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Abstract

Much research on fractions has concentrated on the sub-constructs of measure, quotient,
operator and ratio from Kieren's model of coordinated fraction knowledge (Kieren, 1980). In
the primary school, partitioning, equivalence and unit-forming also can be used to describe
children's approaches to fraction tasks (Kieren 1988, 1992, 1993, 1995). Given the approaches
used to teaching fractions, other areas of the curriculum such as multiplicative thinking,

measurement and spatial knowledge could affect students' understanding of fractions.

In one-to-one interviews, 88 Grade 6 students were asked 65 questions designed to ascertain
their understanding of fraction, measurement, geometry and/or visualisation, and
multiplication concepts. The students' answers and explanations were recorded on a record

sheet at the time of interview and audio- and video-recording enabled later detailed analysis.

The associations between four categories based on Lehrer's key concepts (2003) for spatial
measurement (attribute, additivity, units, and proportionality) and the measure sub-construct
of fractions were analysed. The measure sub-construct was assessed using number lines,

fraction comparison tasks, and length and area diagrams.

From detailed examination of students' explanations, insights into misconceptions were
gained. Gap thinking in fraction pair size comparisons was discovered to be triggered at the
same time as equivalence understanding began. The limitations of a part-whole double count

approach to fractional area diagrams was noted.

Further, Kieren's four-three-four model (1988, 1992, 1993, 1995) describing coordinated
fraction knowledge for analysing students' fraction understanding at the upper primary school
level was evaluated. Use of the model enabled descriptions of students' responses to tasks to
be placed in a framework of understanding which connected these three underlying concepts

and the four sub-constructs.
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Chapter 1: Introduction

This thesis is about a conceptual link between fraction and measurement understanding. It is a
qualitative inquiry that seeks to investigate students' performance on fraction and
measurement tasks as well as analyse the strategies that they offer in their explanations of
their answers. It is an interpretive study that examines students' explanations and uses
descriptive statistics to quantify associations between fraction and measurement constructs. In
the present study, I conducted one-to-one task-based interviews with 88 Grade 6 students,
offering 65 tasks that assessed their understanding of length and area measurement, dynamic
imagery, multiplication, and fraction understanding. Each student was interviewed for up to
three hours over several sessions, and my record sheets of the students' responses at the time,
and subsequent transcripts of audio and video data, enabled me to classify their answers and
explanations. Criteria for task selection focused on key concepts of measurement and key
concepts of fraction understanding articulated by frameworks in the research literature.
Correlations between these categories were calculated. The interpretation and implications of
students' strategies (correct strategies and misconceptions), correlations between measurement
and fraction understanding, and the explanatory power of Kieren's framework for fraction
understanding (1995), are discussed in later chapters. In this chapter, I will outline the
background to the study, present the research questions that developed out of my synthesis of
the research literature, and provide a guide to the structure of the thesis by outlining the

chapters to come.

1.1 Background to the Study

For students, fractions form the basis for other mathematical understandings, and underpin the
development of proportional reasoning and later topics in mathematics, including algebra and
probability. Researchers have suggested that
e to be able to think proportionally was a turning point in mental ability (Cramer,
Post, & Currier, 1993),
e fractions led to proportional reasoning in ratios, rates, probability, percentages,
and operators (Ohlsson, 1988), and
o the ability to see constants and variables developed from the ability to recognize

proportional relationships (Lamon, 1999).
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Hence fractions and decimals, as topics in themselves, were regarded as an enduring and

important part of the primary and junior secondary mathematics curriculum (Lamon, 1999).

At the heart of this thesis is an interest in how children understand fractions. Before I began
this thesis I was a teacher searching for
e a vocabulary to talk about fractions to students that would enable them to move
towards an understanding of proportional reasoning,
e cexamples of tasks that would enable students to articulate the salient aspects of
different representations of fractions,
e knowledge about how to have conversations with students so that they could
generalise from one fraction task to another and recognise misconceptions,
e deeper personal knowledge of how different domains in mathematics intersect
with fraction learning, and
e research-based discussion on the effect on children's understandings of fractions if
less teaching time was given to the space and measurement domains in school
mathematics term planners.
However, before I could answer the questions concerning classroom practice [ needed to start
with the more fundamental question: what are the understandings of fractions, space, and

measurement of primary school children?

Curriculum documents provided a snapshot of the learning outcomes suggested for different
grade levels in all domains of mathematics. These outcomes and the explicit and implicit
strategies that they privilege changed over time. For example, the strategies for the
comparison of the relative size of fractions have been revised three times in the last fifteen
years in curriculum documents for Victorian schools. In the Curriculum Standards
Framework (Board of Studies, 1995), children at the end of Level 4 (Grade 6) were expected
to use common denominators to "compare and order fractions with different denominators
(for example, using equivalent fractions)" (p. 46). A decade later, in a draft document of the
(then) forthcoming Victorian Essential Learning Standards (Department of Education &
Training, 2005), the common denominator procedure was described as one of several
strategies that students should develop in order to work with fractions. Other strategies were
described but not explicitly named. For example, students should "accurately estimate the size
of fractions and decimals in the vicinity of 0 and 1 relative to 0, 1/2 and 1" (p. 23). In the
research literature this strategy had been called the transitive strategy or reference point

strategy in the United States (Behr, Wachsmuth, Post, & Lesh, 1984) and benchmarking in
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Australia (Clarke & Roche, 2009). However, in the 2006 revised curriculum document, this
benchmarking strategy was omitted (Department of Education & Training, 2006). Instead,
neither common denominators nor benchmarking were mentioned as strategies to be used by
Grade 6 students. They were to "use estimates for computation, and apply criteria to
determine whether estimates are reasonable or not" (p. 23), but no elaboration of the strategies
to be used (or taught) was provided. In the Victorian Essential Learning Standards,
conceptual understandings were implicitly part of the curriculum because to make a
reasonable estimate children would use strategies and number sense rather than a rote
understanding of common denominator procedures. What was lost in the 2006 revision of the
2005 draft was the explicit inclusion of strategies that would guide the teaching and learning
decisions made by practicing teachers. Without this explicit elaboration of useful strategies, a

chance to provide examples of an understanding of fractions was lost.

There were several different misconceptions in children's fraction understanding that had been
reported in the research literature. One misconception was confusing the number of pieces
with the size of the fractional parts (Carrahar, 1996; Saxe, Taylor, McIntosh, & Gearhart,
2005). The double count — number of pieces shaded over number of pieces altogether- did not
form a good basis for further knowledge (Kieren, 1993). The double count of shaded and
unshaded parts became a misconception when students used this strategy for non-equal-parts

diagrams, and this was described as the double count misconception.

In collecting some fraction assessment tasks from the research literature in order to pilot a
one-to-one task-based fraction interview for my Master's project, I was interested in the types
of factors that had impressed me as a classroom teacher when using the Early Numeracy
Interview (Clarke et al., 2002; Department of Education & Training, 2001). These included
the affective response of the children, the opportunity for students to self correct, and the
finding that some children in my Grade 5/6 class had discarded strategies that used number
sense in favour of algorithms (sometimes faulty). I interviewed Grade 5 students and asked
them to identify Parts B and A in a circular model that had unequal sections (see Figure 1.1).
This task had been designed to elicit the double count misconception if it were present
(Cramer, Behr, Post, & Lesh, 1997). Some children named Part A as /s instead of '/ of the
whole circle because it was one out of five parts (Mitchell & Clarke, 2004), demonstrating the
double count misconception. However, some children gave the answer of '/s but had been
comparing the smaller part (Part D) to the quarter (Part B), and had estimated /s as being

smaller than '/, They were not therefore demonstrating the double count misconception.
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Children could give an incorrect answer with incorrect mathematical thinking or an incorrect
answer but have a partially correct mathematical approach (M. Clements & Ellerton, 2005).
The interview had revealed this distinction between a double count explanation or an

estimation explanation, both with an answer of '/s.

Figure 1.1. Fraction Pie task.

The use of length and area concepts in fraction tasks was of interest to me, and I investigated
this using the Fold Me a Quarter task, in a Teacher Professional Leave study in 2005 (see
Figure 1.2). I interviewed Grade 5 and Year 8 children using a one-to-one task-based
interview and asked them to fold a square of paper into quarters, and then another identical
square of paper into quarters another way (Mitchell, 2005). I then showed them two squares
the same size as those they had just folded that were partitioned into square and triangle
quarters (see Figure 1.2). I asked them which shaded piece, A or B, would give them more.
Some children identified the triangle quarters as having "more" than the square quarters
despite the large squares (or whole) being the same size. My experience as a teacher was that
students have often been presented with length and area diagrams in fraction tasks or to
support fraction activities. In short, children were often given fraction tasks in visual forms.
To solve such tasks children had to interpret the diagram and work with the fraction content
of the task. To do this they had to draw upon fraction knowledge and/or length and/or area
knowledge, and/or properties of shape and/or the ability to mentally move parts of the
diagram around. If students answered fraction tasks incorrectly, teachers might not know
whether it was a lack of the fraction knowledge needed to complete the task, or whether the
students did not have the measurement or spatial knowledge to complete the task successfully.
This was reinforced by my analysis of the Fold Me a Quarter task and I suggested that some

children did not have complete conservation of area (Mitchell, 2005).




Figure 1.2. Representation of two papers folded into quarters and labelled.

The research literature had provided examples of fractions tasks that required conceptual
understanding, such as the Fraction Pie (see Figure 1.1) and these could be used to elicit
children's strategies. Kieren's five sub-constructs of rational number (1980) had framed my
Master's project as well as my Teacher Professional Leave project. These five constructs were
part-whole, measure, quotient, operator, and ratio. Kieren modified this model (1988, 1992,
1993, 1995) and

e incorporated part-whole into the other four sub-constructs,

e added three underpinning concepts: partitioning, equivalence, and unit-forming, and

e claborated four levels of response to the concepts/sub-constructs: ethnomathematical,

intuitive, technical-symbolic, and axiomatic deductive.

I have termed this later version the four-three-four model and discuss it in depth in section
2.1.5. Kieren also argued that leftover parts of units in measurement contexts were described
using rational numbers (1976, 1980, 1988, 1992, 1993, 1995). In order to pursue my interest
in children's strategies for solving fraction tasks, the link between fractions and measurement,
and the importance of research-based frameworks for one-to-one interviews, I took leave from

my teaching position and began my PhD in 2005.

1.2 Research Questions

Three questions emerged from the review of the literature:

e What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?

e s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?

e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?
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These questions can be linked to very broad concerns in the mathematics education field.
Firstly if we embrace constructivist learning then we are faced with the enormity of the role of
the teacher in responding to the variety of correct and incorrect strategies that a class of
children bring to every task. The elaboration of the variety of mathematical strategies is part
of developing the ability of members of the teaching profession to embrace these learning
contexts. Secondly, if we believe there to be a conceptual link between fractions and
measurement, then uncovering an association in children's performance in these two domains
raises issues for the design of the curriculum. Thirdly teachers in Victorian schools are using
one-to-one task-based interviews as a normal classroom pedagogical tool (Department of
Education and Early Childhood Development, 2009b; Department of Education & Training,
2001). If one-to-one interviews are supported by a sound connection to a theoretical
framework then teachers are able to interpret and classify the detailed individual responses,
use this as formative assessment and link this to classroom practice. Investigating the
explanatory power of Kieren's four-three-four model (1988, 1992, 1993, 1995) contributes to
this larger picture of making one-to-one task-based interviews a usable teaching strategy.
None of these big picture questions can be answered in full in the present study, but they

position the findings and their contributions to the field of mathematics education.

1.3 Structure of the Thesis

In this introductory chapter I have presented the background to the study and foreshadowed

the questions that came out of the literature review and their significance.

In the Literature Review chapter, the research literature concerning length and area,
multiplication, visualisation, and fractions provides examples of students' strategies for
solving tasks in these domains. The literature on length and area measurement is framed using
the constructs attribute, additivity, unit, and proportionality: an adaption of Lehrer's eight key
concepts for measurement (2003). The terminology used in the field of visualisation has been
synthesised using the research of Bishop (1983) and Presmeg (2006a). Kieren's four-three-
four model for rational number knowing (1988, 1992, 1993, 1995) frames my interpretation
of the fraction research literature. A critique of the methodologies used in the field of
fractions research is offered. I conclude the chapter with the three research questions that

emerged from the review of the literature.



The Methodology and Methods chapter has four sections:
e adiscussion of the qualitative methodology of the present study,
e a brief description of the participants and local context, and a description of the
instrument, research protocols, and validity,
e an elaboration of the methods of analysis, and

e adiscussion of the limitations of the study.

The Results chapter is structured by constucts. Measurement tasks are reported first in relation
to the key concepts attribute, additivity, unit, and proportionality. Visualisation and
multiplication tasks are then reported. The fraction constructs are reported in the last section
of the chapter, and have been categorised using Kieren's constructs (1988, 1992, 1993, 1995):
the concept of equivalence, and the sub-constructs of measure, quotient, operator, and ratio.
Quotations from transcripts of students' explanations and photos of students' inscriptions are
presented as evidence for the classification of their strategies. The associations between
performance in measurement categories and performance on fraction tasks are reported.
Examples are provided that show that partitioning, equivalence and unit-forming concepts
have been drawn upon in the students' responses to tasks assessing the different sub-

constructs.

In the Discussion and Implications chapter, I consider the three research questions that
emerged from the literature review. I interpret the results and discuss the ramifications of each

of those questions.

The final chapter includes a summary of the discussion and interpretation of each research
question, which I then connect back to the broad concerns that have been raised in this
introduction, before elaborating my conclusions about the findings. The thesis concludes with

suggestions for further research.



Chapter 2: Literature Review

I began the present study with an interest in the conceptual links between measurement and
fraction tasks, and in the strategies that children have used to solve these tasks. In this review
of the literature I examine the mathematical domains of measurement, visualisation and
fractions to identify both the strategies used by children and the theoretical frameworks used
by researchers. Boote and Beile's criteria for writing literature reviews (2005) provided the
approach used in this chapter: the research is placed in its historical context, I resolve
ambiguities in the terminology, the research questions are positioned within a theoretical

framework, and the methodologies of research in the field are evaluated.

The constructs of the theoretical frameworks of the measurement, visualisation, and fraction
domains provide the sections for these three research areas. The constructs of attribute,
additivity, unit, and proportionality provide the theoretical framework for the literature on
length and area and were adapted from Lehrer's eight key concepts of spatial measurement
(2003). The ambiguities in the visualisation field caused by the use of different terms for the
same concept or parts of concepts are resolved by developing a hierarchy list. In the fractions
domain the constructs of Kieren's four-three-four model (1988, 1992, 1993, 1995) provided a
framework for the examination of the research literature. The measure sub-construct of
fractions is examined in more depth because the conceptual links to the measurement domain
are more evident in these tasks. A discussion of a brief history of fractions research enables a

critique of methodologies used in the field.

This chapter includes research up to 2007, as this was the literature that informed the present
study and in particular the development of the data collection instrument. Research literature
concerning children's explanations has been included in the Methodology and Methods
chapter. The Discussion and Implications chapter includes two types of new literature:
research on fractions and measurement published after 2007, and literature concerning
classroom interactions that had been originally excluded from this literature review because
the present study was not a classroom investigation. However, the terminology and concepts
used in classroom interaction research has subsequently proved useful in framing the findings

based on the children's explanations.



2.1 Critical Examination of the State of the Field

2.1.1 Procedural and conceptual knowledge.

Researchers in mathematics education have differentiated between procedural and conceptual
understanding. Skemp (1976) described the kind of learning that was focused on procedures,
for example, turning a fraction upside down and multiplying as a technique for dividing by a
fraction, and called this instrumental understanding. Relational understanding on the other
hand, described the making of a mental map that connected mathematical concepts.
Analogously, Kieren (1976), distinguished between knowledge of fractions that was
procedural in nature and an understanding of fractions that was intuitive and related to
concept development. Hiebert and Carpenter (1992) used the terms procedural and conceptual
knowledge to distinguish between instrumental and relational understanding (see also Hiebert

& Lefevre, 1986).

2.1.2 Measurement.

The literature concerning length and area measurement is synthesised in the present study into
four main constructs: attribute, additivity, unit, and proportionality. I include recognising
increasingly complex formations such as straight paths, bent paths and perimeters in length
measurement, and distinguishing between multiple attributes of a figure, as aspects of the
attribute construct. For example, a single object can have a number of measurement attributes
such as length, area, mass, temperature, or volume. The construct of additivity is defined in
the present study as an understanding that the whole is the sum of the parts. This includes the
concept of conservation, and the role of a zero-point on scales such as rulers. My synthesis of
the construct of units includes describing a leftover part of a unit, using formal or informal
units, and specifying identical or mixed units. An understanding of the inverse relationship
between the size of the unit and the count forms the basis of the construct of proportionality
in the measurement domain. These four constructs have been adapted from Lehrer's eight key
concepts for spatial (length, area, area, volume) measures (2003), and concepts and strategies
from the research on length and area measurement. Lehrer proposed eight key concepts for
spatial measurement (2003):

e Unit-attribute relationship (units match the attribute being measured),

e iteration (a single unit can be moved to measure a spatial attribute, or the attribute can

be subdivided into units),

e tiling (units fill lines, planes, volumes, and angles without cracks)
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e identical units (if the units are identical a count represents the measure, and mixtures
of units have to be specified),

e standardisation (formal units are used to facilitate communication),

e proportionality (the size of the unit is inversely proportional to the count of the units),

e additivity (the whole is the sum of the parts: conservation), and

e origin (zero-point) (any point can be used as a zero-point: e.g., the difference between
0 and 10 is the same as between 30 and 40).

The list did not represent a trajectory. Lehrer's eight key concepts represented a coordinated

understanding of measurement.

Researchers in the measurement field have challenged the traditional teaching sequence based
on Piaget's ideas about conservation: the use of gross comparison of length; the use of non-
standard units and manipulative standard units; and the use of instruments such as rulers (see
e.g., D. Clements, 1999). However, the concepts themselves have informed an understanding
of the measurement domain and so research that used such trajectories is included in my re-
categorisation of constructs. In the United States, length, area, volume and angle measurement
have been classified as early geometry constructs (see e.g. Battista, 2007; Lehrer, Jenkins, &
Osana, 1998). In Victorian curriculum documents, measurement has been a separate strand to
space (geometry) (Board of Studies, 1995) and this is why in the present study I refer to

measurement and geometry as separate domains.

2.1.2.1 Attribute.

The construct of attribute used in the present study encompasses both knowing that attributes
are definable, and identifying them:
e measurable attributes
O a continuous property of an object is an attribute that can be measured,
O spatial attributes are length, area, volume, and angle; non-spatial attributes
include mass, time, temperature,
e identifying attributes
O attributes present with increasing complexity. For example, length: straight
paths/bent paths/perimeter; or area: regular/non-regular/composite shapes,

0 different attributes of the same object can be distinguished and measured,
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O one attribute may be used to measure another in particular cases, for example
length for area in rectangles of the same width, or area for volume in regular
prisms, and

= substitutions can be overgeneralised (e.g., the perimeter indicates area

misconception).

A continuous attribute of an object can be measured. Wilson and Rowland observed, "We
count discrete or separate objects and we measure continuous properties such as length, area,
or volume" (1993, p. 176). Researchers have distinguished between the spatial attributes,
length, area, volume, and angle (Lehrer 2003; Outhred, Mitchelmore, McPhail, & Gould
2003), and non-spatial measures, mass, temperature, time (Lehrer 2003), and gravity (Wilson
& Osborne, 1992). Some frameworks were applicable for spatial measures only (Barrett & D.
Clements, 2003; Lehrer 2003; Outhred et al., 2003). Other researchers have presented general
principles for measurement (Wilson & Osborne, 1992; Wilson & Rowland, 1993).

Attributes can present with increasing complexity. For example length can involve straight
paths, bent paths, or perimeter. Area can be of regular, non-regular or composite shapes.
Children's performance on length tasks involving bent paths (Barrett, D. Clements,
Klanderman, Pennisi, & Polaki, 2006; Battista, 2006) was lower than on length tasks
involving straight paths, indicating greater complexity. Misconceptions about length
measurement have been demonstrated in perimeter tasks (Barrett, Jones, Thornton & Dickson,

2003).

Different attributes of the same object can be distinguished and measured. Confusions about
attributes could occur when using area models for fraction tasks: "We assume that students
are thinking about area and that they notice that the figure has been divided into three
congruent parts, but we know that many students confuse length and area" (Wilson &
Rowland, 1993, p. 172). In a longitudinal study, primary school children incorrectly tried to
use a unit of length to measure an area (Lehrer et al., 1998). A child reflecting on attributes
said, "I used to think area was about the size of the edges" (Kidman, 2001). Traditional
instructional sequences started with identifying the attribute (Outhred et al., 2003; Wilson &
Rowland, 1993) but because instructional sequences often referred to early primary learning,

teachers have not returned to the concept of identifying the attribute in later grades.

One attribute can substitute for another. Children have used length in area comparisons;

attention is given to the length of fraction strips to differentiate between a half piece or third
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piece but the length indicates the area of the strip. Using the magnitude of the perimeter of
two similar shapes indicates which is larger; a circle with a larger circumference has a greater
area than one with a smaller perimeter. However, misconceptions have occurred when one
attribute has been used to represent another inappropriately. When non-similar shapes do not
follow this pattern it appears counter-intuitive. Piaget described this misconception: "by
altering the form of an area we automatically extend or reduce its perimeter, and this in turn
affects the topological intuitions which form the starting point for children's thinking in the
realm of space" (Piaget, Inhelder, & Szeminska, 1960, p. 279). Activities in middle and upper
primary school have been used to try to counter the power of this misconception. For
example, the same rope was wrapped around a 5 by 8 units rectangle (area = 40 units,
perimeter = 26 units) and a 6 by 7 rectangle (area = 42 units, perimeter = 26 units) and the
areas compared (Barrett & D. Clements, 2003). The perimeter indicates area misconception
was present in incorrect comparisons of square and triangle quarters in the Fold Me a Quarter
task (Mitchell, 2005) (see Figure 1.2). Children incorrectly assumed that the piece with the

larger perimeter had the larger area.

2.1.2.2 Additivity.

The construct of additivity used in the present study is categorised into conservation and
comparison, and restructuring the whole:
e Conservation and comparison (position in space)
0 The whole may undergo a spatial transformation and the measure of the
attribute will remain constant,
0 Direct comparison of two objects may be made using visual, numerical or non-
numerical means,
0 The concept of transitivity may be used to compare two items to each other by
means of an intermediary object,
0 Scales (e.g. rulers) have a zero point, either explicitly stated or implied (Origin:
Lehrer (2003)).
e Restructuring the whole: space filling/subdividing
0 Conservation of the whole is maintained during subdivision of the whole into
parts (Additivity: Lehrer (2003)),
0 Subdividing a whole into parts implies the use of iterated units (Iteration, and

Tiling: Lehrer (2003)),
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0 The count of two spatial measures can be added if the objects are combined,
for example two lengths, two areas, two volumes, two angles,

O Arrays are an important model for early area measurement,

O The area algorithm is multiplicative in nature and based on an array structure,

0 Inference using geometric reasoning rather than direct iteration may be used to
describe measurements, for example of non-straight paths, non-regular shapes,

non-congruent units.

The concept of conservation describes the preservation of the whole when a) moved or
rotated, b) partitioned, and c) subdivided and rearranged. The conceptual link between
conservation and additivity was noted by Wilson and Osbourne (1992). Piaget's discussion of
measurement used the ideas of end points and rotation to build up the concept of conservation
in length and then area (1960). The whole could be moved in space (placed somewhere else)
and the measure of the attribute would remain constant: the child "regards the new shape
simply as an outcome of such a transformation rather than a new area to be compared with the
original" (Piaget et al., 1960, p. 285). The direct comparison of two lengths could be through
quantification or other means. In instructional models, making comparisons (unquantified)
has been proposed as the next step after identifying the attribute (see e.g., Wilson & Rowland,
1992). The concept of transitivity could be used to compare two items by means of an
intermediary object. Failure to attain any of the three foundational ideas (transitivity,
conservation, and unit) was suggested as a barrier to further conceptual understanding

(Wilson & Osbourne, 1992). Again, the comparisons could be numerical or non-numerical.

Non-quantified measurement could have sophisticated reasoning including the use of
properties of shape (Battista, 2006). For example, to calculate the perimeter of the L shape
(see Figure 2.1) a child would need to assume that lengths and widths added up to the same
total even though they have been subdivided and rearranged (Battista, 2006). Using a not-to-
scale diagram emphasised that geometric thinking was an easier strategy to use than

measuring the lengths.
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7cm 7cm

8cm 8cm

Figure 2.1. Perimeter of an L shape (adapted from Battista, 2006).

A ruler has the length scale on it, and has a zero-point explicitly marked. Any point could be
chosen as a zero-point, Lehrer reminded us (2003), because the distance between 0 and 10,
and 30 and 40 is the same. Broken ruler tasks have been used to investigate children's
conceptual understanding of length (see e.g., Barrett & D. Clements, 2003; Bragg & Outhred,
2000, 2004; D. Clements, 1999; Hart, 1981; Lesh, Landau, & Hamilton, 1983). They also
appear as items on national assessments (see e.g., Kamii & Clark, 1997). For example,
children were asked to measure a line (9 cm long) with a ruler that had been cut at the 3.5 cm
mark and labelled from 4 cm to 20 cm, necessitating the mental creation of a new zero-point

(Bragg & Outhred, 2000).

The counting lines not spaces misconception was observed in some of these studies. Some
children counted the mark at the edge of the object (the new zero-point) as one, thereby
generating an incorrect count (one too many) for the length. Grade 6 students counted lines
not spaces (Bragg & Outhred, 2004). In studies with younger children, Grade 1 students
counted lines instead of gaps (McClain, Cobb, Gravemeijer, & Estes, 1999) and in a
longitudinal study of Grade 1, 2 and 3 children (Lehrer et al., 1998) the incidence of the
incorrect counting of the hash mark at the new zero-point as one decreased over the course of
the teaching intervention. A variation of the misconception was to count the hash marks but
not the edge of the object, thereby generating an incorrect count (one too few). For example, a

Grade 4 child counted notches rather than lengths (Barrett, et al., 2003).

Proficient use of a ruler did not guarantee that children recognised conceptually that iteration
of a length was taking place, and the "learner's goal may be to count rather than to measure,
which may or may not match the teacher's goal for the learner" (Joran, Gabriele, Bertheau,
Gelman, & Subrahmanyam, 2005, p. 6-7). Bragg and Outhred (2000) reported a Grade 5
student reflecting on his previous thinking about measuring, "No we just used to count stuff,

you know,...like shoes and our hands, and them paddle pop sticks. I used to get things wrong
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'cause I used to start at 1 like we counted" (p. 115). The researchers suggested that using

informal units had focussed on counting and using a ruler was taught as a procedure.

The whole can be restructured by filling or subdividing. Conservation is required. The whole
is the sum of the parts even if they are rearranged. Piaget suggested that the concept of
conservation "which entails the complete coordination of operations of subdivision and order
or change of position ... was found to have been reached by one subject in 10 of those aged 6-
7, by half of those aged 7;0 — 7;6 [7 y to 7 '/>y] and by three quarters of those aged 7;6 — 8;6.
[7 ',y to 8 5 y]" (1960, p 114). A large British study found that 72% of 12 to 15 year olds
could conserve both length and area (Hart, 1981), indicating that the frequency of children
demonstrating conservation remained relatively unchanged from age eight and a half to age
15. Without the expectation of conservation, measurement would not convince children of the
inaccuracy of their visual comparisons, argued Carpenter (1975), as they simply believed that
the relation between quantities had changed or was being evaluated on some new unrelated
dimension. The use of dynamic geometry computer programs enabled 14 year old students to
explore conservation with polygons (Kordaki, 2003). Conservation presents with increasing

complexity.

When tiling, children use units to fill lines, planes, volumes, and angles Lehrer argued (2003)
and this could occur with physical objects or by subdividing a diagram. Wilson and Osbourne
(1992) noted that gaps between units, or overlapping units, were tiling/iteration errors. Using
wooden tiles could mask the principles of iteration because the children did not have to attend
to tiling with no overlapping units; this was prevented by the raised edges of the tiles
(Outhred & Mitchelmore, 2000). In a longitudinal study of children in Grade 1 to 3, Grade 2
to 4, and Grade 3 to 5, a preference was observed for using a unit that had a similar shape to
the item being measured, for example using triangle units to measure a triangle (Lehrer,
2003). Lehrer (2003) explained that iteration could involve the re-using of units and that this
drew upon an understanding of conservation. Providing fewer units than the total count was a
strategy used by researchers to investigate children's iteration skills because for Grade 3
students picking up units and re-using them was conceptually more difficult than tiling
(Lehrer Jaslow, & Curtis, 2003). Similarly, children in Grade 1 to 5 were forced to re-use
units when given two paperclips to measure a line longer than that, demonstrating their
understanding of unit iteration (Bragg & Outhred, 2000). Tiling and iteration have been
included in instructional sequences as concepts and skills needed for informal measurement

(Outhred & McPhail, 2000). Iterating a 30 cm ruler to measure a 93 cm streamer created a
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composite unit for length (Department of Education & Training, 2001), and 33% of Grade 4
students were successful at this and at calculating the difference to 1 metre (Clarke,
Cheeseman, McDonough, & B. Clarke, 2003). In the same study, 88% of the students could
measure a 20 cm straw with a ruler. Rows or columns were composite units in area

measurement (Izsak, 2005).

Arrays can be a mental and physical restructuring of area diagrams. They have been described
as meaningful subdivisions of space into a unit structure (Outhred & Mitchelmore 2000). The
array structure was not always self-evident to Grade 2 children (Battista, 2003). A Grade 2
child did not visualise an array structure on a diagram with a partially marked array (see
Figure 2.2. Note, the numbers shown represented the child's counting and did not appear on
the task card shown to the child). Instead she counted in a "one dimensional path as if they
were travelling along a road with no awareness of their surroundings as if in a tunnel”

(Battista, D. Clements, Arnoff, K. Battista, & Borrow, 1998, p. 528).
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Figure 2.2. One dimensional counting strategy for the area of an array (Battista, et al., 1998).

Drawing an array rather than covering it with tiles was used as an assessment of Grade 1-4
children's conceptual understanding of the array structure (Outhred & Mitchelmore, 2000).
The researchers deliberately printed a square unit on the paper so that it couldn't be picked up.
Some children had difficulty subdividing an area physically into an array. Some children did
not appear to recognise the convention that a single line represented both the end of one unit
and the start of another for adjacent units and drew individual squares instead of an array.
Outhred and Mitchelmore (2000) categorised the children's attempts at drawing arrays as
incomplete covering, visual covering, concrete covering, and measurement. Only by Grade 4
were many children using an array structure to work out the area of the given rectangle. There
were similar observations in other studies: Grade 2 children drew each unit in its entirety,
rather than using a common edge (Battista, et al., 1998). Other children started by drawing the

units on the edges of the shape but had difficulty co-ordinating a row by column structure
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(Schifter & Szymaszek, 2003). Outhred and McPhail (2000) interviewed teachers and found

that they taught area as a process of covering and counting not as subdividing a region.

The area algorithm is multiplicative in nature and based on an array structure. Covering
rectangles with square tiles, a common classroom activity, was described as promoting
additive, one-dimensional thinking, rather than the multiplicative thinking that the area
formula represented (Outhred & Mitchelmore, 2000). Strategies observed for the numerical
count of arrays in a Grade 2 class included count all, and skip counts of columns or rows
(Lehrer et al., 2003). In a study of Grade 6 students, 50% of them did not have the conceptual
understanding that area was multiplicative (Kidman, 2001). Many were still thinking
additively about the count and were not able to use array structuring. Lehrer (2003) noted that
the use of area models for fraction problems was potentially troublesome because it assumed

knowledge of the array structure that may not be in place.

Conservation of the whole is maintained during multiplicative restructurings. The
restructuring of area diagrams into arrays is possible because of the additive property of
spatial measures: length, area, volume and angle. Researchers elaborated that while additivity
did apply to some non-spatial measures such as mass it did not apply to others such as

temperature (Lehrer 2003; Wilson & Osbourne, 1992; Wilson & Rowland, 1993).

Battista (2003, 2004, 2007) refined an earlier trajectory (Battista et al., 1998) for children's
structuring of arrays as composite units in area contexts. The levels from his 2007 trajectory
are presented below with the corresponding levels from 2004, 2003 and 1998 included in
brackets, determined by tracking concepts and student examples in the articles:
e Level 1: absence of units-locating and organising-by-composites processes (Level 1,
Level 1, Level 1),
e Level 2: beginning use of the units-locating and the organising-by-composites
processes (Level 2, Level 2, Level 2 and 3A),
e Level 3: units-locating process sufficiently coordinated to eliminate double-counting
errors (Level 3, Level 3, no corresponding level),
e Level 4: use of maximal composites, but insufficient coordination for iteration (Level
4, Level 4, Level 3B),
e Level 5: use of units-locating process sufficient to correctly locate all units, but less-

than-maximal composites employed (Level 5, Level 5, no corresponding level),
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e Level 6: complete development and co-ordination of both the units-locating and the
organising-by-composites process (Level 6, Level 6, Level 3C), and
e Level 7: numerical procedures connected to spatial structuring, generalisation (Level
7, no corresponding level, no corresponding level).
Battista (2004) described a learning trajectory for the development of area measurement using
arrays which provided a detailed framework for understanding the construct, in contrast to
some instructional sequences which concentrated on the first few years of primary school and
focussed on identifying attributes, comparing measures, using informal units and using a

structure of repeated units (Outhred et al., 2003).

