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Reaction of fatty acids, fatty alcohols, alkanes, sterols, sterol esters and triglycerides with the so-called
aromatic peroxygenase from Agrocybe aegerita was investigated using GC–MS. Regioselective hydroxyl-
ation of C12–C20 saturated/unsaturated fatty acids was observed at the x�1 and x�2 positions (except
myristoleic acid only forming the x�2 derivative). Minor hydroxylation at x and x�3 to x�5 positions
was also observed. Further oxidized products were detected, including keto, dihydroxylated, keto-
hydroxy and dicarboxylic fatty acids. Fatty alcohols also yielded hydroxy or keto derivatives of the cor-
responding fatty acid. Finally, alkanes gave, in addition to alcohols at positions 2 or 3, dihydroxylated
derivatives at both sides of the molecule; and sterols showed side-chain hydroxylation. No derivatives
were found for fatty acids esterified with sterols or forming triglycerides, but methyl esters were x�1
or x�2 hydroxylated. Reactions using H2

18O2 established that peroxide is the source of the oxygen intro-
duced in aliphatic hydroxylations. These studies also indicated that oxidation of alcohols to carbonyl and
carboxyl groups is produced by successive hydroxylations combined with one dehydration step. We con-
clude that the A. aegerita peroxygenase not only oxidizes aromatic compounds but also catalyzes the
stepwise oxidation of aliphatic compounds by hydrogen peroxide, with different hydroxylated
intermediates.

� 2011 Elsevier Inc. All rights reserved.
Introduction

Recently, a new peroxidase type was discovered in the wood-
rotting basidiomycete Agrocybe aegerita (in order Agaricales, family
Bolbitaceae), which turned out to be a true peroxygenase effi-
ciently transferring oxygen from peroxide to various organic sub-
strates including aromatic compounds, among others [1]. The
enzyme was first reported as a haloperoxidase [2], related to the
chloroperoxidase of Leptoxyphium fumago [3] being able to oxidize
non-phenolic aromatic compounds. However, due to its unique
ability to epoxidize and hydroxylate aromatic rings by means of
hydrogen peroxide, and its low halogenase activity, the enzyme
is nowadays mostly referred to as an aromatic peroxygenase [4].

This peroxidase/peroxygenase is able to catalyze reactions for-
merly assigned to intracellular cytochrome P450 monooxygenases
(P450s) [5]. However, unlike P450s, which are intracellular en-
zymes whose activation requires NAD(P)H as electron donor and
auxiliary flavin-reductases, or a second flavin domain, for electron
transfer [6], the A. aegerita enzyme is a secreted protein, therefore
ll rights reserved.

).
far more stable, and only requires H2O2 for function [7]. This per-
oxidase/peroxygenase combines unique capabilities of P450s such
as oxygen transfer, and classic properties of peroxidases such as
oxidation of phenolic compounds, but its sequence exhibits no
homology to classic peroxidases and P450s, and only little homol-
ogy (�30%) to ascomycete chloroperoxidase [8]. However, this se-
quence includes the conserved cysteine residue acting as the fifth
heme iron ligand in the two latter enzymes and is, therefore, clas-
sified as a heme-thiolate peroxidase [4,9].

The physiological function of A. aegerita peroxygenase remains
unclear, but its extracellular location and the versatile reactions
catalyzed – including peroxygenase, etherase and one-electron
abstraction activities, among others – indicate that it could be in-
volved in the unspecific oxidation and detoxification of plant
(e.g., methoxylated phytoalexins) or microbial metabolites and
also in the degradation of methoxylated compounds deriving from
lignin and other aromatic plant sources [4]. In the latter context, it
is interesting that the A. aegerita peroxygenase is able to oxidize
non-phenolic veratryl alcohol, the typical substrate of ligninolytic
peroxidases, in a broad pH range, while lignin peroxidase and ver-
satile peroxidase are able to oxidize this and related aromatic com-
pounds only under very acidic conditions (around pH 3).
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The A. aegerita peroxygenase has recently been shown to cata-
lyze a high number of interesting oxidation reactions, including
among others, the regioselective epoxidation/hydroxylation of
naphthalene, the sulfoxidation of dibenzothiophene and thioani-
sole, the N-oxidation of pyridine, the O-dealkylation of alkyl–aryl
ethers, the oxidation of aryl alcohols and aldehydes and the bro-
mination of phenol [10–13]. Although its real biological function
remains uncertain as mentioned above, the A. aegerita peroxygen-
ase has an enormous biotechnological potential, since selective
oxo-functionalizations are among the most challenging and de-
sired reactions in organic synthesis and, compared with P450s,
has the advantage of being a self-sufficient enzyme (i.e. catalyzing
oxygenations without the help of intracellular enzymes providing
electrons and reducing power) [7,14]. The authors of the current
study demonstrate for the first time the action of the A. aegerita
peroxygenase on fatty acids, fatty alcohols, alkanes and steroids,
and provide information on the regioselectivity and oxidation
mechanism (by detailed GC–MS analyses and 18O-labeling)
expanding the biotechnological interest of the enzyme by includ-
ing the area of aliphatic hydroxylations and other oxygenation
reactions.
Materials and methods

Enzyme preparation

The extracellular peroxygenase of A. aegerita (isoform II, 44 kDa)
was produced and purified as described previously [2]. The enzyme
preparation was homogeneous by sodium dodecylsulfate–poly-
acrylamide gel electrophoresis, and exhibited an A418/A280 ratio
of 1.75. Its specific activity was 117 units mg�1, where 1 unit rep-
resents the oxidation of 1 lmol of veratryl alcohol to veratralde-
hyde (e310 9300 M�1 cm�1) in 1 min at 23 �C and pH 7, in the
presence of 2.5 mM H2O2. The turnover rate of the purified enzyme
on veratryl alcohol was estimated as 85 s�1 (with a Michaelis–
Menten Km constant �2.4 mM).

