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Emerging Insights from the Evolving Framework of Structural Abstraction  
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Only recently ‘abstraction from objects’ has attracted attention in the literature as a form of 
abstraction that has the potential to take account of the complexity of students’ knowing and 
learning processes compatible with their strategy of giving meaning. This paper draws 
attention to several emerging insights from the evolving framework of structural abstraction 
in students’ knowing and learning of the limit concept of a sequence. Particular ideas are 
accentuated that we need to understand from a theoretical point of view since they reveal a 
new way of understanding knowing and learning advanced mathematical concepts.  

Keywords: Limit Concept; Mathematical Cognition; Sense-Making; Structural Abstraction  

Introduction 

Theoretical and empirical research shows the existence of differences in knowing and 
learning concerning different kinds of knowledge (diSessa, 2002). A general framework on 
abstraction cannot encompass the whole complexity of knowing and learning processes in 
mathematics. Rather, in investigating the nature, form, and emergence of knowledge pieces, 
various local learning theories may be developed, which will be quite specific to particular 
mathematical concepts, individuals, and their respective sense-making strategies. As a 
consequence, the complexity of knowing and learning processes in mathematics cannot be 
described or explained by only one framework. Instead, we acknowledge that comprehensive 
understanding of cognition and learning in mathematics draws on a variety of theoretical 
frameworks on abstraction. 

The literature demonstrates significant theoretical and empirical advancement in 
understanding ‘abstraction-from-actions’ approaches, particularly the cognitive processes of 
forming a (structural) concept from an (operational) process (Dubinsky, 1991; Gray & Tall, 
1994; Sfard, 1991). Abstraction-from-actions approaches take account of a certain sense-
making strategy, namely what Pinto (1998) described as ‘extracting meaning’. However, only 
recently ‘abstraction from objects’ has attracted attention as a form of abstraction that 
provides a new way of seeing the complexity of knowing and learning processes compatible 
with students’ strategy of what Pinto (1998) described as ‘giving meaning’.   

The purpose of this paper is to provide deeper meaning to a recently evolving framework 
of a particular kind of ‘abstraction from objects’: structural abstraction. The structural 
abstraction framework is evolving in the sense that the framework functions both as a tool for 
research and as an object of research (Scheiner & Pinto, 2016b). In more detail, we use the 
structural abstraction framework retrospectively as a lens through which we reinterpret a set 
of findings on students’ knowing and learning of the limit concept of a sequence. This 
reinterpretation is an active one in the sense that the framework serves as a tool to analyze a 
set of data, while the framework is also refined and extended since the reinterpretation 
produces deeper insights about the framework itself. Especially, these more profound insights 
are what we need to understand from a theoretical point of view since they have relevance for 
significant issues in knowing and learning advanced mathematical concepts. Such a dynamic 
view that is aligned with an interpretative approach seems to be promising in responding to 
questions that evolve while the object of consideration is still under investigation.  
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We begin by providing an upshot of our synthesis of the literature on abstraction in 
knowing and learning mathematics. Our synthesis is to suggest an orientation toward the 
evolving framework of structural abstraction as an avenue to take account of an important 
area for consideration – that is, drawing attention to the complex knowing and learning 
processes compatible with students’ ‘giving meaning’ strategy. The structural abstraction 
framework constitutes the foundation of the second part of the paper providing emerging 
insights in knowing and learning the limit concept of a sequence. These insights offer 
theoretical advancement of the framework and deepen our understanding of knowing and 
learning advanced mathematics.  

 
Mapping the Terrain of Research on Abstraction in Mathematics Education 

Abstraction seems to have gained a bad reputation after been questioned by the situated 
cognition (or situated learning) paradigm, and, as a consequence, has almost disappeared 
from recent research discourse. This criticism rests primarily on traditional approaches on 
knowledge transfer through abstraction that led to an understanding of abstraction as a 
process of decontextualization and a confusion of abstraction with generalization. The recent 
contribution by Fuchs et al. (2003) shows that such classical approaches to abstraction still 
exist:  

“To abstract a principle is to identify a generic quality or pattern across instances of the 
principle. In formulating an abstraction, an individual deletes details across exemplars, 
which are irrelevant to the abstract category […]. These abstractions […] avoid 
contextual specificity so they can be applied to other instances or across situations.” (p. 
294) 