2.1.2.3 Unit.

The construct of units used in the present study contains two concepts: that attributes can be
specified using appropriate units, and that spatial units and non-spatial units can be combined
to make rates:
e Attributes can be specified using appropriate units (Unit-attribute relations: Lehrer
(2003))

O Iteration may result in "leftovers" and these leftovers can be described using
rational numbers,

0 Numerical quantification and non-numerical qualitative comparisons can be
made using iterated units (Identical units: Lehrer (2003)),

0 Informal, formal and standard units can be used as a unit of measure with
identical or mixed units specified (Standardisation: Lehrer (2003)),

O Iteration can involve composite units e.g. length: 30cm ruler repeated. Area:
repeated addition of "rows", or a multiplicative understanding of row and
column arrays,

e Spatial units can be combined with non-spatial units to make rates (e.g. speed:
distance (length) over time), or to describe some non-spatial attributes (e.g. density:

mass over volume)

Measuring with units can result in "leftovers" and those partial units have to be described.
Wilson and Osbourne (1992) described measurement as a process whereby "First a suitable
unit is chosen. Second, the unit is repeated, dividing the object into equal subdivisions with
perhaps the fraction of a unit left over. Finally, the units are counted to produce a
measurement of the object" (p. 91). Different strategies have been reported to describe such

leftover parts of units:
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e (Qualitative statements could be made. For example, when describing a tower that was
between 13 and 14 blocks high, children in Grade 2 and Grade 3 were happy to report
the measure as 13 and a bit (Brown, Blondel, Simon, & Black, 1995). At these grade
levels, the words a half could indicate a bit rather than a quantified fractional amount,

e Leftovers could be quantified using fractions. Grade 6 students in the study tied to
describe the leftover part of the unit using fraction terminology (Brown et al., 1995),

e Leftover pieces could be combined using fractional reasoning. Children matched two
half pieces to make units when measuring the area of a circle with a grid because the
tiling did not match the boundary of the shape (Lehrer, 2003). On other non-regular
shapes, a fourth of a unit plus a half of a unit plus a fourth of a unit made a whole
(Lehrer et al., 2003),

e Smaller units could be used. Pre-service teachers used this strategy to confirm the area
of Montana (Hodgson, Simonsen, Lubek, & Andreson, 2003),

e Mixed units could be specified. Mixtures of units needed to be clearly named, for
example "5 yards and 3 inches" was not "8" (Lehrer, 2003). Mixed units were of
different sizes and this was one strategy for managing partial units. In Australia, the
use of the metric system for measurement has meant that many mixed units are related

by powers of ten. For example, 1.7 m is 1 m and 70 cm.

Exposure to tasks in which measuring led to leftovers can draw attention to partial units. For
example, measuring a straw that was four and a bit paperclips long was an assessment task for
Grade Prep to 2 children in Victoria (Department of Education & Training, 2001). This

measuring involved the iteration of a unit resulting in a leftover part.

Informal units have been elaborated (hands, paces, tiles), as have formal units (imperial or
metric measures) and standard units (the meter, the kilogram, and the second). The use of
informal units and formal units represented stages in instructional sequences (see e.g.,

Outhred et al., 2003; Wilson & Rowland, 1993) but not necessarily a learning trajectory.

Lehrer argued (2003) that choosing units involved both choosing units that matched the
property being measured (e.g., area units for measuring area), and choosing the magnitude of
those units (e.g., square foot or square inch). The construct of the unit has been a foundational
idea in researchers' frameworks (see e.g., Wilson & Osbourne, 1992) and choosing an
appropriate unit to measure an attribute was a step on instructional sequences (see e.g.,

Wilson & Rowland, 1993).
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In regular arrays, rows or columns were described as composite units and used to skip count
or to multiply (Outhred et al., 2003). The categorisations, no units, inexact units, exact units,
and co-ordinated units (Barrett & D. Clements, 2003) corresponded to comparisons, informal,
formal and composite units. The authors suggested that additive thinking was more common
with inexact and exact units, while multiplicative thinking was used with co-ordinated units.
For Grade 5 children, the number of units in a composite unit affected their choice to use
composite units: four by four grids might prompt the use of composite units, but seven by
nine grids did so less frequently (Izsak, 2005). In order to use composite units, children had to
be able to conceptualise a row was four ones and one four (Izsak, 2005). Composite units

require a coordinated understanding of units and additivity.

2.1.2.4 Proportionality.

The inverse relationship between the size of the unit and the magnitude of the count illustrates
the construct of proportionality used in the present study:
e There is an inverse relationship between increasing size of the unit and the count
(Proportionality: Lehrer (2003)),
0 Scales (e.g. rulers) use proportional markings,
0 If the size of the units and the count of the units remains the same, the spatial

measure remains the same.

If the size of the unit is changed, the count changes. Young children in their first year of
school could identify the direction of change by indicting who would get more or less when
the size of the unit was changed (Sophian, Garyantes, & Chang, 1997). When shown a strip
that measured four blocks long and asked how many smaller blocks would be needed to
measure it (any answer greater than four was taken as correct), Grade 1 and Grade 2 children
identified numerically, but not precisely, that more would be needed (Carpenter, 1975). In
international testing 21% of Australian Grade 4 children identified who had the longest pace,
given a chart with four children and the number of steps they had taken across a room
(National Center for Educational Statistics, 2007). This indicated that comparing the size of
the unit from the count was more difficult than predicting the direction of change in the
magnitude of the count when comparing units. Hiebert (1979) demonstrated that non-success
on basic Piagetian length conservation and transitivity tasks did not necessarily predict that
Grade 1 children could not use units to measure. However, the children at this preoperational
stage found a task coordinating different sized units difficult and fourteen out of sixteen of

them showed no understanding of the inverse relationship between the unit size and the count.
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Hiebert made a crooked "little roads for ants" with five black (7 cm) Cuisenaire rods and
asked the child to make a straight road the same length using yellow (5 cm) rods (p. 244-
255). This task required not just an understanding that more of the smaller unit would be

needed but for the child to quantify this with concrete materials.

Pettito (1990) offered Grade 4 children rulers marked at 10, 20, 30 etc: one with equal spaces
and three with non-equal spacings. The children chose to use the ruler with equal spaces more
often than chance. Grade 1, 2, and 3 students in a longitudinal study were offered two seven
inch rulers to measure a stapler and a nine inch book (Lehrer et al., 1998). One ruler had equal
units and the other had unequal units marked and 67% of Grade 3 students iterated the equal-

marked ruler to measure the book correctly.

Converting between related units draws on the inverse relationship between them. For
example, in a Grade Prep to 2 assessment task, after measuring a 93 cm streamer, children
were asked, "how far off one meter was [?" (Department of Education & Training, 2001).
Calculating the answer relied on quantifying the inverse relationship between metres and
centimetres. Thompson and Saldana (2003) elaborated that related units of measure were

ratios. For example, 1 mile was 1760 yards.

2.1.3 Multiplication.

Multiplication has been seen as an important pre-requisite to fraction as ratio understandings.
Proficiency with multiplication and division was described as a prerequisite skill for
generating equivalent fractions or working proportionally with quantities (Stafylidou &

Vosniadou, 2004).

Developmental taxonomies of multiplication have been proposed. The stages in Sherin and
Fuson's (2005) trajectory were not based on proficiency at algorithms, but on strategy use:
count all, additive calculation, count by, pattern based, learned products and hybrid strategies.
Strategies for multiplication assessed in the Early Numeracy Interview included count all,
skip count, recognising the array structure for multiplication, recalling multiplication and
division facts, and using hybrid strategies (Department of Education & Training, 2001).
Different types of multiplication problems elicited the use of different strategies (Kouba &
Franklin, 1993). Some multiplication tasks were easier in automatic recall tests. Students were
more successful doubling and squaring than calculating 9 x 8 in a study of Western Australian

children from Grade 3 to Year 9 (Bana & Korbosky, 1995).
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2.1.4 Visualisation.

Visualisation encompasses the use of physical inscriptions as input or output in a

mathematical problem, or the use of mental visual imagery during mathematical thinking.

2.1.4.1 Visual and non-visual thinkers.

Children and adults can be classified as visual or non-visual thinkers. Krutetskii (1976)
described this difference with the terms geometric thinkers (visual) and analytic thinkers
(non-visual). Geometric thinkers thought holistically, often in pictures or diagrams, while
analytic thinkers were characterised as thinking more sequentially and often numerically (see
Figure 2.3, column I). The term geometric thinkers was distinct from geometric reasoning.
Any domain could be approached visually or non-visually. For example, Bishop (1983)
argued that both algebra and geometry could be approached visually or non-visually. He
developed the term visual processing to describe rotating objects in the mind's eye and
mentally viewing an object from a different point of view (1983). I use Presmeg's (1986) term
dynamic imagery to describe this phenomenon. Bishop was careful to distinguish between
figural input, visual thinking, and figural output (1977, 1986). For example, a child with a
preference for analytic thinking (non-visual) might be presented with a diagram as input or be
asked to produce a map as output but use analytic thinking to solve the problem. A child with
a preference for visual thinking, a visualizer (Presmeg, 2006a), might use mental imagery

despite the input and output of a task being symbolic.

Visual thinking could be prompted by tasks. For example, children were shown an image of
18 dots in a six by three array and asked to show thirds, sixths, and twelfths (Lamon, 2002).
The prompt, do it without counting them all one by one, was designed to elicit a spatial
restructuring strategy. To make thirds, a child might mentally restructure the array into three
rows and choose one of those rows. The prompt was designed to dampen numerical thinking
in which the child might draw on multiplication to remember that three times six was eighteen

and look for a group of six.

Visual restructuring could work with any large friendly number that was divided into an array
structure, whereas working numerically with such numbers would be onerous. On the other
hand, diagrams could hinder understanding. An array structure may have helped with thinking

about */4 of 12 but not with visualising */4 of 15 (M. Clements, 1983).
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Figure 2.3. Synthesis of terminology used in visualisation research.
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2.1.4.2 Visual imagery and inscriptions.

Visualisation described both mental/internal representations (thinking) and physical/external
representations (input or output) (see Figure 2.3, see column II). Visual imagery (mental
representations) included pattern, dynamic, concrete, memory, and kinaesthetic (Presmeg,
2006a). I have classified these under figural, symbolic, and corporeal representations (see
column VI). A fourth category (unknown) classifies pattern imagery. Visual imagery
concerned the thinking part of a task. Inscriptions were defined by Roth and McGinn (1998)
as written representations including both diagrams and symbolic notation but excluded mental
representations (see column IV), and convey information in a visual form: maps, charts,
diagrams, tables and graphs, lists, photographs, spreadsheets, equations and histograms (see
column VII and VIII). Inscriptions, concrete materials and corporeal actions concerned the

input or output of a task (see column III).

2.1.4.3 Interpreting figural information and semiotic analysis.

Both visual imagery and inscriptions have been mediated by culturally specific
understandings (see Figure 2.3, see column V). Bishop identified the role of interpreting
figural information (semiotic considerations) of culturally specific mathematical diagrams by
demonstrating that the dotted lines in the two dimensional images of a cube used in western
countries was not a natural representation of a three dimensional object because it was not
recognised by students in Papua New Guinea, despite their excellent visualisation skills in
other tasks (Bishop, 1979). The interpretation of geometric diagrams required an
understanding that was not cross cultural. Interpreting figural information "involves
understanding the visual representations and spatial vocabulary used in geometric work,
graphs, charts, and diagrams of all types" (Bishop, 1983, p.184). The description of mediated
understandings for figural inscriptions (IFI in column V) signals the role that semiotic
analysis had for all the interpretations of inscriptions, for interpretations of visual imagery, as
well as for interpretations of corporeal actions (see column V). For example, in western
cultures the holding up of one hand with fingers spread indicated five, but the holding up of

one hand with fingers touching indicated stop.

Mathematical diagrams conveyed meaning through agreed semiotic conventions as to how
they were to be decoded (Presmeg, 2006b). Diezman claimed that children should be
"diagram literate" (2005, p. 286). Diagrams relied on conventions to depict both the

components of the situation being represented and their organisation. Conventions had to be
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learned and understood before the diagrams could be understood and successfully used
(Pantziara, Gagatsis, & Pitta-Pantazi, 2004). Some students were confused by symbolic
notation: a fraction was "read" vertically, while written words in English were read left to
right (Hunting, Pitkethy, & Pepper, 1990). Students in a multi-level Grade 3/4/5 did not
necessarily interpret pre-partitioned physical models as connected to part-whole
representations (Wenrick, 2003). These students interpreted concrete materials differently to
inscriptions. Interpreting the dotted lines as representing the edges that cannot be seen in the
two dimensional representation of the three dimensional Wattanawa Block (see Figure 2.4)
was required before either spatial reasoning or geometrical reasoning were employed to solve
the task (M. Clements, 1983). Diagrams had their own grammar and vocabulary that had to be
interpreted.
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Figure 2.4. The Wattanawa Block task: dotted lines represent unseen edges.
2.1.4.4 Inscriptions.

I have classified the examples of inscriptions provided by Roth and McGinn (1998) into
symbolic inscriptions and figural inscriptions (see column VI). Symbolic inscriptions include
mathematical notation. Figural inscriptions are subdivided into images, graphic organisers,
and diagrams (see column VII). Images include photos and pictures (see column VIII).
Graphic organisers use spatial layout to indicate hierarchies or links, and include lists, charts,
and tables. Diagrams are further categorised as representations of a context, and geometric
figures. The role of a diagram in a task could be identification (e.g., labelling a circumference
of a circle), comparison (e.g., analogue and digital clocks next to each other), showing a stage
in a chain of events, or sequencing, (e.g., a sporting race showing ordinal finish), or a
combination of the three types (Kidman, 2002). Geometric diagrams could be scale diagrams
such as array tasks (see e.g., Figure 2.2) or not-to-scale diagrams such as the Perimeter of an

L Shape task (see Figure 2.1). Contextual diagrams included children's detailed drawings of
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word problems. Younger children added detail to their mathematical drawings such as faces
on human figures because they were still representing a concrete, not abstract image (Kamii &
Housman, 2000). Later, stick figures or even marks could stand in for objects. I separate
graphic organisers from diagrams, in contrast to Diezman and English (2001) whose
definition of a diagram would include visual organisers: "A diagram is a visual representation
that displays information in a spatial layout" (p. 77). I classify both as types of figural

inscriptions and include images as well.

Diagrams of fractions were intended to help students develop visual imagery of fraction
contexts. M. Clements (1981, 1983) noted the use of length and area diagrams in fraction
instruction. In a study in which two classrooms were compared, one using traditional
(symbolic) fraction instruction and the other using paper models of fractions, the results
showed no significant difference between the overall achievement of the two groups
(Marriott, 1978). However, students who had been instructed using the paper cut outs were
closer to the real answer when they made errors than the students taught with symbolic
inscriptions. In contrast, research on problem solving showed that "the efficient use of a
diagram did not imply the successful solution of a problem and reversely the successful
solution of a problem did not imply the efficient use of the accompanied diagram" (Pantziara
et al., 2004). Diagrams as input in fraction tasks were helpful in one study. In contrast, in
another study, diagrams as input or output in problem solving tasks were not always
associated with success. Although it was unconventional to have unhelpful information in a
diagram, some tasks from the Rational Number Project deliberately included perceptual
distracters to test children's understanding of fractions (see e.g., Behr, Lesh, Post, & Silver,

1983; Behr & Post, 1981; Behr, Post, and Lesh, 1981).

Another use of diagrams has been in geometric proofs, but as the focus on explanations in the
present study did not use geometric proofs, that research literature has not been included in

this chapter.

2.1.4.5 Visual imagery.

Visual imagery is mental or internal representations (see Figure 2.3, column IV). I have
classified visual imagery into figural, symbolic and corporeal representations (see column
VI). Presmeg had elaborated five visualisation strategies: pattern, memory, kinaesthetic,
dynamic, and concrete (1986) (see column VII). Pattern imagery was of pure relationships

stripped of concrete details; memory imagery was of mathematical formulas and algorithms;
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and kinaesthetic imagery was of physical movement such as walking with fingers on each end
of a vector (mentally) (Presmeg, 1986; 2006a). I have classified memory imagery as
symbolic, and kinaesthetic imagery as corporeal. Presmeg's concrete imagery was a picture in
the mind and dynamic imagery involved an object moved or transformed in the mind's eye.
These last two visual strategies have been categorised here by me as figural. The terms
dynamic imagery (Presmeg, 1986; 2006a), visual processing (Bishop, 1983), and spatial
ability (D. Clements & Battista, 1992; M. Clements, 1983) all referred to the same type of
visual imagery that enabled the movement of objects in the mind's eye. There were three types
of visual imagery (see column VIII) recognised in the mathematics education literature (D.
Clements & Battista, 1992; M. Clements, 1983; Gorgorio, 1998) and in cognitive psychology
literature (Hegarty & Waller, 2004):
e rotating the object while the mind looks on,
e changing the point of view, for example imagining the mind's eye moving around to
the back of the object, and
e deformation of an object, analogous to the stretching or squashing of dynamic
geometry objects using computer software (see e.g., Holzl, 1996).
The researchers in the Early Numeracy Research Project (Clarke, et al., 2002; Department of
Education & Training, 2001) used the term dynamic visualisation to refer to the deformation
of an object. In contrast, I have used the term dynamic imagery, as Presmeg did (2006a), to

indicate all three types of movement in the mind's eye.

Longitudinal research into the use of visual imagery in fraction learning showed that pattern
imagery was associated with conceptual understanding of fractions, and pictorial imagery was

associated with a limited part-whole understanding (deWindt-King & Goldin, 2001).

Visualisation has become the focus for the investigation of both visual imagery and
inscriptions in many domains, such as algebra, fractions, and geometry. Visualisation was
first recognised as a separate topic at the Psychology of Mathematics Education Annual
Conference in 1991. Bishop (1983) and Presmeg's (1985, 1986) work had preceded this.
Spatial ability (dynamic imagery) had been a concern of cognitive psychology until the 1980s
when mathematics educators began to study it (M. Clements, 1983). In geometry, spatial
ability (dynamic imagery) had been categorised as a skill (D. Clements & Battista, 1992), but
later spatial reasoning (visualisation) was described as underlying most geometric thought

(Battista, 2007).
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Researchers have made a distinction between dynamic imagery and geometrical thinking
strategies. For example, in the Wattanawa Block task (see Figure 2.4) the student had to
decide where corner 2 was on the second diagram. A spatial ability (dynamic imagery)
strategy could be employed involving complicated rotations in the mind's eye. A non-visual
geometric solution (it's always opposite corner A) was possible (M. Clements, 1983). If
spatial tasks, similar to the Wattanawa Block task, could be correctly solved using geometric
reasoning and not spatial ability (dynamic imagery), as indicated by M. Clements (1983), then
cognitive psychologists using such tasks to assess spatial ability would have unidentified false
positives: students who gave correct answers but had not used dynamic imagery. Bishop
(1983) had identified the possibility of false negatives in his examples illustrating interpreting
figural information (semiotics): students may give an incorrect answer because they cannot
decode the conventions of the diagram, not because they have poor visual processing

(dynamic imagery).

2.1.5 Fractions.

In Victorian primary schools children can encounter fractions when:

e the measurement of an object results in a count with a partial unit left over,

e the remainder from a division is renamed,

e an object or number is stretched or shrunk proportionally,

e ratio comparisons are made in probability contexts (e.g. you are more likely to pick a

red marble if four out of five are red than if seven out of ten are red),

e decimals are used to extend the place value system to tenths and hundredths, and

e shaded parts of area diagrams are named as fractions.
I use the term fraction in the present study because I defer to the common usage in Victorian
primary schools. "Fraction" signals early rational number understandings and the use of the “/;,
notation. Thompson and Saldanha (2003) suggested that an understanding of the system of
rational numbers was beyond primary students and that fractions were a better focus of
research and curriculum design. Decimals are not the focus of the present study and so little
research has been included in this literature review about misconceptions specific to decimal

notation and diagrams.

Whole numbers are the first numbers children encounter and support discrete counting
strategies. Baroody and Coslick (1998) pointed out that there was no "next" number when

counting by fractions as there was when counting with whole numbers. Fractions are dense, as
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Sophian and Wood (1997) elaborated "no matter how close one fraction is to another, there
are always other fractions between them; therefore, they do not form a single fixed
progression, as the counting numbers do" (p. 309). The continuous aspect of rational numbers

meant that operating with fractions was not the same as operating with whole numbers.

In an effort to make children's introduction to rational numbers easier, some teachers have
limited fraction instruction to the part of a whole model (Lamon, 2007). Ball (1993)
commented that children "probably would have had limited experience, consisting primarily
of shading pre-divided regions" in their early fraction learning (p. 169). Kieren (1988) noted
that "part-whole models of fractions conveniently help produce fractional language" but that
this tends "to orient the student to a static double count image" (p. 177). This fractional
language produces a definition that limits the teaching that has accompanied the part-whole
model of fractions: there are four parts and you take three of them (for three quarters). This
definition makes improper fractions almost nonsensical: there are four parts and you take
seven of them (seven quarters). The limited nature of definitions linked to procedures has
been noted and alternatives proposed: "If we have "/, the 3 tells the name or size of the parts
(thirds) and the 7 tells us that we have 7 of those thirds (or 2'/3)" (Clarke, Roche, & Mitchell,
2008, p. 375).

In some classrooms the use of the part-whole model was limited to a whole pre-divided into
equal parts with students drilled in a procedure: count the shaded pieces (write this as the top
number) and then count all the pieces (and write this as the bottom number) (Carrahar, 1996;
Gould, 2005; Kieren, 1993; Ni & Zhou, 2005). Although counting without attending to the
size of the pieces gives a correct answer when the diagram is divided into equal parts, if the
same procedure is applied to diagrams with non-equal parts an incorrect answer results (the
double count misconception). Some children articulated this confusion by asking "do you
mean in size...or in amount?" (Post, Wachsmuth, Lesh, & Behr, 1985, p. 34). Using non-
equal-parts diagrams has distinguished between students with the double count misconception

and students who can mentally or physically repartition the diagram into equal parts.

Identifying the different contexts of rational numbers, Kieren (1976) proposed seven
interpretations that included both conceptual understanding (decimal, equivalence, ratio,
operator, quotient, measures) and procedural understanding (fraction algorithms). He refined
this to a five part model (1980) which described only sub-constructs that formed a conceptual
understanding of rational number: part-whole, measure, quotient, operator, and ratio. Kieren,

a Canadian, worked closely with the American researchers from the Rational Number Project
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who used an adaption of the five part model to frame their first teaching experiment which
took place in 1980 (Behr et al., 1983; Behr et al., 1981). This adaption was used in the design
of the instructional materials and placed partitioning and part-whole before, and leading to, all
the four other sub-constructs. Later articles from the Rational Number Project researchers
named six interpretations of fractions: part-whole, measure, ratio, operator, quotient, and
decimals (Behr & Post, 1992; Behr et al., 1984). Both Kieren and the Rational Number
Project researchers used a concept of part-whole that was broad and not meant to be
interpreted as the static double count practice of some instructional models. The depth of this
part-whole understanding was visible in later work by Behr, Harel, Post and Lesh (1992).
This conceptual understanding of part-whole was the first concept in the Rational Number
Project's instructional sequence (Cramer et al., 1997) but they cautioned that careful
assessment was required to ascertain whether the students' part-whole knowledge was robust,
and to intervene if the double count misconception emerged (Cramer, et al., 1997; Lesh, Post,
& Behr, 1988). This approach to countering the double count misconception was to include a
broad range of part-whole contexts in instruction, and this was supported by other researchers
(Baturo, 2004; Clarke, Roche, & Mitchell, 2007; Gould, 2005; Herscovics, 1996; Keijzer &
Terwell, 2002; Moseley, 2005; Nabors, 2003).

Kieren's (1988) response to the double count misconception was to reframe the part-whole
constructs within the other constructs of his 1980 model. Kieren's four-three-four model
(1988) was not in opposition to his earlier five part model (1980), and the model used in the
Rational Number Project research (Behr et al., 1983), but more of a refinement. In this
adaptation (1988) the four sub-constructs of measure, quotient, operator and ratio remained,
but were underpinned by three concepts, partitioning, equivalence and unit-forming (see
Figure 2.5). These sub-constructs and constructs could be approached on four levels:
ethnomathematic, intuitive, technical-symbolic and axiomatic deductive. I have called this
model the four-three-four model to indicate these three different aspects of Kieren's model:
four sub-constructs, three underpinning concepts, four levels of response. Kieren reiterated
this model in later writing (1992, 1993, 1995). For Kieren, the measure and quotient sub-
constructs provided conceptually richer ways of explaining the non-procedural part-whole
examples used by the researchers in the Rational Number Project (1993, p. 57). Kieren (1995)
encouraged the actions of partitioning as a way to develop the concept that underpinned this

non-procedural part-whole understanding.
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Figure 2.5. Kieren's model of rational number knowing (1993).

Kieren's four-three-four model (1988, 1992, 1993, 1995) was a framework of ideal rational
number knowing. The four sub-constructs measure, quotient, operator, ratio, and three
underpinning concepts, partitioning, equivalence, and unit-forming have been introduced
above, and will be elaborated in later sections of this chapter. The model represented
increasing conceptual complexity by vertical layers of constructs and a "mature rational
number knower" would be able to engage with the whole range of constructs (Kieren, 1988).
The constructs and concepts that combined to form a coordinated understanding of fractions
had a hierarchical nature (see Figure 2.5): percepts (p-level), constructs (c-level), proto-
mathematical knowledge (partitioning, quantitative equivalence, unit-forming), sub-constructs
(measure, quotient, operator, ratio) and more formal multiplicative thinking and structural
knowledge of rational numbers (Kieren, 1993). The lines connecting constructs represented
the generative nature of understanding. Concepts at the lower level supported concepts at
higher levels (1988). These lines represented where the knowledge might take you next. For
example quantitative equivalence could be drawn upon by all four sub-constructs. Similarly,
horizontal integration at every level was part of the idealised understanding. The model was
not one pathway through the constructs but described different levels of constructs and

different sub-constructs within each level.
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2.1.5.1 Measure.

The measure sub-construct described the measurement context that generated rational
numbers: "the notion of fractional numbers arises whenever one measures something. If the
unit does not fit evenly within the object to be measured a whole number of times, how does
one give a number which is the measure? Rational numbers answer this question" (Kieren,
1995, p. 37). A non-whole number count left partial units and these could be quantified in

different ways (see section 2.1.2.3): fractions were one strategy.

The number line had been Kieren's example of the measure sub-construct in previous work
(1976, 1980) but the number line was not the only example of the measure sub-construct. The
measure sub-construct of fractions included linear and regional (area) measurement contexts
because an area diagram could be thought of as a comparison to a unit, not just a part-whole
model (Kieren, 1992). The measure sub-construct with its representations of continuous
attributes, also provided "experiences with order" (Kieren, 1993, p. 59). Lamon (1999) had
three key understandings for the measure sub-construct: being able to use a given unit interval
to measure any distance from the origin; being able to find any number of fractions between
two fractions; and being comfortable with partitions other than halving (1999). The examples
of mathematical contexts used in the present study to illustrate the measure sub-construct are

number lines, the relative size of fractions, and measurement contexts such as area diagrams.

2.1.5.1.1 Number lines.

Research on number lines in a fraction context concentrated on the distinction between
making partitions and reading pre-marked partitions, and proper and improper fractions on
number lines labelled 0 to 1, and 0 to greater than 1 (Bright, Behr, Post, & Wachsmuth, 1988;
Ni, 2000; Novillis-Larson, 1980). Facility with number lines involved one of Lamon's (1999)
key concepts of the measure sub-construct of fractions: being able to use a given unit interval

to measure any distance from the origin.

Decimal number lines are common in Australia and New Zealand where the metric system is
used for measuring. In the first year of a large numeracy project, 50.2% of Year 7 New
Zealand students were successful at identifying 6.8 (or six and eight tenths) on a number line

(see Figure 2.6) (Vince Wright, personal communication, January 23, 2008),
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Figure 2.6. New Zealand assessment interview decimal number line.

Children have been confused between the representation of a whole and the length of the
whole number line on number lines that were greater than 1. For example, they found half of a
number line with some pre-marked partitions rather than where the number half would go on

a number line marked with more than one whole (Kieren, 1993).

When reading pre-marked partitions on number lines successful students attended to the parts,
rather than the vertical lines used to create the equal parts (Bright et al., 1988; Pearn &
Stephens, 2007). Counting lines not spaces was a misconception in which the students
counted the mark at 0 as one and hence read */4 as */s. However, strategy use on rational-
number number lines and other measurement scales using similar fractions was not consistent

Drake (2007).

A misconception became evident when children, asked to draw their own number lines, used
a ratio representation. For example, some children drew a number line from 0 to 6 and
labelled 4 as */; (Clarke et al., 2007). It was possible to use a number line to find */3 of 6, but
*/3 on a number line should be two thirds of the way between 0 and 1. The conceptual link
between measurement and the measure sub-construct was explicitly made by Kieren (1995)
and had informed his earlier work (1976, 1980, 1988, 1992, 1993). The similarity between the
counting lines not spaces misconception in length broken ruler tasks and number line tasks
suggested a conceptual link between measurement and the measure sub-construct of fractions.
The double count misconception highlighted that children were not attending to the area

attribute that represented the fractional meaning.

2.1.5.1.2 The relative size of fractions.

The relative size of fractions has included fraction pair comparisons and was called order in
order and equivalence studies. The relative size of fractions was part of another of Lamon's
key understanding for the measure sub-construct: being able to find any number of fractions
between two fractions (1999). Strategies for comparing the relative size of fractions included:
e correct part-whole understandings,
e the use of common denominators and benchmarking, and

e whole number dominance misconceptions.




34

These strategies were described by the Rational Number Project researchers after interviews
with Grade 4 and 5 children during a teaching experiment and were reported as strategies
concerning either fractions with the same numerators, the same denominators or different

numerators and denominators (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984).

Fraction pair comparisons have been made by children using some simple correct strategies.
Noting the same denominators and then comparing numerators worked for fractions with the
same denominators. For example, 7/8 was larger than 3/8 because the denominators were the
same and 7 was larger than 3 (Clarke et al., 2007). Attending to the numerators only, in this
case, was termed whole number consistent by the Rational Number Project researchers.
Although this strategy gave correct answers with same denominator pairs it could lead to

misconceptions when other types of fractions were used (Behr et al., 1984).

Another correct strategy was to compare denominators if the numerators were the same. The
most common examples of this were unit fractions such as 1/3 and 1/4, In these cases students
could correctly claim that the bigger the denominator the smaller the fraction (Behr et al.,
1984; Post & Cramer, 1987; Post et al., 1985). This strategy could also translate successfully
to fractions with the same numerators such as 2/5 and 2/3 where "two fifths is less than two
thirds because there are two pieces in each, but the pieces in two fifths are smaller, so a
smaller amount of the unit is covered for two fifths" (Post et al., 1985, p. 20). Using this
strategy for non-unit fractions was not always straightforward for Australian Grade 6 children,
with 37.2% correctly identifying */s as larger than */; and offering a correct explanation.
However, a further 21.4% who chose the correct answer (*/5) did so using the misconception

of gap thinking (Clarke et al., 2007).

Residual thinking was a mathematically correct strategy useful for comparing fractions that
were both one away from the whole: /s was one sixth away from the whole and "/s was one
eighth away from the whole; as one eighth was smaller, /s was closer to the whole (Clarke et
al., 2007). This strategy had been previously identified by the Rational Number Project
researchers (Cramer, Post, & DelMas, 2002; Post et al., 1986; Post & Cramer, 1987) and

attributed to the use of fraction kit materials.

Two other correct mathematical strategies have been described in the research literature. The
transitive strategy or reference point strategy (Behr et al., 1984; Post et al., 1986; Post &
Cramer, 1987) was called benchmarking in Australia (Clarke & Roche, 2009). For example,

5/8 was larger than 3/7 because 3/7 was less than a half and 5/8 was more than a half. Using half
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as a benchmark was a strategy that children used when they had an understanding of the
related value of different fractions without being dependent on an algorithm to find a common
denominator. This could apply both to fractions represented in numerical notation (Sowder,
1988) and regional area representations (Keijzer & Terwell, 2001). The other correct strategy
used was common denominators which required equivalence knowledge and was called the

application of ratios (Behr et al., 1984).

The term whole number dominance was coined by the researchers in The Rational Number
Project to describe strategies that they believed were inappropriate generalisations about
whole numbers used in fraction comparisons by students. Four of these whole number

dominance misconceptions are described below.

Some children incorrectly believed that a larger denominator indicated a larger fraction. For
example, l/3 was less than l/4 because 3 is less than 4 (Behr et al., 1984). This whole number
dominance misconception was also reported in other Rational Number Project articles (Behr,

Post, & Wachsmuth, 1986; Post et al., 1986; Post & Cramer, 1987; Post et al., 1985).

Non-equivalent fractions were considered to be equal if the numerical difference between the
numerator and denominator was one. For example, 3/, was equal to 2/5 because the difference

between 3 and 4 was 1 and the difference between 2 and 3 was 1 (Post & Cramer, 1987).

Some children chose the fraction with both numerator and denominator larger numbers than
the other fraction. For example, 3 /51s less than 6/10 because "3 is less than 6, and 5 1s less than

10" (Behr et al., 1984).

Students who used the incorrect addition strategy added the same number to the numerator
and denominator to make an equivalent fraction, for example /4 equals '/s because you can
add 4 to the numerator and 4 to the denominator of */ 4 to get to 7/8 (Behr et al., 1984). This
misconception was reported as a whole number dominance misconception in other Rational

number Project articles (Post et al., 1986; Post & Cramer, 1987).

The larger denominator indicating larger fraction misconception was observed in Australia
(Clarke et al., 2007), and in Greece (Stafylidou & Vosniadou, 2004). Ni and Zhou (2005) also
noted this misconception in their review of whole number bias in fraction understanding. In
the present study I refer to this misconception as the bigger denominator indicates bigger

fraction misconception.
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The numerical difference strategy was known as the gap thinking misconception in Australia.
Two fractions, both with a "gap" of one were the same. Gap thinking also encompassed
choosing the fraction with the smaller gap between numerator and denominator. Pearn and
Stephens (2004) used the term gap thinking to describe a Year 8 student's (incorrect)
comparison of */s and /s where /s was larger because "there is less of a gap between the three
and the five (in the first fraction)" than there is between the "five and the eight (in the second
fraction)" (p. 434). Pearn and Stephens (2004) observed comparing-to-a-whole thinking in
which the students claimed that 2/3 was bigger than 3 /s, because 3/5 "is two numbers away from
being a whole" while %/ "is one number away from being a whole" (p. 434). This was a
correct answer but with a mathematically incorrect reason. Clarke, Roche, and Mitchell
(2007, see also Clarke & Roche, 2009) combined Pearn and Stephens (2004) gap thinking and
comparing-to-a-whole thinking in their definition of gap thinking. Gap thinking was evident
in many of the responses to their fraction pair questions: 35.6% of the incorrect answers
comparing /4 and "/y demonstrated gap thinking. Nearly 30% of all students said that /s and
’/s were equivalent (Clarke & Roche, 2009). In the present study, I use the term gap thinking

to describe these related strategies.

The third whole number dominance strategy described above was called higher or larger
numbers by Clarke et al. (2007). Pearn and Stephens (2004) observed this strategy: */s is
larger than /3 because the three is larger than the two (numerators) and the five is larger than
the three (denominators). They viewed this as a variant of gap thinking. In the present study I

use the term higher or larger numbers to describe this strategy.