Model substrates

Twenty-four model aliphatic substrates were used including: (i)
saturated fatty acids such as lauric (dodecanoic), myristic (tetra-
decanoic), palmitic (hexadecanoic), stearic (octadecanoic) and
arachidic (eicosanoic) acids; (ii) unsaturated fatty acids such as
lauroleic (cis-9-dodecenoic), myristoleic (cis-9-tetradecenoic), pal-
mitoleic (cis-9-hexadecenoic), oleic (cis-9-octadecenoic), linoleic
(cis,cis-9,12-octadecadienoic) and gondoic (cis-11-eicosenoic)
acids; (iii) fatty alcohols such as 1-tetradecanol and 1-hexadeca-
nol; (iv) alkanes such as dodecane, tetradecane, hexadecane and
octadecane; (v) free sterols such as cholesterol and sitosterol; (vi)
sterol esters such as cholesteryl butyrate, cholesteryl caprylate
and cholesteryl linoleate; (vii) the triglyceride trilaurin; and (viii)
the fatty acid methyl ester methyl laurate. Sitosterol was pur-
chased from Calbiochem, and all the other model substrates were
obtained from Sigma–Aldrich.

Enzymatic reactions

Five milliliters reactions of the above model substrates (1 mM)
with the A. aegerita peroxygenase (1 U) were performed in 50 mM
sodium phosphate buffer (pH 7) at 25 �C for 2 h, in the presence of
2.5 mM H2O2. The substrates were previously dissolved in acetone
and added to the buffer (the acetone concentration in the reaction
was 15%). In control experiments, substrates were treated under
the same conditions (including 2.5 mM H2O2) but without enzyme.
Enzymatic reactions with 18O-labeled hydrogen peroxide (H2

18O2,
90% isotopic content) from Sigma–Aldrich (2% w:v solution) were
also performed under the same conditions described above.

After the enzymatic reactions, water was immediately removed
in a rotary evaporator, and the products recovered with chloroform,
dried under N2, and redissolved in chloroform for GC–MS analyses.
Bis(trimethylsilyl)trifluoroacetamide (Supelco) in the presence of
pyridine was used to prepare trimethylsilyl derivatives.

GC–MS analyses

The GC–MS analyses were performed with a Varian 3800 chro-
matograph coupled to an ion-trap detector (Varian 4000) using a
medium-length fused-silica DB-5HT capillary column (12 m �
0.25 mm internal diameter, 0.1 lm film thickness) from J&W Scien-
tific, enabling simultaneous elution of the different compound clas-
ses [15]. The oven was heated from 120 �C (1 min) to 380 �C at
10 �C min�1, and held for 5 min. Other temperature program, from
50 �C to 110 �C (at 30 �C min�1) and then to 320 �C (at 6 �C min�1),
was used when necessary. In all GC–MS analyses, the transfer line
was kept at 300 �C, the injector was programmed from 120 �C
(0.1 min) to 380 �C at 200 �C min�1 and held until the end of the
analysis, and helium was used as carrier gas at a rate of 2 ml min�1.

Compounds were identified by mass fragmentography, and by
comparing their mass spectra with those of the Wiley and NIST li-
braries and standards, and quantitation was obtained from total-ion
peak area, using response factors of the same or similar compounds
(those of the saturated substrates and derivatives being in general
higher than those of the unsaturated ones). Single-ion chromato-
graphic profiles (of base or other specific ions) were used to estimate
compound abundances when two peaks partially overlapped. The rel-
ative abundance of products incorporating 1–3 18O2 atoms in the
H2

18O2 reactions described above was estimated by peak integration
using the corresponding ion with 2, 4 or 6 m/z increase (with correction
from interfering ions in H2

16O2 spectra, when required).
Results

Twenty-four model aliphatic substrates, including a series of
saturated and unsaturated fatty acids, one fatty acid methyl ester,
and several fatty alcohols, alkanes, free and esterified sterols and
triglycerides were treated with the A. aegerita peroxygenase. All
the fatty acids and fatty alcohols showed reactivity towards the en-
zyme. Among the alkanes, only those of shorter chain length were
modified. The free sterols were only slightly modified, and the
esterified sterols and triglycerides showed no reactivity. The con-
version rate, and the reaction products formed were studied by
GC–MS as described below.

Fatty acid oxidation studies

Eleven fatty acids with even carbon number from C12 to C20

were tested as substrates of the A. aegerita peroxygenase (Table 1).
All the saturated fatty acids showed reactivity towards the en-
zyme, although at different extents depending on the chain length,
the order of activity as hydroxylation substrates being
C12 > C14 > C16 > C18 > C20. Six unsaturated fatty acids with the
same length as the saturated ones were also tested, all of them
being more active than their saturated analogs. It should be men-
tioned that differences in solubility among the several substrates
tested, related to chain length and presence of double bonds, could
also influence substrate conversion.

For all the fatty acids, with the exception of myristoleic acid, the
alkyl chains were monohydroxylated to give predominantly mix-
tures of the x�1 and x�2 isomers (Fig. 1). The position of the hy-
droxyl group was determined by the mass spectra of their



Table 1
Conversion of different types of aliphatic compounds
by the A. aegerita peroxygenase (% of initial content).