Though various images of abstraction in the mathematics education literature can be 
identified (see Scheiner & Pinto, 2016a), several scholars argued against the image of 
abstraction as decontextualization. Van Oers (1998, 2001), for instance, argued that removing 
context must impoverish a concept rather than enrich it. Several other scholars have 
reconsidered and advanced our understanding of abstraction in ways that account for the 
situated nature of knowing and learning in mathematics. Noss and Hoyles (1996) introduced 
the notion of situated abstraction to describe “how learners construct mathematical ideas by 
drawing on the webbing of a particular setting which, in turn, shapes the way the ideas are 
expressed” (p. 122). Webbing in this sense means “the presence of a structure that learners 
can draw up and reconstruct for support – in ways that they can choose as appropriate for 
their struggle to construct meaning for some mathematics (Noss & Hoyles, 1996, p. 108). 
Hershkowitz, Schwarz, and Dreyfus (2001) introduced the notion of abstraction in context 
that they presented as “an activity of vertically reorganizing previously constructed 
mathematics into new mathematical structure” (p. 202). They identify abstraction in context 
with what Treffers (1987) described as ‘vertical mathematization’ and propose entire 
mathematical activity as the unity of analysis. These contributions demonstrate that research 
on abstraction in knowing and learning mathematics has made significant progress in taking 
account of the context-sensitivity of knowledge.  

Several other contributions shape the territory in mathematics education research on 
abstraction. Mitchelmore and White (2004) indicate a distinction between abstraction in 
mathematics and abstraction in mathematics learning. They proposed to include a new 
meaning in the later, which seemed to be missing in the debate on the notion of abstraction, 
related to “formation of concepts by empirical abstraction from physical and social 
experience” (p. 329). Articulated to this understanding, Scheiner (2016) proposed a 
distinction between two forms of abstraction, namely abstraction from actions and 
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abstraction from objects. This distinction has been further refined in Scheiner and Pinto 
(2014) arguing that the focus of attention of each form of abstraction takes place on physical 
objects (referring to the real world) or mental objects (referring to the thought world) (see 
Fig. 1).  

abstraction on actions abstraction on objects

pseudo-empirical 
abstraction

empirical 
abstraction

reflective 
abstraction

m
ental 

objects 
physical 
objects 

structural 
abstraction

 
Fig. 1: A frame to capture various kinds of abstraction (reproduced from Scheiner & Pinto, 2014) 

We consider this distinction as being productive in trying to capture some of the variety of 
images of abstraction in mathematics education (for details see Scheiner & Pinto, 2016a). It 
acknowledges Piaget’s (1977/2001) three kinds of abstraction, including pseudo-empirical 
abstraction, empirical abstraction, and reflective abstraction, that served as critical points of 
departure in thinking about abstraction in learning mathematics. Research on abstraction in 
mathematics has long moved beyond classifying and categorizing approaches in cognition 
and learning, based on similarities of the individuals constructs. For instance, Mitchelmore 
and White (2007), in going beyond Piaget’s empirical abstraction and in drawing on Skemp’s 
(1986) conception of abstraction, described abstraction in learning elementary mathematics 
concerning seeing the underlying structure rather than the superficial characteristics. 
Abstraction in learning advanced mathematics, however, is almost always defined in terms of 
encapsulation (or reification) of processes into objects, originating in Piaget’s (1977/2001) 
idea of reflective abstraction. Reflective abstraction is an abstraction from the subject's 
actions on objects, particularly from the coordination between these actions. The particular 
function of reflective abstraction is abstracting properties of an individual's action 
coordination. That is, reflective abstraction is a mechanism for the isolation of specific 
properties of a mathematical structure that allows the individual to construct new pieces of 
knowledge. Taking Piaget’s reflective abstraction as a point of departure, Dubinsky and his 
colleagues (Dubinsky, 1991; Cottrill et al., 1996; Arnon et al., 2014) developed the APOS 
theory describing the construction of concepts through the encapsulation of processes. 
Similar to encapsulation is reification – the central tenet of Sfard’s (1991) framework 
emphasizing the cognitive process of forming a (structural) concept from an (operational) 
process. In the same way, Gray and Tall (1994) described this issue as an overall progression 
from procedural thinking to proceptual thinking, whereas proceptual thinking means the 
ability to flexibly manipulate a mathematical symbol as both a process and a concept. Gray 
and Tall (1994) termed symbols that may be regarded as being a pivot between a process to 
compute or manipulate and a concept that may be thought of as a manipulable entity as 
procepts. 

Scheiner (2016) revealed that the literature shows an unyielding bias toward 
abstraction from actions as the driving form of abstraction in knowing and learning advanced 
mathematics. This almost always exclusive view arises directly from the trajectory of our 
field’s history; originating in Piaget’s assumption that only reflective abstraction can be the 
source of any genuinely new construction of knowledge. While abstraction-on-actions 
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approaches have served many purposes quite well, they cannot track detail of students’ 
knowing and learning processes compatible with the strategy of giving meaning. The recently 
evolving framework of structural abstraction has attracted attention as a promising tool to 
shed light into the complexity of students’ knowing and learning processes compatible with 
their strategy of ‘giving meaning’.  
 