2.1.5.1.3 Non-equal-parts area diagrams.

If area diagrams were thought of only as part-whole, then the measure construct in that
representation was diminished. Kieren described how the part-whole concept (as used by the

Rational Number Project researchers) integrated with the other sub-constructs:
their part-whole sub-construct is subsumed under the quotient and measure sub-constructs as
the dynamic comparison of a quantity to a dividable unit that allows for the generation of
rational numbers as extensive quantities. The part-whole notion also relates to the operator
sub-construct as the selected unit that forms the basis for operators as composite functions
(see Dienes, 1971). It plays a similar role in the considerations of ratio numbers (e.g.
mixtures) (Kieren, 1993, p. 57).

Lamon (2007) agreed with Kieren that "part-whole is not a separate construct, but really a

case of the measure subconstruct (p. 659). By using the terminology of part-whole as a sub-
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construct, researchers, teachers and students have been ignoring the part-whole aspect of area

and length diagrams in the measure sub-construct.

Non-equal-parts fraction-area-diagrams have enabled researchers to observe whether children
are counting or measuring by whether the child demonstrated the double count misconception
or could name non-equal parts on an area diagram. The double count misconception became
apparent in this context if the denominator in a child's response was the number of parts
(Armstrong & Novillis-Larson, 1995; Saxe et al., 2005). In a study of 384 Grade 4, 5, and 6
students 25% identified the shaded eighth on a rectangle as one fifth (see Figure 2.7 left)
(Saxe et al., 2005). In a doctoral study of 20 Grade 6 students, only two correctly identified
part c of the circle as one sixth (see Figure 2.7 middle), while five wrote one fifth (Stewart,
2005). Using the pie task adapted from the same source (Cramer et al., 1997), Clarke et al.
(2007) reported on 323 interviews with Grade 6 students in which 42.7% gave the correct
answer of one sixth for the smaller piece, Part A (see Figure 2.7 right), with 13.6% answering
one fifth. These three studies illustrated that correctly identifying parts in non-equal area
models was difficult for some children, and the double count misconception (answers of one
fifth) appeared evident in up to a quarter of the students' responses. Being comfortable with
partitions other than halving, Lamon's (1999) first key concept of the measure sub-construct

of fractions, was evident in students' successful answers of ]/(, to the Fraction Pie task.

Figure 2.7 Non-equal-parts tasks.

Some answers of one fifth were not the double count misconception but rather an attempt to
describe the smaller piece in relation to the quarter (Mitchell, 2005). The answer of one fifth
as a part that was nearly a quarter used a mathematically correct approach, although the

execution of the strategy was not sufficiently accurate.
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2.1.5.1.4 Non-congruent parts area diagrams.

Research has indicated that some children find it difficult to think of conservation of area and
fractions at the same time. When modelling equivalence using shapes partitioned in different
ways children were asked to trust the evidence of their eyes. However, when a shape looked
bigger despite having the same area as another, children were asked to override their visual
perceptions (Fosnot & Dolk, 2002; Herscovics, 1996). For example, in a study on the use of
area models in fraction learning, simple conservation tasks were offered to children (Walta,
1973). Two rectangle halves were cut from a square piece of paper, and two triangular halves
cut from another, then when a triangular half and a rectangular half were put together 70% of
the high achievers (in fraction performance) and 33% of the low achievers demonstrated an
understanding of conservation by saying that the area was still the same as the original square.
Kamii and Clark (1995) used Piagetian terminology to describe the confusion caused by non-
congruent equal parts: "for example, half of a rectangle can be either rectangular or triangular.
Although the triangular half may look bigger than the rectangular half from a figurative point
of view, our operative knowledge enables us to deduce that two halves have the same area"
(p. 369). Non-congruent parts of area models were difficult representations for children to use

in the measure sub-construct.

2.1.5.2 Quotient.

The quotient sub-construct described a context in which sharing between two separate
measure spaces took place. For example, three pizzas shared between five people generated
shares of three fifths: 3 +~ 5 = */5 Similar tasks appeared in the research literature (Behr, Post,
Harel, & Lesh, 1993; Kieren, 1988; Lamon, 1999; Clarke et al., 2007).

The Dutch curriculum introduced fractions with a sharing context and elaborated several
strategies that children use in solving such problems (see e.g., Keijzer & Terwell, 2001;
Streefland, 1993). French division was the term used to describe cutting each pizza into
enough pieces for everyone; each of the three pizzas would be divided into five parts and a
piece from each pizza dealt out to each person, resulting in three one fifth shares. In this
curriculum, the double count misconception became an incomplete understanding of the
sharing context that every child encountered if they made unequal parts and was resolved

because the contextual imperative to make fair shares was compelling.
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Repeated halving was used as an intuitive strategy: cut every pizza in half and deal out all the
pieces and see if that works, if not, divide every pizza into quarters and deal out all the pieces,
repeat with eighths if quarters left a remainder (Pothier & Sawada, 1983). If children then
subdivided the remainder their explanations sounded like "engineering reports" (Kieren,
1988). Children had trouble keeping track of the unit when doing non-equal partitioning
(dividing each piece into half and then the leftover half into five) sometimes calling the result
"a half and a fifth" instead of a half and a tenth or six tenths or three fifths (Lamon, 1999).
Just less than a third (30.3%) of Grade 6 students could solve the pizzas shared between five
people problem (Clarke et al., 2007). Very few of them used the fractions as division concept
(Clarke, 2006) that three shared between five is three over five or three fifths.

Research on pre-school children's understandings of fractions has often focused on the ability
to make fair shares (Hunting & Sharpley, 1988; Pearn, 1996; Pepper & Hunting, 1998;
Pothier & Sawada, 1983; Sophian et al., 1997).

Other researchers found that the quotient construct produced greater conceptual understanding
when used for early fraction learning than a traditional part-whole approach (Empson, 1999;
Mamede, Nunes, & Bryant, 2005, Ni & Zhou, 2005). By introducing sharing contexts first

and part-whole contexts second, the double count misconception was pre-empted.

2.1.5.3 Operator.

The operator sub-construct of fractions described, among other things, size transformations
(Kieren, 1995). Two and a half times as large, or three quarters the size of, were size
transformations that used fraction modifiers. This context had also been called "fraction
composition" in the radical constructivist tradition (Izsak, 2008). Izsak (2008) analysed Behr,
Harel, Post, and Lesh's duplicator and partition reducer, and stretcher and shrinker
operations (1991), and recast them as a partitive model and a quotitative model respectively.
For example, taking three quarters of something involved dividing by four and multiplying by

three, or multiplying by three and dividing by four.

Simple operator tasks were relatively easy for Grade 6 students with 97.2% able to mentally
calculate half of six (Clarke et al., 2007). Despite the use of pen and paper, only 17.6% were
able to work out one third of a half (Clarke et al., 2007). Similar tasks were categorised as
multiplicative thinking such as using a diagram to solve one third of a quarter (Kamii &

Clark, 1995). Area models were often used as models for fraction multiplication.
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2.1.5.4 Ratio.

The ratio sub-construct was often found in the context of mixtures or probabilities (Kieren,
1995). Lamon (1999) described ratios as used to convey a comparison of two quantities that
may not be able to be represented as a single number. Kieren's refiguring of the part-whole
concept meant that traditional discrete part-whole models (of arrays of dots for example)
could be thought of as ratio understandings (Kieren, 1992). Instead of two thirds as two out of

three dots, it could be thought of as two for every three dots.

Using re-unitising or spatial restructuring this definition linked ratio and equivalence
understandings because /1, could be seen as two for every three. Ratio understanding was
linked closely to proportional reasoning (Lamon, 1993; Lesh et al., 1988). One method for
assessing children's ratio understanding was a proportional thinking task in which three
snakes of different lengths ate proportionally different amounts (Kamii & Clark, 1995). For
example the second snake ate twice as much as the first, while the third snake ate three times
as much as the first snake. By changing the amounts given to different snakes, the child's ratio
and proportional conceptual understanding was elicited: if the first snake had one pellet, what
would the others have; if the second snake had four pellets, what would the others have? This
was originally a Piagetian task and it recurred in the research literature (Hart, 1981; Lamon,
1993; Resnick & Singer, 1993). Unsuccessful strategies included additive approaches: if the
second snake ate four pellets, the first snake ate three because last time it ate one less.
Although these tasks used whole numbers, they were assessing the ratio sub-construct of

fractions.

2.1.5.5 Partitioning.

Kieren's description of partitioning was the folding and drawing actions required of the
children when making equal parts (1995). Stages were elaborated for learning to partition
including repeated halving and using the radius rather than the diameter of a circle to generate
thirds and fifths (Pothier & Sawada, 1983). Repeated halving in paper folding activities were
examples of splitting; an exponential rather than repeated addition/subtraction process
(Confrey, 1994). The partitioning approach emphasised multiplicative understandings
(Siemon, 2003) rather than just a static part-whole double count procedure. For example, to
make forty-eighths, children in Kieren's study described folding a third and then a half, and
half, and a half, and a half (1995). School experiences of part-whole double counting had not
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been as useful as partitioning in developing these multiplicative understandings (Kieren,

1995).

2.1.5.6 Equivalence.

The construct of equivalence had a specified place in Kieren's four-three-four model (1988,
1992, 1993, 1995). Kieren cautioned that drawing on equivalence as an internalised strategy
in other tasks was not apparent in half the age cohort until age 12, and full common
denominator reasoning occurred later (1992). Callingham and Watson, (2004) reported that
equivalence understanding emerged slowly with students' recognition of:

e half of an even whole number,

e the use of equivalent fractions for a half, and

o tasks where "equivalence appears to become an important idea" such as Uy + s
At Grade 6, 64.4% could identify */; and “/s as the same in a fraction pair comparison task
(Clarke et al., 2007). Equivalence understanding could be either procedural or conceptual
(Wong & Evans, 2007. Equivalence knowledge could not be assumed by the end of primary

school.

Ways of introducing equivalence included generating equivalent fractions and recognising the
same fraction in different measure representations (Wong & Evans, 2007). Usually such
diagrams could be spatially manipulated using dynamic imagery so that pieces could be
rearranged to make the same area as the comparison fraction. The use of area diagrams to
model equivalence depended on conservation. This was especially true if parts were compared
that were non-congruent. For example children were asked to compare three fourths cut
horizontally across a rectangle, with eighths cut vertically across the rectangle (Clark &
Kamii, 1996). In this problem 32% of the Grade 5 children could equate three quarters with
six eighths. In these cases quite sophisticated restructuring would be needed to superimpose
the shapes on top of each other. This enabled the researchers to assess if operational thought
was used because such thinking was based on relationships that weren't observable.

Equivalent fractions were called commensurate fractions in the work of Steffe (Izsak, 2008).

Kieren's model for-grounded the intuitive knowledge of equivalence in which the
understandings were not separate from the contexts offered in the classroom. Partitioning
supported intuitive equivalence understanding because it could provide examples of absolute
equality; one half could be subdivided into two quarters, so two quarters was equivalent to a

half (Kieren, 1992). Understandings of equality could be observed in transitive reasoning, for
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example 9/6 and 10/4 were both one and a half. Traditional part-whole instruction had been
used to model these two multiplicative aspects of equivalence. In these contexts, equivalence

was "as many as" (Kieren, 1992, p. 350).

However, there was also an additive aspect to equivalence that traditional part-whole
instruction ignored: %, + /4 = /¢ + ¥/ In this context, equivalence was "as much as" (Kieren,

1992, p. 350). For example, /4 + '/, =44+ /4

Equivalence was present in other models of fraction understanding, for example in the work
of the Rational Number Project, but Kieren's four-three-four model made a place for both its
additive and multiplicative characteristics. In some other frameworks, the numerical aspect of
equivalence understanding had been positioned as early ratio understanding or bundled as
order and equivalence (Behr et al., 1984). Equivalence was modelled with area diagrams

within a part-whole introduction to fractions (Cramer et al. 1997).

2.1.5.7 Unit-forming.

The combining space described by Kieren (1995) included classroom activities with concrete
materials that were used to show fractions as "additively combinable amounts" (p. 32). The
concept of unit-forming had first been referred to as forming dividable units (Kieren, 1988).
Unit-forming described "the kind of combining and reconfiguring mechanisms envisioned in
the work of Behr et al" (Kieren, 1992, p. 116) and formed part of the broader part-whole

conceptual understanding promoted by the Rational Number Project.

Unit-forming described the intuitive additive nature of fractions. Just as eight could be made
of seven and one, or six and two, or five and three, so too fractions could be made from the
sum of other fractional amounts (Kieren, 1995). The distinction between partitioning and unit-
forming was that the addends were equal parts in partitioning but could be non-equal parts in
unit-forming activities (1995). Unit-forming was not a new concept, it was a renaming and
reframing of the additive nature of fractions. The addition of fractions did not use a counting
on process but a put together process (Kieren, 1992). Algorithmic addition of fractions

represented this additive process in symbolic form.

Kieren (1995) called the instructional aspect of unit-forming the combining space. An
example of the unit-forming construct was making fractional amounts out of other fractional
parts using a paper fraction kit. For example, primary (elementary) school children used the

fraction kit to respond to the task: tell me five things you know about three fourths.
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Explorations included adding one fourth, three eighths, and two sixteenths together to cover
three fourths (Pirie & Kieren, 1994b); or recognising an additive equivalence in the "as much
as" relation, '/, + '/g + %/16 = /4 (Kieren, 1999). Students were challenged, in the context of the
fraction kit, to find a missing fraction that was bigger than one fourth and smaller than three
fourths (Pirie & Kieren, 1994a). Students were offered the open ended problem: "here are four
rectangular pizzas cut in halves, quarters, sixths, and twelfths. Choose some pieces from at
least three of these pizzas such that their "sum" is one pizza" (Kieren, 1993). Another unit
forming classroom activity, Fraction Flags, emerged from work with fraction kits (Kieren,
Davis, & Mason, 1996). The children made flags using fraction pieces on the coloured
background of a half piece. They then added the parts to discover how much of the flag was
covered by other colours (coloured fraction kit pieces). These activities explored addition by
asking /4 = 9, rather than '/4 + '/, = 2 In this unit forming context, the equals sign meant as

much as rather than is equal to as a ratio.

The additive thinking used in unit forming activities was correct mathematical thinking. This
correct additive thinking, thinking of fractions as made of other fractions, which was termed
unit forming by Kieren (1988, 1992, 1993, 1995), had been categorised as part of part-whole
in the Rational Number Project research (Behr, Harel, Post, & Lesh, 1992; Behr & Post,
1992). In other fraction tasks described in the research literature, the term "additive" had been
used to describe incorrect mathematical thinking. In particular, this other incorrect additive
thinking was associated with early attempts at proportion and with equivalence tasks in which
children incorrectly used an additive relation rather than a multiplicative relation (see e. g.
Behr, Lesh, Post, & Silver, 1983; Cramer et al., 1993; Post et al., 1986; Post & Cramer, 1987;
Post, Cramer, Behr, Lesh, & Harel, 1993).

Partitioning, equivalence and unit forming "could build from and relate back to one's
everyday experience" (Kieren, 1988, p. 170). The unit-forming concept was drawn upon in
quotient contexts. For example, when sharing three pizzas between five people, students
divided all three pizzas into halves and then divided the leftover half into five pieces. Each
person received a half and a fifth of a half. This had been noted in earlier research and
categorised as a subset of partitioning in which "the additive nature of partitioning is
observed" (Kieren, Nelson, & Smith, 1985). I believe that this subset of partitioning (in 1985)
became unit-forming (by 1988).

The review of the literature of length and area measurement, multiplication, visualisation, and

fractions has revealed many correct strategies and incorrect misconceptions that children use
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when attempting mathematical tasks. This has led to the development of the first research
question:
e What strategies are evident in students' explanations of their thinking in a one-to-one

task-based interview?

2.1.5.8 Conceptual links between fractions and measurement.

In her literature review setting the research agenda for the next decade, Lamon (2007) noted
the conceptual link between measurement and fraction understanding: "given the importance
of measurement ideas to understanding not only rational numbers, but all of mathematics, a
microanalysis of the development of measurement could provide another long-term research

agenda with broad impact" (p. 661).

A conceptual link between measurement concepts and fraction concepts has been identified in
the research literature on measurement. Researchers elaborated the conceptual links between
the two domains: the "distinguishing feature of measuring is that it is concerned with
quantities which are continuous; this requires an extension of the natural numbers into the
rational numbers, and arguably eventually the real numbers" (Brown et al., 1995, p. 159). The
use of area models in fraction instruction depended on an understanding of the measurement
concept of area (Wilson & Osbourne, 1992). Measurement concepts were not just linked to
the measure sub-construct of fractions, but also to ratios (Brown et al., 1995; Joram, Gabriele,
Bertheau, Gelman, & Subrahmanyam, 2005). The (ratio) relationship between units remained
the same: if seven toy cars were five wooden blocks long then 14 toy cars had to be ten
wooden blocks long. Space, measurement and number were interrelated claimed Barrett, D.
Clements, Klanderman, Pennisi, and Polake (2006). A lack of transfer across mathematical

domains was of concern to some researchers (Brown et al., 1995; Lehrer, 2003).

Some researchers claimed that number developed out of measurement contexts (Davydov &
Tsvetkovich, 1991; Dickson, Brown, & Gibson, 1984; Dougherty & Venenciano, 2007; Joram
et al., 2005). Others claimed that fractions lay at an intersection between measurement and
number: "Measurement with units is particularly interesting developmentally because it is at
the interface between counting, on the one hand, and knowledge about rational numbers on
the other" (Sophian, 2002). Further, units and iteration in fraction understandings were
explored in a parallel way to measurement (Sophian & Wood, 1997). The measure sub-
construct of fractions "shows the significant tie between the study of fractional numbers and

geometry and space" (Kieren, 1993, p. 59). Piaget's explanations of the concept of fractions
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was explicitly linked to length and area diagrams and non-congruent parts (Piaget et al.,

1960).

Performance on measurement tasks has shown that the achievement gap widens with age.
Although Grade 1 children had differing success on length tasks, the gap appeared to widen
by Grade 5, resulting in almost no change in performance between the lowest performing
children in Grade 1 and Grade 5 (Bragg & Outhred, 2000). In a British study, the high
performing Grade 2 students were outperforming the weaker Grade 8 at mass and length tasks
(Brown et al., 1995). This achievement gap in measurement understandings might have
implications for the ability of children to make conceptual links to other mathematical

domains.

The importance of the conceptual link between fraction and measurement concepts resulted in
the development of the second research question:

e s there an association between performance on measurement tasks and performance

on fractions tasks? Is there an association between the use of the use of dynamic

imagery on visualisation tasks and performance on fractions tasks?

2.1.5.9 Four levels of response in Kieren's model.

Each of the four sub-constructs could elicit different levels of wunderstanding:
ethnomathematical, intuitive, technical-symbolic, and axiomatic-deductive. The four sub-
constructs (measure, quotient, operator and ratio) were not sequential and independent
(Kieren, 1993). These four levels can be mapped onto the eight levels of the Pirie and Kieren
model of dynamical learning: primitive knowing, image making, image having, property

noticing, formalising, observing, structuring, and inventising (Pirie & Kieren, 1994a, 1994b).

As sharing was one of the earliest ways of experiencing fractions, the quotient sub-construct
had ethnomathematic understandings that the child could draw upon when responding to
questions in this context. For example sharing situations using two measure spaces such as
five pizzas shared between three people could provoke an ethnomathematic response in
primary school children such as "each gets a bite and Mom puts the rest in the fridge"
(Kieren, 1988, p. 172). The ethnomathematic response was also evident in non-exhaustive
sharing in research on early fraction knowledge (see e.g., Pothier & Sawada, 1983).
Ethnomathematic understandings were percepts, represented by the p-level on Kieren's

diagram (see Figure 2.5). The measure, operator and ratio sub-constructs had fewer
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ethnomathematic contexts that were familiar to children (Kieren, 1993). I have mapped the
ethnomathematic level onto the primitive doing level of the Pirie Kieren model (Kieren, 1993;
Pirie & Kieren, 1994a, 1994b). In this first level of learning a child might partition or share in

an appropriate context.

Intuitive approaches were planned mathematical activity, firmly located in a context
developed from schooled or taught knowledge (Kieren, 1988). Explanations illustrating
intuitive knowledge in sharing contexts included repeated halving and dealing out of pieces
(Kieren, 1993). The Dutch curriculum introduced fractions with sharing activities, Kieren
noted (1993), and the intuitive understandings that this developed were useful in developing
children's overall understanding of fractions. Symbols could be used to record intuitive
understandings, but in that context they were linked to a context in the child's mind. I have
mapped Kieren's intuitive knowledge (1993) onto the image making and image having levels
of the Pirie Kieren model (Kieren, 1993; Pirie & Kieren, 1994a, 1994b). In these two levels, a
child might record sharing actions "in a way that is very closely tied to results" (Kieren, 1993,

p. 73).

The Rational Number Project used the term intuitive to mean "qualitative knowledge about
rational number and proportional situations" (Behr et al., 1992, p. 299). Other researchers
used the word intuitive to describe the reasoning pre-school children had developed from
concrete experiences before school activities (see e. g., Sophian et al., 1997). In this thesis, I

use intuitive in Kieren's sense, meaning reasoning linked to school activities.

Technical-symbolic understanding manifested itself in standard language, notations and
algorithms (Kieren, 1988). Two examples of this in the quotient sub-construct were using
common denominators to compare the amount per person in two different sharing situations
(Kieren, 1993), or using a fractions as division understanding, that three shared between five
was 3 + 5 or °/s. Children using technical-symbolic understanding knew the result simply by
working with symbols. Clarke (2006) described a technical-symbolic response in another
quotient context, the Chocolate Game, where chocolate bars were shared between people. In
the measure sub-construct, the number line was a technical-symbolic representation (Kieren,
1992). 1 have mapped the technical-symbolic level (Kieren, 1993) onto the three levels
property noticing, formalising, and observing in the Pirie Kieren model (Kieren, 1993; Pirie
& Kieren, 1994a, 1994b). Kieren (1993, p. 73). They distinguished the thinking between the
levels with an example of using the denominator to reason about the size of a fraction:

e Image having: "as n gets bigger, the pieces 1/n get smaller."
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e Property noticing: "I can make a smaller fraction by making the denominator bigger",
e Observing: "There is no least positive fractional number",
The image having thinking was tied to a context, while the property noticing and observing

levels were characterised by not being tied to a particular context.

A combined-level response incorporated both intuitive and technical-symbolic understandings
and was described by Kieren as an engineering report (1988). In this example, eight pizzas
were shared between five people and the leftover was not ignored. A child reported that each
person received 1 + '/, + /5 (meaning a fifth of the leftover half). This explanation combined

intuitive and technical-symbolic understandings.

Axiomatic-deductive knowledge was "derived through logically situating a statement in an
axiomatic structure" (Kieren, 1993). I have mapped the axiomatic-deductive level (Kieren,
1993) onto the two levels, structuring and inventing in the Pirie Kieren model (Kieren, 1993;
Pirie & Kieren, 1994a, 1994b). Kieren (1993, p. 73) offered the example of the addition of
fractions as the "logical consequence of field properties and the nature of formal
equivalence." This level of knowledge would not be routinely observed in primary school

classrooms.

2.1.5.10 The use of Kieren's four-three-four model in the research literature.

Kieren has been cited extensively in the research on fractions. However, it was the five-part
model used by the Rational Number Project researchers that was used to frame much of the
later research, not his revised four-three-four model. There were historical reasons for this.
The 1980s was the Rational Number Project's decade. They used the five part model to frame
their data collection in the early 80s and published extensively over that decade. These
researchers wrote the review of the fraction domain in the 1992 Handbook of research on
mathematics teaching and learning (Behr et al., 1992). Kieren's four-three-four model had
only been proposed in 1988, while in contrast the Rational Number Project had generated
much data from classrooms framed in the five-part model. The researchers kept the five part
model because it had been important to the research of the previous decade and had "stood the
test of time" (Behr et al., 1992, p. 298). Kieren's later elaborations of the four-three-four
model were still to come (1992, 1993, 1995). Publications by other researchers cited the

Rational Number Project papers and so the five-part model was entrenched.
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It would appear that researchers as well as teachers were unwilling to reframe the concept of
part-whole. Clark, Berenson, and Cavey (2003) referred to Kieren's four-three-four model but
then added the part-whole sub-construct from the Rational Number Project research, ending
up with Kieren's earlier five part model. Charalambouss and Pitta-Pantazi (2006) investigated
quantitatively whether the five sub-constructs were separate or hierarchical concepts (the
incorrect dating of Kieren's models in their literature review did not affect their results) and

did not use Kieren's later four-three-four model (1988).

Some researchers in the Dutch tradition (Streefland, 1991, 1993) or from a multiplicative
framework (Confrey, 1994) did not use Kieren's model. Steffe's model for early understanding
of fraction composition was based on iteratation (Olive & Steffe, 2002; Steffe, 2003). In this
model, a child made a conjecture about the size/name of the fraction and then iterated the part
until the whole had been filled or subdivided exhaustively. A double count misconception
would generate perturbation (cognitive conflict) because it would not iterate the right number
of times into the whole. For example, if a fraction bar was divided into three pieces, a half and
two quarters, the conjecture that each piece was a third would be challenged by the
unsuccessful iteration; a fourth would iterate four times while the half would iterate twice but

neither would iterate three times to make the whole (Norton & Wilkins, 2009).

With the four of the sub-constructs in Kieren's original five-part model (1980) in common
with his four-three-four model (1999, 1992, 1993, 1995), research that was within these
categories, such as investigations into children's understanding of number lines (see e.g.,
Pearn & Stephens, 2007), investigations into pre-service teachers understanding of the
operator concept (Behr, Khoury, Harel, Post, & Lesh, 1997), or research comparing students'
performance across tasks from different sub-constructs (Lamon, 2007; Moseley, 2005)

remained unaffected by the distinctions between the old and the new model.

Other than Kieren's elaborations of his four-three-four model, there were few investigations of
the model and its use as criteria for categorising tasks and analysing children's strategies.
Millsaps (2005) used the four-three-four model for her investigation of teacher knowledge
and classroom practice but she explained unit-forming as "the symbolic representation a/b, b
not 0, is a number comprised if the unit 1/b counted a times" (p. 24). She linked this to
Steffe's unit iteration scheme. However, I believe that the concept that she described would
not be unit-forming, but rather one aspect of Kieren's concept of partitioning. This lack of
further research using Kieren's four-three-four model, despite its apparent suitability for

describing fraction understanding, has led to my third research question:
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e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?

2.1.6 Research methods used in measurement and fraction research.

Mathematics education emerged as a field distinct from cognitive psychology and
mathematics in the 1970s. This coincided with the influence of Piaget on instructional
models, particularly a belief that children had always been constructing their own meanings of
school mathematics. The Rational Number Project researchers, influenced by Piaget, used
teaching experiments in the early 1980s to focus on two key areas: what would a
constructivist curriculum look like, and what strategies did children use on such tasks? Their
approach was top down; a new curriculum was needed for teaching in a constructivist
environment. They implemented that curriculum, and so their research used a teaching
experiment methodology. The early 1980s were a key moment when conceptual
understanding rather than procedural understanding, supported by theoretical models (Kieren,
1976; Skemp, 1976), began to drive the classroom research agenda (Behr et al., 1981). The
original Rational Number Project teaching experiment was an intervention and, using one-to-
one interviews, enabled the researchers to "collect" the explanations children gave, which
revealed the strategies they used for fraction tasks (see e.g. Behr, Wachsmuth, Post, & Lesh,
1984). Pen and paper testing was used to establish performance norms (Lesh et al., 1983).
This was less effective at capturing thinking but could be conducted on a larger scale than
interviewing. Only much later did the Rational Number Project team conduct a Treatment
A/Treatment B experiment to demonstrate that their curriculum was superior to traditional

teaching models (Cramer & Post, 1995; Cramer et al., 2002).

The 1990s and 2000s saw the flowering of interest in observing learning and the interaction of
students and teachers in classrooms. For example, one-to-one interviewing gave insights into
children's explanations and strategies (Clarke et al., 2007) but could not capture learning.
Such research required research conducted in classrooms (Lesh & Kelly, 2000). The outcome
of a curriculum intervention was not compared to a control group, instead classroom norms

and sociomathematical norms were described (Cobb & Yackel, 1996).

Constructivist teaching experiments reported individual children's learning trajectories (see
e.g., Steffe, 2003). Hypothetical Learning Trajectories were developed, mapping out the
developmental scope of domains (see e.g. Battista, 2006, 2007). Curriculum trajectories were

elaborated (see e.g. Outhred et al., 2003). Large scale pen and paper testing added a layer of
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evidence to such trajectories and Rasch analysis identified key tasks and concepts (see e.g.,
Callingham & Watson, 2004). Longitudinal studies provided evidence for progression
through stages (see e.g., Steinle & Stacey, 2004).

Ideal models of understanding in a domain were proposed with global rather than linear links

in conceptual understanding (see e.g. Kieren, 1995; Lehrer, 2003).

There were cognitive psychology investigations into children's thinking continuing alongside
mathematics education research. Many used clinical interviews and collected data in an
experimental format, investigating the effects of variables such as age or gender (see e.g.,

Sophian et al., 1997).

Large scale pen and paper testing of students in state, national, and international cohorts
continued. The National Assessment of Educational Progress in the United States highlighted
children's problems with fractions (see e.g., Stewart, 2005) and broken ruler tasks (see e.g.,
Kamii & Clark, 1997). The Third International Mathematics and Science Survey revealed, for
example, Australian Grade 4 students' difficulty with the inverse relationship between the unit

of measure and the count (National Center for Educational Statistics, 2007).

The measurement of teachers' pedagogical content knowledge was used to provide detail to
others' observations of teacher effectiveness. The content of lessons was observed (see e.g.,
Outhred & McPhail, 2000). Teachers' questioning and instructional style was observed in
classrooms (see e.g., Gearhart & Saxe, 2004). Interviews with teachers were used to ascertain
their knowledge of concepts (see e.g., Outhred & McPhail, 2000), and Post, Harel, Behr, and
Lesh (1988) gave a pen and paper ratio and rates test to Grade 4 to 6 teachers using items
from the National Assessment of Educational Progress. Pen and paper tests were used to

assess pre-service teachers' knowledge of fractions (see e.g., Cramer & Lesh, 1988).

There was a tension in these methods between generalisability and credibility. Large scale
testing provided generalisable results but was conducted using pen and paper tests which were
less effective at determining student thinking. Smaller studies could provide credibility if they
were conducted meticulously and produced insightful analysis, but the results were not
generalisable. Design experiments provided credibility by observing learning as it took place
in classrooms but were not positioned as efficient at isolating variables unlike the approaches
of cognitive psychology. Clinical interviews could provide insight into children's explanations

but could not describe learning. Learning trajectories were often based on performance of
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students at different grade levels, but only longitudinal studies or constructivist teaching
experiments could confirm that individual children moved through the levels of
understanding. It was not that methodologies were right or wrong, but that they could be used
strategically to build up a multifaceted understanding of mathematics education in the fields

of length and area measurement, visualisation, and fractions.

2.2 Research Questions

The research questions which have developed out of this review of the literature reflect my
interest in the theoretical underpinnings of the fraction domain, and an interest in children's
explanations when thinking about mathematical constructs:

e  What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?

e s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?

e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?

2.3 The practical significance of the present study

These three research questions can be linked to very broad scholarly concerns in the
mathematics education field: if we embrace constructivist learning then we are faced with the
complexity of the role of the teacher in responding to the variety of correct and incorrect

strategies that a class of children bring to every task.

The elaboration of strategies (correct strategies and misconceptions) is part of developing the
ability of members of the teaching profession to embrace constructivist learning contexts.
This has practical significance. The focus for system improvement in Victoria is on the
quality of individual teachers in classrooms. Many regional offices of the Department of
Education and Early Childhood Development employ maths and literacy coaches to support
school improvement in their areas. There are also regional professional development
initiatives delivered in partnership with University researchers. The elaboration of strategies
and misconceptions of Australian primary school children on measurement and fraction tasks
could be immediately utilised in these departmental projects designed to support teachers in

constructivist classrooms.
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If we believe there to be a theoretical conceptual link between fractions and measurement,
then uncovering this association in children's performance raises issues for the design of
curriculum. The practical significance of the second research question regarding curriculum
(measurement and fractions) will initially be at a school level because the Australian National
Curriculum has recently been written and is about to be trialled in schools around the country.
However, in Victoria, individual schools are responsible for the classroom level curriculum
and individual teachers, who have a large degree of autonomy, are responsible for the links
they help their students make between fractions and measurement. It is unusual to teach from
one textbook in primary schools, and neither school in which I taught had textbooks on the
book list for students to purchase (except a handwriting practice booklet). There are broad
curriculum outcome statements to which teachers are accountable, but the activities, the order,
and the pedagogical style are decided at an individual or school based level. Hence teachers
could begin helping students make links between fraction and measurement contexts

immediately.

Using one-to-one task-based interviews is a normal classroom pedagogical tool, as described
in the background to the study, but they need to be supported by a sound connection to a
theoretical framework. This enables teachers to use the detailed information that they generate
to inform their practice. Investigating the explanatory power of Kieren's four-three-four model
contributes to this larger picture of making one-to-one task-based interviews a usable
pedagogical strategy and could have practical application to the development of teaching
resources, the training of pre-service teachers, and the professional development of teachers.
The Department of Education and Early Childhood Development recommends a research-
based (Kieren's five-part model) one-to-one task-based interview as formative assessment for
Grade 5 and 6 students (2009b). If the four-three-four model has explanatory power at the
primary school level then its use as a clear domain level theory that makes sense of the variety
of tasks and students' responses would have practical significance for classroom teachers and

the development of further resources supporting this fraction interview.
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Chapter 3: Methodology and Methods

This Methodology and Methods chapter describes what was done in this investigation and
why it was done. The method of a one-to-one task-based interview was used in order to
provide data to investigate the three research questions that had come out of the review of the
literature:

e What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?

e I[s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?

e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?
3.1 Methodology

The present study had the three goals of research as identified by Neuman (2003):
explanatory, descriptive, and exploratory. Descriptive research has been used to make a
highly detailed and accurate picture of the object or subject or process chosen for observation.
Investigating students' strategies is descriptive research. Exploratory research has been used to
determine the feasibility of conducting further research. The investigation into associations
between fraction understanding and measurement understanding is an exploratory study.
Explanatory research has been used to confirm or refute the occurrence of phenomena
predicted by a theoretical model. Investigating the explanatory power of Kieren's four-three-
four model of rational number knowing (1988, 1992, 1993, 1995) for describing students'

understanding of fractions in the upper primary school is explanatory research.

