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Institute, University of Wollongong, Wollongong, NSW, Australia

ABSTRACT
Background: Early and objective prediction of functional outcome after stroke is an important
issue in rehabilitation. Electroencephalography (EEG) has long been utilized to describe and
monitor brain function following neuro-trauma, and technological advances have improved
usability in the acute setting. However, skepticism persists whether EEG can provide the same
prognostic value as neurological examination.
Objective: The current cohort study examined the relationship between acute single-channel EEG
and functional outcomes after stroke.
Methods: Resting-state EEG recorded at a single left pre-frontal EEG channel (FP1) was obtained
from 16 adults within 72 h of first stroke. At 30 and 90 days, measures of disability (modified
Rankin Scale; mRS) and involvement in daily activities (modified Barthel Index; mBI) were
obtained. Acute EEG measures were correlated with functional outcomes and compared to an
early neurological examination of stroke severity using the National Institute of Health Stroke
Scale (NIHSS). Classification of good outcomes (mRS ≤1 or mBI ≥95) was also examined using
Receiver Operator Curve analyses.
Results: One-third to one-half of participants experienced incomplete post-stroke recovery,
depending on the time point and measure. Functional outcomes correlated with acute theta
values (rs 0.45–0.60), with the strength of associations equivalent to previously reported values
obtained from conventional multi-channel systems. Acute theta values ≥0.25 were associated with
good outcomes, with positive (67-83%) and negative predictive values (70-90%) comparable to
those obtained using the NIHSS.
Conclusions: Acute, single-channel EEG can provide unique, non-overlapping clinical information,
which may facilitate objective prediction of functional outcome after stroke.
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Introduction

Stroke is associated with immediate brain changes
resulting from the suppression of oxygen and glu-
cose supply, including a biochemical cascade that
can lead to cell death and cerebral infarction.1–3

Electroencephalography (EEG) is sensitive to the
effects of these acute changes in cerebral blood
flow4,5 and neural metabolism.6,7 Such changes can
be identified through the disruption or deterioration
of normal electrical activity within the four classical
frequency bands: delta, theta, alpha, and beta. Delta
and theta are primarily associated with a low state of
arousal, and a prominence of these slow frequency
waves is reported in individuals with neurological

disease or injury.8 Faster frequency alpha waves are
associated with a state of relaxation and readiness,
while beta waves mainly occur when an individual is
actively engaged in mental effort.8 In particular, EEG
obtained in the acute stage after stroke (i.e. <72 h) is
often associated with the rapid appearance of slow
delta frequency waves and attenuation of faster alpha
frequency activity.9–13

Acute post-stroke EEG has demonstrated prog-
nostic value, strongly correlating with 30–9,10 and
90-day12–16 mortality and morbidity. EEG measure-
ments derived from frontal electrodes may be parti-
cularly sensitive predictors of clinical outcome,14

suggesting an alternative to conventional multi-
electrode arrays, with lengthy set-up times that are
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not well tolerated by acute neurological patients.17,18

Correspondingly, a single-channel, prefrontal EEG
system, offering rapid fitting and calibration proce-
dures, is capable of detecting associations between
acute brain states and later cognitive performance,19

and in discriminating various forms of ischemia.20

However, the utility of single-channel EEG in pre-
dicting post-stroke functional outcomes remains
unclear.

Early and accurate prediction of functional out-
comes is important to support patients and their
families, and guide rehabilitation planning.21 The
aim of the current study was to examine the prog-
nostic value of acute, single-channel EEG with
respect to 30 and 90-day functional outcome. It
was hypothesized that a single prefrontal channel
of EEG data collected within 72 h of a first stroke
would correlate with standardized scales of disabil-
ity (modified Rankin Scale; mRS) and daily living
(modified Barthel Index; mBI), commonly used to
assess stroke outcomes.22,23 The predictive
strength of acute EEG was expected to be compar-
able to that of a gold-standard stroke severity
prognosis tool, the National Institute of Health
Stroke Scale (NIHSS).24