Fatty acids
Lauric acid (C12) 36
Lauroleic acid (C12:1) 42
Myristic acid (C14) 26
Myristoleic acid (C14:1) 44
Palmitic acid (C16) 24
Palmitoleic acid (C16:1) 42
Estearic acid (C18) 9
Oleic acid (C18:1) 29
Linoleic acid (C18:2) 30
Arachidic acid (C20) <5
Gondoic acid (C20:1) 23

Fatty acid methyl ester
Methyl laurate 56

Fatty alcohols
1-Tetradecanol 41
1-Hexadecanol 15

Alkanes
Dodecane <5
Tetradecane <5
Hexadecane <5
Octadecane 0

Sterols
Cholesterol <5
Sitosterol <5

Sterol esters
Cholesteryl butyrate 0
Cholesteryl caprylate 0
Cholesteryl linoleate 0

Triglyceride
Trilaurin 0
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trimethylsilyl derivatives, as illustrated in Fig. 2 for (x�1) and
(x�2)-hydroxymyristic acid. These spectra show prominent ions
from a-cleavage of the molecular backbone on both sides of the tri-
methylsilyl group, with characteristic fragments at m/z 117 and
[M–CH3]+ for the (x�1)-hydroxyfatty acids (m/z 373 for 13-
hydroxymyristic acid, Fig. 2A) and at m/z 131 and [M–CH3CH2]+

for the (x�2)-hydroxyfatty acids (m/z 359 for 12-hydroxymyristic
acid, Fig. 2B). In all cases, no molecular ions were observed,
although they could be readily determined from the fragment cor-
responding to the loss of a methyl from the trimethylsilyl group
[M–CH3]+ (m/z 373 in both hydroxymyristic acid isomers, Fig. 2).

The formation of x�1 and x�2 derivatives decreased with
increasing chain length especially in case of saturated fatty acids
(Fig. 1). Surprisingly, myristoleic acid formed the x�2 but not
the x�1 isomer (it was the only fatty acid assayed that did not
formed this hydroxylated isomer). On the other hand, the x�3 to
x�5 and especially the x positions were also hydroxylated,
although with extremely lower efficiency than the x�1 and x�2
positions (Table 2) being detected in trace amounts in most cases.
Hydroxylation beyond the x�5 position was never observed.
Dicarboxylic acids were also detected indicating oxidation of the
terminal methyl group, followed by oxidation of the primary alco-
hol formed to the corresponding acid group.

An 18O-labeling study, using myristic acid as substrate, and
either H2

18O2 or H2
16O2 as enzyme cosubstrate, was performed

to investigate the origin of the oxygen incorporated during the
oxygenation of fatty acids. In the reaction using H2

18O2, mass spec-
tral analysis of the resulting monohydroxylated fatty acids showed
that characteristic fragments for the (x�1)-hydroxyfatty acid had
�90% shifted from the natural abundance m/z 117 and m/z 373
found in the unlabeled peroxide reaction (Fig. 2A) to m/z 119 and
m/z 375 (Fig. 3A), respectively. Likewise, the characteristic frag-
ments for the (x�2)-hydroxyfatty acid shifted from the natural
abundance m/z 131 and m/z 359 found in the unlabeled peroxide
reaction (Fig. 2B) to m/z 133 and m/z 361 (Fig. 3B), respectively.
In both hydroxyfatty acids, �10% of the original fragments re-
mained in the H2

18O2 reactions due to the 90% 18O isotopic purity
of the labeled peroxide used.

In addition to hydroxylated derivatives, keto derivatives at posi-
tions x�1 and x�2 were also identified (Fig. 1). The position of the
carbonyl group was determined by the mass spectra of the tri-
methylsilyl derivatives, as shown in Fig. 2C and D for (x�1) and
(x�2)-ketomyristic acid, respectively. No molecular ions were ob-
served in the mass spectra, although they could be determined
from the [M–CH3]+ fragment (m/z 299 in both ketomyristic acids).
Additional losses of the methylketo [M–CH3–CH3CO]+ or ethylketo
[M–CH3–CH3CH2CO]+ groups from a-cleavage of the carbonyl
group in (x�1) and (x�2)-ketofatty acids, respectively, produced
other diagnostic fragments (at m/z 257 for 13-ketomyristic acid,
and m/z 243 for 12-ketomyristic acid). Another characteristic frag-
ments resulted from the loss of a water molecule [M–CH3–H2O]+

(at m/z 281 in both ketomyristic acid isomers). The ratio between
the two main isomers (x�1/x�2) among the total monooxygenat-
ed derivatives (hydroxy and ketofatty acids) for the different com-
pounds assayed is shown in Table 2. This ratio was very similar for
all the saturated fatty acids (from 1.2 to 1.6). Unsaturated fatty
acids often showed lower ratios (ranging from 0.6 to 1.2) with
the exception of linoleic acid (1.7 ratio), and myristoleic acid that
only formed the x�2 derivative.

In the enzyme-catalyzed reaction of myristic acid with H2
18O2,

mass spectral analysis of the (x�1) and (x�2)-ketofatty acids
formed (together with the same hydroxyfatty acids) showed that
the above mentioned [M–CH3]+ fragment (shared by both keto iso-
mers) had �10% shifted from the natural abundance m/z 299 found
in the unlabeled peroxide reaction (Fig. 2) to m/z 301 (spectrum
not shown). This 18O-labeling is much lower than the 90% observed
during formation of the corresponding hydroxyfatty acids, and re-
vealed 18O loss from the carbonyl formed, due to hydroxyl ex-
change with water.