3.1.1. Interpretivism.

It is an assumption of the present study that it is possible to discover new phenomena or
reclassify existing interpretations of mathematical behaviour. The research questions were
framed by such an assumption: that a link between fractions and measurement might be
found, or that a misconception might be discovered or reinterpreted. Mathematics education

researchers had termed this ontological innovation (diSessa & Cobb, 2004).
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Interpretive research has often been called qualitative research (Neuman, 2003). Observable
behaviours cannot be understood without understanding the social rules that mediate that
behaviour. For example, "The raising of my hand could be a signal for the revolution to take
place, a gesture of welcome, or the seeking of attention. It all depends on what was intended"
(Pring, 2005, p. 96). Theories that fell under the umbrella of interpretivism could be "a basis
for considering how what is unknown might be organised" (Silverman, 2000, p. 78). In
mathematics education research, Thompson (1982) has illustrated this legitimate field of
investigation in one research question: "what is the problem that this student is solving, given
that I have attempted to communicate to him the problem in my mind". This overarching

interpretive theoretical perspective framed the investigations of the present study.

Three streams of interpretivism have been identified: hermeneutics, phenomenology, and
symbolic interactionalism. Hermeneutics uses close reading of a text to "discover meaning
embedded within text" (Neuman, 2003, p. 76). Phenomenology endeavours to present the
subjects' own understanding of their actions in the social context in which such actions were
made. For Patton (2002) the foundational question of symbolic interactionism was: "What
common set of symbols and understandings has emerged to give meaning to people's

interactions?" (p. 112).

Symbolic interactionsism enables me to report the students' explanations, interpret their
strategies and overlay this with an interpretation determined by Kieren's four-three-four
model. The students themselves did not frame their understanding of fractions in terms of
Kieren's model. Transferability, credibility, confirmability and dependability (Denzin &
Lincoln, 2008), authenticity (Neuman, 2003), usefulness (Silverman, 2000), and credibility,
rigor, and integrity in analysis (Patton, 2002) have been identified as the truth claims made in
qualitative research. Qualitative research could use descriptive statistics, for example,
frequencies of success or frequencies of correlations. Conclusions are drawn from the

qualitative research data in the present study but claims for causality are not made.

The conceptual framework that I, as a researcher, have brought to the present study has
mediated my observations and analysis of the data. My undergraduate training was in
ethnographic history. I later obtained a Diploma of Education and taught a combined Prep/1/2
class, Grade 1/2 classes and Grade 5/6 classes in State Government schools in Melbourne,
Australia. I completed a Masters degree by coursework in Early Numeracy at the Australian
Catholic University in my fourth and fifth years of teaching while working full time as a

primary teacher. This move into the new discipline and "fieldwork" of Education built on my
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previous training as an historian. I hope that my ethnographic historian's ear will enable me to

listen, through their explanations, to the students' understandings of the tasks.

3.1.1.1 Theories of learning.

A constructivist theory of learning underpinned Kieren's description of fraction understanding
stratified into ethnomathematic, intuitive, technical-symbolic, and axiomatic-deductive
engagement. It was "congruent with reflective abstraction" (Kieren, 1992, p. 349), dynamic
and nonlinear (Kieren 1993; Pirie & Kieren, 1994b). When faced with more difficult
concepts, students folded back to earlier understandings (Pirie & Kieren, 1994a; 1994b). The
recursive nature of understanding maintained access to all these levels rather than discarding

them as more sophisticated understandings were developed.

All constructivist theories of the learning of mathematics had a constructionist (non-positivist)
epistemology, but they had different emphases on the processes of learning. The
constructivism theories are theories of learning rather than of teaching. In their critique of
constructivism, Lesh, Doerr, Camona, and Hjalmarson (2003) described the pedagogical
implications of constructivism. Knowledge was actively constructed by the student and not
simply passively received from the teacher. Constructivists looked at constructs and
trajectories. Changes in concepts came about when the learner had to resolve conflicts, and

students' reasoning was sought after the problem had been solved.

Social constructivists and radical constructivists positioned their investigations differently
(Cobb, Stephen, McClain, & Gravemeijer, 2011). The focus of the present study is
mathematical interpretations and reasoning (see Table 3.1). While not a study of classroom
interaction, the present study has been influenced by the underlying beliefs of social
constructivism. The term classroom norms described explicit and implicit expectations of
teacher/student interaction. For example, Cobb and Yackel (1996) described Grade 2 students
who were expected to explain their own strategies rather than guess what the teacher wanted
them to say in classroom discussions. Sociomathematical norms codified the classroom
practices of explanations. For example, "what counts as a different mathematical solution, a
sophisticated mathematical solution, an efficient mathematical solution, and an acceptable
mathematical explanation" (Cobb & Yackel, 1996, p. 178). These normative standards for
argumentation could apply to other mathematical activities such as reasoning with tools and

inscriptions (Cobb, 2002).
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Table 3.1
Corresponding Terms Between Social Constructivism and Radical Constructivism (Cobb et
al., 2011)

Social Perspective Psychological Perspective
(Social Constructivism) (Radical Constructivism)
classroom social norms beliefs about own role, others' roles, and the general nature of

mathematical activity in school
sociomathematical norms mathematical beliefs and values

classroom mathematical mathematical interpretations and reasoning
practices

For both social constructivists and radical constructivists, misconceptions were not
nonsensical: they were understandings generalised inappropriately from one context to
another. They were characterised in constructivist theories as "faulty extensions of productive
prior knowledge" (Smith, diSessa, & Roschelle, 1993, p. 152). They had a basis in correct
mathematical thinking but had been generalised inappropriately. Learning was concerned with
"learning to use what you already know in either wider or more restricted contexts" (p. 136).
The strength of misconceptions and their resistance to teaching lay in both this rootedness in
being successful in a particular context and also because "Some misconceptions are powerful
enough to influence what students actually perceive" (p. 162). For the descriptive
investigation in the present study, this theorising of misconceptions was more useful than, for

example, the cognitive task analysis approach from psychology (see e.g. Crandall, 2006).

Ernest described an example of the conventions in mathematics that young children
encounter: "3 divided by 4 (*/,) is at first an impossible task. Later it is not only a possible
task, but /4 names the answer to it, i.e., becomes a new kind of semiotic object, a fractional
numeral" (2006, p. 76). Fraction notation has its own semiotic conventions that link symbols
to rational number sub-constructs. For social constructivists, mathematics is a culturally
transmitted (or emerging), internally consistent, highly resilient discourse that describes

pattern, order, magnitude, space and relationships.

For Piaget, knowledge was actively built: assimilation was not bringing material from the
environment into the organism but treating new material as an instance of something known
(Von Glasersfeld, 1995). For example, Piaget, Inhelder and Szeminska (1960) described
children's responses to a conservation of area task where two identical rectangles were

rotated. Child A's response was not generalisable: he said that they were the same because he
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compared them. Child B, on the other hand said that they were the same because he "regards
the new shape as simply the outcome of a transformation rather than a new area to be
compared with the original" (p. 285). The new situation was recognised as an example of
something already known. Children can assimilate ideas but not realise that these ideas
contradict their schema. Von Glasersfeld offered the analogy of a card punch machine that
sorts cards with three specific holes punched from the rest. However, cards with extra holes
punched are included too, as long as the three key holes are punched; just as the organism
"remains unaware or disregards whatever does not fit into the conceptual structure it
possesses" (1995). The most common cause of accommodation was linguistic iteration,
particularly teaching: children needed to hear something that contradicted their schema

several time before it was noticed that it could not be assimilated.

If the child could not assimilate the new material there would be perturbation and the
formation of a new scheme as accommodation occurred (Von Glasersfeld, 1995). Reflective
abstraction is a branch of constructivism, grounded in Piaget's later work and describes not
perturbation, but reflection, as the key mechanism in resolving cognitive conflict. Reflective
abstraction had been used to describe fraction learning (Simon, Tzur, Heinz, & Kinzel, 2004).
For adherents to a reflective abstraction interpretation of learning, other constructivist theory
generated a learning paradox because "a child who has no conception of multiplication will
not perceive multiplicative relationships in any situation, including those considered by the
teacher to transparently display multiplication (e.g. an array)" (Simon et al., 2004, p. 310).
Children had "no access to a mathematics that is independent of their ways of knowing" (p.
306). Being shown something to contradict a misconception assumed that the child could see
the mathematical metaphor in the new materials. Perturbation might produce accommodation,

but how could perturbation be generated if children could not see what they did not know?

In Simon, Tzur, Heinz, and Kinzel's research a child was shown two identical square pieces of
paper and told they were cookies (2004). One cookie was then cut in half vertically and the
other diagonally. The child was then offered the choice of either of the two identical vertical
halves, followed by the choice of either of the two diagonal halves, lastly followed by the
choice between a vertical half or a diagonal half. One child opted for the half cut on the
diagonal over the half cut vertically because "it is bigger" (p. 315). In order for the child to
move on from the conception that the cutting made two distinct subsections, not two equal
halves, the researchers argued, a pedagogical intervention needed to take place in which the

child reflected on his or her understanding. Reflective abstraction occurred when the child
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reviewed the sequences of actions and results and looked for patterns. Activities involving
partitioning and iteration were proposed by the researchers as suitable activities to prompt
reflective abstraction, in order for the child to develop a stronger understanding of the cookie

problem posed above (Simon et al., 2004).

One outcome of radical constructivist research was descriptions of the learning process of
moving from one stage to the next (the how) and also the sequence of constructs that defined
those stages (the what). Hypothetical learning trajectories were one of the descriptions of
construct development. They described, not a child's individual constructions of mathematical
ideas, but key conceptual ideas that children understood about a mathematical domain (Simon
& Tzur, 2004). They were hypothetical because they could not predict actual children's
learning pathways (Simon, 1995). Hypothetical learning trajectories elaborated the fine detail
of concept development in a mathematical domain, but in contrast to Piaget, they were not
linked to age (Steffe & Weigel, 1996). The teaching component of hypothetical learning
trajectories was also important: the learning goal, the learning activities, and the thinking and
learning in which the students might engage were all parts of a hypothetical learning
trajectory (D. Clements & Sarama, 2004). Steffe (2004) reported a case study of an actual
learning trajectory of two children and their teacher, engaged in learning experiences related
to equivalent fractions, because he believed that real learning trajectories needed to be

documented as part of the research into hypothetical learning trajectories.

Kieren's model for fraction understanding (1995) and Lehrer's key concepts of measurement
(2003) were not hypothetical learning trajectories. In the present study I was not seeking to
test or devise a hypothetical learning trajectory. I was interested in children's explanations and
how they co-ordinated their understandings. To support this interpretive approach, I chose to

use one-to-one task based interviews as the method of investigation.

3.1.2 Advantages and disadvantages of task-based interviews.

There were three main questions to answer in order to justify the use of a one-to-one task-
based interview in the present study:

e why interviews and not classroom observations?

e why task-based?

e why one-to-one?
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There were several research methods that could have been used to collect data to answer some
of the research questions, but the one-to-one task-based interview could be used to investigate

all three questions and was a practical method for a single researcher.

Why were interviews used and not classroom observations?

The main criticism of the use of interviews in educational research was the "white room
effect" (diSessa, 2007). The white room effect caused people to behave in ways that they
normally would not, because they were in an unfamiliar environment. As an interpretive
device, interviews had the disadvantage of generating knowledge about individuals in a
limited context (diSessa, 2007). On the other hand, Ginsberg argued (1997) this non-
classroom environment could prompt children to attempt to think differently about tasks
because, unlike classroom questioning, they were asked questions that they were not always
expected to be able to answer immediately. In other research, the interview format itself has
been normalised as part of classroom practice, for example in cognitively guided instruction
(see e.g., Fennema, Franke, Carpenter, & Carey 1993) or in the teaching experiments of the
Rational Number Project (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984). The use of the
Early Numeracy Interview was suggested but not mandated in 2001 (Department of
Education & Training, 2001). One-to-one interviews in Victorian schools have been a useful
pedagogical practice (McDonough, B. Clarke, & Clarke, 2002; Clarke, Mitchell, & Roche,
2005), not just a research tool. For students, interviews have been a familiar, but not frequent,
way of interacting with a teacher. Although students' behaviour and even thinking might be
different in an interview, because one-to-one task-based interviews were part of school

learning they did not have the same white room effect as clinical interviews in other settings.

Interviews have been a useful method for assessing the viability of a theoretical model
(Clement, 2000). They could provide empirical support for predictions based on a theory. In
investigating the plausibility of Kieren's four-three-four model, the framework had to have
explanatory power when used with real students' explanations. Interviews usually generated
data that could sustain interpretive analysis (Clement, 2000). The present study might be

considered a pilot study for a later instructional design research project.

Why were the interviews task-based?

Task-based interviews gave researchers an opportunity to gather rich data on children's

descriptions of their mathematical strategies (diSessa, 2007). For example, there has been
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'

greater emphasis in using mental computation to "uncover children's thinking rather than
covering it up or generally ignoring it", not merely to test speed and accuracy (Sparrow &
Mclntosh, 2004, p. 155). In contrast, Lesh and Kelly argued (2000), teaching experiments

provided better access to individual students' learning.

The students engaged with an interviewer and with the task thus enabling a topic to be
explored in depth (Goldin, 2000). A prompt for an explanation could be given by the
interviewer and this could generate further data. Ginsberg (1997) suggested four interviewer
strategies to elicit further information to investigate whether the child was giving the right
answer for the wrong reason or giving incorrect answers but had greater understanding than
was indicated by the answer: rephrase the question, modify the task, probe, or offer a counter
suggestion. These interviewer techniques could be considered a "repair" in conversational

analysis terms (Wooffitt, 2005).

For appropriate task selection it is important to have criteria (Ginsberg, 1997). In the present
study several key aspects of Kieren's four-three-four model (1988, 1992, 1993, 1995)
provided the criteria. A research based categorisation of measurement tasks based on Lehrer's
key concepts for measurement (2003) was also used. The uniformity of data collection in
interviews was a strength of the method. The children's responses to mathematical tasks could
be coded (Clement, 2000). The data can then be used to calculate the frequencies of success
or the frequencies of particular strategies The use of mathematical tasks in the interview

protocol enabled investigations into children's explanations and strategies.

Why were the interviews one-to-one?

The one-to-one task-based interview was able to detect whether a student gave the right
answer for the wrong reason (M. Clements, 1980; M. Clements & Ellerton, 2005) or the
wrong answer despite full or partial understanding (M. Clements & Ellerton, 1995). Both
students' explanations and their answers were evaluated. Self-correction was possible in one-
to-one interviews for two reasons. Firstly, in explaining the answer, a student could correct a
careless mistake (M. Clements, 1982). Secondly, the child had time to think without being
influenced by other students' answers. Interviews guaranteed wait time (Ginsberg, 1997), or
"free problem solving" (Goldin, 2000), if the researcher desired it. In a one-to-one interview
the student did not need to adjust their explanation for the understanding of another student.

There were certain assumptions that the student could make about the extent of the teacher's



61

understanding of the task: the student had to explain their own thinking, but did not have to
check whether the teacher "knew the maths".

The explanations that the child offered were always in the context of a student talking to a
teacher because the interview format was similar to other assessment interviews conducted in
Victorian primary schools. I was introduced to the students as a teacher, and so in order to
keep the idea that the students positioned me as a teacher in their responses, I have referred to

them as students rather than children in my reporting of results.

In an interview, the interviewee transferred some authority to the interviewer, particularly in
regard to task choice (diSessa, 2007). Therefore, it was not possible to gain insights into
aspects of children's thinking that the researcher had not chosen to investigate because the
student was unlikely to volunteer this information: it was tacitly agreed that the interviewer

was defining the field of inquiry.

The interviewing of individuals "sensitised" researchers to new observations, although it
could take several individual's responses before researchers recognised something they had
not been seeking in the explanations (Clement, 2000). Similarly to Thompson (1982),
Ginsberg (1997) suggested that "a useful approach to interpreting a "wrong" answer is to
discover the question to which the child's answer is correct" (p. 12). The individual nature of

the interview had advantages for identifying undocumented mathematical strategies.

Thus one-to-one task-based interviews were chosen as the method for the present study for
several reasons. This method enabled tasks, chosen using a research based criteria, to be
offered to many students. The data could be analysed for the specific strategies that students
used, for correlations between fractions and measurement understandings, and for the
explanatory power of Kieren's model of fraction knowledge. Interviews enabled the gathering
of data on children's explanations in a context that was familiar, albeit not necessarily

common, for the students.

3.2 Method: one-to-one task-based interview

A one-to one task-based interview was developed assessing length and area measurement,
multiplication, and fraction understanding. There were also tasks to assess students' use of

dynamic imagery. The interview had 65 tasks and took up to three hours (over several
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sessions) to complete. 88 Grade 6 students were interviewed and their answers and

explanations recorded on a record sheet, audio taped, and more than half were videotaped.

In this section I describe
e the participants and their schools,
e the interview used in the present study, and
e how the interview was conducted, and the protocols for the collection and coding of

data.

3.2.1 The Present study.

This section describes the students, their schools and the local context in specific detail.
However, details have been withheld if they would be identifying. Four government Prep to
Grade 6 primary schools in Melbourne, Victoria, Australia were chosen for the study. They
were given the pseudonyms Casuarina Primary School, Wallaby Flat Primary School, Lone
Pine Primary School, and Four Hills Primary School. Fourteen Grade 6 students from
Casuarina Primary School and Wallaby Flat Primary School were interviewed for the pilot
study in Term 4, 2007 and 88 Grade 6 students from Wallaby Flat Primary School, Lone Pine
Primary School, and Four Hills Primary School were interviewed for the main study (the
present study) in Term 1 and 2, 2008 (see Table 3.2). Two Grade 5 students from Casuarina
Primary School were also interviewed using the main study interview protocol in 2008 in
order to assess whether the tasks would be appropriate for a range of students from the

beginning of Grade 5 to the end of Grade 6.



63

Table 3.2
Profile of Participants and Schools for the Main Data Collection 2008

Schools
Wallaby Flat PS Lone Pine PS Four Hills PS

Number of participants 17 22 49
Gender breakdown 7 girls 9 girls 27 girls

10 boys 13 boys 22 boys
School size 200-300 200-300 Over 600
Data collection (2008) Feb 11 to March 4 to April 22 to

March 7 April 21 June 24
Grade structure 5/6 5/6 6
Class groups sampled 2 3 5
Socio economic profile 2009 mid-high high low-mid
Proportion of students with mid mid high
English as a second language
% return rate of consent forms  60-70% 60-70% 35-45%

The four schools (including the pilot schools) were in the Northern Metropolitan Region of
Melbourne, Australia. All students who returned consent forms for the pilot study and the
present study were interviewed. In 2008 there were five different socio-economic levels used
to categorise government primary schools in Victoria: low, low-mid, mid, mid-high, high
(Department of Education and Early Childhood Development, 2009c) and three schools with
different socio-economic levels were chosen for the present study. Between 40% and 65% of
the students in Grade 6 in each school were interviewed. The students came from 10 different
class groupings, each with their own classroom teacher. Wallaby Flat Primary School and
Lone Pine Primary School had composite Grade 5/6 classes while Four Hills Primary School

had straight Grade 6 classes.

The school year in Australia runs from late January to December, and in Victoria is broken up
into four terms. In Victoria, the first year of school is called Prep and students begin in
January if they have turned five or will do so by April 30 in this first year of schooling. Grade
6 students in Victoria turn 11 by April 30, so are aged 11-12 years old. Students spend Prep
and Grade 1 to 6 in the primary school and 7-12 in the secondary school. In the present study
the Grade 6 students were in classes of around 25 students which would be considered a

normal size. In February 2008 there were 44,134 Grade 6 students in Government schools in
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Victoria (Department of Education and Early Childhood Development, 2008). Further

summary statistics are available in Appendix C.

Government schools in Victoria are funded by the State Government and use the curriculum
documents developed by the Department of Education and Early Childhood Development.
Australia uses the metric system and students' length measurement activities using formal
units would be with millimetres, centimetres and metres. Many scales referred to in everyday
life use decimal notation. For example, temperature is measured in degrees Celsius and mass

in kilograms.

The state government department responsible for government schools in Victoria has had
several name changes in the past fifteen years:

e Department of Education & Training (1995-2006),

e Department of Education (2007), and

e Department of Education and Early Childhood Development (2008-2011).
The Victorian Curriculum and Assessment Authority is a separate but related State

Government body.

3.2.2 The instrument.

A pilot interview was conducted with 14 Grade 6 students (Term 4). It was used to

identify any confusing wording in the tasks

e confirm the order of tasks in some length and area categories

e check timing

e confirm that the interview was suitable for Grade 5 and 6 students.

No child was correct on every task and no child was incorrect on every task.

The interview used in the present study was then further developed and refined from the pilot
interview protocol. This was then used with 88 Grade 6 students in Terms 1 and 2 of the
school year. This section of the chapter describes how the interview was conducted and
identifies the nature of the data and how they were recorded. The interview tasks (questions,

task cards, referencing) are included in full in Appendix A.

Tasks were chosen to assess the students' understandings of length and area measurement,
dynamic imagery, multiplication, the equivalence concept of fractions, and the measure,
quotient, operator, and ratio sub-constructs of fractions. As the measure sub-construct and

equivalence concepts were the particular focus of the present study, more tasks were used to
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assess these aspects of fraction understanding than the other sub-constructs. The concepts of
partitioning and unit-forming were not directly assessed in the interview, but tasks were
chosen that might reveal whether students drew on partitioning, equivalence and/or unit-
forming in the measure and quotient sub-construct contexts. Kieren's four-three-four model of
fraction knowledge (1988, 1992, 1993, 1995) and Lehrer's key concepts for measurement

(2003) were the domain level theories that informed the criteria for task selection.

3.2.2.1 Multiplication.

The multiplication and division section of the interview was offered to the students first. The
tasks were taken from the number section of the Early Numeracy Interview multiplication and
division section (Department of Education & Training, 2001). The Tennis Balls task was the
first task in the interview used in the present study. This task was not difficult and was used to
settle the student into the interview and establish the classroom norms of the interviewer
listening to a response, asking how the student worked out their answer and not directing the
student's thinking through prompts or teaching. I did not follow the same protocol as the Early
Numeracy Interview which was to continue as long as the student answered correctly. Instead,

I offered all of the tasks after the Tennis Balls task, to each student in the present study.

The multiplication and division tasks had been used extensively in another research project
with Grade Prep to 2 students (Clarke et al. 2002), and later with the some of the same cohort
in Grade 3 and 572 of them in Grade 4 (Clarke, 2005). The interview questions were also used
successfully with the 323 of the cohort in Grade 6 in a follow up project. The tasks had been
suggested as a formative assessment tool for use in Victorian Primary Schools (Department of

Education & Training, 2001).

3.2.2.2 Fractions.

Kieren's four-three-four model for an ideal fraction knowledge described constructs and also
levels of engagement with those constructs (1988, 1992, 1993, 1995). It was chosen as the
model of fraction knowledge that positioned the data collection and analysis of data in the
present study because it
e claborated the measure sub-construct as more than proficiency with number lines,
e could theorise an association between measurement understanding and fraction
understanding,

e pedagogically made a space for equivalence, partitioning and unit-forming,



66

e further delineated the ethnomathematic, intuitive, and technical-symbolic levels of
understanding of the sub-constructs,
e attempted to counteract the double count misconception by a reframing solution rather
than a word of caution, and
e was a model that assumed many pathways to fraction understanding rather than one
hypothetical learning trajectory.
Tasks were selected to assess the concept of equivalence, and the sub-constructs measure,
quotient, operator and ratio. Continuous (length and area), discrete and symbolic contexts

were represented.

3.2.2.2.1 Equivalence.

The concept of equivalence was assessed using area and length diagrams, concrete materials,
and symbolic representations in tasks similar to others in the research literature (see e.g.
Baturo, 2004; National Center for Educational Statistics, 2007). Equivalence tasks were
specifically designed to assess the students' recognition of '/4, '/ and %/ in length and area
diagrams (see Figure 3.1). Equivalence was raised as a possibility in the Fraction Pair task by
the wording of the question asked by the interviewer, "please point to the larger fraction or
tell me if they're the same". The addition of the words or tell me if they're the same was an
adaption made to this task for the present study in order to cue the students into considering

equivalence.

Equivalence:
e Continuous
0 Length
= Fraction Sort (Q. 19t)
0 Area
= Fraction Sort (Q. 19¢, n, 1, s, v, W)
= Crossroads (Q. 28)
e Discrete
0 Fraction Sort (Q. 191, j, k)
0 Golden Beans (Q. 21b, d)
e Symbolic
0 Fraction Pairs (Q. 22b), and after data collection: Q. 22f
0 After data collection Q. 26¢

Figure 3.1. Classification of tasks for the equivalence concept of fractions.
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3.2.2.2.2 Measure.

In the research literature the measure sub-construct of fractions was assessed using:

e number lines (Kieren, 1992, Lamon, 1999, Ni, 2000),

e area diagrams (Kieren, 1992),

e length contexts of measuring (Kieren, 1992, Lamon, 1999), and

e the comparison of the relative size of fractions (Kieren, 1993; Lamon, 1999, Ni,

2000).

Kieren had suggested that some aspects of the part-whole character of fractions could be
reframed in the measure sub-construct (1993). Non-equal-parts area diagrams had been
categorised as part-whole in the research literature (see e.g., (Clarke et al., 2007; Heinz,
Kinzel, Simon, & Tzur, 2000) but were used in the present study to assess one aspect of the
measure sub-construct. Number lines, and length and area diagrams, and symbolic
inscriptions of fraction size comparisons were used to assess the measure sub-construct of
fractions, with tasks adapted from the research literature (see Figure 3.2). Discrete inscriptions
were not used for the measure sub-construct tasks because they have been categorised by
Kieren (1992) as ratio tasks drawing on the partitioning concept. Both length and area

diagrams were used.

Measure
e Continuous
0 Length
= Number lines (Q. 16)
= Tightrope Walker (Q. 15)
= Density (Q. 25)
= Puff Machine. (Q. 23)

u Fraction SOI‘t (Q 193, b: ¢ g, h: 1: m, 0, P, q, u:)
= Fraction Pie (Q. 14)
= Fold Me a Quarter (Q. 13)

e Discrete
0 (notused in measure construct, discrete "part-whole" can be thought of as early
ratio)
e Symbolic

0 Fraction Pairs (Q. 22)

Figure 3.2. Classification of tasks for the measure sub-construct of fractions.
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The number line questions had been designed to assess whether students could both make
partitions and read partitions. Two contexts were also used; number lines labelled 0 to 1, and

number lines that were labelled greater than 1 (see Table 3.3).

Table 3.3
The Selection of Number Line Tasks to Represent Research-based Criteria

Number lines 0 to 1 Number lines 0 to >1

Make partitions 16a Proper fractions: 16c¢, Improper fractions:16b

Read partitions  16e, 16f (non-equal-parts) Improper Fractions: 16d, 16g, 16h

One example of a deliberate choice about diagram construction in the measure sub-construct
was the Fraction Pie Task (Q. 14). In the literature, the sixth to be identified was on the left
hand side of the image (Cramer et al., 1997; Clarke et al., 2007; Mitchell, 2005) (see Figure
3.3, left). In the present study I reversed the image so that the more difficult fraction part to
identify was at the intuitive zero-point; rotating clockwise from 12 o'clock (see Figure 3.3,
right). This was to give students the best chance of identifying the fraction part. In addition, I
altered the labelling of Parts A and B on the diagram so that they corresponded to Parts A and
B of the task.

Figure 3.3. Fraction Pie task diagram used in the research literature (left) and the diagram

used in the present study (right).
3.2.2.2.3 Quotient.

The quotient sub-construct was assessed using a sharing situation similar to sharing tasks in
the research literature using pizzas and people (Clarke et al., 2007; Kieren, 1988, 1993;
Lamon,1999) or people and tables (Streefland, 1991). Length and area representations were

used, but pizzas were not chosen as the context because of the concern that children had
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preconceived ideas about the number of pieces into which they could be divided (see Figure

3.4).

Quotient sub-quotient
e Continuous
0 Length
= Sharing Custard Tarts and Liquorice (Q. 20a, d; liquorice tasks)
O Area
= Sharing Custard Tarts and Liquorice (Q. 20b, c; custard tart tasks)
e Discrete

0 (not used, except for whole number division with no remainder. For example
in multiplication and division section)

Figure 3.4. Classification of tasks for the quotient sub-construct of fractions.
3.2.2.2.4 Operator.

Three types of tasks assessing the operator sub-construct had been noted in the research
literature:
e an area context using concrete materials (pattern blocks)
e the nominal context, "of" questions, such as two thirds of nine (see e.g., Clarke et al.,
2007), and
e fraction multiplication (see e.g., Behr et al., 1997).

these three aspects of the sub-construct were assessed (see Figure 3.5).

Operator sub-construct
e Continuous
0 Pattern Blocks (Q. 17)

0 If area model used in Simple Operators (Q. 18d and e) when pen and paper
permitted)

O after data analysis, Fraction Pie (Q. 14b)
e Nominal

0 Simple Operators (Q. 18a, b, ¢)
e Symbolic

0 Fraction Algorithms (Q. 26¢)

Figure 3.5. Classification of tasks for the operator sub-construct of fractions.
3.2.2.2.5 Ratio.

The ratio sub-construct was assessed using a classic Piagetian task, calculating the food

needed for fish of different lengths, (Piaget, cited in Resnick & Singer, 1993). This task had
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been replicated in the literature with slightly different representations (Hart, 1981; Clark &
Kamii, 1996). In the present study, the context was four bookworms who ate different
numbers of books according to their length (see Figure 3.6). In Kieren's reframing of the part-
whole concept into the four sub-constructs, discrete "part-whole" diagrams and contexts could
be thought of as early ratio understandings, and the discrete category of ratio tasks included

some questions that could be thought of as traditional discrete part-whole diagrams.

Ratio
e Continuous
0 Length
= Bookworms (Q. 12)
0 Area
= No task offered
e Discrete

0 Fraction Sort (Q. 19f, x)
0 Golden Beans (Q. 21a, ¢)
0 Show Me Thirds (Q. 27)

Figure 3.6. Classification of tasks for the ratio sub-construct of fractions.
3.2.2.3 Measurement.

There were three criteria for measurement tasks:

e the four concepts, attribute, additivity, units and proportionality;

e adifferentiation between conceptual tasks and tools and procedures tasks; and

e the two contexts of length and area.
The four concepts attribute, additivity, units, and proportionality were based on Lehrer's
(2003) key concepts but my synthesis also included conceptual elaborations by Outhred and
Mitchelmore (2000), Barrett and D. Clements, (2003), D. Clements (1999), Battista, D.
Clements, Arnoff, Battista, and Borrow (1998), Bragg and Outhred (2000; 2004), and Pettito
(1990) (see sections 2.1.2.1 (the concept of attribute), 2.1.2.2 (the concept of additivity),
2.1.2.3 (the concept of units), and 2.1.2.4 (the concept of proportionality). Length and area
were the most common contexts used in fraction tasks. Volume and angle, the other spatial
measures, were not included in the assessment of measurement concepts, nor were non-spatial

measurces.

The abbreviations used to identify these categories begin with a distinction between

conceptual (C) and tools and procedures (TP) tasks. The next section of the abbreviation
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indicates the relevant key concept, for example attribute (AT), additivity (AD), unit (UN), or
proportionality (PR). The last section of the abbreviation indicates whether the task or tasks
used length (L) or area (A) diagrams. For example, the tools and procedures (TP) task for the
key concept of units (UN) using an area (A) context was TPUNA.

The terminology "conceptual tasks" and 'tools and procedures" that is used in the present
study is based on the distinctions made by Skemp (1976) and Kieren (1976) and is
comparable to the definitions of conceptual and procedural understanding (Heibert &
Carpenter, 1992). The same interview was offered to all students in the present study, but
because of the use of entry-level tasks in some of the measurement categories, there were
seven instances in the interview protocol where different follow up tasks could be offered; a
harder or easier task. There were conceptual tasks assessing the four concepts of measurement

in both length and area contexts (see Figure 3.7).
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Attribute
o Length (CATL)
O Similar shapes (Q. 36g)
e Area (CATA)
O Similar shapes (Q. 36h)
Additivity (CADL)
e Length
0 Straightening wires (Q. 43)
0 Freddo (Q. 41) entry-level task
0 Footy Card (Q. 42)
e Arca (CADA)
0 IfFold Me a Quarter Incorrect, Square To Triangle Sequence (Q. 34) offered

0 Missing oval (Q. 35, the count only) if not already correct count on Staircase
Array (Q. 62, pen and paper after Q. 12)

0 Area Calculation, Half Rectangle (Q. 33) entry-level task
0 Area Calculation, Triangle (Q. 53)
Unit
e Length (CUNL)
0 Using Paper Clips to Measure (Q. 40a)
0 Keyboard (Q. 39) entry-level task
0 Swimming pool (Q. 65)
e Area (CUNA)
0 Cuisenaire Array (Q. 48)
0 Array With Leftovers (Q. 46) entry-level task
0 Packing boxes (Q. 47)
Proportionality
e Length (CPRL)
0 Using Paper Clips to Measure (Q. 40b)
0 Steps (Q. 44) entry-level task
0 Choosing Rulers(Q. 45)
e Area (CPRA)
0 Draw Your Own Array (Q. 38b)
0 Four Triangles (Q. 37)

Figure 3.7. Classification of the conceptual tasks of the concepts of measurement.

The pilot study had been used to ascertain whether the entry-level task protocol would give
valid results. The students were asked all three CADL tasks in the pilot study; the
Straightening Wires task, the Freddo task; and the Footy Card task. There was a range of
performance by the students on the three tasks: two students scored 0, four students scored 1,
four students scored 2, and four students scored 3. All of the students' results followed the

entry-level sequence: no student was incorrect on a task lower than the highest one at which
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they were successful. As the entry-level sequence was validated by the pilot study in which
students were asked all three questions, it was decided in the present study that students
would be asked two questions (entry-level task and more difficult task or entry-level task and
easier task) with the assumption, validated in the pilot study, that a student unsuccessful at the

Freddo task would also be unsuccessful at the Footy Card task.

The pilot study had been used to verify the entry-level protocol of the CADA sequence:
successful count on the Staircase task (Q. 62) or Missing Oval task (Q. 35); Area Calculation,
Half Rectangle (Q. 33); and Area Calculation, Triangle (Q. 53). Thirteen Grade 6 students
were asked all four of these questions, and there was a range of correct and incorrect
responses. All of the students' correct and incorrect responses followed the entry-level
sequence: no student was incorrect on a task lower than the highest one at which they were
successful. Note that students could be correct on the count for either the Staircase task or the
Missing Oval task as these tasks counted together as the easier task. It was decided in the
present study that students would be asked an entry-level task with the assumption, validated
in the pilot study, that a student unsuccessful at the Area Calculation, Rectangle (Q. 33)

would also be unsuccessful at the Area Calculation, Triangle task (Q. 53).