Materials & methods

Participants

From July 2014 to December 2015, 16 consecutive
patients admitted to the acute stroke ward of
a tertiary hospital in Sydney, Australia were
recruited for participation. Patients admitted within
72 h of a first-ever stroke were eligible for partici-
pation. Time of stroke onset was defined as the last
time the participant was seen without stroke symp-
toms, as indicated in the medical records. Exclusion
criteria included a previous history of neurological
or psychiatric disorder, non-English speaking, or
<18 years of age.

Outcome measures

Baseline stroke severity was quantified with the
NIHSS,24 an 11-item scale assessing level of conscious-
ness, visual, motor, sensory, and language function.
Higher scores (max = 42) indicate more severe symp-
toms. The mRS and mBI were collected to monitor

post-stroke functional outcomes. The mRS25 mea-
sures global disability on a scale of 0 (no symptoms)
to 6 (deceased), with higher scores reflecting poorer
outcome. The mBI26 assesses 10 domains of daily
living (bowel control, bladder control, grooming, toi-
let use, feeding, transfers, walking, dressing, climbing
stairs, and bathing), with lower scores (range 0–100)
indicative of greater dependence.

EEG data acquisition and analysis

Continuous EEG was obtained with the mind-set
device (NeuroSky, San Jose, California), a single-
channel, wireless headset with demonstrated concur-
rent validity18 and re-test reliability.27 The mind-set
device (Figure 1) consists of a ThinkGear microchip
and firmware, 10 mm dry stainless steel active elec-
trode, and material reference and ground electrodes
contained within a set of headphones. The reference
and ground electrodes are housed within the left ear
pad, while the EEG electrode is embedded in
a flexible arm extending from the left headband,
positioned at the International 10–20 system site
FP1. Electrical potentials at the active and reference
electrodes are subtracted through common-mode
rejection to derive a single EEG channel signal
which is amplified 8000 times. Sampling and ampli-
fication of the raw 128 Hz data are carried out within
the embedded microchip and transmitted wirelessly
by Bluetooth© to a computer for recording and
subsequent off-line quantitative analysis.

Using SCAN Edit version 3 software
(NeuroscanTM, USA), the raw EEG waveform data
were band-pass filtered (0.5–30 Hz) and manually
inspected to identify anymovement ormuscle artifact.
Identified sections of artifact were excluded from
further processing. Remaining epochs containing
amplitudes in excess of ± 100 µV were removed
using an artifact rejection filter included in the
SCAN software. Artifact-free 4-sec EEG epochs (1/4
Hz resolution) were submitted to a Fast Fourier
Transform with 10% Hamming window to extract
the absolute power in the delta (1.5–3.5 Hz), theta
(3.5–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–25
Hz) frequency bands. Relative power was calculated
by summing absolute power across the four bands to
compute total power, and then dividing the absolute
power for each individual band by the total power,
expressed as a percentage. EEG ratios previously
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reported in the acute stroke literature, including delta/
alpha ratio (DAR),13 delta/theta ratio (DTR),19 and
delta+theta/alpha+beta ratio (DTABR),28 were also
computed by summing and dividing the relative
power of the relevant frequency bands.

Procedure

The NIHSS and continuous EEG recordings were
obtained at hospital bedside. After minimizing signal
impedance from the electrode, participants were
asked to close their eyes and relax for the 3-min
EEG recording session. At 30- and 90-days post-
ictus the mRS and mBI were collected, with order
counterbalanced. The research team were blind to
acute EEG results until analysis of the follow-up
outcomes of all participants commenced. This
research was approved by University and Hospital
Human Research Ethics Committees, and each par-
ticipant (or their carer/substitute decision maker)
provided written informed consent. The final

manuscript was prepared in accordance with the 22-
items of the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE)
guidelines.29