Further oxygenation/oxidation of the above mono-substituted
hydroxy and keto derivatives were observed in the enzymatic reac-
tions with fatty acids, including dihydroxylated compounds and
several combinations of keto and hydroxy derivatives. The chemi-
cal structures of all the fatty acid derivatives identified in the dif-
ferent enzymatic reactions performed are shown in
Supplementary data, SD, Fig. S1.

With the aim of investigating whether it was necessary that the
carboxyl group was in free form for enzyme activity, methyl lau-
rate was assayed as substrate. The results showed that the enzyme
is able to transform the methyl esters (Table 1). Like in the reaction
with free lauric acid, the reaction gave two main monohydroxylat-
ed derivatives at x�1 and x�2 positions, with a x�1/x�2 ratio of
1.3 (similar to that obtained for the free fatty acids).
Fatty alcohol oxidation studies

Two primary fatty alcohols (1-tetradecanol and 1-hexadecanol)
were assayed as substrates for the A. aegerita peroxygenase (Ta-
ble 1). Among the reaction products identified (Fig. 4 and Fig. S2
of SD), the presence of the corresponding fatty acids (myristic
and palmitic acids, respectively) is noteworthy. The majority of
the additional products were hydroxy or keto derivatives at x�1
and x�2 positions of the fatty acids (x-hydroxymyristic and x-
hydroxypalmitic acids were also identified). The x�1/x�2 ratio
of these monooxygenated derivatives was 1.4 (similar to that ob-
tained directly from myristic and palmitic acids). Some minor
peaks were tentatively assigned to monohydroxylated (and keto)
derivatives of the fatty alcohols at x�1 and x�2 positions, which
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Fig. 1. GC–MS analysis of the peroxygenase reactions with saturated C12 to C20 (left) and mono-unsaturated C12:1 to C20:1 (right) fatty acids showing the remaining substrate,
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were more evident in the reaction with tetradecanol. Only traces of
the corresponding aldehydes were observed in the reactions.
18O-labeling studies were also performed in the reactions of
1-tetradecanol with the enzyme (and similar results were
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obtained in the 1-hexadecanol reactions). Incorporation of 18O
from H2

18O2 to the carboxyl group was observed during the
oxidation of 1-tetradecanol to myristic acid (Fig. 5). Mass spec-
tral analysis of the myristic acid formed, showed that the char-
acteristic fragment at [M–CH3]+ had shifted from the natural
abundance m/z 285 found in the unlabeled peroxide reaction
(Fig. 5A) to m/z 289 (incorporation of two 18O atoms at the
carboxyl group) and m/z 287 (incorporation of one 18O atom at
the carboxyl group) (Fig. 5B). The relative abundances of the
18O mono (74%) and bilabeled (16%) myristic acid, estimated
from the corresponding fragment peak areas, are included in
Fig. 5B, together with their formulae (10% unlabeled acid was
also formed due to the partial isotopic purity of the peroxide
used).



Table 2
Abundance (relative percentage) of different monohydroxylated, keto, dihydroxylated, keto-hydroxy and dicarboxylic derivatives (at x to x�5) identified by GC–MS in the
reactions of saturated and unsaturated fatty acids (from 12 to 20 carbons) with the peroxygenase (see Fig. 1 for chromatographic profiles and SD, Fig. S1 for chemical structures),
and x�1/x�2 ratio of the main (monooxygenated) products formed.

x OH x�1 OH x�2 OH x�3 OH x�4 OH x�5 OH x�1 keto x�2 keto di-OH OH-keto di-COOH x�1/x�2

C12 1.3 39.7 32.0 0.2 <0.1 <0.1 5.8 1.0 4.4 15.5 0.3 1.4
C12:1 3.3 37.4 59.2 0 0 0 <0.1 <0.1 0 0 0 0.6
C14 3.5 34.4 30.5 0.3 0 0 20.8 3.3 0.5 6.2 0.6 1.6
C14:1 1.8 0 94.6 0 0 0 0 3.6 0 0 0 0
C16 1.4 23.6 23.6 0.3 0 0 34.5 16.3 0 0 0.3 1.5
C16:1 2.5 35.7 47.0 0.1 0 0 10.4 4.4 0 0 0 0.9
C18 <0.1 22.7 27.0 0.1 0 0 32.8 17.0 0 0 0.5 1.3
C18:1 1.6 40.8 39.0 0.2 0 0 13.0 5.3 0 0 0 1.2
C18:2 1.0 50.2 33.5 2.5 0 0 10.0 2.9 0 0 0 1.7
C20 <0.1 16.0 28.1 0 0 0 38.7 17.3 0 0 0 1.2
C20:1 1.2 35.0 38.7 0.4 0 0 18.8 6.0 0 0 0 1.2
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The incorporation of 18O from H2
18O2 was also evidenced in the