There were tools and procedures tasks assessing the four concepts of measurement in both

length and area contexts (see Figure 3.8).
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Attribute
e Length (TPATL)
0 Blocks of Ice (Q. 54a)
e Area (TPATA)
0 Blocks of Ice (Q. 54b)
Additivity
e Length (TPADL)
0 Measure DVD with Ruler (Q. 32)
0 Streamer (Q. 31a)
o Arca (TPADA)
0 Area Calculation, Rectangle (Q. 63)
Units
e Length (TPUNL)
0 Dragonfly (Q. 64)
e Area (TPUNA)

0 Staircase Array (Q. 62), Area Calculation, Rectangle, (Q. 63), and if needed,
Missing Oval (Q. 35).

Proportionality
e Length (TPPRL)
0 Streamer (Q. 31b)
e Arca (TPPRA)
0 Draw Your Own Array task (Q. 38a)

Figure 3.8. Classification of the tools and procedures tasks of the concepts of measurement.

Both the Streamer task and the Measure a DVD task were offered to all students but one in
the pilot study, but a larger margin for error (0.5 cm) was allowed when measuring 19 cm.
With this larger margin for error, the pilot data supported the interview protocol of offering
the Measure a DVD task only to students who were unsuccessful at measuring the streamer.
However, because a student could measure from the edge of the ruler and not 0 and obtain a
measure of 18.5 cm, a more accurate answer was needed to distinguish this inaccurate
measuring from a correct measurement and so a smaller margin for error was used in the main

data collection interviews.

3.2.2.4 Visualisation.

Some tasks could be attempted using dynamic imagery. The research literature had indicated
that a student's ability to use dynamic imagery, in particular rotating objects in the mind's eye
was difficult to assess (M. Clements, 1983). To distinguish between dynamic visualisation

and geometric reasoning on spatial tasks, the children were asked for their explanations of
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how they worked out their answer. Five tasks were adapted from the research literature on
dynamic imagery/spatial ability/visual processing (see e.g., M. Clements, 1983) and from
respected assessment protocols (see e.g., Australian Council for Educational Research, 1978;
Department of Education & Training, 2001; National Center for Educational Statistics, 2007).
The dynamic imagery involved mentally rotating diagrams or illustrations in the student's

mind's eye, but not mentally reorienting the student's mental point of view.

Other geometrical tasks were also included to explore two other areas; the relationship
between the number of cuts and the number of pieces, and location using array coordinates.
The geometry taught in the primary curriculum was not sufficiently developed to afford a
comparison study between fractions and geometric reasoning. Thus the geometric tasks were

not a major component of the present study.

3.2.3. Interview protocols.

The length of the interview could be up to three hours. Tasks were completed over several
sessions, and no child was interviewed in one sitting for more than an hour. The breaks in the
interview differed for each child, determined by external forces (classroom timetables) and
how quickly they progressed through the questions. Most interviews took two and a half
hours and were spread over three sessions; this meant that most interviews carried over into

the next day.

The interview began with the gaining of informal consent that the students were still happy to

participate in the interview (see section 3.3.4 for formal consent protocols).

Are you happy to do some maths with me today?

I am interested in how you think when you are doing maths. I have a whole lot of tasks to do with
you here. I won't tell you whether you get an answer right or wrong. But I will probably always
say, and how did you work that out? You can tell me what you were thinking while you were
working out the problem. Or, sometimes you just know an answer, so then you can explain how
you know that you are right. If you change your mind about an answer while you are explaining it,
that's fine, you just tell me your new answer.

Some of the questions might be easy. Some might be hard. Some of the things you might not have

been taught yet, so just do your best. (Interview Protocol, see Appendix A)

It did not take long to establish the relationship with the students that I required for the one-
to-one task-based interview because most students in the study had some familiarity with the
Early Numeracy Interview (Department of Education & Training, 2001). Some had done this

either in their first year of school, in later years of primary school, or as part of a mathematics
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support program. Thus the context of a teacher listening to students' understandings, rather
than guiding them to a teacher determined strategy and answer, was established. The
multiplication and division tasks were used to begin the interview so that this relationship was
established by the time fraction and measurement tasks were offered. The Tennis Balls task
was relatively easy and so the students could become familiar with thinking about verbalising

an explanation without being overly concerned about the calculations.

I conducted all the interviews at the students' schools and I was introduced to them as a
teacher. In the students' minds, I might at any time stop listening without comment on their
strategies and start teaching, and they were alert to the possibility that these classroom norms
might change. For this reason I deliberately did no teaching during the interview and provided
no feedback on whether they were correct or incorrect. Most answers were followed up with
"and how did you work that out" in the same tone whether their answer had been correct or
incorrect. On some occasions, I did not record the strike (correct) or dash (incorrect) on the
answer square on the record sheet if I thought that it would indicate success or otherwise to
the students. There would be enough information from the strategy recorded and, if need be,
the video or audio files, to determine the correctness of the answer during data entry if it had
not been recorded on the record sheet. To the students, I was a teacher and so, to remind
myself and the reader that the explanations that the students gave were always to a teacher, I

have referred to them in the present study as students.

Prompts had to be strictly monitored in order to maintain the classroom norm of the student
offering their own explanation for tasks, not what they thought the teacher wanted to hear.
However, this was balanced by a need to gather as much information as possible because
having record sheets or video or audio footage was only as good as the information that was
sought and recorded. A confirmatory question could be used in interviews (diSessa, 2007),
but this was used rarely in the present study because it tended to undermine the relationship
between the interviewer and the student. However, neutral probing was sometimes necessary

to distinguish between different strategies.

3.2.3.1 Recording of data.

The data collected for interpretation in the present study included students' answers,
explanations, and inscriptions in response to mathematical tasks and questions. All interviews
were audio-taped and some were video-taped, with parental consent. The interviews were

audio-taped on a digital recording device and the files downloaded to an external hard drive
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using Olympus software. More than half of the interviews were also videotaped using a
digital video recorder with an internal hard disk and files were downloaded to an external hard

drive using Windows Media Player software.

Researchers recommended recording as much as possible of the interviews for later analysis
(Clement, 2000; Ginsberg, 1997; Goldin, 2000, Patton, 2002). During the interview, notes
were made on a record sheet. As I am right handed, students were seated to my left. A box
was included for each part of each task to record success (correct answer and correct
explanation) or failure (correct answer with incorrect explanation, incorrect answer with
correct mathematical thinking, incorrect answer with incorrect mathematical thinking) using

the criteria of M. Clements and Ellerton (2005).

In order to minimise the time needed for written recording, common strategies were included
as dot points on the record sheet so that they could be circled quickly. Four methods were
employed to choose strategies to include as dot points:
e piloting the interview,
e aliterature review of children's mathematical approaches to tasks,
e adaptation of record sheets from previous fraction and multiplication and division
interviews (Department of Education & Training, 2001; Clarke et al., 2007), and
e revision of the record sheet after the first five to ten interviews to include strategies
that were emerging from the present study.
For example, dot points were used on the record sheet for the Fraction Pairs task (Q. 22) (see
Figure 3.9) to enable the faster recording of common correct strategies (benchmarking,
common denominators, and residual thinking) or incorrect strategies (higher or larger
numbers, and gap thinking). Every task also had space to include detail of explanations that

did not fit the dot points.

O g 5/6 and 7/8 or same Imagery task
benchmarks to /2 C PMf K D
converts to common denominator explanation
other (satisfactory) C PMf K D

residual thinking

higher or larger numbers
gap thinking

other (unsatisfactory)

Figure 3.9. Example of record sheet, Fraction Pair task (Q. 22g).
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Some tasks required extensive note taking, such as the Fraction Sort task (Q. 19) (see Figure
3.10). There was space on the record sheet to record different kinds of visual imagery.
Presmeg's categorisations of visualisation were used: concrete pictorial imagery, pattern
imagery, memory images of formulae, kinaesthetic imagery, and dynamic imagery (1986). All

the data on the record sheets was supported by audio, and sometimes video, recordings.
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Figure 3.10. Scan of recording for part of Fraction Sort task (Q. 19).
3.3 Analysis of Data

Qualitative research distinguished "what is observed from what is inferred, and this is
especially important when what is observed is already complex and qualitative" (Goldin,
2000). I have presented this thesis in a traditional format: Introduction, Literature Review,
Methodology and methods, Results, Discussion and implications, and Conclusion. This
format clearly delineated between the selection and presentation of results and the further
analysis of the discussion, implications and conclusions based on those results. The
theoretical perspective outlined in the first part of this chapter, together with a research-based
criteria for task selection stemming from the literature review, were realised in the interview
protocol. Initial interpretive analysis follows in the Results chapter and further interpretive
analysis continues in the Discussion and Implications chapter: the misconceptions and correct
strategies offered by the students are described and investigated and linked back to the

research literature; correlations between performance on measurement tasks and performance
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on fraction tasks are investigated; and the explanatory power of Kieren's four-three-four
model is evaluated. The conclusions of the present study are then related back to the

significance of the study as described in the Introduction.

3.3.1 Coding protocols.

The coding of data was a three stage process. This reflected the interpretive nature of the
examination of the data. Neuman (2003) recommended three passes at coding. Firstly, the use
of open coding enabled themes to emerge. Secondly, axial coding divided existing codes into
subcategories, or combined specific codes to make broader categories. Finally, selective
coding was used to re-examine tasks of interest. In the present study, the first pass at coding
included piloting the interview, developing a record sheet, recording the interviews, and
assigning a code to every response and collating that in a Microsoft Word Excel spreadsheet.
The second pass at coding included choosing categories to record in an SPSS database, and
refining categories for use in double coding of the data. The third pass at coding included the
transcription of the students' explanations, from audio or video tapes, in key tasks, and the
refinement of some interpretive categories during analysis. In broad terms these three passes
at coding were chronological. However, there were checks for accuracy implemented

throughout the process.

Each afternoon after interviewing in a school, I returned to the University and downloaded the
video files and, using the record sheet, entered the basic coding of correct/incorrect for each
question into an Excel spreadsheet. To be coded as correct, a student had to have a correct
answer and have given a mathematically correct explanation. This process enabled me to
quickly ascertain if | had inadvertently missed offering a task to a student and I could then do

so the next day if needed. Audio files were downloaded regularly but not every day.

After data collection was complete, I used the information on individual record sheets to
assign a code to every type of explanation, even if only one child had used that strategy, and
recorded the codes and a description of the strategies in the Excel spreadsheet. This was an
open coding process which used strategies identified in the literature but was open to the
identification of new strategies. There was no category of other. Voice recognition software
(Microsoft Word 2003) was used for much of the data entry and errors were corrected
immediately. The detailed coding was completed task by task not student by student, enabling
me to be open to new strategies as suggested by Goldin (2000). The database included the

actual answer, any self correcting, any prompts, the reasoning given for the answer, and a
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code for the type of inscription they created if appropriate. Some questions required specific
information such as whether the child marked the streamer with their finger, a pen or another
object. Missing data of strategies on the record sheet was obtained from the video footage or

audio files.

This detailed coding also enabled a check of my original data entry of correct/incorrect
coding. After I had entered the codes for a question, I would print out the spreadsheet for that
task and manually check that the code, 1 correct or 2 incorrect, matched the answer given by
the student and the code for reasoning (which started with a 1 if it was mathematically correct

and a 2 if it was mathematically not correct).

I made notes on the task in a separate document, noting the frequency of success, any
interesting responses, the specifics of the interview protocol such as prompting, and suggested

comparisons with other tasks.

After the completion of this first pass at coding, I double checked the data entry. This entailed
examining each individual record sheet again, assigning a code from the list I had prepared

for each task and then checking that this was what had been entered in the Excel spreadsheet.

Schools then received aggregate data on their students' performance. Only one parent did not
give permission for feedback to be given to their child's school. A summary report was
compiled of some of the tasks with frequencies of success and frequencies of selected

strategies.

The second pass at coding included assigning scores to some of the:

e constructs (e.g., multiplication, equivalence, measurement categories),

e tasks (e.g., Number Line, Fraction Pairs), and

e strategies (e.g., gap thinking).
In order to use factor analysis on the data (the validity of this is discussed in section 3.3.2
below, and the results of this in section 5.4.2.1), the responses had to be ranked with more
than two levels (correct/incorrect). Secondly, to facilitate the calculation of correlations,
measurement categories were given a score using a rubric: where three tasks were used to
investigate a concept, a score of 0 indicated unsuccessful attempts at both the entry-level and
easier task, a score of 1 indicated success at the easier task after an incorrect response to the

entry-level task, a score of 2 indicated success at the entry-level task but not the harder task,
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and a score of 3 indicated success at both the entry-level and harder task. These ordinal scales

were transferred into an SPSS database.

Coding descriptors had been included in the Excel spreadsheet but coding decisions were
recorded in a hard copy "coding book" because some questions had margins for error, or
coding rubrics. Changes to rubrics were noted in the coding book and then any required
changes were made to the database of tasks and to any "scores" if appropriate in both the
Excel spreadsheet and the SPSS database. In the final write up stage, the databases were
checked for synchronisation by hand (by an engineer with a PhD in robotics) to ensure that

frequencies and correlations were accurate.

The third pass at coding included refinement of some interpretive categories during analysis,
choosing specific categories for double coding, and the transcription of the students'
explanations in key tasks. Parts of this phase occurred during data collection and throughout
the analysis phase. For example, preliminary results of 29 students' responses to the
multiplication, division, number lines and CADL (conceptual understanding of the
measurement concept of additivity in a length context) tasks were coded more exhaustively
during the data collection phase while preparing a conference paper (Mitchell & Horne,

2008).

3.3.1.1 Double coding of data.

Six tasks, or parts of tasks, were double coded by six different second coders. The results of
the double coding are reviewed in the Results chapter as the results of the six tasks are
reported. Double coding could be related to whether the students were correct or incorrect,
and/or of their strategy use. The texts examined could include their inscriptions, video footage
of their response to tasks, and/or transcripts of their explanations. A summary of the interview

questions that were double coded in the present study is presented in Table 3.4.
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Double Coding of Students' Responses in the Present Study
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Task and Coder Aspect of Task Sample Section
Draw Your TPPRA all inscriptions (88) 5244
Own Array Size of units
R
Number Lines Q. 16a: all inscriptions (88) 54.1
S
Fraction Sort Equivalence: 10 students (video) 54.2.1
M correct/incorrect
Algorithm Y+, all inscriptions (88) 54.2.1
J Did correct answers use

equivalence?
Fraction Sort Equivalence strategy 10 students (video) 5422
M
Fraction Pairs ~ Correct/incorrect 56 students (video) 54.3.1
A
Fraction Pairs ~ Gap Thinking Strategy All instances identified by either 5.4.3.1.2
A coder (video or audio transcripts)
Fraction Pairs =~ Whole Number Strategies All instances identified by either 5.4.3.1.3
A coder (video plus audio transcripts)
Fraction Pie Correct/incorrect 58 students (video plus transcripts)  5.4.3.2.1
L
Fraction Pie Answers of All answers of l/3, l/5, 2/5, 1/7, 2/7 54322
L Ua, Vs, s, Vs, 2l (video or audio transcripts —

1 missing)

Fraction Sort Partitioning;: 10 students (video) 5433
M correct/incorrect
Fraction Sort Partitioning: 10 students (video) 5433
M strategies

3.3.2 Descriptive statistics and correlations.

This section describes the descriptive statistics that were used to make inferences about the

data: frequencies of success, Kendall's Tau b correlation coefficient and factor analysis.

Quantification should not be confused with quantitative research. The present study made use

of frequencies and correlations but was a qualitative study. Quantification was not ruled out in

non-positivist research (Bouma & Ling, 2004; Crotty, 1998). The use of statistical tests for

correlation did not make this a quantitative study, because their use was to indicate possible
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patterns in the data, rather than provide proof of a causative relationship. The results of tests
for correlations were not the end of the analysis, they were the beginning. They indicated

where deep qualitative analysis was required.

Dimensional sampling (Cohen, Manion, & Morrison, 2007) created samples with at least one
respondent for each identified factor of interest: Government schools were chosen from three
different socio-economic levels and Grade 6 boys and girls were interviewed from each
school. The sample in the present study was not representative. Neither the frequency of
success, the frequency of particular strategies, nor a correlation could be generalised to the
wider population. However, some tasks were chosen from the literature that had been used on
large samples in order to ascertain whether the results of the present study were outliers or

within the general range of representative testing.

One descriptive statistic calculated in the present study was frequency of success. As there
were 88 students in the study, the frequency of success was presented as a percentage.
Percentages enabled comparison between samples of different sizes, and also made it easier
for the reader to judge the magnitude of differences across tasks in the same study. Frequency
of a particular strategy out of several correct answers and explanations, or conversely

frequency of a particular misconception, were also reported using percentages.

The variables in the study were coded using ranked or ordinal data. Responses in the present
study were coded in three main ways:

e as correct or incorrect,

e as a score where all students were offered all the tasks in a category, or

e as a score when a entry-level task determined whether an easier or more difficult task

was offered.

Coding students in the SPSS database used the numbers 1 for success and 0 for non-success
and this produced a rank (this classification was not categorical (nominal) because a score of
1 was clearly better than a score of 0). In the case of only two ranks, there were many students
with tied ranks. For some categories of tasks, a score was generated based on frequency of
success on a group of tasks. For example, several multiplication tasks were offered and four
of them were used to create a score from 0 to 4 (each question correct added one to the
student's score). This score ranked the students; a score of 4 being higher than a score of 3.
Even if many tasks generated a category, such as equivalence understanding with possible

scores of 0 to 13, there were still many tied ranks in the sample of 88 students. The entry-level
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structure of task sequences in some measurement categories produced scores of 0 to 3 and

generated many tied ranks. All three of these scoring systems produced ordinal data.

The second research question was concerned with examining the correlation of students'
performance on measurement tasks and their performance on fraction tasks. Calculating a
correlation provided one way of quantifying whether a linear association existed between two
variables (tasks or concepts). The appropriateness of a test of association depended on
whether the data required parametric statistics (interval or ratio data) or non-parametric
statistics (ordinal or nominal data). The data in the present study was ordinal, had many tied
ranks, and did not meet the assumptions of normal distribution. The correlations were a
bivariate analysis (comparing two variables). Kendall's Tau was the correlation coefficient
appropriate for analysing the significance and effect size of associations in the data because it
was designed for non-parametric data with many tied ranks and did not assume normality. It

also needed relatively small sample sizes.

Chi-squared tests were suitable for non-parametric data but were more appropriate for
nominal data. Odds ratios would be useful for controlling for further variables, such as gender
or school, but the data were not robust enough for this test to be used because the sample was
not large enough. Pearson's correlation was the test for association most commonly used in
the research literature but was not used in the present study because the assumptions for
parametric testing were not met: the sample could not be assumed to have a normal
distribution and the variables used were not interval or ratio measures. Spearman's Rho was
the test for association analogous to Pearson's r but used on non-parametric ranked data
(Tilley, 1993). However Spearman's Rho was not used because of the presence of many tied

ranks.

Correlations were used to help answer questions about data. Vaske, (2002) identified three
questions that researchers should ask of associations:

e did this pattern of results happen by chance?

o if the effect was real, how large was it? and

e did this have practical importance?

The significance of the result answered the first questions. A significance level of p <.05 was
used suggesting that the observed pattern of results could come about by chance only five
percent of the time. If the observed pattern in the data did in fact occur by chance then a Type

I error had occurred and the researcher had claimed that a relationship existed when in fact it
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did not (Neuman, 2003). This would be a false positive. A lower p value indicated that there
was less chance, for example a one percent chance (p < .01), that the pattern of results

occurred by chance. A lower p value had no bearing on the effect size (Vaske, 2002).

If a statistical test suggested that there was no relationship when in fact there was, then a Type
IT error had occurred. This was a false negative. In general researchers in the social sciences
accepted an 80% chance of finding an effect if indeed there was one, and the 20% risk of a
Type II error occurring (Field, 2009). Intuitively, the more participants there are, the more
likely an effect can be seen. The statistical power was a measure of a Type II error occurring
and a statistical power of .8 (20% probability of a false negative) was the common standard in
social sciences research, but was calculated differently for each statistical test type (Bonett &
Wright 2000). Field (2009) calculated minimum sample sizes using Pearson's correlation
coefficient (r) to detect a

e small effect (r =.1), 783 participants,

e medium effect (r = .3), 85 participants, and

e large effect (r =.5), 28 participants.
This assumes a statistical power of .8 using a p value of < .05 in a one-tailed test. Two-tailed
tests would require a larger sample size for the same statistical power. However, a false
negative, reporting a non-correlation between fractions and measurement when in fact there
was one, would be a conservative result. Interviews were conducted with 88 students in the

present study, hence the present study had the statistical power to detect large effect sizes.

If there were a significant linear association (p < .05), the effect size was of interest and was
represented by the correlation coefficient which lay between -1 and +1. In the present study,
Kendall's Tau was calculated using SPSS version 17 software. The commonly agreed
standards for describing effect sizes were based on Pearson's r. Effect sizes were often
categorised as small (.1), medium (.3), and large (.5) (Field, 2009). Vaske's terminology
(2002) of minimal, typical and substantial effect, which correspond to small, medium and
large effect have been used in the present study. Typical highlighted that such associations
were common in the behavioural sciences and substantial reflected the fact that educated
readers would agree that there was an association just by looking at the data without doing
inferential statistics (Vaske, 2002). Looking at data graphically before running a statistical
analysis was suggested by Field (2009). Contingency tables were used to present data visually
from two variables. Kendall's Tau used a different metric to Pearson's r (Strahan 1982) so a .3

effect size in one was not the same as a .3 effect size in the other. It was possible to use tables
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(Gilpin 1993; Strahan 1982) to relate a value of Kendall's Tau to Pearson's r to compare effect
sizes. Kendall's Tau values of minimal, (.07), typical (.20) and substantial (.34) effect sizes
had the same common variance as the Pearson's r categories of small (.1), medium (.3), and
large (.5) (see Table 3.5). This terminology of minimal, typical and substantial effect size was

used when reporting results in the present study.

Table 3.5
Magnitude of Kendall's Tau Correlation Coefficient and Sample Sizes to Detect Differing

Effect Sizes of Associations Between Variables Using Gilpin's Tables (1993)

Effect Size
Minimal Typical Substantial Very
relationship  relationship ~ relationship  Substantial
Pearson's r .10 .30 .50 9
Covariance: 1’ 1% 9% 25% 81%
Kendall's tau .07 .20 34 72
Sample size for a power of 0.8 783 85 28

Sample size: power of .8, p < .05, one-tailed test, from Field (2009).

A correlation co-efficient could reveal if an association was positive or negative. A positive
correlation indicated that as one variable increased so did the other, for example as the scores
on one category increased, so did scores in another. A negative correlation indicated that as
one value increased, the other decreased, for example as one score increased, one
misconception decreased. Using two-tailed tests effectively split the 5% margin for error
(Type I error) into a 2.5% margin for error at the positive end and a 2.5% margin for error at
the negative end of the distribution. This enabled the detection of positive and negative
correlations and I used two tailed tests because I could not assume that all performance would

be positively linked.

The co-variance between two variables was a common indicator of the magnitude of the
effect size (Strahan, 1982). When using Spearman's Rho this was done by squaring the co-
efficient, for example a correlation coefficient of .50 accounted for .25 or 25% of the variance
between the two variables. It was noted that squaring a coefficient lost its negative direction,
if it were present (Walker, 2003). However, the square of Kendall's Tau was even more
different from the square of Spearman's Rho because the two unsquared coefficients used a

different metric (Strahan, 1982). By converting between Kendall's tau and Pearson's r (see
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Table 3.5), the covariance of the two variables could be matched to values of Kendall's tau

(Gilpin, 1993).

An association between two variables does not imply causality and that was taken into
account when interpreting any association. A third variable or lurking variable may have been
responsible for the association, or there may be no causal link. However, while correlation
does not imply causality it remains a possibility. Positivist research, as opposed to interpretive
research, sought to reveal and explain causality. Correlation on its own was not enough
evidence to prove causality. As Miller (2004) elaborated, consistency of association, strength
of association, temporal relationships, and a mechanism were necessary to posit a causal
relationship. Quantification of these factors in a representative sample was often part of
supporting the truth claims of this type of research. In the present study, descriptive statistics

(correlations) were used to aid an interpretive analysis.

It was a mistake, Vaske cautioned (2002), to think that significant meant of practical
importance. The practical significance of a relationship required a value judgement by the
researcher and the readers. For example, if it were shown that there was a stronger correlation
(larger effect size) between performance on fractions tasks and performance on conceptual
measurement tasks as opposed to tools and procedures measurement tasks, that result would
have practical importance because using broken ruler tasks as well as assessing whether a
student can use a ruler accurately was not an onerous change to instruction. On the other
hand, if there were a significant association between a specific numeracy program and a
minor improvement in test scores, then the result would be significant but not of practical

importance to the wider teaching profession would be

Factor analysis was used to explore the data. This suggested further qualitative investigation
of the correlation between several variables. Factor analysis was used to discover which
variables appeared to show similar performance, possibly suggesting similar underlying
constructs. In order to use factor analysis, the students' responses were coded with greater
detail than just correct or incorrect. Responses were rated, in layperson's terms, as:

e correct with a correct explanation,

e just a slip up,

e right strategy but not fully executed,

e some relevant mathematical thinking but an incorrect answer, and

e incorrect mathematical thinking.



88

The factor analysis itself was not used to justify the inclusion of tasks in specific categories,
for example the construct of equivalence. Rather, further interpretive analysis justified the

inclusion of a task within a category or score.

The test for association using Kendall's Tau only reveals linear correlations, so some data was
graphed to see if there were any non-linear correlations substantial enough to be observed

without statistical tests.

3.3.3 Validity.

The section on validity contains three parts:
e Construct validity, face validity, content validity
e Reliability
e Authenticity

3.3.3.1 Construct validity, face validity, content validity.

Internal validity is an evaluation of the effectiveness of the research design for detecting cause

and effect (Neuman, 2003) and so is not applicable in the present study.

Construct validity is a measure of whether the instrument actually measures what was
intended. The mathematical constructs investigated in the present study were fractions,
measurement, multiplication and division, and dynamic imagery. | used a theoretical model
for task selection, as recommended by Goldin (2000) so that my preconceptions were explicit
and not implicit. A distinction was made between relational and instrumental thinking
(Skemp, 1976), or conceptual and procedural understanding (Hiebert & Carpenter, 1992). In
the present study, this is referred to as conceptual understanding and a knowledge of tools and
procedures. I chose, where possible, tasks from the research literature that had been subjected
to peer review. The acknowledgments of sources in the description of the instrument (section
3.2.2) and in the interview protocol in Appendix A make clear this aspect of construct

validity.

Only the presented task was subject to experimental control not the interpreted task Goldin
cautioned (2000). The literature had revealed that "spatial" tasks could be solved correctly by
students using either dynamic visualisation or geometric reasoning: the task itself was not
inherently a dynamic visualisation task or a geometric task (M. Clements, 1983). Although

tasks were chosen to assess different categories of knowledge of fractions or measurement,
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there would be no guarantee that students would use the relevant constructs in their solutions.
An examination of the students' explanations would help to determine if the task had in fact
assessed the desired construct. A student's explanation only revealed their preferred strategy
(Presmeg, 1985). If a child used geometric thinking on a spatial task (successfully or
unsuccessfully), that did not mean that he or she could not use dynamic thinking: all it
indicated was that that geometric thinking was the first strategy tried on this particular task.

These constraints were noted in the analysis of data.

Face validity is less precise than construct validity: at face value, do the tasks appear to assess
the constructs that they were chosen to assess, and what practical measures were taken to
determine this. One measure of face validity was peer acceptance that the tasks tested the
construct as categorised by the researcher (Neuman, 2003). During the development of the
instrument, tasks were shown to other mathematics education researchers and their
suggestions incorporated into the final interview protocol. For example, a conservation of area
task was changed from being diagram-based to being hands-on with the children cutting and
moving the paper themselves (Jill Cheeseman, personal communication). The tasks were also
shown to a practising primary teacher to confirm that students would have some entry point
into the concepts. The interview was piloted so that I, as the researcher, could assess its face
validity. After data collection, peer-reviewed conference papers and book chapters (Mitchell
& Horne, 2008, 2009, 2010, 2011) also provided an opportunity for other researchers to

comment on the validity of the tasks and my interpretations of them.

Language use was another factor that was taken into account in developing the tasks. Previous
research had identified that everyday language and mathematical language could be confused
by children, such as the word "bigger" (Mitchell, 2005). The imprecision of everyday
language and the importance of context may contribute to this. For example, "size" did not
automatically map to "area". "Length" could be distance travelled or distance from the starting
point. "Longer" could be a measurement of length or a comparison of endpoints. The phrasing
of the questions was carefully considered, and many of the tasks in the final data collection
were used in a pilot study to ensure that the language was not interfering with the

understanding of the task.

Content validity concerns whether the task criteria covers all of the various aspects of a
construct (Neuman, 2003). Two aspects of content validity are discussed here: coverage of a

mathematical domain and difficulty of the questions.



90

In the domain of fractions, the focus of the present study was on the measure sub-construct
and the concept of equivalence and so several questions were developed to cover different
aspects of these concepts. For example, the research literature had identified that for number
line questions, there was a difference in presenting number lines from 0 to 1 and from 0 to
greater than 1. There was also a difference, proposed in the literature, between reading
partitions and making partitions. Thus, eight number line tasks were developed (or adapted or

replicated) to cover these different aspects of number line knowledge (see Table 3.3).

I had ethics approval for an interview of not more than three hours in total, so not every aspect
of fractions and measurement could be assessed. The fraction sub-constructs of operator and
ratio were not the main focus of the present study, and only one task was used to assess them.
This was not enough to give a full picture of students' performance on these sub-constructs
but time constraints prevented further questions being offered. As a consequence, correlations

between these sub-constructs and measurement concepts have limited content validity.

The research literature had identified that the students who lagged behind grade level
performance could be significantly behind (Brown et al., 1995). Hence questions were
included at different levels of difficulty to assess students' understandings of a concept. In
order to save time, some measurement concepts had an entry-level task that was offered to
every child: a harder task was only offered to those correct at the entry-level task and an
easier task to those who were unsuccessful on the entry-level task. This protocol was
confirmed in piloting of the interview where all three tasks were offered and no student was

successful on the harder task if he or she had not been successful at the entry-level task.

A range of performance was anticipated for equivalence concepts and tasks were included to
assess this spectrum. Questions included equivalences to one half, other unit fractions (one
quarter and one sixth), and non-unit fractions (two thirds). Later data analysis also identified
another more difficult category of equivalence questions in which equivalence was used to

benchmark or make common denominators.

3.3.3.2 Credibility and reliability.

nan

Patton (2002) synthesised "rigorous methods for doing fieldwork", "integrity in analysis", "the
credibility of the researcher", and "philosophical belief in the value of qualitative inquiry" (p.
552-553) as key concepts that underpinned the credibility of qualitative research. Good data
can be interpreted badly, diSessa had cautioned (2007).
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Interviewers make inferences based on what they can observe (Goldin, 2000). It was
important to maximise the students' engagement through external representations such as
materials, their own inscriptions, and explanations (Goldin, 2000) because that was what
would be observable. I included the instructions to retell the thinking or to justify an answer
because children do one of three things when they are given a mental calculation — know the
answer immediately, decide immediately that they cannot do it, or adopt a strategy, successful
or not, for arriving at an answer (Mclntosh, De Nardi, & Swan, 1994). An explanation could
be a justification for an answer (Lesh et al., 1983), so I did not assume that an explanation was

automatically a window into a student's thinking.

The preamble to the interview in the present study also made clear that [ was interested in the
student's thinking, as suggested by Ginsberg (1997), and would not be trying to direct that
thinking. Goldin (2000) cautioned that interviews do not give the interviewer access to the
participants' thinking, reasoning, cognitive processes, internal representations, meanings,
knowledge structures, schemata, affective or emotional states, and the like. Goldin (2000)
suggested two types of prompting in interviews: neutral questions, such as "why do you think
s0?", and heuristic suggestions, such as "do you see a pattern in the cards?" (p. 125), but only

the first type of neutral prompt was used in the present study.

Trustworthiness was based on triangulation of the data. In the present study, the students
completed an extensive interview but their responses were not triangulated using different
instruments. However, quotations of explanations are presented so that readers can make their
own judgments about the validity of the interpretations, as suggested by Clement (2000). The
double coding and transcripts were used in reporting the data to support the present study's
claim for authenticity (Neuman, 2003). By choosing more than one school it was possible to
demonstrate that if a misconception were present in children from different schools, it was not
due to the idiosyncratic teaching of individual teachers, but possibly caused by developmental

factors or the state curriculum.

The use of a theoretical model to guide task selection and analysis was used to support the
present study's claims for trustworthiness, credibility, transferability, and confirmability as

described by Denzin and Lincoln (2008).

The use of an interview script as suggested by (Goldin, 2000), improved reliability of the
instrument by framing the questions in the same way and offering questions in the same order.

The advantage of having the same interviewer (me) was that it was easier to deliver the
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interview in the same way. The disadvantage was that the data collection took five months, so
a Grade 6 student in the study might be a Grade 6 student at the beginning of Term 1
(February) or the end of Term 2 (June). However, the topic of fractions had not been taught to

the students before interviewing took place.

The interview protocol remained the same as suggested by Clement (2000). The study
involved children, so it was not possible to eliminate the variables of illness, a "bad day", or
nervousness. A one-to-one task-based interview was one assessment on one day and so may
not be able to produce identical results for the same student on a different occasion. The re-
test reliability (Bouma & Ling, 2004) of a one-to-one task-based interview could not be 100%
because previous exposure to a task might affect a child's subsequent performance, unlike

measuring another variable such as height which is unaffected by multiple recordings.

Patton (2002) emphasised practice and experience with interviewing as important contributors
to well conducted interviews. I had used the number domains of the Early Numeracy
Interview (Department of Education & Training, 2001) with Grade 1 and 2 students and also
with Grade 5 and 6 students in my capacity as a practising classroom teacher. I had developed
a fractions interview for a Masters project and interviewed primary school children (Mitchell
& Clarke, 2004). I had also interviewed Grade 6 students using the Early Numeracy Interview
as a research assistant for a larger project (see e.g.,Clarke et al., 2007). Familiarity with
conducting, recording and coding one-to-one task-based interviews contributed to the

reliability of the data collection in the present study.