The Evolving Framework of Structural Abstraction 

The distinction between abstraction from actions and abstraction from objects reflects 
Tall’s (2013) distinction between operational abstraction and structural abstraction. In 
contrast to Piaget (1977/2001) who dichotomized these two forms of abstraction, Tall (2013) 
argued that mathematical thinking emerges in these two forms: operational abstraction 
focusing on actions on objects and structural abstraction focusing on the properties (or 
structures) of objects. For instance, the development of geometry in the conceptual embodied 
world focuses mainly on structural thinking, the operational symbolic world blends both 
operational and structural thinking as new forms of number are introduced as extensional 
blends in algebra (see Tall, 2013). Obviously, mathematics education researchers used the 
term ‘structural’ in diverse ways, referring, for instance, to structural mathematics of axioms 
and definitions or to the properties of the structure of objects. In the following discussion, we 
departure from Scheiner’s (2016) understanding of structural abstraction as focusing on “the 
richness of the particular [that] is embodied not in the concept as such but rather in the 
objects that falling under the concept […]. This view gives primacy of meaningful, richly 
contextualized forms of (mathematical) structure over formal (mathematical) structure” (p. 
175). Here we focus the attention to several core assumptions that orient the evolving 
framework of structural abstraction (see Scheiner, 2016; Scheiner & Pinto, 2016b):  
 
Concretizing through Contextualizing 

Structural abstraction takes place on mental objects that, in Frege’s (1892a) sense, fall 
under a particular concept. These objects may be either concrete or abstract. Concreteness 
and abstractness, however, are not considered as properties of an object but rather as 
properties of an individual’s relatedness to an object in the sense of the richness of a person's 
representations, interactions, and connections with the object (Wilensky, 1991). From this 
point of view, rather than moving from the concrete to the abstract, individuals, in fact, begin 
their understanding of (advanced) mathematical concepts with the abstract (Davydov, 
1972/1990). The ascending from the abstract to the concrete requires a concretizing process 
where the mathematical structure is particularized by looking at the object in relation with 
itself or with other objects that fall under the particular concept. The crucial aspect for 
concretizing is contextualizing, that is, setting the object(s) in different specific contexts. 
Different contexts may provide various senses (Frege, 1892b) of the concept of observation.  

  
Complementizing through Recontextualizing 

The central characteristic of the structural abstraction framework is that while, within the 
empiricist view, conceptual unity relies on the commonality of elements, it is the 
interrelatedness of diverse elements that creates unity within the approach of structural 
abstraction. The process of placing objects into different specific contexts allows specifying 
essential components. Structural abstraction, then, means attributing the particularized 
meaningful components of objects to the mathematical concept. Thus, the core of structural 
abstraction is complementarity rather than similarity. The meaning of advanced mathematical 
concepts is developed by complementizing diverse meaningful components of a variety of 
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specific objects that have been contextualized and recontextualized in multiple situations. 
This perspective agrees with van Oers’ (1998) view on abstraction as related to 
recontextualization instead of decontextualization.  

 
Complexifying through Complementizing  

The structural abstraction framework takes the view that knowledge is a complex system 
of many kinds of knowledge elements and structures. Complementizing implies a process of 
restructuring the system of knowledge pieces. These knowledge pieces have been constructed 
through the above-mentioned process or are already constructed elements coming from other 
concept images, which are essential for the new concept construction. The cognitive function 
of structural abstraction is to facilitate the assembly of more complex and compressed 
knowledge structures. Taking this perspective, we construe structural abstraction as moving 
from simple to complex knowledge structures, a movement with the aim to build coherent and 
compressed knowledge structures. In Thurston (1990)’s words, when the latter is achieved we 
“can file it away, recall it quickly and completely when you need it, and use it as just one step 
in some other mental process.” (p. 847). From the structural abstraction perspective, 
abstraction is acknowledged as a movement across levels of complexity (Scheiner and Pinto, 
2014).  