mass spectra of the x�1 or x�2 hydroxylated derivatives of
myristic acid, formed in the same 1-tetradecanol reaction. The
mass spectral analysis showed that the characteristic fragments
for the (x�1) and (x�2)-hydroxylated derivatives of fatty acids
had �90% shifted from the natural abundance m/z 117 and m/z
131 to m/z 119 and m/z 133, respectively (spectra not shown)
due to peroxide 18O incorporation. Moreover, the characteristic
fragments for the x�1 at [M–CH3]+ had shifted from the natural
abundance m/z 373 found in the unlabeled peroxide reaction
(Fig. 6A) to m/z 379 (incorporation of three 18O atoms), m/z 377
(incorporation of two 18O atoms) and m/z 375 (incorporation of
one 18O atom) (Fig. 6C). Likewise, the characteristic fragments for
the x�2 at [M–CH3CH2]+ (including both the hydroxyl and car-
boxyl groups) had shifted from the natural abundance m/z 359
found in the unlabeled peroxide reaction (Fig. 6B) to m/z 365, m/
z 363 and m/z 361 (Fig. 6D). The relative abundances of the 18O
mono-, bi- and tri-labeled hydroxymyristic acid, estimated from
the corresponding fragment peak areas, are also included in
Fig. 6C (x�1 isomer) and Fig. 6D (x�2 isomer), together with their
formulae and fragment generation (0–2% unlabeled hydroxyacid
was also formed).

Alkane oxidation studies

Four saturated alkanes (dodecane, tetradecane, hexadecane and
octadecane) were tested as A. aegerita peroxygenase substrates (Ta-
ble 1). No reactivity with octadecane was observed under the
experimental conditions used. It should be noted that hydroxyl-
ation of fatty acids with the same chain length (C18) was observed.
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Fig. 4. GC–MS analysis of the peroxygenase reaction with tetradecanol, showing
the remaining fatty alcohol substrate (Alc), the corresponding fatty acid (Acd) and
its different x�1 and x�2 keto, and x to x�2 hydroxy derivatives formed (see SD,
Fig. S2 for chemical structures, and Table 1 for quantitative values). Other minor
compounds such as x�1 and x�2 keto and hydroxy derivatives of the tetradecanol
and traces of the aldehyde (Ald) are also shown.
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In contrast, the reactions with dodecane, gave monohydroxylated
derivatives at positions 2 and 3. In addition to the monohydroxylat-
ed derivatives, products dihydroxylated at the positions 2 and 3
from both ends of the molecule (i.e. a + 1 and x�1/x�2, or a + 2
and x�1/x�2) were identified as the predominant compounds.
Several combinations of keto and hydroxy derivatives were also
formed although in minor amounts (see SD, Fig. S3). Unlike that ob-
served in the reactions with fatty acids and fatty alcohols, terminal
hydroxylation was not general in the reactions with alkanes. Simi-
lar derivatives to those found for dodecane were obtained from
tetradecane and hexadecane although in lower amounts.

Steroid oxidation studies

Reactions of both free (cholesterol and sitosterol) and esterified
(cholesteryl butyrate, caprylate and linoleate) sterols with the A.
285

280 290 300 310

286

300287

100%

m/z

A

m/z 285
16OTMS

16O

Fig. 5. Mass spectra of myristic acid (C14), from peroxygenase reactions with 1-tetra
trimethylsilyl (TMS) derivatives, and formulae for the unlabeled compound found in A, an
their characteristic ions and relative abundances (10% unlabeled acid was also found in
aegerita peroxygenase were studied (Table 1). The enzyme showed
low reactivity with free sterols, and only a very low conversion
rates were attained under the experimental conditions used. The
reaction products of cholesterol were monohydroxylated deriva-
tives at positions C-24, C-25, and C-26 (or C-27) (see SD, Fig. S4A)
with monohydroxylated C-25 predominating (see SD, Fig. S4B). In
the reaction with sitosterol, only the monohydroxylated deriva-
tives at positions C-24 and C-25 were observed. On the other hand,
in the reactions with cholesterol esters no derivatives were
observed.

Triglyceride oxidation studies

In addition of testing the reactivity of free lauric acid and lauric
acid methyl ester, the peroxygenase reaction with a glycerol ester
of lauric acid (trilaurin) was also studied. Unlike the reaction of
free and methylated fatty acid, the triglyceride reaction did not
yield any product.

Discussion

A. aegerita peroxygenase and other heme-thiolate enzymes

Heme-containing enzymes using H2O2 as electron acceptor (per-
oxidases) are a fascinating group of biocatalysts with a variety of
ecological and biotechnological implications [9]. The current work
deals with one of the most novel hemeperoxidase types, the so-
called aromatic peroxygenase, that catalyze remarkable reactions
such as peroxide-driven oxygen transfer, together with typical per-
oxidase reactions, being part of a separate peroxidase superfamily
for which the name heme-thiolate peroxidases has been suggested
[4,9,16]. A similar heme pocket is shared by P450s and results in sim-
ilar ability to catalyze monooxygenation reactions, although P450s
use O2 as electron acceptor. However, the so-called ‘‘peroxide-
shunt’’ exceptionally operates in some of them [17], and an unusual
P450 being preferentially activated by H2O2 has been described [18].
The main difference between the P450s and peroxygenase reactions
concerns formation of the cofactor reactive Compound I, a porphyrin
(P) cation–radical Fe4+@O complex, that in peroxidases results from
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Fig. 6. Mass spectra of x�1 (A and C) and x�2 (B and D) monohydroxylated myristic acid (C14), from peroxygenase reactions with 1-tetradecanol in the presence of H2
16O2