One measure of reliability was whether another researcher would code the data in the same
way as the investigator (Bouma & Ling, 2004). Verification was important (Pring, 2005) and
concerned that which could be observed. For example in the present study whether a student
gave an answer of three and three quarters to the Keyboard task (Q. 39) can be verified by the
use of audio or video data. The coding of explanations into categories could not be verified as
it involved a layer of interpretation. Instead the credibility, rigour and integrity (Patton, 2002)
could be increased by the process of double coding of the data by another researcher. Clement
noted (2000) reliability measures were of observations, not of theories. The interpretation of
the explanatory power of Kieren's model could not be double coded, but it could be subject to

academic critique.
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3.3.4 Ethics.

Three principles guided the scholarly research and writing in the present study: protecting the
rights and welfare of the participants, ensuring the accuracy of scientific knowledge, and
protecting intellectual property rights (American Psychological Association, 2010). The
present study was approved by the Human Research Ethics Committee of the Australian
Catholic University (V20050679) and by the Department of Education & Training (now
known as the Department of Education and Early Childhood Development) (SOS003302).
The letters granting approval to undertake the research and the letters to participants and

consent forms are included in Appendix B.

3.3.4.1 Protecting the rights and welfare of the participants.

The present study was conducted within the guidelines of the Human Research Ethics
Committee of the Australian Catholic University and the guidelines of the Department of
Education and Early Childhood Development for conducting research in schools. The rights
and welfare of the participants were broken down in three categories: consent, confidentiality

and respect.

Informed consent was gained from the participants in the present study. The participants were
under the age of 18 and were students in state government primary schools. Permission to
approach principals of state government primary schools was obtained from the Research
Branch of the Education Policy and Research Division in the Office for Policy, Research and
Innovation of the Department of Education and Early Childhood Development, Victoria. As
requested, a courtesy letter was sent to the Regional Director of the schools chosen to be in
the study. Four principals were approached and permission requested to conduct the research
in their schools and to send information letters home to parents. Written consent was obtained
from all four principals. Information letters were sent home with the students in the senior
grades and these included consent forms for parents or guardians to sign and consent forms
for the children to sign. In addition, I asked every student at the beginning of the interview
itself, "Are you happy to do some maths with me today?" The participants had the right to
discontinue their participation at any time and this simple verbal check combined with their
signed consent form confirmed that they themselves were happy to participate. No child
refused to do the interview, but if they had, I would have discontinued the interview despite

their parents' written permission to conduct it. The parents and students consented to
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e one-to-one task-based interviews, including a pen and paper test (total 3 hours),
e the interview being audio-taped,
e the interview being video-taped if written permission was included (a box ticked),
e the video footage being used in professional development and conferences, including
on the internet,
e the data obtained being written up in my PhD and in conference papers and articles
e feedback on the child's performance being given to the school if written permission
was included (a box ticked).
More than half of the participants gave permission for the interview to be video-taped. Only
one parent refused permission for feedback to be given to the school. This option for feedback
to the school was added after the initial piloting of the interview when it was discovered that
confidentiality prevented me from commenting to the teachers about the students'
performance, and this necessitated an amendment to the ethics application. Consent was given
by the students and their parents or guardians to take part in the research and for this to be
written up and shared in research publications, teacher professional development activities

and feedback to the school.

Confidentiality of the students' identities was maintained. It was made clear in the information
letter that teachers and other students would be aware that the participants were taking part in
the research because it involved being withdrawn from the classroom. However, in the use of
the data, confidentiality was maintained. The children's names were written on the record
sheets of the interview and could be heard on the audio or video recordings but these data
were kept in a locked cabinet at the University and were not accessible to others. Written
reports on the data (this PhD, conference papers etc.) used pseudonyms if the students were
quoted and only anglo-celtic names were chosen because ethnically appropriate names may
have identified the students or the school. The gender of the student was identified in the
name or pronoun used. In the present study, information about the schools was broad rather
than specific so that they were not identified. A code rather than a name was used to identify
each student in electronic databases (Excel and SPSS). Some of the tasks were double coded
by other researchers and they agreed to maintain confidentiality if they heard a child's name
on the video. A report was prepared for each school on some of the tasks and aggregated data
of only that school's students were made available to them (excluding the one child whose
parents had refused permission for feedback to the school). In these ways the confidentiality

of the students' responses to the interview tasks was maintained.
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Respect for the participants was an underlying consideration of the interview protocol of the
present study. I was the only interviewer and the parents were informed that [ was registered
as a teacher with the Victorian Institute of Teaching and had a current criminal records check.
My experience as a teacher of children at this level enabled me to develop a rapport with the
students. I was appreciative of the consideration shown to me by the teachers and principals
as [ withdrew students from classes. In designing the interview, I tried to have some
interesting materials to work with throughout the assessment, as suggested by Ginsberg
(1997), and the students enjoyed using a doll, golden beans and figurines. In a preamble to the
interview I informed the students that they would not be told if their answers were wrong or
right but would probably always be asked "and how did you work that out?" This set up
"classroom norms" in which I listened to their answers but they did not have to guess what I
might prefer them to think. This established a powerful pedagogical relationship based on my
respect for their explanations, and prevented a "why" question triggering doubt in the students
as to the correctness of their answers, as cautioned by Patton (2002). Respect for the students

was demonstrated through both the design and conduct of the interview.

One task (Q. 41) used a graphic of a Freddo Frog (an Australian chocolate confectionary
made by Cadbury Pty. Ltd.). Data collection was completed in 2008. In 2010, Kraft Foods
then acquired Cadbury. However in 2009, Kraft Foods Limited became signatories to the
Australian Food and Grocery Council's Responsible Marketing to Children Initiative. Freddo
Frogs did not meet the "sensible solutions" criteria because they did not contain ingredients at
a nutritionally meaningful level. Kraft therefore, stopped marketing them to children under 12
years old. Thus, it would now be inappropriate for me to use that graphic with primary school

students.

3.3.4.2 Ensuring the accuracy of scientific knowledge.

The present study was written with a commitment to the accuracy of the research findings
presented within it. This was demonstrated in the analysis of data, the presentation of data,
and the administration of the data. In publications stemming from this project, previous
papers on the same data were cited (e.g. conference papers) so that the reader was clear about
which data were being reanalysed as recommended in the APA 6™ style guide (American
Psychological Association, 2010). Some tasks were excluded from the results because the
children were confused by the way the question was asked or were unfamiliar with the
materials, not because the results were unexpected. A detailed reporting of all results was not

possible within the word limits of the thesis, but it is hoped that some tasks not reported in
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depth here will be reported in subsequent journal articles. Unexpected results were included —
a finding is a finding whether it confirms a prediction or contradicts it. The interview protocol
is included in Appendix A so that other researchers could
e cxamine the detail of the tasks to ascertain whether they would categorise the tasks in
the same way as I did in my task selection criteria
e cxamine the detail of the tasks to assess my interpretations of the students'
explanations
e compare the results of the present study to other studies
e replicate the study
The Results chapter is detailed, including quotations of students' explanations, so that other
researchers could evaluate my interpretations. Data will be retained for at least five years after

publication.

3.3.4.2.1 Conflict of interest.

I was an employee of the Department of Education and Early Childhood Development and a
student at the Australian Catholic University. The Early Numeracy Interview was developed
by a team of researchers including some of my supervisors at the Australian Catholic
University and is available on the Department of Education and Early Childhood
Development website (Clarke et al., 2002; Department of Education & Training, 2001). The
Fractions online interview and associated classroom activities book was developed by
researchers, including one of my supervisors, at the Australian Catholic University and is
available on the Department of Education and Early Childhood Development website
(Department of Education and Early Childhood Development, 2009a, 2009b). I received
payment for some work on the online Fractions Interview. I do not believe that my
participation in (nor the participation of my supervisors in) the research listed above

constitutes a conflict of interest in the present study.

3.3.4.3 Protecting intellectual property rights.

Research findings and analysis by other researchers is referenced in the text. Some tasks have
been used or adapted from other sources and acknowledgement appears in the text. I have
obtained permission for the use of unpublished one-to-one interview tasks developed by
fellow researchers, and acknowledged their authorship in the text. The graphics used in the

tasks were commissioned and paid for by me.
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Permission to reproduce the image of a Freddo Frog in this thesis was given by Kraft Foods

(see Appendix B).

Permission to report frequencies of state and national item responses to specific questions on
the Achievement Improvement Monitor (AIM) and National Assessment Program: Literacy
and Numeracy (NAPLAN) tests from the NAPLAN Data Service was given by The Victorian

Curriculum and Assessment Authority (external request ID 472)

3.4 Limitations

The present study interpreted students' understanding. It did not investigate learning, nor did it
investigate teaching. Students' explanations have been interpreted without commenting on the
specifics of the teaching that they had received, nor the learning they had engaged in, in their

particular classroom and schools.

The research design of the present study was interpretive research. I have tried to describe
faithfully the strategies that students' were using in their explanations but I have interpreted
them within a framework and terminology that the students might not use. The present study
did not seek to present the students' explanations from a phenomenological standpoint. I
categorised responses and grouped variations, but the students did not participate in this

process.

An interview could not capture change over time. The variety of students' explanations have
sometimes been interpreted as indicating pathways. Some strategies of students who are less
successful might be compared to the performance of more successful students, as if these
represented stages that all children will pass/have passed through. Only a longitudinal study

could provide evidence of a pattern of learning.

Although the present study set out to produce original analysis, it did not set out to develop
new domain level theory. Theory-generating research was used to generate domain specific
theories: for example design experiments in education (Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003) or grounded theory (Strauss & Corbin, 1998). The associations between
measurement categories and fraction performance rely on the construct validity of the tasks
chosen to assess them. If the tasks do not assess the construct that they have been chosen to

represent, then associations are invalid.



98

It was never going to be possible in this thesis to examine in depth the responses to every
task. All tasks were coded for frequency of success and every strategy evident from the
students' explanations was also coded. There was a substantial time investment in preparing
task results for presentation: transcribing explanations, reviewing original coding criteria,
analysing related performance in other tasks, refining categories for double coding, explaining
the coding criteria, locating start times on video and audio data, and discussing strategies post
double coding. There were other results that could have been analysed in depth but because of

the word limit of this thesis not all of them are presented here.

Summary of Methodology

In this chapter, I began with the research questions generated by an examination of the
research literature in the previous chapter, and described a methodology (interpretivism) and a
research method (one-to-one task-based interview) that could investigate these questions. A
one-to-one task-based interview was developed for data collection with research-based
criteria for task selection. The interview protocols were described, and the coding protocol
was elaborated and the proposed analysis outlined. The sample of students from whom data
was collected was described. Issues of validity were addressed and the ethical considerations
of the present study were described. The limitations of the present study were outlined to

conclude the discussion of methodology and methods.
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Chapter 4: Results

The structure of the Results chapter is based on concepts. This chapter is divided into five
sections:

e describing the baseline and upper limits of the students' performance as a group,

e measurement tasks results,

e visualisation tasks results,

e multiplication tasks results, and

e fraction tasks results.
I examine the frequency of success of particular tasks, the strategies offered by students, and

correlations between some fraction tasks and the measurement concepts.

In the Discussion and Implications chapter which follows after this Results chapter the results
are discussed in a thematic order: strategies (misconceptions and correct strategies) evident in
children's explanations, correlations between fraction and measurement concepts, and the

fractions concepts of Kieren's four-three-four model evident in children's explanations.

Draft findings of some of the results of tasks in the present study have been reported in other
places (see e.g., Mitchell & Horne, 2008, 2009, 2010, 2011). Some of these preliminary
findings have been cited in further research (see e.g., Cunningham, 2009; Chinnappan &

Pandian, 2009; Petit, Laird, & Marsden, 2010)

The interview protocol is presented in Appendix A. The diagrams (task cards) presented in
this Results chapter are often much smaller than the actual task card used during the

interview.

4.1 Students' Baseline and Ceiling Performance

The baseline performance of the students' in the present study is specified by describing the
tasks which had 100% frequency of success. The upper limit of the students' performance is

specified by describing the tasks that had 0% frequency of success.

There were five questions to which every student in the present study gave a correct answer
with a mathematically correct explanation (see Figure 4.1). These five questions provided a

description of the baseline performance of the specific sample of students in the present study.



100

All students correctly identified as one quarter the one shaded part in a circle divided into four
equal parts (Q. 19g); all correctly identified as two thirds the two shaded parts in a rectangle
divided into three equal parts (Q. 19p); all correctly used a letter and number code to identify
a square on a grid overlaying a treasure map (Q. 50); all could describe a length in a three
dimensional context of a picture of a block of ice (Q. 54a), either formally as "the length" or
informally, for example, "how high" or "how wide"; and all successfully mentally calculated
the total number of balls in four packets of three tennis balls when shown one packet (Q. 1).
Success on these tasks demonstrated that all students had a basic understanding of unit and
non-unit fractions; of an array structure; of the attribute of length as a straight line; and of

repeated addition (or possibly, multiplication).

Q. 19 ; g
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Q. 50

Figure 4.1. Task cards or materials used in tasks with 100% frequency of success.

There were several tasks that showed where the first brittleness in the students' knowledge
began to appear (see Figure 4.2). These were the tasks where all but one or two students
answered correctly with mathematically correct explanations. For example, all but two
students could correctly identify as one sixth the one shaded part in a circle divided into six

equal parts (Q. 19a); all but two students could identify as one quarter the one shaded piece of
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a square divided into four equal triangle pieces (Q. 19h); all but one student could identify as
two thirds the two shaded pieces of a circle divided into three equal sized pieces (Q. 19q); all
but one student could state that half of six was three (Q. 18a). While all the students had some
basic understanding of unit and non-unit fractions, this knowledge did not extend to all the

standard inscriptions for every student.

Q. 19a Q. 1%h Q. 19q

Figure 4.2 Diagrams used in tasks with a 97-99% frequency of success (Q. 18a was verbal).

There was also a ceiling on the students' performance. One task proved too difficult for all of
the students and none answered successfully. This question was an equivalence card in the
Fraction Sort task (Q. 19r) (see Figure 4.3) where the students had to mentally re-partition the
shape into six ninths before being able to give a mathematically correct explanation for why
the card should be placed in the two thirds pile. Two students successfully mentally re-
partitioned the triangle into nine smaller triangles and saw that two horizontal rows of these
would be six out of nine parts, but neither of them realised that two thirds was another name
for that. The other students, who placed this card in the two thirds pile and gave the reason
that there were two parts shaded, were not coded as correct on this question as they neither
demonstrated an understanding of the geometric complexity of the task, nor had used

equivalent fraction reasoning.

Figure 4.3 Triangular %/ 3. Q. 19r (left) and mental re-partitioning required (right).
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There were three schools used in this study, all of them performed above the base line
measures described above. The performance of the three schools differed with respect to each
other, and this is not unexpected given that they represented three different socio-economic
groups of students. However, differences between the schools were not the focus of this study

and results are presented as aggregate percentages.

4.2 Length and Area Measurement Results

The measurement tasks are reported by key concept category: attribute, additivity, unit, and
proportionality. Conceptual tasks using length and area diagrams, and tools and procedures

tasks using length and area diagrams were investigated (see section 3.2.2.3).

4.2.1 Attribute.

The frequency of success on the conceptual and tools and procedures tasks assessing the
identification of the attribute of length and area is presented in Table 4.1. A score of 0
indicates an incorrect response or a right answer for the wrong reason, while a score of 1

indicates a correct answer with a mathematically correct explanation.

Table 4.1

Attribute: Frequency of Success

Fr n Task to rank at
Concept Task type Context  Score equency sks used to success

of success the concept
Attribute  Conceptual ~ Length 0 62.5%
1 37.5% Q. 36g Similar Shapes
Attribute  Conceptual Area 0 33%
1 67% Q. 36h Similar Shapes
Attribute Tools and Length 0 0%
Procedures 1 100% Q. 54 Blocks of Ice (length)
Attribute Tools and Area 0 67%
Procedures 1 33% Q. 54 Blocks of Ice (area)

4.2.1.1 CATL: conceptual tasks, attribute concept, length context.

Four pairs of shapes (see Figure 4.4) were used for the Similar Shapes task (Q. 36). Students
were asked to compare the shapes' perimeters and the shapes' areas. The first three pairs,
squares, circles and non-similar rectangles, were not included in the score for the attribute

concept. The perimeter comparisons were made successfully by 96.6%, 92%, and 45%
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respectively. The area comparisons were made successfully by 96.6%, 97.7%, and 71.6%,
respectively. The perimeter and area comparisons of the shaded shapes were 37.5% and 67%

respectively. However, only 4.5% of the students were successful on all eight questions.

O

Q. 36a Area comparison Q. 36¢ Area comparison Q. 36e Area comparison

Q. 36b Perimeter comparison Q. 36d Perimeter comparison Q. 36f Perimeter comparison

,,,,,,

Q. 36g Area comparison Q. 36g and Q. 36h visualisation

Q. 36h Perimeter comparison

Figure 4.4. Diagrams used for Similar Shapes task (Q. 36), and the geometric visualisation

explained by some students to show that both shaded parts were half.

The length context of this attribute category (CATL) was assessed using only the perimeter
comparison of the shaded pair of similar shapes (Q. 36g) and 37.5% of the students correctly
explained that the triangle half of a rectangle had a bigger perimeter than a rectangle half (see

Table 4.1).

The most common incorrect response was that the perimeters were the same because the
shaded parts were both half and 45.5% of the students offered an explanation with the word
half or halves in it. For example, Sylvie explained that the perimeters were the same because
the shapes were "halved in different ways" (see Table 4.2). A further 8% of the students
similarly concluded that the perimeters were the same by geometrically breaking and
rearranging the two areas using visualisation to show that they were the "same" (see Figure

4.4). And one other student (1%) offered a similar geometric reason but with less
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sophisticated language. In the perimeter question (Q. 36g) over half of the students linked

perimeter to area in the non-congruent halves in the Similar Shapes task.

Table 4.2

Explanations for the Perimeter Comparison in Q. 36g

Strategy Explanation from transcript

The perimeter of the Cameron: Probably this one [points to triangle]
triangle is longer Interviewer: Why's that?

Cameron: Because this line here [hypotenuse] is probably
about like two of these [traces vertical line of rectangle] of
these sides; the height. And these two [two sides of triangle]
should be longer than them two together as well [points to two
horizontal lines of rectangle].

Claire: This one's longer [points to triangle] than that one
[points to rectangle]

Interviewer: And how do you know?
Claire: Because it goes up most of the shape, and this one only
goes across half of it.

The perimeters are the same  Sylvie: They're the same.

(fractional area reasoning)  Interviewer: How do you know?

Sylvie: Because they're both the same like shape and equal like
shape, but they're halved in different ways

4.2.1.2 CATA: conceptual tasks, attribute concept, area context.

The task assessing the area context of the conceptual aspect of the concept of attribute was the
comparison of the areas of non-congruent halves. One mathematically correct explanation of
why the areas of the shaded parts had the same area used the fraction reasoning that the
shaded parts were both halves. Cameron (see Table 4.3) used fraction reasoning to conclude
that the shaded shapes were "both halves" but also noted that the triangle looked bigger.
Cameron's explanation also revealed that dynamic reasoning could be used to justify fraction
reasoning. Claire and Sylvie attended to the actions of halving and explained that both shapes
had been "coloured in half" or "cut in half" (see Table 4.3). The words half or halves were
used in a fractional reasoning strategy by two thirds of the 67% of students who were correct
on Q. 36h. The other correct students used dynamic imagery (see Figure 4.4) or global size

comparisons.
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Explanations for the Area Comparison in Q. 36h

Strategy

Explanation from transcript

the areas are the same
(both halves)

Cameron: Yeah they're the same. Because they're both halves
but at the same time this might look bigger [points to triangle]
but it's actually, they're both halves, and if you got some pieces
of the square [points to rectangle] and put them all on to that
[points to triangle], on this triangle, then yeah it's the same.
And this would be the same.

Sylvie: They're the same.
Interviewer: How do you know?

Sylvie: Because um they are like the same size and the same of
it is cut in half

Claire: They're the same

Interviewer: And why's that?

Claire: Because the pieces of paper are the same
Interviewer: Hmmm, and?

Claire: And they're both coloured in half.

Only 22.7% of students were correct on both Q. 36g and Q. 36h. A quarter of the students

who correctly used the fraction explanation (halves) in the area comparison had successfully

explained why the perimeter of the shaded triangle half was bigger in the previous question

(see for example, Cameron's explanation in Table 4.2).

Of the 77.3% of students who had offered the correct answer to the area comparison (Q. 36h)

e 20 of them explained that the areas were the same and had explained that the

perimeter of the triangle was longer in the previous question,

e 39 of them reasoned that the arcas were the same but had stated that the

perimeters were the same in the previous question, but were coded correct on

the area question,

e 8 of them specified that the magnitude of the area (the same) was due to the

perimeter and were coded incorrect, and

e 1 was coded incorrect on the area comparison despite offering the correct

answer because her explanation was not mathematically correct.
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More than two thirds (39 out of 59) of the 67% of students who were coded as correct at the
area comparison used correct fraction or geometric visualisation reasoning but had
unsuccessfully employed this reasoning for the previous perimeter comparison question (see

for example, Sylvie's explanations in Table 4.2 and 4.3).

Some students argued in their explanation of the area comparison that the areas of the two
shaded parts were the same because the perimeters were the same (which they were not).
They were coded as incorrect because they offered a correct answer but with a mathematically
incorrect reason. For example, Bella explained "Because they're just the same, the same
length and width. And like if the perimeter is the same, the area would be the same too". The
9.1% of students who specified that the areas were the same because the perimeters were the
same were included in the 33% who were coded incorrect on this part of the task. One further
student gave the correct answer with a mathematically incorrect explanation and was also

included in the 33% who were coded incorrect on this part of the task.

In comparing the areas in Q. 36h, 11.4% chose the triangle as the larger area (incorrectly)
because the perimeter was larger. Some of the 37.5% of students who had identified that the
perimeter of the shaded triangle was larger than the shaded square then used this intuitively to

conclude, incorrectly, that one area was larger than the other.

The misconception that perimeters indicate area was also evident in the non-similar rectangle
pair in the Similar Shapes task (Q. 36e, see Figure 4.4, and not included in the CATA
category). After carefully using geometric reasoning to establish that the perimeters in the
non-similar rectangles were the same, Bella's response to the area comparison was to explain
that "they would probably be the same", ignoring the geometric reasoning that would have
suggested that she could put the tall rectangle inside the fat rectangle with minimal
restructuring and relying instead on the premise that perimeter and area were always related,

adding that "Because if the perimeter would be the same, the area would be the same too" .

4.2.1.3 TPATL.: tools and procedures tasks, attribute concept, length context.

The Blocks of Ice diagram (see Figure 4.5) was used for both the length and area tools and
procedures questions assessing the key concept of attribute. In a three dimensional context
100% of the students correctly identified an example of the attribute of length on the diagram
of the Blocks of Ice (see Table 4.1). The actual word length was volunteered by 38.6% of the

students. As this was an open question, some also volunteered the more informal, but correct
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words; the width or how wide, the depth or how deep, the height or how high, or how long as
well. A further 31.8% volunteered one or more of these less formal terms but not the formal
word length. And 29.5% did not verbally volunteer any of these terms describing the attribute
of length, but when prompted to show a length could successfully indicate on the diagram the

dimensions of a length measurement.

Figure 4.5. Diagram used in Blocks of Ice task, Q. 54.
4.2.1.4 TPATA: tools and procedures task, attribute concept, area context.

A two dimensional image of a three dimensional context (the Blocks of Ice) was used to
assess students' knowledge of the attribute of area (see Figure 4.5). Area in a three
dimensional context proved more confusing than length for the students with 33% of the
students either volunteering or being prompted for the area and successfully describing what
that would be in the three dimensional context (see Table 4.1). The most common error was to
describe what's inside and indicate the volume of a block; 52.3% of the students did this. This
error occurred in all three schools. This error had a higher frequency than the correct answer
and explanation. On the other hand, every student who used the word face successfully

described an area on the block.

In responding to the Blocks of Ice task (Q. 54) many children struggled to volunteer any
attributes other than length. The open nature of this question enabled students to suggest any
attributes that could be measured about the blocks and 14.8% suggested mass, 2.3% suggested
temperature, 1.1% suggested hardness, 1.1% suggested opacity, and 1.1% suggested angle.
However they did not always use these formal attribute terms. There were no suggestions to
measure the attribute of time, but the blocks of ice context may have been more suggestive of

mass and temperature than time.
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4.2.2 Additivity.
The frequency of the students with each score on conceptual and tools and procedures
questions, in both length and area contexts, assessing the key measurement concept of
additivity are shown in Table 4.4. The entry-level protocol was used for three of the
categories. All students were offered the entry-level task and the percentages in brackets
beside some of the tasks used to rank success at the concept show the frequency of success of
the entry-level task. If unsuccessful the students were offered the easier task, or if correct they
were offered the harder task. In the tools and procedures length category, only two tasks were

used: an entry-level task and an easier task.

Table 4.4
Additivity: Frequency of Success

Score Tasks used to rank success at the

Concept Task type  Context Score frequency concept

Additivity  Conceptual  Length 0 11.4%  None of three below correct
1 31.8% Q. 43 Straightening wires

2 19.3% Q. 41 Freddo (56.8%)
3
0
1

37.5% Q.42 Footy Card

5.7% None of the three below correct

51.1%  Correct count on Q. 62 Staircase
Array or Q. 35 Missing Oval, if
needed (94.3%)

Q. 33 Area Calculation, Half

Additivity Conceptual  Area

2 22.7
/o Rectangle (43.2%)
Q. 53 Area Calculation, Triangle
3 20.5%
Additivity  Toolsand  Length 0 22.7%  Neither of the two below correct
Procedures 1 19.3% Q.32 Measure DVD with a ruler
2 58% Q. 31a Streamer (58%)
Additivity  Tools and Area 0 42%
Procedures 1 58% Q. 63 Area Calculation, Rectangle

4.2.2.1 CADL.: conceptual tasks, additivity concept, length context.

To assess a conceptual understanding of additivity in a length context, (CADL), the Freddo
task (Q. 41) was offered to all students (see Figure 4.6). If they could successfully say how
long the Freddo Frog was, students were offered the Footy Card task (Q. 42), or if
unsuccessful the Straightening Wires task (Q. 43) was offered instead (see Figure 4.6). This



109

entry-level task protocol that enabled students' performance to be ranked for the CADL
category had been validated in the pilot study. If unsuccessful at the entry-level Freddo task
and the Straightening Wires task where students had to explain which bent wire was longer, a
student was assigned a score of 0. If unsuccessful at the entry-level Freddo task but successful
at the Straightening Wires task, a student was assigned a score of 1. If successful at the entry-
level Freddo task but not the Footy Card task, a student was assigned a score of 2. Students
who were successful at both the entry-level Freddo task and the Footy Card task were
assigned a score of 3. The response frequencies in Table 4.4 show how many students
achieved each score. So while 19.3% of students achieved a score of 2 in the CADL category
and all of them correctly answered the Freddo task, the frequency of success on the Freddo
task itself was 56.8% because the other 37.5% who were correct on the Footy Card task had

also correctly answered the Freddo task.

§‘“W““““‘\““““‘\““““‘\““““‘\““““‘\““% S UL D R R L L R
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Q.41 Q. 42

Q.43

Figure 4.6. Diagrams used in tasks assessing a conceptual understanding of additivity in a

length context.

In the present study, there were several different strategies employed by students who were

successful at the Freddo task which all attempted because it was the entry-level task.
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Numerical reasoning with the numbers three and eight was used by 20% of the students. The
next most common approach in the present study was to imagine the three as a zero or a one
and then to count from there and 14.8% of the students did that successfully. A similar
number of students, 11.4%, counted the hash marks successfully, and a further group of

students, 10.2%, counted spaces successfully.

The misconception of counting lines not spaces, incorrectly starting the counting sequence at
the zero point and calling it one, was evident in the data. In the response to the Freddo task,
29.5% of the students demonstrated this strategy. Only students who had answered the Freddo
task successfully were offered the Footy Card task and a third of them then demonstrated the
counting lines not spaces misconception in the more difficult task. So overall, 48.9% of the

students demonstrated this misconception, when the task was difficult enough.

4.2.2.2 CADA: conceptual tasks, additivity concept, area context.

To assess a conceptual understanding of additivity in an area context, CADA, the Area
Calculation, Half Rectangle task (Q. 33) (see Figure 4.7) was offered to all students as a
entry-level task. The students had to work out the area of the non-shaded part of the rectangle
and explain their reasoning. The entry-level sequence had been validated in the pilot study.
Students who were successful at this task were offered the Area Calculation, Triangle task (Q.
53) in which they had to identify the area of the shape and explain their reasoning. Students
who were successful on both these tasks were assigned a score of 3. Students who were
successful on the entry-level task, Area Calculation, Half Rectangle, but not the Area
Calculation, Triangle were assigned a score of 2. There were two tasks that were used to
define a baseline level of performance at the CADA category; the Staircase Array (Q. 62) and
the Missing Oval task (Q. 35). In both tasks, students had to determine the area of the
rectangles. They were not required to offer correct units to be correct in this category because
that aspect of the task was used to assess the units category. Students who were unsuccessful
at the entry-level task but could offer a correct count for one (or both) of the array tasks (Q.
62 or Q. 35) were assigned a score of 1. Students who were unsuccessful at the entry-level
task, Area Calculation, Half Rectangle and were unable to offer a correct count of the area on

both the Staircase Array task and the Missing Oval task were assigned a score of 0.
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— 4cm 4cm

Q. 62 Q.35 Q.33 Q.53

Figure 4.7. Diagrams used in tasks assessing a conceptual understanding of additivity in an

area context.

The 20.5% of students with a score of 3 (see Table 4.4) who were successful at calculating the
area of the triangle (Q. 53) all offered a fraction-based explanation, such as it's half of twelve,
while none of them used the half base by height formula. A further 22.7% of students were
successful at the entry-level task, Area Calculation, Half Rectangle (Q.33) but not the harder
task. Hence 43.2% of the students had been able to calculate the area of half a four by three
cm rectangle. Some successful students used fraction reasoning. Some students attempted to
calculate the algorithm 4 x 11/2 but were unsuccessful. Just over half the students were
successful on only the array tasks, and were unable to calculate the area of a half rectangle. A
further 5.7% of students did not offer a correct count to the Staircase Array task (Q. 62) or if
needed, the Missing Oval task (Q. 35). Errors with the count of the area on the Staircase array

task came from all three schools.

4.2.2.3 TPADL.: tools and procedures tasks, additivity concept, length context.

The entry-level task assessing the students' tools and procedures understanding of the concept
of additivity in a length context was the Streamer task (Q. 31). Students iterated a 30cm ruler
to measure a 93cm streamer and were assigned a score of 2 if they gave an answer between 92
and 94cm. There was no harder task and so a score of 3 was not possible. The less difficult
task was the Measure a DVD task (Q. 32) and this was offered to students who were
unsuccessful at the Streamer task. If the students were successful at measuring a 19cm DVD
case with a 30 cm ruler (18.8 — 19.2 cm) they were assigned a score of 1, and if unsuccessful
assigned a score of 0. A high degree of accuracy was required with an error of 1.1% allowed

for both tasks.
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The students demonstrated some difficulty with measuring the streamer and 58% of them
were able to measure with the required degree of accuracy. Assuming that the students who
measured the streamer successfully could also measure a 19cm DVD case, 77.3% of the

students could use a ruler to measure.

4.2.2.4 TPADA: tools and procedures tasks, additivity concept, area context.

One task was used to assess students' tools and procedures knowledge of additivity in an area
context. This was the pen and paper Area Calculation, Rectangle task (see Figure 4.8, or see
Q. 63, before Q. 12 in Appendix A) in which students were asked, what is the area of this
shape? Similarly to the CADA category, the students only had to give the correct count for the
area of the 4 cm by 3 cm rectangle in this additivity category, but give the correct units, cm?,
to be successful in the units category aspect of the task. The correct count of units, 12, was
given by 55.7% of the students (see Table 4.4). The most common incorrect answer was 14,

possibly indicating the addition of the four lengths.

3cm

Figure 4.8. Area Calculation, Rectangle task.

The calculation of the area of a rectangle may be a prerequisite task for the calculation of the
area of a half rectangle. The contingency table (see Table 4.5) shows that 33 of the students
were correct on both of these tasks (area of a rectangle and area of a half rectangle). Of those
who were only correct on one of the tasks 15.8% (3 out of 19) of them correctly calculated the
area of the half rectangle and 84.2% (16 out of 19) of them could calculate the area of the
rectangle (see Table 4.5). This suggests that the students were less likely to be able to

calculate the area of a half rectangle before being able to calculate the area of a rectangle.
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Table 4.5
Two Way Table of Association Between the Calculation of the Area of a Rectangle (Q. 63)
and Area of a Half Rectangle (Q. 33)

Area !z rectangle correct Area Y4 rectangle incorrect

Area calculation rectangle correct 33 16
Area calculation rectangle incorrect 3 36
4.2.3 Units.

The percentage of the students with each score on conceptual and tools and procedures
questions, in both length and area contexts, assessing the key measurement concept of units is
presented in Table 4.6. The percentages in brackets beside some of the tasks used to rank
success at the concept show the frequency of success of the entry-level tasks as these were the
only tasks offered to all students. Three of the categories in the units tasks had questions that
dealt with units and leftovers: CUNL, CUNA, and TPUNL. And the fourth category assessed

students' knowledge of the correct standard units used with area measures: TPUNA.



Table 4.6

Units: Frequency of Success
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Concept  Task type Context Score Score Tasks used to rank success at the
Frequency concept
Units Conceptual ~ Length 0 12.5% Neither of the two tasks below
correct
1 339% Q. 40a Using paperclips to
measure
2 54.5% Q. 39 Keyboard (54.5%)
Units Conceptual Area 0 87.5%
1 12.5% Q. 46 Array with leftovers
(12.5%)
Units Tools and Length 0 15.9%
Procedures 1 84.1% Q. 64 Dragonfly (84.1%)
Units Tools and Area 0 52.3%%  Offers incorrect units (one or
Procedures more times)
1 10.2% Offers informal units and/or no
units only
2 : .
2 37.5%% Offers cm” and no incorrect units

for Staircase task (Q. 62) and
Area of Rectangle (Q. 63) and, if
needed Missing Oval (Q. 35).