 Emerging Insights from the Structural Abstraction Framework 

In this section, we summarize emerging insights we gained so far by using the evolving 
framework of structural abstraction retrospectively as a lens through which findings on 
students’ (re-)construction of the limit concept of a sequence were reinterpreted. The study by 
Pinto (1998) provided the context in which she identified mathematics undergraduates’ 
sense-making strategies of formal mathematics. From a cross-sectional analysis of three pairs 
of students, two prototypical strategies of making sense could be identified, namely 
‘extracting meaning’ and ‘giving meaning’: 

“Extracting meaning involves working within the content, routinizing it, using it, and 
building its meaning as a formal construct. Giving meaning means taking one’s personal 
concept imagery as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299) 

The literature on abstraction from actions provides several accounts of how students 
construct a mathematical concept compatible with their strategy of ‘extracting meaning’. 

For instance, dynamic views of the limit of a sequence and the genetic decomposition of 
the limit concept of a sequence are intensively investigated by Arnon et al.’s (2014) APOS 
theory to respond to how students may construct the concept through the process of reflective 
abstraction. To mention a few recent investigations supported by the same theory, and 
compatible with the strategy of ‘extracting meaning’, Martinez-Planell, Gonzalez, DiCristina, 
and Acevedo (2012) focused on students’ understanding of series and investigated whether 
students saw series as a process without an end or as a sequence of partial sums, as stated by 
definition. They respond how students may construct the concept, by considering a 
distinction amongst their understandings of the concept of a sequence as a list of numbers or 
as a function defined in natural numbers (McDonald, Mathews, & Strobel, 2000), and 
concluded that even after formal training, students often think of sequences and series as an 
infinite, unending process. 

 However, there are almost no accounts of how students construct a concept compatible 
with their strategy of ‘giving meaning’, and the structural abstraction framework has shown 
to be enlightening with regard to this. Students who ‘give meaning’ seem to develop 
representations of the limit concept from their concept image and use them generically (see 
Yopp & Ely, 2016) for constructing and reconstructing the concept (see Pinto & Scheiner, 
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2016). This means, such representations are not always generic in the sense of Mason and 
Pimm (1984) though they are used as if they were of that nature. Moreover, such 
representations may be productive in some, though not all contexts, in which they are needed. 
In spite of the striking differences in the knowledge constructions in each case study, that are 
made explicit by the nature of the representations construed and their use, the three case 
studies presented in Pinto (1998) on students’ strategy of giving meaning have in common a 
cohesion in their sense-making and in learning the formal mathematics concept (Pinto & 
Scheiner, 2016; Scheiner & Pinto, 2014). Pinto and Scheiner (2016) concluded that 
coherence amongst students’ sense-making and their (re-)construction of the formal content 
had been proven to be a central characteristic of those students who ‘give meaning’. This 
does not mean that the reconstructions a student made are configured in a “satisfactory 
reconstruction or accommodation” scenario (Vinner, 1991, p. 70); rather, that apart of the 
learning scenario, a student’s sense making is coherent with her or his learning of a 
mathematical concept. 

It is important to note that the evolving framework of structural abstraction is problem 
driven, that is, addressing the need for bringing light into the complexity of students’ 
knowing and learning processes compatible with their strategy of ‘giving meaning’, rather 
than filling a theoretical gap just because it exists. The reinterpretation of empirical data on 
students’ strategies of giving meaning in the light of the theoretical framework of structural 
abstraction proved to be particularly fruitful – not only to provide deeper insights into the 
strategy of giving meaning but also as a way to deepen our understanding of the phenomenon 
of structural abstraction that revealed new theoretical developments (Pinto & Scheiner, 2016; 
Scheiner & Pinto, 2014). In the following sections, we highlight the main theoretical 
advancements.  

The idea of complementizing meaningful components underlying the structural 
abstraction framework reflects the idea that whether an individual has ‘grasped’ the meaning 
of a mathematical concept is situated in specific contexts where the objects falling under the 
specific mathematical concept have been placed in. In the case studies revisited, these 
contexts include the formal mathematics one, where mathematical objects are presented as 
formal definitions and their properties are deducted through formal proofs. Such a diversity 
of situated or contextualized meanings supports Skemp’s (1986) viewpoint that “the 
subjective nature of understanding […] is not […] an all-or-nothing state” (p. 43). The 
reanalysis of the data indicates that the object of researchers’ observation should be directed 
to students’ partial constructions of the limit concept. These partial constructions may be 
specific and productive to particular contexts but may remain not fully connected and may be 
unproductive in other contexts (for instance, in making sense of the formal definition). The 
empirical data show that, in the case of the students who give meaning, several meaningful 
elements and relations in understanding the limit concept of a sequence are involved, 
although a few elements are missing (or distorted). However, some students are able to (re-
)construct some meaningful components at need by making use of their partial constructions, 
while others are not able to do so.  