(A and B) and H2
18O2 (90% isotopic purity) (C and D), as trimethylsilyl (TMS) derivatives, and formulae for the mono-, bi- and tri-labeled (top to bottom) compounds with

indication of their characteristic ions and relative abundances in the x�1 (C) and x�2 (D) isomers of hydroxymyristic acid (0–2% unlabeled product was also found).
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H2O2 generated by oxidases (as shown in Eq. (1) for the peroxygen-
ase reaction with 18O-labeled peroxide); while P450s directly react
with O2 receiving electrons from an associated flavoprotein (or a fla-
vo-domain) [4,19,20]. The subsequent reaction in normal peroxi-
dases involves successive one-electron abstractions from two
substrate molecules, while in P450 monooxygenases, and also in
peroxygenases, consists of a first hydrogen-atom abstraction (by
Fe4+@O) coupled to oxygen rebound with hydroxyl transfer to the
substrate (regenerating the neutral-porphyrin/ferric resting-state
enzyme) (Eq. (2)). The significant deuterium isotopic effect observed
in peroxygenase reactions [21] supports the hydrogen abstraction
mechanism.

P-Fe3þ þH2
18O2 ! P-Fe3þ½O—18OH�� þHþ ! Pþ�-Fe4þ

¼ 18OðC-IÞ þH2O ð1Þ

Pþ�-Fe4þ ¼ 18OðC-IÞ þH—R! ½P-Fe4þ—18O . . . H . . . R�

! P-Fe3þ þH18O—R ð2Þ

After the first aromatic peroxygenase discovered in A. aegerita
[2], similar enzymes have been isolated from other basidiomycetes
[4,10,22], and genes of heme-thiolate peroxidases have been iden-
tified in different basidiomycete genomes [23–25]. Analysis of the
sequences available to date suggests several sub-types in this
superfamily, the A. aegerita heme-thiolate peroxidase being close
to five heme-thiolate peroxidase genes identified in the Coprinopsis
cinerea genome. Interestingly, the best characterized heme-thio-
late peroxidase, the ascomycete L. fumago chloroperoxidase, does
not cluster together with the basidiomycete heme-thiolate
peroxidases. The present study shows that the extracellular
peroxygenase from A. aegerita, previously known as catalyzing
H2O2-dependent hydroxylations and halogenations of aromatic
substrates [1,2], is able to catalyze the regioselective oxygena-
tion/oxidation of different aliphatic compounds, strongly broaden-
ing the biotechnological interest of the enzyme, as shown by the
new patents deposited.
Oxygenation/oxidation of different types of aliphatic compounds by A.
aegerita peroxygenase

The A. aegerita peroxygenase shows prominent activity on a
wide range of fatty acids yielding a variety of monohydroxylated,
keto and dicarboxylic derivatives (and is also active on their
methyl esters). P450s also catalyze fatty acid hydroxylations, as re-
ported for Bacillus megaterium P450BM-3 [26]. Under certain con-
ditions, the monohydroxylated isomers from palmitic acid, unlike
those from lauric and myristic acids, were further metabolized
by P450BM-3 to secondary and tertiary (hydroxy-keto) products.
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In the peroxygenase reactions, oxidation of hydroxyfatty acids to
ketones, diols and hydroxy-ketones was observed with all the fatty
acids tested.

The A. aegerita peroxygenase also showed oxygenation activity
on fatty alcohols, alkanes and free sterols. The activity on alkanes
was the lowest among the simple aliphatic compounds assayed. Al-
kane hydroxylating activity was not observed in wild-type P450BM-
3 [27] but a variant after several rounds of directed evolution was
able to hydroxylate alkanes [28]. In the peroxygenase reactions with
fatty alcohols, most products were hydroxy or keto derivatives of the
corresponding fatty acids, and only a minor part of the fatty alcohols.
This differs from the reaction of 1-hexadecanol with P450BM-3,
where the only products identified were isomers of hexadecanediol
[27]. Moreover, no hydroxylation at the x position was observed,
while x-hydroxyfatty acids were identified here.

When the reactions with simple aliphatic compounds are taken
together, it becomes apparent that the A. aegerita peroxygenase
would be able to catalyze the stepwise oxygenation of fatty alco-
hols (or even alkanes) to keto and dicarboxylic acids via fatty alco-
hols and acids, including different hydroxylated intermediates. In
P450s, similar cascade oxidations are also produced, although the
variety of products formed is lower [29,30].

In the sterol reactions, the conversion rates were very low and
limited to the aliphatic side-chain. Maybe the side-chain enters
into the same site where alkanes are oxidized in the A. aegerita per-
oxygenase, while P450s have a specific site where steroids are effi-
ciently oxidized [31]. In contrast, the aliphatic chains in sterol
esters and triglycerides were not oxidized. Taking into account that
the same acids in free form (and also methyl laurate) are substrates
of the A. aegerita enzyme, there is seemingly a limitation in molec-
ular size concerning bulky substrate hydroxylation.

Regioselective oxygenation of aliphatic compounds by the A. aegerita
peroxygenase

The regioselectivity of A. aegerita peroxygenase oxygenation
reactions has been investigated here using C12 to C20 saturated
and unsaturated fatty acids, the main products being monohydr-
oxylated derivatives at the x�1 and x�2 positions. This regiose-
lectivity is seemingly not chain-length dependent, since when
length increased it did not shift between the x�1 and x�2 posi-
tions, or to contiguous positions. Hydroxylation of fatty acids has
been thoroughly studied for P450s, and both similarities and differ-
ences with the peroxygenase reaction patterns can be observed
[27,32–39]. P450BM-3 has been reported to convert lauric, myris-
tic and palmitic acids to their (x�1), (x�2) and (x�3)-hydroxy
derivatives [27,35] but, in contrast with that observed here, the
percentage distribution of the regioisomers depends on the chain
length (lauric and myristic acids being preferentially hydroxylated
at x�1, while palmitic acid is mainly hydroxylated at the x�2 po-
sition). Regioselectivity changes in P450 hydroxylations suggest a
‘‘more selective’’ active site where the substrate carboxyl group
is fixed at the entrance in such a way that the hydroxylation posi-
tion depends on the length of the fatty acid chain (Arg47 being in-
volved in fatty acid fixing at the P450BM-3 active site) [26,40,41].
In contrast, the active site of the A. aegerita peroxygenase seems
‘‘less selective’’ in substrate fixation, and hydroxylation is always
preferentially produced at the x�1 and x�2 positions, which are
more favorable than the x position from the viewpoint of chemical
reactivity.