4.2.3.1 CUNL.: conceptual tasks, units concept, length context.

All students were offered both the Keyboard task (Q. 39) (see Figure 4.9) and the Swimming

Pool task (Q. 65) (see Appendix A, before Q. 12). However, the Swimming Pool task was a

pen and paper task and the students had difficulty understanding the question and therefore it

has not been included in the results. Students who were successful on the Keyboard task were

assigned a score of 2 (a score of 3 was not possible for this category). If unsuccessful on the

entry-level Keyboard task, the students were offered the Using Paperclips to Measure task (Q

40a). The Keyboard task required a quantified description of the leftover part (and three

quarters), while the Using Paperclips to Measure task only required a qualitative description

of the leftover part (and a bit). Students successful on the Using Paperclips to Measure task

were assigned a score of 1 and if unsuccessful they were assigned a score of 0.
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task card visualisation

Figure 4.9. Task card (left) used for the Keyboard task (Q. 39), and mental visualisation
(right).

The keyboard was exactly three and three quarter pencils long, but the students were allowed
a margin for error in their estimation, as they could not draw on the task card. On this task
54.5% of students were successful (see Table 4.6). Correct answers (as long as they were
accompanied by mathematically correct explanations) included:

e three and two thirds,

e three point seven,

e three and three quarters (or three and six eighths or three point seven five),

e three and four fifths (or three point eight),

e three and five sixths, and

e three and seven eighths.
The margin of error allowed was 3.75 +/- 0.125. Three and five eighths would have been an
acceptable answer but was not offered by any student. Answers that fell outside of this margin
on the lower estimate included: three and a bit, three and a half (or three and five tenths or
three and three sixths) and three and just over a half. Answers that fell outside the margin on
the upper estimate included: three and nine tenths (or three point nine) and three and four

quarters (or three and three thirds).

Some students successfully used the excess part of the pencil as a sub-unit and iterated it back
along the partial unit of the pencil that was measuring the keyboard (see Figure 4.9 right),
counting three of these parts in the leftover part. Four ways of iterating the excess part were
demonstrated:

e using a pincer grip to iterate the lengths,

e using the width of a finger as an informal unit

¢ making imaginary hash marks the width of the excess part, and

e comparing the excess part by eye to the whole pencil.
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All these processes happened from right to left. The iterated unit was the excess part beyond
the edge of the keyboard so its size was fixed and it was mapped back onto the rest of the
pencil from right to left. This was demonstrated mainly with gestures and is evident on the
video recordings of some interviews. Freya articulated this strategy, "Um, three pencils and.
Three pencils and three quarters I think. Because this pencil [far right] doesn't exactly go
against the keyboard, and I'm guessing if that much [touches part beyond keyboard] was all
over this, it would be four [iterates three more times from right to left of last pencil] so three
pencils and three quarters." Claire also used the left over part, explaining her answer of 3.75,

"Because it's basically a quarter of a pencil too long".

Other students worked from left to right, proposing a sub-unit and estimating with that. This
may explain some of the variety of fractional answers. Noah explained how he got his answer
of 3.8, "Well, well obviously there's three pencils. There's four pencils there but the fourth one
is a little too long. So I thought that I'd just divide it into tenths, I'd use tenths and eight, point
eight would be about there."

Other students used splitting (Confrey, 1994) and worked from the middle of the last pencil to

halve and halve again.

Some students elected to use a ruler to help them with this task. Some students successfully
compared the length of the pencil and the length of the leftover part. For example, Jack
explained, "well I measured the end pencil and it was three and a half, and the end of the
keyboard was two and a half. So three pencils [traces them with his finger] and it was going to
be around three quarters of a pencil." Chris used repeated addition for his ratio of two "point
fives" less than seven "point fives" (2.5 cm and 3.5 cm), and renamed this five sevenths in his
answer of three and five sevenths. These students were essentially working left to right.
However, for some students, using the ruler led them to giving incorrect answers in combined
units, pencils and centimetres such as George's response, "Is it three pencils and two

centimetres and five millimetres?"

Some students were more holistic in their visualising. For example Lachlan explained how he
got his answer of three and three quarter pencils, "Just by eye. I reckon it could be different,

but."
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Students who were unsuccessful at the Keyboard task were offered a hands-on measuring
context with leftovers and different sized units, measuring a DVD case with paperclips, and

12.5% of the students were unsuccessful at both tasks (see Table 4.6).

4.2.3.2 CUNA: conceptual tasks, units concept, area context.

The area context of the units conceptual tasks was assessed by the Array with Leftovers task
(Q. 46). There were sixteen whole units and four partial units in the array (see Figure 4.10).
Students were given some wooden blocks which were 2 cm by 2 cm exactly the same size as
the squares on the array, but there were not enough to cover the whole of array, and asked to
find the area of the shape. The task had been used in the pilot study and had a frequency of
success of 41.7%. This had indicated that it would be a good entry-level task. However the
frequency of success was much lower in the present study, 12.5% (see Table 4.6) and this had
the domino effect that very few students were offered the harder task, Packing Boxes (Q. 47).
For this reason the Packing Boxes task has been excluded from the results reported here.
Unfortunately, the materials in the (expected to be) easier task, the Cuisenaire Array, (Q. 48),
proved unfamiliar for some students and this made the task harder than it was designed to be.
For this reason the results of the Cuisenaire Array task have also been excluded from the
results reported here. Students who were correct on the Array with Leftovers task were

assigned a score of 1 and those unsuccessful were assigned a score of 0.

Figure 4.10. Array with Leftovers task (squares and wooden blocks were 2 cm square).

The Array with Leftovers (Q. 46) and the Keyboard task (Q. 39) used the same leftover: the
length task had three quarters of a pencil leftover and the area array task had four three quarter
squares left over. The same margin for error for describing the leftover piece was allowed in
the area task; that is correct answers could be between /g and "/5 (0.75 +/- 0.125). 19 and 19"

were the correct answers offered by the students. They had identified the partial squares as
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three quarters or four fifths. There was less variation in the description of the leftover part

than in the Keyboard task. The students who were correct came from all three schools.

The two stage difficulty of the area task was illustrated by the further 11.4% of students who
correctly identified the leftover parts as three quarters of a square, but made errors in
combining the four leftover amounts. This response was present in all three schools. In
addition, one student described the partial square unit as two thirds but miscalculated the
addition of the four leftover parts. The students explained two different ways of adding the
leftover parts. Some children successfully numerically added the leftovers, while others
successfully used dynamic imagery to move parts of parts in an effort to make wholes with
the leftover pieces. Two children successfully used dynamic rearrangement without

quantifying the leftover part itself; they made wholes and counted those.

4.2.3.3 TPUNL.: tools and procedures tasks, units concepts, length context.

The Dragonfly task (Q. 64) was the tools and procedures length task assessing the key
concept of units (see Figure 4.11). The students had to use mixed decimal units, centimetres
and millimetres, to describe the leftover, and 84% of them were successful at this task (see
Table 4.6). As this was a pen and paper task, the strategies that the students used to arrive at

their answers were not elucidated.
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Figure 4.11. The Dragonfly task.
4.2.3.4 TPUNA: tools and procedures tasks, units concept, area context.

The tools and procedures area tasks assessed whether or not students volunteered the formal
units cm® when calculating an area of a rectangle. Two initial pen and paper opportunities

were provided: the Staircase Array (Q. 62) and the Area Calculation, Rectangle (Q. 63) (see
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Figure 4.7 and Figure 4.8). For the TPUNA category, a successful count was not needed, just
the choice of unit. The Staircase Array task and the Area Calculation, Rectangle task were
both pen and paper tasks, hence there was no opportunity to prompt for units if none were
offered. There were two reasons that a student may have needed a third opportunity to
volunteer units: either no units had been offered in the first two tasks or only informal units
had been offered. The third task, the Missing Oval task (Q. 35) (see Figure 4.7) was offered in
the interview, where a prompt for units could be made. If a student offered an informal unit,

for example, twenty four squares, they were not prompted for a formal unit.

Students were assigned a score based on their volunteering of formal units and whether they
offered incorrect formal units (see Table 4.6):
e score of 2 (37.5%): student volunteered correct formal units, cm’ without
volunteering incorrect formal units (cm) in either the other one or two tasks,
e score of 1 (10.2%): student volunteered correct informal units and/or no units, but no
incorrect formal units (cm), on the three tasks, or
e score of 0 (52.3%): student volunteered incorrect formal units (cm) on any of the two
(or three) tasks
Most of the correct responses were written as cm” but one example of "2cm" after the number
for the count was also accepted because it indicated centimetres square even if it was not
written conventionally. Verbal descriptions accepted were centimetres squared and square

centimetres.

Two of the tasks were on a pen and paper test so students' explanations were not elucidated.
In the third task I prompted if the student did not offer any units, but I did not ask them to
explain why they decided to offer the chosen unit. There is no data of students' explanations

about their use of formal, informal or incorrect units.

The two way table for TPADA and TPUNA shows that many of children could do the
calculation for area, (three times four) before they could also attribute correct units (see Table
4.7). More students calculated the area of the rectangle but also offered incorrect units (cm)
on one or more of the tasks (19 students) than offered only correct formal units (cm?) but

could not calculate the area of the rectangle (6 students).
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Table 4.7
Two Way Table of Association Between TPADA and TPUNA

TPUNA Score

2 (correct cm?) 1 (informal units) O (incorrect cm)

Area calculation correct 27 5 19

Area calculation incorrect 6 4 27

4.2.4 Proportionality.
The frequencies of success on the variations of the proportionality concept are reported in

Table 4.8. Only one task each was used to assess the other three categories.

Table 4.8

Proportionality: Frequency of Success

Response  Tasks used to rank success at

Concept Task type  Context Rank Frequency the concept

1.1% None of the below correct
18.2% Q. 40b Paper clips
33.0% Q. 44 Steps (80.7%)

Proportionality Conceptual Length 0
1
2
3 47.7% Q. 45 Choosing Rulers
0
1

0%
100% Q. 38b Array units

Proportionality Conceptual ~ Area

Proportionality = Tools and  Length 0 20.5%
1

Procedures 79.5% Q. 31b Streamer (diff to 1m)
Proportionality  Tools and Area 0 10.2%
Procedures 1 89.8% Q. 38a Draw your own array

4.2.4.1 CPRL: conceptual tasks, proportionality concept, length context.

An entry-level task was offered for CPRL category: the Steps task (Q. 44). If students were
successful at the Steps task they were offered the more difficult Choosing Rulers task (Q. 45).
Students successful on both these tasks were assigned a score of 3. If successful on the entry-
level Steps task but not the Choosing Rulers task they were assigned a score of 2. If
unsuccessful on the entry-level task, they were asked Part B of the Paperclips task (Q. 40b). If
successful on Part B of the paperclips task they were assigned a score of 1. If unsuccessful on

both the entry-level task and Part B the Paperclips task, the assigned score was 0.
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In the Steps task, students had to identify who would take a longer pace across a room (see
Figure 4.12). By comparing the number of paces taken by four children presented in a table

80.7% of students successfully chose Tim because he took less steps (see Table 4.8).

Name Number of steps
Jack 10

Emily 8

Max 9

Tim 7

Figure 4.12. Steps task (Q. 44).

In the Choosing Rulers task, the students had to choose a ruler to measure a pie but some of
the rulers had uneven markings (see Figure 4.13). Just under half of the students (see Table
4.8) chose the equal interval ruler and used it consistently, or chose a non-equal-interval ruler
but explained that they were imagining moving the spacings to make them equal. This second
explanation was not common, but because the length of the pie being measured was close to
60 units, some students used a ruler that had sixty in the correct place between 0 and 100,

explaining that the sixty was in the correct place even though the other numbers weren't.

Figure 4.13. Choosing Rulers (Q. 45): pie image with one of the rulers.

In Part B of the Paperclips task (Q. 40b), students were shown two sizes of paperclips and
asked, would you need more, or less, or the same number of (large) paperclips to measure the
DVD than with small paperclips. The answer did not have to be quantified and one student

was unsuccessful (see Table 4.8).
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4.2.4.2 CPRA: conceptual tasks, proportionality concept, area context.

The task used to assess the area context of the concept of proportionality was Part B of the
Draw Your Own Array task (Q. 38b). The students were asked to consider another rectangle
the same size as the one they had restructured in Part A of the Draw Your Own Array task (Q.
38a, see section 4.2.4..4) and decide if they would need more or less or the same number of
the new units than those used in Part A (see Figure 4.14). Only students who had been
incorrect on the area comparison of the shaded shapes (Q. 36h), assessing the attribute
concept, were offered Part B of the Draw Your Own Array task. It was assumed that if they
could identify that non-congruent halves were the same, that they would be able to identify
that fewer units of a larger size would be needed to measure an area. All students offered Part
B of the Draw Your Own Array task answered correctly (see Table 4.8). This task was
analogous to the easier task in the length context, Part B of the Paperclips task (Q. 40b) and
the direction of change but not a quantified response was required. I had included the Four
Triangles task (Q. 47) in the data collection interview as the harder CPRA task, but listening
to the students' explanations of their answers to this task, I realised that it was an additivity
task, not a proportionality task and so have not reported the results here. As the frequency of
success on the TPPRA category was 100% and no other tasks were found to be suitable (or
developed) for this category, it is not possible to calculate correlations using the category
CPRA.

Figure 4.14. Draw Your own Array task Q. 38b.
4.2.4.3 TPPRL.: tools and procedures tasks, proportionality concept, length context.

Part B of the Streamer task (Q. 31b) was used to assess students' understanding of converting

between centimetres and metres. The accuracy of their answer was based on the difference to
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one metre from their measure (whether this was within the range for success at TPADL or
not), and 79.5% were successful (see Table 4.8). If a student had offered a length with a
fraction part for Part A of the Streamer task (e.g. 92'/> cm) the second part of the part of the
question was rephrased so that he or she did not have to calculate the difference between a

fractional answer and 100 cm (e.g., what is the difference between 92 cm and 1 m).

4.2.4.4 TPPRA: tools and procedures tasks, proportionality concepts, area context.

Students had to restructure a rectangle into an array in Part A of the Draw Your Own Array
task (Q. 38a) (see Figure 4.14 left) to calculate the area. The unit (a 2 cm by 2 cm square) was
printed on the paper and could not be moved onto the rectangle. Students had access to a ruler
but did not have to use it. In order to be coded as correct, students had to meet three criteria:
a) an answer of 30 squares or 120 cm” had to stated, b) the rectangle had to be subdivided into
30 units, or have the units marked on a length and width, and c) the units had to have
dimensions between 1.5 and 2.5 cm. If only one unit was too small or too big, the student was
still coded as correct. However, if a row or column was outside the 1.5 cm to 2.5 cm
dimensions, the student was coded as incorrect even if there were 30 units. These criteria were
double coded by a mathematics research assistant using the students' drawings from the
interview and 89.8% of the students created an acceptable array or indicated the array with

unit marks on a length and width (see Table 4.8).

Every student drew an array or indicated an array with marks on a length and a width but nine
students did not draw an array with regularly sized units. Of these nine students, seven had a
TPUNA score of 0 and had volunteered cm instead of cm? as units for an area calculation, one
had a TPUNA score of 1 and had offered informal units only, while one student had a

TPUNA score of 2 and used formal units correctly.

Some students had used the counting lines not spaces misconception in the Freddo task (Q.
41) or the Footy task (Q. 42) indicating some confusion over the first mark on the scale
indicating the beginning of one unit but not the end of another. All students used one line to
indicate the edge of adjacent units in their restructuring of the array in Part A of the Draw
Your Own Array task. However, of the nine students who were unsuccessful drawing the
array, most demonstrated misconceptions about the zero-point. Two demonstrated the
counting lines not spaces misconception and a further two used dynamic imagery to realign
the edge of the Freddo to the mark of 1 on the ruler on the Freddo task. All four of these

students demonstrated a misconception about the zero-point and gave the answer of six (one
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too many). Another student could not use the broken ruler to measure and gave an answer of
zero. Three of the nine students used the counting lines not spaces misconception on the
Footy Card task (having been successful on the Freddo task). One of the nine students who
could not draw the array accurately enough was successful on both the Freddo and Footy Card

tasks.

4.3 Visualisation

Dynamic imagery and geometric reasoning were two strategies used to solve the visualisation
tasks. The Flag task (Q. 56) used a real flag to model blowing in different directions, and the
task card had four options for a flag blowing in the opposite direction to the target flag (see
Figure 4.15). Alex gestured with her hand, flipping from the back to the palm, to indicate that
she had used dynamic imagery, while adding "I imagined it blowing the other way". Students'
geometric reasoning attended to the position of the shapes, for example that the square should
be closest to the pole. Using either strategy, 90.9% of the students successfully chose the first
flag.

Figure 4.15. Flags task.

The Design task (Q. 59) required students to locate which of four smaller sections did not
appear in the whole (see Figure 4.16). Students' geometric reasoning used a single identifying
feature of the four fragments. For example, Nicky explained why he had chosen the correct
piece (bottom right) saying, "Because, um, for this, there's no square that's by itself". The use
of dynamic imagery involved mentally picking up each fragment as a whole and rotating it
over the design to find where it superimposed over an identical part. It is possible that Alex
was using dynamic imagery: "Because I looked at all of those [points to other 3] and they
were all in, in it. And this one wasn't [points to bottom right]". She answered enthusiastically,

"Yeah, yeah" when a further confirmatory question was asked, "were you sort of picking this
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shape up in your head and doing this [rotates fingers]". Using either strategy, 72.7% of the

students successful chose the bottom right fragment.

Figure 4.16. Design task.

The Cubes task (Q. 58) was modeled using a diagram and concrete materials (see Figure
4.17). The students were asked to make the target arrangement out of 2 cm wooden cubes. A
premade model of the task card using more cubes was then shown to the student, who could
then look at either the task card or the model to decide which one of the four options was the
same arrangement of cubes. Nicky appeared to use dynamic imagery, explaining "Because it's
just been turned upside down". He agreed, "yeah" when asked a confirmatory question, "did
you move that around in your head." It was not possible to determine whether Alex used
dynamic imagery or geometric reasoning in her explanation: "Ah, 'cause, 'cause I was looking
around seeing, because I was like, because this one has two going that way and that way, and
there's one like this one [compares her choice to top model] and that one's only got one on top
like this one, and that's only got one there, and it's exactly the same". Alex agreed to a
confirmatory question: "Ok so did you, were you just looking for, you know, so it's got one on
top and then I need to look for the other bits?". But she also agreed to a confirmatory question
proposing dynamic imagery: "Or were you imagining this in your head and imaging it picked
up and moved around?". It is possible that Alex was using a mixture of the two strategies, but

it is also possible that she was agreeing with the interviewer, and her final response, "Kind of
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both, yeah both" could be read either way. Using either strategy, 71.6% of the students

successfully chose the first option.

Figure 4.17. Cubes task.

The Puzzle task (Q. 57) required the students to choose shapes to fit together to make a square
(see Figure 4.18) and then physically arrange them (see Appendix A, Q. 57) and 40.9% of

students were successful.

Figure 4.18. Puzzle task (Q. 57) pieces.

The Wattanawa Block task (Q. 60) could be solved using sophisticated dynamic imagery, or
simple geometry if the student attended to that feature of the task (see Figure 4.19 left. Note:
there is one dashed line that should be solid on the diagram with the corners labelled, but this
was the diagram shown to the students). A model of the diagram made of wooden blocks was
used in the question (see Fig. 4.19 right). Students were shown the first block model. This was

then placed on the left and the other waved in the air indicating a rotation before it was placed
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on the right in the configuration that matched the rotation in the diagram. I then pointed to
"corner 2" and asked what colour it would be. This adaptation was easier than the diagram as

only eight corners were coloured.
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Figure 4.19. Wattanawa Block task.

Jack, who was successful on all the visualisation tasks appeared to use dynamic imagery,
explaining "Well I pretended to flip the shape around til I got the orange and the yellow
facing me and the blue down under there, and I looked to see what was in that corner." Alex
appeared to use dynamic imagery but was unable to offer the correct answer, perhaps because
she could not coordinate the two stage rotation, explaining "'Cause I, because in my head I
flipped it, so that like it was the exact same as that. And then I thought that was there, and

then I saw the green and the brown and the white one there."

Geometric reasoning concentrated on the edge between the blue and the unknown corner, and

m

Nicky explained "'cause the blue is in line with the, is in line with the brown. Those two are in
line [touches blue and brown corners on model 1] and those two are in line [touches blue and

corner 2 model 2]".

However, it was difficult to determine whether some students' explanations indicated dynamic
imagery or geometric reasoning. For example, Noah may have self corrected part way though
his attempt, explaining "Well I turned this one around in my head [indicates model 1] and I
noticed that one was there [points to brown corner on model 1] and I just realised if that's
there, if that block was that block, so this would be there [brown corner to corner 2]". Lily's
explanation was satisfactory and, while it suggested geometric reasoning, it may have been a
justification of dynamic imagery: "On this side [model 2] on the same corner as this on the
bottom there's blue." After a non-specific probing question, "Mmm", Lily elaborated, "So I
looked, I checked for blue and it had this one". Using either strategy, 39.8% of the students

were successful on this task.
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The frequency of success on each of the five visualisation tasks is reported in Table 4.9. The
tasks fell into three broad groupings:

e Group A - the Flags task (90.9% correct)

e Group B - the Design and the Cubes tasks (71.6-72.7% correct), and

e Group C — the Puzzle and the Wattanawa Block tasks (39.8-40.9% correct.

Table 4.9

Visualisation: Frequency of Success

Flags (Q. 56) Design (Q. 59) Cubes (Q. 58) Puzzle (Q. 57) Wattanawa (Q. 60)

Success 90.9% 72.7% 71.6% 40.9% 39.8%

Two students did not get any of the visualisation tasks correct and 17% were successful on all
five tasks. Students were given a score based on number of tasks correct (0 to 5). To be
classified as following the trajectory Group A, Group B and Group C tasks
e students with a score of 1 was successful on the Group A task (Flags),
e students with a score of 2 were successful on the Group A task and one of the Group B
tasks (Design or Cubes),
e students with a score of 3 were successful on the Group A task and both of the Group
B tasks, and
e students with a score of 4 were successful on the Group A task, both Group B tasks,
and one of the Group C tasks (Puzzle or Wattanawa Block).
Just under three quarters of the students with a score of 1 to 4 (52 out of 71) were successful
in the order Group A, Group B, Group C (students with a score of 0 or 5 by definition
followed this trajectory). However, due to difficulties distinguishing dynamic imagery from

geometric reasoning, the visualisation score is not a dynamic imagery score.

The Puzzle task had a similar frequency of success to the Wattanawa Block task at around
40%. However, as the two way table shows (see Table 4.10) while 70.5% of the students were
either successful on both tasks or unsuccessful on both tasks, the remaining 29.5% were split
evenly in the order of difficulty of the task. So although the two tasks were superficially

equally hard, performance on one did not necessarily predict performance on another.
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Table 4.10

Two Way Table of Association Between The Puzzle task and the Wattanawa Blocks task

Wattanawa Blocks task correct Wattanawa Blocks task incorrect

Puzzle task correct 23 13

Puzzle task incorrect 13 39

4.4 Multiplication Results

Three tasks were used to generate a Multiplication score from 0 to 4 reflecting the students'
success on four possible questions:
e Multiplication Tables (Q. 6, of which all eight had to be correct),
e 23x4(Q. 10),
e Missing Number (Q. 11a, in which students were asked to think of a number that
when multiplied by 54 would end in a 2, and
e Missing Number (Q. 11b), in which children were asked could any other number be
multiplied by 54 and end in a 2.
If a correct answer was not offered in Part A of the Missing Number task (Q. 11a) then Part B
(Q. 11b) was not offered (and assumed incorrect). These two parts were coded separately and
were treated as two items in respect of the Multiplication score because this enabled the top
60% of the students to be split again into a top 20% of the group (see Table 4.11). Some
children were assigned a Multiplication score of 0 because the Tennis Balls task (Q. 1), a task
with 100% frequency of success, was not included in the score. The range of scores in all
three schools was 0 to 4, with 4 indicating success on the four selected tasks. The division
tasks were not reported here as there was not a division task difficult enough to split the top

half of the students into smaller segments.

Table 4.11

Percentage of Students With Each Multiplication Score

Multiplication Score

0 1 2 3 4

Percentage of students at each score 8% 13.6% 18.2% 39.8% 20.5%
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4.5 Fraction Results

This section presents the frequency of success on some fraction tasks; an elaboration of some
of the students' explanations to six fraction tasks; and correlations between fraction and
measurement categories. The results of the fraction tasks are reported under the categories
equivalence, measure, quotient, operator and ratio. The main focus of the present study was
the measure sub-construct and equivalence understandings. The tasks classified as the
measure sub-construct context reported in this chapter are:

e number lines (the Number Lines task (Q. 16),

e the relative size of fractions (the Fraction Pairs task (Q. 22), and

e area diagrams (the Fraction Pie task (Q. 14), the Fraction Sort task (Q19), and Fold

Me a Quarter task (Q. 13)).

Kieren's four-three-four model of fraction understanding (1988, 1992, 1993, 1995) proposed
that the concepts of partitioning, equivalence, and unit-forming could be drawn upon in
measure sub-construct and quotient sub-construct contexts (see Figure 2.5). My interpretation
of the tasks selected to represent the measure and quotient sub-construct includes a
description of the concepts of partitioning, equivalence and unit-forming evident in the

students' explanations.

4.5.1 Equivalence.
In the criteria for task selection, three tasks had questions that were used to assess equivalence
knowledge in the interview criteria. These three tasks were the Fraction Sort task (Q. 19), the
Golden Beans task (Q. 21), and the Fraction Pairs task (Q. 22). Two equivalence questions
were included in the Golden Beans task (Q. 21). Equivalence was also assessed by the
fraction pair comparison */4 and /s, (Q. 22b). Analysis of other fraction tasks determined that
two further questions also assessed equivalence understanding: the fraction pair */7 and /s (Q.

22f), and the fraction addition algorithm 5+ (Q. 26¢).

4.5.1.1 Fraction Sort task.

Eight cards from the 24 in the Fraction Sort Task (see Figure 4.20) were designed to include:
e area and discrete models for %/ 1= l/6 (Q. 19c and d),
e different orientations of discrete models for */;> = /4 (Q. 19i and j)
e different discrete models for '/4; %/s (Q. 19k) and */;» (Q. 19i and 1
e an area and a length model for /s (Q. 19s and t), and

e an area model that required complex geometric re-structuring /o = %/3 (Q. 19r).
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@.. %} | e — /\

(Q. 19k) 47.7% (Q. 19s) 33% (Q. 19t) 26.1% (Q. 19r) 0%

Figure 4.20. Task cards used for assessing equivalence in the Fraction Sort task (Q. 19) and

frequencies of success.

Ten students' explanations for their sorting of the above eight Fraction Sort cards were double
coded by a mathematics education lecturer, using video footage of the students completing the

task. The double coder agreed with all correct/incorrect coding of the eight cards.

The Fraction Sort task (Q. 19) consisted of 24 individual cards, each with one fraction
diagram, which the students had to sort into four piles: one quarter, one sixth, two thirds, and
other. There were inscriptions of area, length and discrete contexts. The students held the
cards and could orient them any way they chose. They could also place one to the back of the
pile if they wanted to come back to it later. The cards were shuffled, but in general, one of the
two cards depicting one quarter as one of four equal areas was placed on top as the first card
for the student to consider. The cards were not presented in the same order for each student
because the order could be changed by the student as they worked through the pile, and
indeed some students did do this. The sorting piles were indicated by cards with a symbolic
inscription Y, Vs, ?/; and other, but the interviewer also read this to the student as one

quarter, one sixth, two thirds, and "if it's not any of those, it's other".

The double coding of the Fraction Sort task (Q. 19) by a mathematics education lecturer also
included coding students' explanations. The categories used were fewer than the exhaustive
coding I had used to describe every variation of response in my initial coding. After

discussion, the following seven categories were used successfully to clarify whether students
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had an understanding of the concept of equivalence and whether renaming a fraction was even
considered. On the eight equivalence cards (see Figure 4.20) the students either:

e successfully identified the equivalence;

e stated the answer, for example, it's other (successfully or unsuccessfully);

e named the two quantities in the diagram, for example, three twelfths, but did not
recognise that as one quarter;

e named one of the quantities, usually the denominator and rejected all the fraction
possibilities because of this, for example, sorting the diagram of %/ into the other pile
because /4, /6, and ?/5 didn't have an eight;

e miscounted one of the quantities and therefore was unable to simplify to an equivalent
fraction from the incorrect starting fraction. This miscounting affected up to 6.8% of
students and was more common on the diagrams with 12 parts than on diagrams with
six or eight parts;

e demonstrated semiotic confusion about the conventions of the diagram and therefore
did not state the correct initial fraction value, and was unable to simplify it to one of
the three fraction possibilities. For example, some students, counted the lines not
spaces in the length diagram and called four sixths, five sevenths, which made the
recognition of two thirds as equivalent to four sixths impossible in that particular
question;

e gave an explanation that was not one of the above.

In the present study, the first two categories were coded as correct if the correct pile was
chosen. Explanations three and four were categorised as not showing awareness of the

concept of equivalence.

Correct explanations of the placement of the equivalent fractions in the '/4, /s and /5 piles of
the Fraction Sort task included numerical explanations and spatial re-structuring explanations.
The equivalences to a quarter had the highest frequencies of success (see Figure 4.20):

e 47.7% of the students correctly explained why the discrete */s (Q. 19k) was a quarter,

e 47.7% of the students correctly explained why the discrete */;> (Q. 19j) was a quarter,

and

o  45.5% of the students correctly explained why the discrete */;, (Q. 19i) was a quarter.
For example, Rohan explained that "This one, with eight dots and it's got circled two, would
be one quarter” (Q. 19k); that "This is one quarter 'cause it is circled three and there's twelve
dots" (Q. 19j); and that "That one's one quarter as well, because it's got the dots, three out of
twelve circled" (Q. 19i).
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The equivalences to a sixth had a lower frequency of success (see Figure 4.20):
e 40.9% of the students correctly explained why the discrete */;> (Q. 19d) was a sixth,
and
e 38.6% of the students correctly explained why the circle %/ (Q. 19¢) was a sixth.
For example, Daniel explained that "two four six eight ten twelve, two out of twelve, would
be one sixth" (Q. 19d) and Rohan explained that "And this one will go under one sixth 'cause

it's cut up into twelve and it's got two shaded" (Q. 19¢).

The equivalences to two thirds had a lower frequency of success than the unit fractions (see
Figure 4.20):
e 33% of the students correctly explained why the circle */s (Q. 19s) was two thirds, and
e 26.1% of the students correctly explained why the length */s (Q. 19t) was two thirds.
For example, Rohan explained that "this one will go under two thirds because it's four sixths
and then it's equivalence to two thirds" (Q. 19s) and that "And this is two thirds 'cause it's four

sixths and if you halve it it will be two thirds" (Q. 19t).

There was evidence in Jade's explanation, of spatial re-structuring of the 12 dots as four
columns (see Figure 4.21) leading to the circled three dots being described as "One quarter,

because there's one part circled and three parts that aren't circled".

Figure 4.21. Three of twelve dots or one of four columns: numerical and spatial equivalence.

The Fraction Sort task required the students to volunteer equivalence because the word
equivalence was not used in the task explanation, nor specifically hinted at; they had to reject
an equivalent fraction to be incorrect. An example of a student's explanation illustrating this
was Jess who placed the circle %15, (Q. 19¢) in other and explained, "Ah, I put that there
[other] because um there was twelve there and there was two shaded; and I didn't think that
was one sixth or two thirds or one quarter." Although not asked to consider equivalent

fractions, Jess rejected one sixth as a possible other name for two twelfths.
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Some students had the information needed to be able to see an equivalent relationship but did
not appear to be looking for it. These students named both parts (numerator and denominator)
but placed the card in other, like Jess above. It was as though students using this strategy did
not think about fractions as having many names; equivalence was not "on their radar".
Children from all three schools demonstrated this behaviour. The percentage of students who
named both parts on each equivalence question in the Fraction Sort task is reported in Table
4.12. The frequency of correct explanations on the Fraction Sort cards equivalent to /4 and '/
cards was about 40-50%, and a further 35-40% stating the two quantities correctly but failed

to connect that to the appropriate equivalent sorting pile.

Table 4.12

Counting behaviour in explanations of equivalence Fraction Sort cards

Fraction Sort cards

Q.19i Q.19j Q.19 Q.19c Q.19d Q.19s Q.19t Q.19r

oo e g o e e VN

Success (%) 455 477 477 386 409 33 261 O

Both N and D identified 39.8 364 364 375 409 523 50 23
(equivalence not recognised)

Only one of N or D 23 4.5 5.7 125 9.1 9.1 4.5 -
verbalised

Miscount of N or D 3.4 4.5 1.1 6.8 2.3 1.1 0 -
Semiotic confusion 0 0 0 0 0 0 9.1 -
other type of error 102 6.8 8 4.5 6.8 34 8 97.7

4.5.1.2 Golden Beans task.

The Golden Beans task used real lima beans, white on one side and spray painted gold on the
other, as a discrete context for sixths. The students rolled the beans and named what they had
rolled, and then were asked for an equivalent fraction in Part B of the task. In the second part
of the task (Q. 21c and d) after the students' roll of their six beans, I added three more beans
so that there were six of one colour (white or gold) and three of the other colour showing. The
students were then asked to name the fraction of the gold or white beans (whichever was six
out of nine). They were then asked for another name for that, or equivalent fraction if a further

prompt was needed.
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Exactly half the students were successful on Part B, renaming the fraction they had rolled
with the six beans. In Part D, 47.7% were successful at offering an equivalent fraction for the

six out of nine beans "rolled".

There were two students who misnamed their original roll of three gold and three white beans
as three thirds and six thirds respectively, but then were able to rename the fraction as a half.
These students were not coded as successful on the equivalence criteria because they could
not offer two names for the same fraction, despite appearing to simplify in Part B.
Simplifying or doubling were the only strategies used to generate an equivalent fraction by

the successful students.

Two out of the eleven students who rolled ° /¢ incorrectly offered 2/3 as an equivalent fraction.
This may have been generated using the faulty mathematical reasoning that %/ is equivalent to

5 .
/6 because the numerators were both one number away from the denominators.

The incorrect responses to renaming a fraction in the Golden Beans task (Q. 21) included:
e only being able to restate the quantities, for example three out of six for three sixths,
e gap thinking like behaviour as described above, for example */5 for */s,
e using the same numbers but restating an equivalence as a possible decimal, for
example three and six hundredths for three sixths,
e flipping the numerals, for example six thirds for three sixths,
e Decimal-like renaming, for example three point nine for three ninths, and

e Other incorrect responses.
4.5.1.3 Fraction Pairs task.