Statistical analysis

Spearman Rank Order Correlations (rs) were calcu-
lated to test the relationship between EEG measures
and NIHSS data and the ordinal mRS, and mBI out-
comes at 30 and 90 days. A bootstrapping method
(sampled 1000 times) was used to estimate popula-
tion parameters and calculate 95% confidence inter-
vals, bias corrected and accelerated (BCa). One-tailed
p values were selected to test directional a priori
hypotheses. All analyses were completed with IBM
SPSS Statistics for Windows version 23 (IBM Corp.,
Armonk, N.Y). Receiver Operator Curve (ROC) ana-
lyses were conducted using GraphPad Prism version
7 for Windows (GraphPad Software Inc, La Jolla,
CA) to determine optimal EEG and NIHSS criterion

Figure 1. The NeuroSky mind-set consists of a single electrode embedded in a flexible arm extending from the left side of a pair of
headphones (Image available via Creative Commons License BY-NC-SA 4.0).
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cutoffs for classifying post-stroke outcomes. Good
outcomes were defined as an mRS ≤1 or mBI
≥95.22,23,30

Results

Demographic and descriptive information

Complete baseline and follow-up data were col-
lected from 16 right-handed participants (9 males
and 7 females), with an average age of 66 ± 17
years (range 33–93 years). The majority exhibited
minor to moderate neurological impairment
(81%), as classified by the NIHSS on admission
(range 0–10), and had sustained an ischemic
stroke (75%). EEG was obtained at bedside within
the first 20–72 h (mean 47 ± 21 h). Participants
were subsequently followed up on average 37 ± 8
days and 96 ± 7 days post-ictus. See Table 1

for additional demographic and baseline clinical
characteristics.

Disability and functional outcomes

At 30 days, 44% of participants had a poor dis-
ability outcome (mRS >1) and 38% had a poor
daily functioning outcome (mBI <95). By 90-days
post-stroke, the proportion experiencing a poor
disability outcome had increased to 50%. In con-
trast, the proportion experiencing a poor daily
functioning outcome had decreased to 31%.
Baseline NIHSS significantly correlated with the
mRS and mBI at 30 and 90 days (Table 2), with
lower NIHSS scores (less neurological impair-
ment) associated with less disability (lower mRS
scores) and superior daily functioning (higher mBI
scores). Other demographic and clinical character-
istics (i.e. age, gender, years of education, stroke
type, stroke hemisphere) were not significantly
associated (p > .05) with outcomes.

EEG prediction of functional outcomes

Relative power in the theta band significantly corre-
lated with mRS and mBI outcomes at 30 and 90 days
(rs range 0.45–0.60), with lower theta values asso-
ciated with greater disability (higher mRS scores)
and dependence in daily activities (lower mBI
scores). Relative power in the delta, alpha, and beta
bands, and the EEG ratios DAR, DTR, and DTABR,
were not correlated (p > .05) with either outcome
measure at either time point (Figure 2).

Baseline theta and NIHSS were not correlated
[rs = −0.42 (95% BCa CI −0.83–0.12), p = .11]. For
both the NIHSS and relative theta power, the

Table 2. Spearman’s rho correlations of prognostic EEG and functional outcome variables (mBI 0–100; mRS 0–6).
NIHSS RP Theta 30-day mRS 30-day mBI 90-day mRS 90-day mBI

NIHSS 1.00 −0.42
[−0.80, 0.07]

0.87**
[0.73, 0.94]

−0.66**
[−0.87, −0.32]

0.74**
[0.39, 0.93]

−0.59**
[−0.86, −0.06]

RP Theta 1.00 −0.54*
[−0.88, −0.08]

0.60**
[0.07, 0.86]

−0.53*
[−0.86, 0.01]

0.45*
[−0.03, 0.79]

30-day mRS 1.00 −0.78**
[−0.93, −0.49]

0.86**
[0.67, 0.96]

−0.79**
[−0.95, −0.39]

30-day mBI 1.00 −0.69**
[−0.92, −0.28]

0.82**
[0.56, 1.00]

90-day mRS 1.00 −0.83**
[−0.94, −0.45]

90-day mBI 1.00

Note: *p < 0.05 (one-tailed). **p < 0.01 (one-tailed). Bootstrapped 95% confidence intervals reported in brackets. EEG: electro-
encephalography; mBI: modified Barthel Index; mRS: modified Rankin Scale; NIHSS: National Institute of Health Stroke Scale.