Our reanalysis indicates that some students have developed resources that enable them to 
(re-)construct the limit concept of a sequence at need. Scheiner and Pinto (2014) focused on a 
case where a student developed a generic representation of the limit concept of a sequence 
that operates well in several, although not all, contexts and situations. This particular 
representation, however, allows the student to (re-)construct the limit concept in other 
contexts and situations. The reinterpretation of the data sheds light on the phenomenon that 
individuals may not ‘have’ all relevant, meaningful components, but, rather, they may have 
resources to generate some meaningful components and make sense of the context at need. In 
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that sense, the ‘completeness’ of the complementizing process cannot ever be taken as 
absolute.   

Several researchers suggested exposing learners to multiple contexts and situations. An 
important insight from using the structural abstraction framework retrospectively is that 
exposure to multiple contexts is at least important for particularizing meaningful components: 
various objects falling under a particular mathematical concept have to be set into different 
specific contexts in order to make visible the meaningful components or mathematical 
structure of these objects. In so doing, the objects may be ‘exemplified’ through a variety of 
representations, in which each representation has the same reference (the mathematical 
object); however, different representations may express different senses depending on the 
selected representation system (see Fig. 2).  
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Fig. 2: Reference, sense, and idea  

The distinction between sense and reference has been specified by Frege (1892b) in his 
work Über Sinn und Bedeutung, indicating both the sense and the reference as semantic 
functions of an expression (a name, sign, or description). In short, the former is the way that 
an expression refers to an object, whereas the latter is the object to which the expression 
refers. According to Frege (1892b), to each representation correspondents a sense; the latter 
may be connected with an idea that can differ within individuals since people might associate 
different senses with a given representation. Though multiple contexts and situations are 
needed, a new context that does not provide a new sense will unlikely be productive for 
concept construction.  

Research also indicates that students may have difficulties with the relationships between 
the sense and the reference as well as difficulties in maintaining the reference as the sense 
changes (Duval, 1995, 2006). Thus, one might assume that these difficulties may (at least 
partly) be overcome by providing students a particular resource (such as a generic 
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representation of the mathematical concept) that serves as a guiding tool in complementizing 
the meaningful components indicated in the different senses. From this perspective, a 
‘representation for’ is a tool that provides theoretical structure in constructing the meaning of 
the concept of observation. It necessarily reflects essential aspects of a mathematical concept 
but can have different manifestations (Van den Heuvel-Panhuizen, 2003). Concerning the 
learning of the limit concept of a sequence, the reinterpretation of the data indicates that a 
slightly modified version of a student’s representation (see Fig. 3) may support the 
complementizing process when the limit concept is recontextualized. 

N

ԑ 
ԑ 

 
Fig. 3: A generic representation for learning the limit concept of a sequence  

Notice that this generic representation for learning the limit concept of a sequence takes 
account of several students’ common conceptions identified in the research literature, 
including those as (1) the limit is unreachable, (2) the limit has to be approached 
monotonically, and (3) the limit is a bound that cannot be crossed (see Cornu, 1991; Davis & 
Vinner, 1986; Przenioslo, 2004; Tall & Vinner, 1981; Williams, 1991). 

The reanalysis of the empirical data gained from Pinto’s (1998) study has shown that 
students who gave meaning built a representation of the concept and, at the same time, used it 
as a representation for recognizing and building up knowledge – the reconstruction of the 
formal concept definition, for instance. The analysis shows that these students consistently 
used representations of mathematical objects to create pieces of knowledge; or, in other 
words, the representations were actively taken as representations for emerging new 
knowledge and making sense of the context and situation. This shift from constituting a 
representation of the limit concept to using this representation as a representation for (re-
)constructing the limit concept in other contexts can be described in terms of shifting from a 
model of to a model for (Streefland, 1985) – a shift from an after-image of a piece of given 
reality to a pre-image for a piece of reality to be created. Adopting this view, we may indicate 
variations in knowledge structures related to the possible explanations that are considered. 
Models may involve acceptance of other hypothesis through deduction, causality or analogy.  

This mental shift from ‘after-image’ to ‘pre-image’ indicates a degree of awareness of the 
meaningful components and the complexity of knowledge structure that allows the transition 
from a ‘representation of’ as a result of various representations expressing specific objects set 
in different contexts to a ‘representation for’ constructing and reconstructing the limit 
concept, if inter alia, in formal mathematical reasoning. We suggest that a generic 
representation, as presented in Fig. 3, may provide an instructional tool that supports raising 
the awareness of meaningful components in learning the limit concept of a sequence. In other 
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words, such a generic representation may direct students’ perception of meaningful 
components although it does not enshrine mathematical knowledge. 
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