With the A. aegerita peroxygenase, a highly regioselective reac-
tion was found for myristoleic acid (C14:1) that was hydroxylated at
the x�2 position, and not at the x�1 position. A similar situation
has been described in the oxidation of polyunsaturated arachidonic
acid (C20:4) by P450BM-3 (yielding 99% x�2 hydroxylation, 1%
x�3 hydroxylation, and no reaction at x�1) [36]. However,
hydroxylation of saturated fatty acids by P450BM-3, although pref-
erentially produced at the x�2 carbon, also yields substantial
amounts of x�1 and x�3 hydroxylated products. Therefore, it
seems that the arachidonic molecule imposes additional steric
requirements resulting in highly selective hydroxylation by
P450BM-3, and a similar situation would be produced in myristo-
leic acid oxidation by the peroxygenase.

Interestingly, a relationship between unsaturation and oxygen-
ation regioselectivity was observed in the peroxygenase reactions
with C12 and C16 fatty acids, the x�1/x�2 ratio shifting from
�0.8 in the unsaturated to �1.5 in the saturated fatty acids with
the same chain length. A similar result has not been reported in
P450 reactions. On the other hand, the A. aegerita peroxygenase
hydroxylates unsaturated fatty acids in a similar manner as the
saturated ones (preferential x�1 and x�2 oxygenation in all
cases). No epoxidation has been detected in these reactions in con-
trast with P450BM-3 that caused both hydroxylation and epoxida-
tion of unsaturated fatty acids [33,36]. The regioselectivity of the A.
aegerita enzyme was also the same for fatty acid methyl esters, but
these compounds were not hydroxylated by P450BM-3 [27].

In addition to main hydroxylation at x�1 and x�2 positions
(and x�3 to x�5 low hydroxylation), hydroxylated derivatives
at the terminal methyl group of the fatty acid chain were also iden-
tified that were subsequently converted to dicarboxylic acids, both
present in low amounts. In contrast, no x hydroxylation of fatty
acids was detected in P450BM-3 reactions [27]. However, some
particular P450s preferentially catalyze x hydroxylations, at the
most recalcitrant terminal methyl group [39].

The same regioselectivity observed for fatty acid oxygenation
was observed in the peroxygenase reactions with fatty alcohols
and medium-length alkanes, although the latter exhibited sym-
metric oxygenation at both ends of the molecule. P450BM-3 also
shows similar regioselectivity with fatty alcohols and with fatty
acids, but does not act on hydrocarbons.

Although the crystal structure of A. aegerita peroxygenase has not
been reported yet, homology modeling using the L. fumago chlorop-
eroxidase crystal structure [42] (PDB entry 1CPO) as template, sug-
gests a more exposed heme than in P450s [40]. A wider active site
would be able to accommodate the variety of substrates and perform
the variety of oxygenation reactions that peroxygenases are able to
catalyze. The crystal structure of the A. aegerita peroxygenase will be
soon available [43], and this will provide the opportunity to perform
a more detailed analysis of the structural bases of its regioselective
hydroxylation activity.

Mechanisms of substrate oxygenation/oxidation as revealed using 18O-
labeling

The most interesting catalytic property of the secreted A. aegerita
heme-thiolate peroxidase is the transfer of oxygen to substrate mol-
ecules, which has been described as a peroxygenase activity. Reac-
tions with H2

18O2 performed in this study revealed that the
oxygen introduced in the x�1 and x�2 hydroxylation of fatty acids
originates from H2O2 (90% 18O-labeling in myristic acid hydroxyl-
ation) and not from O2, as in similar reactions catalyzed by
P450BM-3 [26]. This difference is consistent with the different
mechanisms for Compound I formation in both enzymes, as well
as with the common mechanism of substrate hydroxylation by oxy-
gen incorporation from the Compound I iron–oxo complex (see Eqs.
(1) and (2) for peroxygenase reaction). 18O-labeling was very low
(only 10%) after hydroxyl oxidation to keto groups (during peroxy-
genase reaction with myristic acid) due to hydroxyl exchange with
water (in the keto hydration–dehydration equilibrium) after the
second hydroxylation yielding the gem-diol species.