Table 1. Demographic and neurological characteristics of
participants.
Agea 65.75 (16.98), 33–93
Genderb

Male 9 (56)
Female 7 (44)

Education Levelb

≤ 12 years 10 (62)
> 12 years 6 (38)

Baseline NIHSS scorea 6.56 (6.45), 0–18
Minor (< 5)b 7 (44)
Moderate (5–15)b 6 (38)
Moderately severe (16–20)b 3 (18)

Ischemic Strokeb 12 (75)
Hemorrhagic Strokeb 4 (25)
Left-sided lesionb 7 (44)
Right-sided lesionb 9 (56)
Time to EEG recording (hours)a 46.63 (20.63), 20–72
30 day follow-up (days)a 37.06 (8.23), 28–45
90 day follow-up (days)a 95.56 (7.15), 88–111

aMean (SD) range; bNo (%). Note: EEG: electroencephalography; NIHSS:
National Institute of Health Stroke Scale.
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strength of association with outcomes diminished
over the 30- to 90-day interval (Table 2). ROC ana-
lysis consistently identified a theta band criterion
cutoff of 0.25 as optimal for classifying post-stroke
outcomes (Table 3). Participants with theta values
≥0.25 were more likely to have an mRS score ≤1
(good outcome) at 30 days (p = .04), and an mBI
score ≥95 (good outcome) at 30 (p < .01) and 90 days
(p = .05). The cutoff failed to reach significance (p =
.09) for 90-day mRS scores. The sensitivity and spe-
cificity of the relative power theta criterion cutoff
was comparable to results obtained using an
NIHSS cutoff score of ≤6 (Table 3).

Discussion
EEG has long been available to monitor the effects
of acute ischemic1,31 and hemorrhagic32,33 stroke.
However, broad adoption of EEG into acute stroke
clinical care remains limited,34 and skepticism
remains about whether EEG provides the same
prognostic value as neurological examination or
imaging studies.7,35 Recent technological advances
in wireless EEG have improved usability and
streamlined data analysis. The current study there-
fore examined the capability of acute, single-
channel EEG biomarkers to predict the effects of
stroke on sub-acute functioning, compared with

Figure 2. Absolute values of the strength of association (Spearman’s rho) between EEG parameters and function outcome measures. *Only
correlations with relative theta power were statistically significant (p < .05). Note: mBI: modified Barthel Index; mRS: modified Rankin Scale.

Table 3. Optimal receiver operator curve criterion cutoffs for classifying good post-stroke functional outcomes (mRS ≤1; mBI ≥
95).
Criterion and EEG Threshold AUC p value Sensitivity Specificity PPV NPV

30-day mRS ≥ 0.25 0.81 0.04 71.4% 88.9% 83.3% 80.0%
30-day mBI ≥ 0.25 0.90 <0.01 83.3% 90.0% 83.3% 90.0%
90-day mRS ≥ 0.25 0.75 0.09 62.5% 87.5% 83.3% 70.0%
90-day mBI ≥ 0.25 0.82 0.05 80.0% 81.8% 66.7% 90.0%
Criterion and NIHSS Threshold
30-day mRS ≤ 6 0.98 <0.01 85.7% 100% 100% 90.0%
30-day mBI ≤ 6 0.90 <0.01 83.3% 90.0% 83.3% 90.0%
90-day mRS ≤ 6 0.84 0.02 71.4% 88.9% 83.3% 80.0%
90-day mBI ≤ 6 0.87 0.02 80.0% 81.8% 66.7% 90.0%

