mm³)

B 100

% CBF

С

50-40-

30-

20-

10-

75

50-

25

15-

MBLnull

MBLnull+hrMBL

neurological score

2-h MCAO +48h reperfusion in mice WT / MBLnull

Mice

ischemic MBL-null

The Lectin Pathway

Alvaro Cervera

Manose-Binding Lectin (MBL) in Stroke patients: MBL-sufficient and MBL-low genotypes

Baseline characteristics in the study population (n=135) according to MBL genotype

	MBL-low N=24 (18%)	MBL-sufficient N=111 (82%)	p value
	73.9 (12.8)	72.9 (11.5)	0.67
	9 (37.5)	59 (53.2)	0.16
	3 (12.5)	20 (18.0)	0.77
	12 (50.0)	73 (65.8)	0.15
	6 (25.0)	24 (21.6)	0.72
	2 (8.3)	15 (13.5)	0.49
	4 (16.7)	19 (17.1)	1.00
	2 (8.3)	9 (8.1)	1.00
			0.10
0 to 6	5 (21)	14 (13)	
7 to 17	13 (54)	56 (51)	
>17	6 (25)	41 (37)	
	0 to 6 7 to 17 >17	$\begin{array}{c} \text{MBL-low}\\ \text{N=24 (18\%)}\\ \hline 73.9 (12.8)\\ 9 (37.5)\\ 3 (12.5)\\ 12 (50.0)\\ 6 (25.0)\\ 2 (8.3)\\ 4 (16.7)\\ 2 (8.3)\\ \hline 4 (16.7)\\ 2 (8.3)\\ \hline \end{array}$	$\begin{array}{c c} \mbox{MBL-low}\\ \mbox{N=24 (18\%)} & \mbox{MBL-sufficient}\\ \mbox{N=111 (82\%)} \\ \hline 73.9 (12.8) & 72.9 (11.5) \\ 9 (37.5) & 59 (53.2) \\ 3 (12.5) & 20 (18.0) \\ 12 (50.0) & 73 (65.8) \\ 6 (25.0) & 24 (21.6) \\ 2 (8.3) & 15 (13.5) \\ 4 (16.7) & 19 (17.1) \\ 2 (8.3) & 9 (8.1) \\ \hline 0 \ to \ 6 & 5 (21) & 14 (13) \\ 7 \ to \ 17 & 13 (54) & 56 (51) \\ > 17 & 6 (25) & 41 (37) \\ \hline \end{array}$

MBL in stroke patients

60% MBL-low and 30% MBL-sufficient patients reached functional independence (mRS score 0 to 2) (x2, p=0.008)

% GOOD OUTCOME AT 3 MONTHS

The cellular players

Glial reaction and macrophage infiltration

T cell infiltration

Regulatory T cells protect the brain after stroke

Liesz, et al. Nat. Med. (2008)

Planas & Chamorro, 2009

Stroke-associated infection

15-30%

Stroke-induced immunodepression

C D

Spleen

Thymus

Martin et al (2008) Mol Imaging

Immunodepression in human stroke?

Monocytes

Phenotype	CD14 ^{high} CD16-	CD14 ^{dim} CD16+	CD14 ^{high} CD16+
Frequency	85%	10%	5%
Function	Inflammation	TNF- α Non-inflammed tissue	IL-10 angiogenesis

Clinical course

	Early worsening	Bad Outcome	Death
CD14 ^{high} CD16-, OR	1,29	1,38	1,40

Urra et al (2009) J Cereb Blood Flow Metab; Urra et al (2009) Stroke

Lymphocytes

Immunodepression in human stroke

Stress reaction Anti-inflammatory cytokin Monocyte deactivation Lymphopenia

Cytokines

IL-10

days

C 0 2

Cortisol

40-

30-

20

μg/dL

Stroke-Induced Immunodepression Is a Marker of Severe Brain Damage Xabier Urra and Ángel Chamorro *Stroke* 2010;41;e110

Immunomodulatory strategies

Role of inflammation and innate immunity in neurogenesis

□ Neurogenesis rate (% of 1M, left)
■ IFN-γ contribution (% of age matched)

Baron et al. 2008 *FASEB J.* 22:2843

Deficiency in TLR4 in the early postnatal retina results in increased neuronal differentiation Shechter et al 08 *J Cell Biol* 183:393

b TLR4/Hoechst

Rolls et al 2007 Nat Cell Biol. 9:1031

Impaired neurogenesis in TLR2deficient mice

Complement affects neurogenesis and regeneration

Rutkowski et al., Immunol Cell Biol. 2010 Apr 20.

Conclusions

- Innate immunity plays an active role in inflammation before and after stroke and influences brain damage .
- Genetics may affect the features and magnitude of inflammatory and/or immune responses: towards a more personalised treatment?
- Stroke is accompanied by immunosuppression favouring infection
- Inflammation and innate immunity affect neurogenesis and repair. Understanding the intensity of the signals and their time course is essential for designing therapeutic strategies

The Cerebrovascular Research Team IIBB-CSIC and Hospital Clínic, IDIBAPS, Barcelona, SPAIN