The 18O-labeling reactions also showed that, in addition to its
presence in the hydroxyl (and keto) groups, the H2

18O2 oxygen also
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Fig. 7. Possible pathways for A. aegerita heme-thiolate peroxidase (HTP) oxidation of fatty alcohols (1) to the corresponding hydroxyfatty acids, as revealed using H2
18O2,

including: (A) Alcohol hydroxylation to a double 18O-labeled gem-diol species (2); (B) Direct oxidation of the gem-diol to a gem-triol intermediate (3) that irreversible
dehydrates yielding fatty acids (4 and 5) with simple (66%) or double (33%) 18O-labeling, which are enzymatically hydroxylated (at the x�1 position in the scheme) yielding
the corresponding hydroxyfatty acids (6 and 7); and (C) gem-diol dehydration yielding 18O-labeled (8) and unlabeled (9) fatty aldehyde that can exhibit variable hydroxyl
exchange with the solvent resulting in reduced 18O-labeling, before being successively hydroxylated by the enzyme yielding the same fatty acids (4 and 5) and hydroxyfatty
acids (6 and 7) as formed in B. In the experimental study, lower 18O-labeling percentages were obtained due to the 90% isotopic purity of the H2

18O2 used, which also resulted
in a low percentage of monolabeled carboxylate.
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incorporates into the carboxyl group during the oxidation of 1-tet-
radecanol to myristic acid (base peak m/z 285) and its x�1 and
x�2 hydroxylated derivatives (Fig. 7). In the first case, 18O-mono-
labeled (m/z 287) and 18O-bilabeled (m/z 289) fragments were ob-
served in the mass spectrum of myristic acid, whose integration
indicated 74% and 16% abundances, respectively. The 18O-labeling
pattern was more complex in the two hydroxylated derivatives
of myristic acid. Diagnostic 18O-monolabeled (m/z 375 and 361 in
the x�1 and x�2 derivatives, respectively), 18O-bilabeled (m/z
377 and 363), and 18O-trilabeled (m/z 379 and 365) fragments
were observed, whose integration indicated 7–9% simple labeling,
76% double-labeling, and 15% triple-labeling. In both cases (myris-
tic and hydroxymyristic acids from 1-tetradecanol), 18O-labeling at
the carboxyl group confirms that the oxygen incorporated during
aliphatic alcohol oxidation to the corresponding acid is also sup-
plied by H2O2 (peroxygenase activity). The relative abundances of
the differently labeled products are related to the reaction mecha-
nism commented below.

The first product of fatty alcohol oxidation by the peroxygenase
will be a gem-diol from C1 hydroxylation (Fig. 7A), which will be
either directly hydroxylated (even at the nascent stage) yielding a
gem-triol intermediate, irreversibly dehydrating to release the acid
group (Fig. 7B); or first dehydrated to the corresponding aldehyde
and then hydroxylated to the acid group (Fig. 7C). The predominant
simple-labeling of the carboxyl group in fatty and hydroxyfatty
acids (in the latter case accompanied by a second 18O atom at the hy-
droxyl group) indicates the existence of such dehydration step,
resulting in partial loss of the previously introduced 18O-labeling
and formation of both 16O and 18O carboxylic group. The same has
been shown in stepwise oxidations of ethanol by P450s [29,44].
The 18O-labeling patterns obtained, which are compatible with both
oxidation pathways mentioned above, reveal no extensive hydroxyl
exchange with the solvent at the aldehyde/gem-diol stage, which
was hardly detectable in the chromatographic analysis (only alde-
hyde traces found). In the former aspect, the reaction differs from
P450 cascade oxidation of hexadecanol, where complete 18O-hydro-
xyl exchange with the solvent is produced before the final oxidation
to palmitic acid, resulting in �2 ratio between unlabeled and 18O-
monolabeled palmitic acid [30]. Hydroxylation of the aldehyde form
was the mechanism suggested in the A. aegerita peroxygenase oxida-
tion of benzyl alcohol to benzoic acid, where, in contrast with that
observed here, the aldehyde accumulates in substantial amount
[45]. However, gem-triol intermediates are suggested in several
P450-catalyzed reactions, including oxygenation of some of the ali-
phatic compounds investigated in the present study [30].
Conclusions

The new A. aegerita peroxidase combines P450 and typical per-
oxidase properties, resulting in activation by peroxide and catalysis
of monooxygenase-type reactions (peroxygenase activity). De-
tailed GC–MS analyses revealed that this enzyme is able to oxi-
dize/oxygenate a variety of aliphatic compounds. Therefore, the
name ‘‘aromatic peroxygenase’’ should be substituted by ‘‘unspe-
cific peroxygenase’’ and the corresponding entry (EC 1.11.2.1) has
been accepted in the IUBMB Enzyme Nomenclature (www.chem.q-
mul.ac.uk/iubmb/enzyme). In spite of its classical peroxidative (i.e.
non-oxygenase) activity, H2

18O2 reactions indicated that the en-
zyme oxidizes aliphatic alcohols to the corresponding acids by
enzymatic hydroxylation and dehydration reactions, taking advan-
tage from its monooxygenase activity (also shown in fatty acid 18O
hydroxylation). Interestingly, most of the aliphatic oxygenations
catalyzed by the A. aegerita peroxygenase (resulting in new hydro-
xy and keto derivatives) are regioselective taking place at the x�1
and x�2 positions, irrespective of the aliphatic chain length
(myristoleic acid hydroxylation being only produced at the x�2
position). This regioselectivity, together with the self-sufficient

http://www.chem.qmul.ac.uk/iubmb/enzyme
http://www.chem.qmul.ac.uk/iubmb/enzyme
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oxygenase activity, make these new heme-thiolate peroxidases
interesting biocatalysts for oxidative modification of different ali-
phatic compounds.
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Fig. S1. Chemical structures of the main oxidation products identified in the 
peroxygenase reactions with fatty acids, including ω to ω-5 hydroxylated
derivatives, ω-1 and ω-2 keto derivatives, and dicarboxylic fatty acids. 
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