Note: AUC: area under curve; EEG: electroencephalography; mBI: modified Barthel Index; mRS: modified Rankin Scale; NIHSS: National Institute
of Health Stroke Scale; NPV: negative predictive power; PPV: positive predictive power.
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conventional neurological assessment using the
NIHSS. Results showed that for a sample of
patients suffering a first stroke, acute EEG pro-
vided a unique predictor of outcomes, uncorre-
lated with the NIHSS. Insights regarding the
performance of the NIHSS and EEG as possible
assessment tools for predicting functional out-
comes after stroke are discussed, in turn, below.

Acute NIHSS prognosis

In the current study, NIHSS scores ≤6 were asso-
ciated with goodmRS (≤1) and mBI (≥95) outcomes
at follow-up (positive predictive power 67–100%;
negative predictive power 80–90%). Higher NIHSS
scores were associated with poorer functional out-
comes. There is limited consensus regarding the
optimal NIHSS cutoff: some reports suggest that
scores up to 8–10 are associated with a more favor-
able outcome,36–38 while others support thresholds
as low as 2–4 after stroke.39–41 The current threshold
fits within these upper and lower bounds.

Several weaknesses of the NIHSS are evident when
examining its value as a prognostic measure. First, it is
not always possible to reliably assess neurological sta-
tus with a behavioral examination because specific
deficits are not always noticeable upon observation,42

particularly in acute patients with minimal or fluctu-
ating levels of consciousness. Second, as NIHSS scores
are derived from behavioral observation, they are sus-
ceptible to examiner background, training, and
experience.43,44 Third, the NIHSS has been criticized
for its complexity,45 with items of poor inter-rater
reliability (ataxia)43 or questionable face validity
(dysarthria).46 Fourth, baseline NIHSS assessment
may not be the optimal time point for predicting
functional outcomes,36,47,48 given variability in clinical
observations over the first 24 h after a stroke.49,50

These weaknesses may explain the alarmingly low
NIHSS completion rates (12–28%) in acute stroke
settings.51,52 Overall, the assessment validity and prog-
nostic value of performing a neurological examination
in isolation has been challenged by the view that other
assessment methods and measures be included,53 like
concurrent physiological observations such as EEG.54

Acute EEG prognosis

Capitalizing on advances in EEG hardware and soft-
ware, the current study demonstrated that a single pre-
frontal channel of EEG can yield metrics that predict
functional outcomes to a level comparable to that
obtained using theNIHSS. Stroke survivors exhibiting
acute attenuation of relative theta power subsequently
demonstrated greater disability and dependence at 30
and 90 days. Frontally distributed theta typically fea-
tures prominently at rest in healthy individuals,27,55,56

with higher resting theta power identified as
a biomarker of healthy aging,57 and greater likelihood
of a benign course after acute stroke.58 In contrast,
acute post-stroke reductions in theta are associated
with unfavorable stroke outcomes and may reflect
brain changes occurring as a result of hypoperfusion
below an ischemic threshold.20

The corollary was that stroke survivors who exhib-
ited acute relative theta values ≥0.25 tended to experi-
ence good 30- and 90-day functional outcomes, as
measured by anmRS≤1 or anmBI score≥95 (positive
predictive value 67–83%, negative predictive value
70–90%). For the other participants who fell below
this threshold, post-stroke recovery was incomplete,
with long-term follow-up studies suggesting that the
observed restrictions in self-care and physical function
were likely to be persistent, and accompanied by
diminished participation and lower health-related
quality of life.59,60

The mRS and mBI are the two most common
instruments used in stroke outcome studies,23,61,62

and the strength of these preliminary prognostic rela-
tionships to acute single-channel EEG data is promis-
ing. Specifically, using commonly accepted cutoff
values to define good and poor outcomes,22,23,30 the
predictive utility of acute theta values derived from
just a single pre-frontal EEG electrode were compar-
able to a gold standard prognostic tool. Unlike the
NIHSS, acquisition of EEG data is less likely to be
susceptible to examiner bias and experience.

Correlations between acute EEG data and sub-
acute outcomes in the current study (rs 0.45–0.60)
were also equivalent to those reported by recent
studies14,15,19,28,63–65 using conventional, multi-
channel arrays (rs 0.35–0.66; Table 4). It is unclear
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why earlier EEG studies9,10,12 reported stronger
associations with post-stroke functional outcomes
(rs 0.80–0.91) than our study or contemporary
multi-channel research. However, in an advance-
ment over both recent and older EEG research, the
current study examined both disability and parti-
cipation outcomes. While measures of disability
have traditionally been the primary focus of prac-
titioners, outcomes of participation in age-
appropriate activities and valued roles are typically
of most importance to patients and their
families,66 and should also be measured.67,68

Whereas earlier EEG studies have typically
reported significant correlations (r 0.33–0.90)
between early EEG and NIHSS values,10,28,34,64,69

our study found no relationship between baseline
NIHSS and relative theta power, suggesting EEG
can provide non-overlapping clinical information
regarding brain function not captured by
a neurological exam.63 The localized recording para-
digm in the current study may have contributed to
this null finding, but this hypothesis requires delib-
erate testing.

Limitations

This study is based on a moderate sample of 16
participants. This sample size was comparable with
earlier studies in the area,9,10,14,15,19,63,70 and pro-
ducedmedium to large correlations (r values ranging
from 0.42 to 0.87),71 which suggests that our study
was adequately powered. However, replication in
a larger sample is encouraged to allow an analysis
of potential moderators of good and poor functional
outcomes (e.g. age, gender, medical comorbidities,
time to treatment, premorbid history),72 and to
enhance the generalizability of results. In particular,
the current cohort was predominantly of mild to
moderate severity, due to ischemic stroke. While
these characteristics are representative of the natural
incidence of stroke,73,74 it is uncertain how current
findings apply to hemorrhagic stroke and patients
with severe neurological deficits at baseline.
Notwithstanding this, even individuals with ‘‘minor
strokes’’ (e.g. NIHSS <5) experience significant pro-
blems that impact their relationships with others,
return to valued roles, and reintegration into
society,39,75 as such, it is important to identify tools
sensitive to their outcomes as well. As well, the

merging of clinical and neurophysiological data
with neuroimaging information may enhance out-
come prediction,76 however, this was not examined
in the current study.

In regard to outcome measurement, the domain
validity of both the mBI and mRS has limitations.
The mBI only examines functional independence in
self-care.77 Similarly, while the mRS is one of the
most widely used instruments in stroke research,61

outcomes based on this instrument should be dis-
cussed in reference to physical disability and need for
physical assistance.78 The current battery could be
supplemented by other instruments to provide
a holistic examination of participation in instrumen-
tal activities of daily living and quality of life.79

Conclusions

Biomarkers of brain function that are derived from
a single pre-frontal channel of EEG data are asso-
ciated with post-stroke functional recovery. Indeed,
the explanatory power of the EEG metric is largely
independent to that provided by a neurological
exam. This acute EEG data compares well with prog-
nosis based on initial stroke severity but has the
advantage of being unaffected by subjective interpre-
tation of clinical observations using NIHSS ratings.
Due to the multifactorial nature of functional recov-
ery, a single parameter is unlikely to be sufficient to
define and predict individual outcomes. Overall,
these preliminary results re-affirm EEG can uniquely
inform understanding of the clinical course follow-
ing stroke,80 and could be used in conjunction with
a neurological exam. Larger scale studies are encour-
aged to further examine the potential for single-
channel EEG data to augment early prediction of
post-stroke outcomes, and to isolate moderators.
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