The fraction pair comparison */4 and /s, (Q. 22b) drew on equivalence understanding. Most of
the students who offered the correct answer that the fractions were the same explained using
the words double or half, but few specified whether this was (correct) additive or
multiplicative thinking. Jack described the process of looking at the difference between the
numerator and the denominator, explaining "they're both half. Of the bottom number". Julia's
use of the word half in her explanation could have been additive (correctly) or multiplicative:
"'cause um four is half of eight and two is half of four, so they're both half of what the whole
is." The word "half" was used as both an object and an operator in Penny's explanation, "Well
two quarters is a half and then four eighths is half of eight so that would also be a half" and

may have indicated a common denominators approach. Five children explicitly used correct
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additive thinking in their explanations of why /4 and *3 were the same. This was
demonstrated in their use of the word "plus" in their explanations of the doubling of the

numerator or halving of the denominator (see Table 4.13).

Table 4.13

Explanations using the word "plus™ in correct responses to the fraction pair %/, and “/s

Strategy Explanation from transcript

Correct additive thinking Emma: Well 'cause, you just, they're all, they're halved, so they
would be the same. So there's four plus four is eight and two
plus two is four.

Patrick: they're both the same, because two plus two will equal
four, and four — they're both half numbers

Jordan: 'cause two plus two is four and four plus four is eight,
which means they're like half.

Hannah: 'cause if you do two plus two is four and four plus
four is eight. So they are pretty much times two.

Maxine: Because two plus two is four and four plus four is
eight

Some explanations using the words "simplify", "twice" or "times" showed evidence of
multiplicative thinking. Three students used the word "simplify" in their correct explanations.
For example, Nicky said "'cause two quarters and four eighths; if you simplify four eighths
you make it go down to two quarters, you simplify that again it would be one half". Jai
explained that the fractions were the same "because they're both equal because this is times by
two to get that, and this is times by two, so it's both equal." Aiden's explanation was "because
two goes into four twice and four goes into eight twice." Along with Hannah (see Table 4.13)
these were the only three students to use the words "times" or "twice". However, Hannah's
explanation combined correct additive thinking with the use of the word "plus" and possible

multiplicative thinking with the use of the words "times two".

The most frequent unsuccessful explanation was larger or higher numbers and this strategy

accounted for just over a third of the incorrect responses.

No student was successful in comparing the fraction pair */; and */s (Q. 22f) without either

using common denominators or benchmarking to a half. Lily used benchmarking to explain



137

that /g was larger: "Because half of eight is four and means that's gone more, that's more than
a half. And that one's three point five. And to go over a half, that has to be four." Two
students used common denominators to calculate that **/s¢ was larger than **/ss, For example,
Tom explained that °/s was larger "Because I made these denominators the same by times-ing
this by eight and this by seven, and that makes these fifty-six. And then I times-ed this by
eight as well and this is twenty-four over fifty-six. And I times-ed this by seven and this is

thirty-five over fifty-six".

In the initial design of the interview, there were 11 questions assessing equivalence
understanding. However, after the interviews were completed, factor analysis on all the
fraction tasks, revealed that a further two questions appeared to be associated with other tasks
assessing fraction equivalence understanding. Although the interview data did not meet the
assumptions for regressive analyses, a factor analysis was applied to the coded data as a rough
tool to suggest where further interpretive analysis might prove useful. Tasks that had a
frequency of success below 10% and above 90% were excluded because they would not
provide useful correlations. The questions used in the factor analysis included:
e one multiplication question (Q. 11b),

e one division task (Q. 7),

nearly all individual fraction questions,

e the measurement categories (e.g. CUNA), and

e all visualisation tasks.
As a factor analysis required more than a yes/no ranking, the explanations to the tasks were
generally ranked into five categories:

e correct answer with a correct explanation,

e just asmall slip up,

e right strategy but not executed properly,

e some relevant mathematical thinking, and

e incorrect mathematical approach.
These rankings did not provide the interval measure needed for factor analysis. After
generating a 24 factor solution, I looked at the tasks that had clustered together and tried to

suggest a common understanding, or context that might explain their association.

The factor analysis suggested two extra tasks that might be considered equivalence tasks.

Detailed examination of the explanations and strategies of the students confirmed that the
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fraction pair /7 and */g (Q. 22f) and the algorithm '/3 + '/, (Q. 26¢) were only successfully

completed using equivalence knowledge.

By reviewing the notes taken at the time on the record sheets, and analysing the strategies
used by successful students using video footage and transcripts of some student's
explanations, it was determined that no student was successful comparing the relative sizes of
the fractions */; and /g (Q. 22f) who did not use equivalence understanding to do so.
Benchmarking to a half required equivalence comparisons, as did the use of common
denominators. This fraction pair was therefore added to the list of tasks used to assess
equivalence understanding. No student was successful on the fraction pair size comparison */4
and 7/9 who had not also been successful at the pair 3/7 and ’ /s and the inclusion of the former
question may have further stratified the performance of the more successful students.
However, I decided that this level of graduation of performance was not necessary and so did

not include the fraction pair */4 and "/s in the questions that made up the Equivalence score.

4.5.1.4 Fraction Algorithms: Addition.

The addition algorithm s + 1y (Q. 26¢) proved difficult for the students with 14.8%
successful. The students' inscriptions which had been filed with their interview record sheets
were double coded by a mathematics education lecturer. Students were not asked to explain
their answers, but seven of the successful students used some form of common denominators,
making equivalent fractions and left evidence of this in their written working out. One further
student had notes on her record sheet indicating a verbal commentary of a common
denominator approach. Five students left no evidence of their strategy as an inscription.
However, both coders agreed these students would have used some form of equivalence
knowledge in mentally working out their answer, as non-equivalence methods (for example,
using wooden fraction models, or drawings) could be excluded. This interpretive analysis was
prompted by the appearance of the addition algorithm question clustering with other

equivalence tasks in a factor analysis of the data (see section 3..5.1.3 above for more detail).

4.5.1.5 Frequency of success on equivalence tasks.

The 13 questions from four fraction tasks categorised as equivalence questions spanned a
range of difficulty (see Table 4.14). The easiest equivalence task in the present study was
recognising halves in symbolic inscriptions (Q. 22b) and 72.7% of the students were

successful. Part B of the Golden Beans task required an equivalent fraction to something out
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of six depending on the students' roll. However, some students rolled three sixths which may
have been easier than other rolls. Nine questions, many of Fraction Sort cards, had
frequencies of success ranging from 47.7% to 26.1% The next most difficult tasks were the
questions that required equivalence as one step in multi-step reasoning, such as benchmarking
or common denominators (Q. 22f and Q. 26¢). The most difficult task (Q. 19r) required both
geometric re-structuring and numerical equivalence and proved too difficult for all the

students

Table 4.14

Frequency of Success on Thirteen Equivalence Tasks

Equivalence task Frequency of success Fraction

22b fraction pair */4 /g 72.7% 2y =Y5=(h)
21b golden beans to */¢ 50% Sixths equivalent
19k discrete 2/g as l/4 47.7% 2/g = 1/4

19j discrete */12 as /4 47.7% 1p="14

21d golden beans /o = '/3 47.7% o="1

19i discrete */1 as '/ 45.5% ="

19d discrete %/, as '/ 40.9% ="

19c¢ circle 2/12 equiv to l/6 38.6% 2/12 = 1/6

19s circle ¥/s as */3 33% s ="/

19t length %/5 (no zero point) 26.1% Ye="1

26c¢ algorithm 1/3 +1 15.9% Common denominators: sixths
22f fraction pair */7 /g 13.6% Benchmark to '/,
19r triangle 6/9 as 2/3 0% 6/9 = 2/3

The students' performance on the 13 equivalence questions was spread between a score of 0
(poorest performance) to 12 (highest actual performance). A score of 0, 1 or 2, was achieved
by 37.4% of the students and 13.7% scored 10, 11 or 12 (see Table 4.15). As no students
correctly re-partitioned the Fraction Sort triangle into ®/o and renamed this as /3, no students
achieved an Equivalence score of 13. There were students with scores of 0 and scores of 12 in

all three schools.
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Table 4.15

Spread of Equivalence Questions Correct

Equivalence Score

0 1 2 3 4 5 6 7 8 9 10 11 12 13

score frequency 17 159 45 9.1 23 34 102 113 57 68 23 57 57 0
(%0)

4.5.1.6 Equivalence pathways.

Frequencies of success (see Table 4.14) suggest a trajectory, but they do not prove that the
same students were correct on the difficult tasks, or that the same students were incorrect on
the easier tasks. To describe a general pathway of development requires looking at individual
students' performances. This showed that there was a broad pathway of increasing levels of
achievement:
e Level 1, equivalences to '/: the fraction pair %/4and Vs (Q. 22b), and the initial roll of
the Golden Beans task (Q. 21b);
e Level 2, the equivalence '/3="/y in the Golden Beans task (Q. 21d); and equivalences
to /4, '/ and ?/5 in the Fraction Sort task (Q. 19¢, Q. 19d, Q. 19i, Q. 19j, Q. 19k, Q.
19s, Q. 19t, (not Q. 19r));
e Level 3, both of the benchmarking fraction pair 3/; and /g (Q. 22f) and the addition
algorithm Y5+, (Q. 26¢), and
e Level 4, the */3 equivalence to %/ in the triangle fraction sort card (Q. 19r).
Level 2 had the most questions and the students' performance can be further classified by the
number correct (one to four, and five to eight), but not by success on particular tasks. There
was also a group of students whose performance spanned the overlap between Level 2 and
Level 3: one or both of the questions for Level 3 correct but not all questions in Level 1 and 2
questions. There were also students who had an Equivalence score of 0 (see Table 4.15).

Seven Equivalence Bands of performance are described below.
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The students in Band A had an Equivalence score of 0 and were not successful on any of the
13 equivalence questions (see Figure 4.22). None of these students by definition and in actual
fact were successful at any questions in higher bands.

Equivalence Band A
= <
=] o~ ]
> < =] .= ] h 2 A
Ll E|lg|E|E|&2|2|=2|E8ls |2 |E|2|%|=
= < g = 5 = < 7 = g = = < S <
g |z |Eg [N ]2 3|0 | < ]0 |28 10 |l |& |0
Score 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
:0 Q.22b | x X X X X X X X X X X X X X X
>
3 1 Q.21b |x X X X X X X X X X X X X X X
Q.21d |x X X X X X X X X X X X X X X
Q. 19k |x X X X X X X X X X X X X X X
Q. 19j X X X X X X X X X X X X X X X
~ Q. 191 X X X X X X X X X X X X X X X
©
z Q.19d |«x X X X X X X X X X X X X X X
|
Q.19 |x X X X X X X X X X X X X X X
Q.19s |x X X X X X X X X X X X X X X
Q. 19t |x X X X X X X X X X X X X X X
on
= Q.26c |x X X X X X X X X X X X X X X
>
Q
a | Q.22f | x X X X X X X X X X X X X X X
<+ 1 Q.19r | x X X X X X X X X X X X X X X

x denotes incorrect response, ¢ denotes correct response

Figure 4.22. Students' performance on Equivalence tasks:

Band A
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Students in Band B had an Equivalence score of 1. Except for Jess, they were successful
either at renaming the fraction rolled in the Golden Beans task or at explaining that */4 and /g
were the same (see Figure 4.23). The four students who successfully offered an equivalent
fraction in Part B of the Golden Beans task had rolled a half (three gold and three white
beans). All the students in Band B (except for Jess) were not successful on any of the tasks in
Level 3 and above, which included Part D of the Golden Beans and the Fraction Sort cards;
the fraction algorithm and the other fraction pair 3 /7 and 5/8. Jess had rolled four out of six with
the Golden Beans and so was not given the opportunity to name an equivalent fraction to a

half in this question which would have classified her as Band C.

Equivalence Band B
>
5 5} o
[ g ‘E g 2 ) E .9 ‘é’
@ &3 g 3 g g 2 x = > g 2 B0 «
g > = S 2 ) s S s > 5 S =) 8
- = n @) - m = = B n n ~ < -
Score 1 1 1 1 1 1 1 1 1 1 1 1 1 1
% Q.22b c c c c c c c c c X X X X X
>
Q
4 | Q.21b X X X X X X X X X @ c c c X
Q.21d X X X X X X X X X X X X X X
Q. 19k X X X X X X X X X X X X X ©
Q. 19j X X X X X X X X X X X X X X
« Q. 191 X X X X X X X X X X X X X X
% Q. 19d X X X X X X X X X X X X X X
|
Q. 19¢ X X X X X X X X X X X X X X
Q. 19s X X X X X X X X X X X X X X
Q. 19t X X X X X X X X X X X X X X
o
= Q. 26¢ X X X X X X X X X X X X X X
>
Q
4 | Q.22f X X X X X X X X X X X X X X
< 1 Q. 19r X X X X X X X X X X X X X X

x denotes incorrect response, ¢ denotes correct response

Figure 4.23. Students' performance on Equivalence tasks: Band B
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Students in Band C were all of those with an Equivalence score of 2 to 5 and half of those
with an Equivalence score of 6 (see Figure 4.24). They were successful on four or less of the
tasks in Level 2 (Part D of the Golden Beans task and the Fraction Sort cards excluding Q.
19r) and at either/both of the tasks in Level 1. None of them were successful on either of the

tasks at Level 3.

Equivalence Band C
= >
- [+]
<= o4 Q
< o | S 1 5 15 =)

TS| £ s | S| > > 2|2 5 = s | 8|2

S| E|l_|E|E|=|=|l2 |8 s|2|5|l3|e|E|=2|8 32|90

Sl S| ElE|lsle|lgl&|B|lR|I=|2I | =33 |35||=2|22|3

Ol | ¥d|<|a ||| d|&|[a|l0][alS|</|J|2|2|0|lmla|<

Score |3 (3 |3 (2 (2 (2|34 |5]|5|2 |3 |3 |3 |34 (|5]|6|6]|6|6]6

% Q22b |x |c |c |c|c|c|c|c|c|c|x|c|c|c|c|ec|c|c|c|c|c|c
>

S10Q21b | x |x |x|x|x|x|x|x|x]|x|e]ele|c|lcile|c|c|clc|c |c

Q2ld |x |[x |x|e |e |[x |[x|x |[x]|]ec |[x|c|c|c|c|x|x|ec]|ec |[x]|c|x

Q1% |x [x |x |x |x |x |x|]e [x]|]e |x|x|[x|x|[x|x]e|x]|c |x]|c|[c

Q19 |ec [x|e |x |x |x|x]|]efec|c|ec |x|[x|x|x|x]|]e |x]|]ec|[ec|c |x

o Q191 |ec |x |ec |[x |[x|x|]e e |c|c |x |x|[x|[xX|[X|X]|]€C |X|X|[X|€C|X

g Q19d |x |e |x |x |x |x|e |x|e |[x |[x|x|[x|x|[x|x|x e |x[|[ec|x|¢c
—

Q.19 |x |e |x |[x |[x |[x |x |x|x |x|x|x|x|x|x|e|x|e|c|c |x|c

Q19 |x |[x |[x |[x |x|]e |x |x|]e |x|x|x|x|x|x|e|x]|ec |x]|c |x|c

Q19 |e [x |x | X | X | X [X |[X [X |X|X |X [X|X|X|X|X|X|X|[Xx]|[X][|X
(a8}

= Q.26c | X |[X | X |X [X |X |X |X [X |X [X |X [X|X [X|X|X|X|X|X|[X]|X
>

S1Q22f | x | x [x |x |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x]|x]|x

S1Q 19 | X [ X [ X | X [ X [ X | X |X |[X X [|X[|X[|[X[|X[|[X[|[X[|X|[X[X|X]|X]|X

x denotes incorrect response, ¢ denotes correct response

Figure 4.24. Students' performance on Equivalence tasks: Band C



144

Students in Band D had an Equivalence score of 6 to 10, but were not all the students with

these scores. Students in Band D were successful at five to eight of the questions at Level 2

and either/both of the questions at Level 1 (see Figure 4.25). These students were

consolidating their understanding of equivalence tasks presented in length and area diagrams,

but were not successful on either of the tasks in Level 3. Some of the students who were

unsuccessful at Part B of the Golden Beans task (Q. 21b) may have rolled /s which made the

task harder than for those who rolled a half.

Equivalence Band D

Score

> [Elsie

@ |James

@ |Cameron

S 1Zak

~ [Freya

~ |Amelia

~ |Alex

% IShannon

~ Brooke

~ |Daniel
~ Ben

~ |Penny
~ [Emma

~ Michael

* Fiora

*° [Emily

*° Nicky

*° [Tony

© Jack

° |Yani

Level 1

Q. 22b

Q.21b

Level 2

Q.21d
Q. 19k
Q. 19
Q. 19i
Q. 19d
Q.19
Q. 19s
Q. 19t

Level 3

Q. 26¢

Q.22f

<+

Q. 19r

X

X

X

X

X

X

X

X

X X X X X

x denotes incorrect response, ¢ denotes correct response

Figure 4.25. Students' performance on Equivalence tasks: Band D
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Students in Band E included all the rest of those with Equivalence scores of 7 to 10 and all of
them with an Equivalence score of 11. They successfully calculated the fraction algorithm (Q.
26¢) and/or successfully compared the fraction pair °/; and */s (Q. 22f), but were not
successful on every question at Level 1 and Level 2 (see Figure 4.26). Both the questions at
Level 3 required the use of equivalence knowledge, such as benchmarking or using common

denominators, to complete another strategy.

Equivalence Band E

Felix
Jai
George

IAdam
< Seth
— [Noah
— Sarah
— [Dylan

— |Alec
— [Tom

Score | 7 9 8 8 8 1

x denotes incorrect response, ¢ denotes correct response

Figure 4.26. Students' performance on Equivalence tasks: Band E.
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All the students in Band F had an Equivalence score of 12. They were correct on all of the
equivalence questions in Levels 1, 2 and 3 (see Figure 4.27). No students could be categorised
as being in Band G as no students were successful at the Level 4 task of the triangle

equivalence (Q. 19r) in the Fraction Sort task.

Equivalence Band F
=
= = - £
e S = > 2
S & = = 2
(2 - @) s n
Score |12 |12 |12 |12 |12
% Q.22b | ¢ c c c c
>
S [Q.2lbje c c c c
Q.21d|¢c c c c c
Q.1% | ¢ c c c c
Q.19 |e¢ c c c c
% Q.191 |¢c c c c c
>
8 1Q.19d | ¢ c c c c
Q.19 |¢c c c c c
Q.19 |¢c c c c c
Q. 19t |¢c c c c c
:D Q.26c |¢c c c c c
>
9 1Q.22f |e c c c c
<+ Q. 19r |x X X X X

x denotes incorrect response, ¢ denotes correct response

Figure 4.27. Students' performance on Equivalence tasks: Band F.

The spread of performance across these descriptive Bands demonstrated (see Table 4.16) that
the students in the present study could be classified into five roughly equal sized groups.
These were Band A, Band B, Band C, Band D, and Band E and F combined. Students with an
Equivalence score of 0 to 5 appeared to follow a similar trajectory: not successful at
equivalence tasks, can recognise or make equivalences to a half, and begins to recognise

equivalences to 1/4, 1/6, or 2/3. Students with an Equivalence score of 6 could be found in either
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Band C or D. The was no specific Fraction Sort question in Level 2 at which every student in

Band D was successful. These students were consolidating equivalences to 1/4, 1/6, or 2/3_

A conceptual leap in equivalence understanding was represented by entry into Band E.
Students in this Band began using equivalence knowledge in other strategies such as
benchmarking or the use of common denominators. Jordan in Band E with an Equivalence
score of 7 represented the earliest transition into this stage of the trajectory. Students in Band
E were not necessarily correct on every task in Level 2. Students in Band F had consolidated
the equivalence knowledge up to this point. However, they did not demonstrate sophisticated

spatial restructuring and equivalence on the triangle Fraction Sort card (Q. 19r).

Table 4.16

Equivalence Bands: Seven Broad Groupings of Performance on Equivalence Questions

Band Question type Frequency Equivalence

score
A None correct 17% 0
B Equivalences to 1/2 15.9% 1
C Length and area diagrams, discrete objects (1-4 correct) 15.9% 2-6
D Length and area diagrams, discrete objects (5-8 correct)  23.8% 6-10
E Benchmarking and/or common denominators 12.5% 7-11
F Consistency in Levels 1-3 5.7% 12
G Sophisticated spatial restructuring and equivalence 0% 13

4.5.1.7 Correlations between Equivalence score and measurement categories.

Equivalence scores rather than Equivalence Bands were chosen for the calculation of
correlations with other categories because in similar calculations for other categories, scores
were used. There were correlations between students' Equivalence scores and their
performance in measurement categories (see Table 4.17). There was a substantial association
between the students' Equivalence score and the conceptual tasks in the additivity concept
(both length and area contexts). There was a substantial association between the students'
Equivalence score and tasks assessing the units concept (the conceptual tasks in a length
context and the tools and procedures tasks in an area context). These substantial associations

were to the broken ruler tasks, calculating the area of half rectangles, the Keyboard task, and
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offering cm” as the units for area calculations. The only categories that did not have a
relationship with the students' Equivalence scores were the area and perimeter comparisons of
the shaded halves in the Similar Shapes task (CATL (Q. 36g) and CATA (Q. 36h)). TPATL
and CPRA were not calculated. The students' Multiplication score had a substantial

association with their Equivalence score.

Table 4.17

Correlations Between Equivalence Score and Measurement Concepts

Correlation
Minimal T >.07 Typical t> .20 Substantial t > .34
Attribute TPATA
1=.195p=.034
Additivity TPADL CADL t=.377,p <.000
1=.172,p=.050 TPADA t=.273,p=.003 CADA t=.370, p <.000
Unit CUNA t=.315,p=.001 CUNL t=.486,p <.000
TPUNL 1=.215,p=.019 TPUNA t=.414,p <.000
Proportionality CPRL t=.240, p=.006
TPRL t=.245, p =.008
TPPRA t =245, p=.008
Multiplication MULT t = .428, <.000

All of the unit concept categories showed a correlation with Equivalence score. The CUNL
category (CUNL) had the strongest effect size of all the reported associations, equating to a
common variance of 47%. One task used to assess the CUNL category was the Keyboard
task (Q. 39). Of the fifteen students who had an Equivalence score of 0, one gave the correct
answer of three and three quarters to the Keyboard task (Q. 39). The incorrect descriptions of
the length of the keyboard included many answers with four as the whole number instead of
three: four and an inch, four and a half (two students), four and a quarter, four and two
quarters, three and four quarters, three and two halves, three and a half, three and just over a
half, three and a sixth, twelve centimetres, three and two and a half centimetres, and three
point nine (imprecise estimation, two students). Of the fourteen students who had an
Equivalence score of 1, four gave the correct answer of three and three quarters, three and two
thirds (two students), and three point seven to the Keyboard task (Q. 39). The incorrect

descriptions of the length of the keyboard also included answers with four as the whole
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number: four and three quarters, four and a half, four and a bit, three and three sixths, three
and five tenths, three and a third, three and a quarter, ten pencils, three quarters (missing
whole number), and three and nine tenths (imprecise estimation). There were 12 answers with
four as the whole number in the Keyboard task and eight of them were offered by students

with Equivalence scores of 0 or 1.

The students' Equivalence score had a substantial association with offering standard units for
area (TPUNA). The Equivalence Bands offer another way of examining the association
between equivalence understanding and TPUNA. Around 70% of students in Equivalence
Bands A, B and C had a TPUNA score of 0 and had offered cm incorrectly as a unit for an
area calculation (see Table 4.18). The students in Bands D and E were more likely to offer the
correct units of cm? in area calculations. However, the percentage who had a TPUNA score of
0 was very similar in both Bands (30% and 36%). The successful use of formal units was

demonstrated by 100% of the students in Equivalence Band F.

Table 4.18

Volunteering cm? and Equivalence Band

TPUNA score
o 1 2
Band A: Equivalence Score 0 11

2
Band B: Equivalence Score 1 10 2
Band C: Equivalence Score 2-6 15 2
Band D: Equivalence Score 6-10 6 4 10

0
0

[ T ST S

3

Band E: Equivalence Score 7-11 4
Band F: Equivalence Score 12 0

4.5.2 The measure sub-construct.
4.5.2.1 Number lines.

The number line task consisted of eight questions that were devised and selected in order to
assess both students' ability to read and partition number lines, from 0 to 1 and from 0 to
greater than 1. The results of students' explanations of three questions in particular are
reported in more depth:

e Q. 16a, draw a number line and mark %/y on it,

e (QIl6dreading 3 3/4, and

e Q. l6ereading 5/6.
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Frequencies of success on all eight questions and Number Line scores are reported.

45.2.1.1 Draw a number line and mark two thirds on it.

For the first number line question students were asked to draw a number line and put two
thirds on it. As the number lines were drawn by the students, they were not of uniform length.
Drawing two thirds by eye was acceptable, although some students elected to use a ruler to
help them draw the number line and mark two thirds. I decided it reasonable that a mark up to
but not including */; would be an acceptable representation of two thirds, given that the task
could be completed without aids such as a ruler, the upper and lower limits were determined
by what would be a reasonable margin for error by eye — when it should look wrong. Using
similar reasoning for the lower band resulted in the successful range being 58% and 74% of

distance between 0 and 1. The categorisations of the number line inscriptions were

e Successful positioning of %/ (between 58% and 74% of the distance between 0 and 1)

e Ratio misconception: */3 marked at a correct ratio of */3, e.g. 6 out of 9

e Unsuccessful positioning of */3 because of the placement of 1; but */3 positioned
between 58% and 74% of the distance along the line

e other

All the inscriptions made by the students in drawing their number line (Q. 16a) were double
coded by an independent coder with a science PhD. The coder measured the marks on the
number lines to check four categorisations and this double coding did not require teacher
judgement. The students' inscriptions were then discussed and agreement reached about
categorisation of the students' drawn responses. Some of the students' explanations for their
drawings were transcribed from video and audio recordings and used for more detailed

strategy descriptions.

The frequency of success on this question was 33%. There were two main correct strategies
demonstrated by students in drawing a number line and marking */ on it. Some students drew
the number line by hand and iterated an imagined third (see Figure 4.28). Daniel iterated with
a pincer grip several times until he was sure that his thirds were equal. Other students used a
ruler and coordinated the ratio understanding and the conventions of a number line, for
example, Alec explained "well I did nine centimetres and you can divide that by three and
each third is three centimetres, so I just went up to the six which is the second third and I put

the mark there".
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Daniel Alec

Figure 4.28. Number lines with */5 correctly placed.

One misconception was to use a ratio understanding but not coordinate this with the
conventions of the number line. For example, a number line nine units long might be used to
calculate 2/3 of 9 but the point 2/3 cannot be at the same point on the number line as 6. Rohan
demonstrated successful ratio knowledge, but not an understanding of the conventions of a
number line in his explanation, "I made it so that I could have nine numbers and so it would
equally divide up into three parts in the end. Or we could have had three numbers and that
would have made it a bit easier" (see Figure 4.29). Seth used the ratio 8 out of 12 but included
the measurement units of centimetres on his drawing. His explanation indicated that he
understood ratios and had included a measurement context, "Um I did a twelve centimetre
long line and two thirds of that is eight centimetres", but his mark was not */; of the distance

between 0 and 1.

¥ o '- act

Cameron Seth

Rohan Ruby

Figure 4.29 Examples of ratio misconceptions for placing */; on a number line.

Cameron also called on a ratio understanding for */3 but circled two parts on his number line,
(see Figure 4.29) indicating correct partitioning, explaining "To begin with twenty four is an

even number and eight, sixteen, twenty four; which is like eight times three and there's three
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parts to it so from zero you jump from eight and then sixteen and that's two, thirds". There
were several different ratios used by the students: 2 of 3, 6 of 9, 6.75 out of 10, 8 of 12, and
16 of 24.

One category of inscriptions in which ?/3 was two thirds of the way along the line but 1 was
placed incorrectly included the ratio misconception. Ruby placed her %/ at the fourth mark out
of six (see Figure 4.29) but it was not apparent that this was a ratio understanding until after
she had been prompted to mark 1, because she had not labelled two scales as Rohan had done.
Ruby's explanation confirmed this ratio interpretation, "Well, I kind of made it the same as the
tight rope. And I put two there and two there and two there cause if you have six it would
make thirds." If we include Ruby in the frequency of ratio understandings the frequency of
ratio strategies was 14.8%. Of this group, five of the thirteen students also used a ratio
approach to Q. 16¢, placing their mark for '/; on a number line labelled 0, 1 and 2, at '/,
which was a quarter of two. But the majority of ratio users in Q. 16a did not use the same

strategy in Q. 16c¢.

There were two other types of inscriptions in which ?/3 was two thirds of the way along the
line but 1 was placed incorrectly. For some students, 1 seemed to clearly indicate '/5 (see
Figure 4.30). The misplaced 1 meant that these students were coded as incorrect. If they had
written one third rather than one, they would have then been prompted to mark 1. When four
students had done this, I suspected a misunderstanding of the question and for the other
students asked, where would one whole go, rather than where would one go. For this reason, I

have not reported the frequency of this misconception.

G- | L
on faro

I .'-/'0(3

Figure 4.30. Two thirds on a number line with 1 at one third.

The other category of misplaced 1s was "other", in which the 1 was too close to 0 to make a
ratio with the */3 as marked. However, as the 1 was added by eye later, some of these
inscriptions may have been using ratio understandings but further probing was required (and

wasn't carried out) to confirm this strategy. In this last category, as in the first two of
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misplaced 1s, the %3 was two thirds of the way along the line but the 1 was not in the correct

place for a number line interpretation.

Some of the students' inscriptions looked like incorrect ratios but the accompanying
explanation could be interpreted as a double counting misconception. Adele explained her
number line below (see Figure 4.31), "Um, two thirds is like um, like um, three parts, yeah
and um, so like, there are two parts shaded in, so I went to two". This type of inscription was
not included in the frequency of the ratio misconception above, and 6.8% of students drew
number lines like this without a 0. These students' responses to the Fraction Pie task and two
non-equal parts Fraction Sort cards, showed a range of responses from double counting to
success on three of the questions with an answer of other for the fourth non-equal-parts
diagram. A double counting misconception could not be tracked across these number line

inscriptions and area diagrams.

i
l \ﬂ‘fm ‘L\\ \

l
| 9.3 ‘ L 3

Adele Julia

Figure 4.31. Possible double count inscription, and three-past-two inscription.

Another misconception was */3 as three-past-two or 2.3. Julia explained her drawing (see
Figure 4.31) "Because there's two, there's three and there would be something between, and 1
did ten little ones, and that would be the third." Other similar drawings did not break the space
between two and three into ten parts, but kept the semantic pattern, two and then three. The
frequency of this semantic approach was 9.1%, and a further 4.5% indicated the whole

segment between 2 and 3. I classify these responses as whole number misconceptions.

The use of a ratio misconception demonstrated that the students had some fractional
understanding. For example, they knew that two thirds of nine was six, or that two thirds of
twenty four was sixteen. Of the 29 students who correctly draw a number line and marked two
thirds on it, 79.3% (17 out of 29) of them had a CADL score of 2 and had correctly used the
broken ruler to measure the length of the Freddo (See Table 4.19). Of the students who were

unsuccessful on the number line task, those who had used the ratio misconception and those
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who had used partitioning inappropriately had similar (to the successful number line students)
success on the Freddo task: 69.2% (9 out of 13) and 70% (7 out of 10) respectively. Students
who were unsuccessful on the number line task for other reasons were markedly less
successful on the broken ruler task: with 30.5% (11 out of 36) successful on the Freddo task.
The frequency of success on the harder broken ruler task, the Footy Card task, was similar for
the students who were successful on the number line task or who had used the ratio
misconception: 58% (17 out of 29) and 53% (7 out of 13) respectively. However, this
performance was not duplicated by students who had used partitioning inappropriately. Only
10% (1 out of 10) of the students who used partitioning (incorrectly) on the number line task
were successful on the Footy Card task (CADL score of 3), which was lower than the
performance by the students who had other unsuccessful strategies on the number line task

(22% (8 out of 36) were successful on the Footy Card task).

Table 4.19
Number Line Strategies (Q. 16a) and CADL score

Correct Incorrect

Correct Ratio  Partitioning Other incorrect

(33%) (14.8%)  (11.4%) (40.9%)
CADL score 0 or 1 6 4 3 25
CADL score 2 6 2 6 3
CADL score 3 17 7 1 8

4.5.2.1.2 Reading 3%, on a number line.

The number line Q. 16d required students to read 3°/4; on a number line partitioned into
quarters (see Figure 4.32). Successful students were able to coordinate whole numbers and
fraction numbers. For example, Emily explained "I started at the three, 'cause that's the closest
number behind the arrow. I counted how many lines were along, so after the three, the three
was zero, so one two three four, which means it was quarters. And then I counted how many
along from the three again, how many of the four quarters there was. And ended up three and

three quarters."
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0 1 2 3 ! 4
| |
1

Figure 4.32. Number line diagram Q. 16d, reading 3 */,.

Some students demonstrated the misconception that fraction number lines are decimal number
lines and read the marks as tenths. One illustration of this was the counting of the marks after
3 as point one, point two, point three as demonstrated in Sylvie's explanation "'Cause there's
three [points to 3] and then if you get one two three, three [points to lines]. So it's three of
these, so point three". Eight students (from two of the schools) used this incorrect strategy.
There were two other variations of this assuming decimal number lines misconception. One
student correctly identified 3.5 on the number line and then counted the next mark (with the
arrow) as 3.6. Some students gave the answer of 3.9 but it was difficult to ascertain whether
they were estimating, such as Jai's explanation, "Um, because four was there so three point
nine" or whether they were assuming that the hash mark before a whole number was point
nine. Tamika appeared to be assuming that a number line could be counted in tenths but was

not convinced, explaining, "I said three point nine but that doesn’t make sense."

Some students did attempt to estimate the length using decimals. This was not an example of
the assuming decimal number lines misconception but was a mathematically correct strategy.
However, they were coded incorrect if they did not answer three point seven five. For
example, Amelia answered "Um three point, [pause] um three point eight or something."
When prompted by the interviewer "And how did you work that out?" she replied, "Well if
that's three, it's not quite four yet, because it's before. Take that as a half and just then a bit
more than half." This just imprecise estimate was not an example of the decimal
misconception, as Sylvie's was because Amelia did not assume the marks on the number line

were automatically tenths.

The keyboard in the Keyboard task (Q. 39) was three and three quarter pencils long. In both
the number line question (16d) and the Keyboard task, the students had to identify 3 */4; and
explain their answers appropriately. Of the eight students who used an inappropriate decimal
strategy for the number line showing 3 34 (Q. 11d), five of them answered correctly on the
Keyboard task: four said three and three quarters and one said three and two thirds. None of

the remaining three offered decimal answers for the length of the Keyboard. Decimal answers
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for the Keyboard task were decimal estimations, but on the 3 3/4 number line some decimal

responses indicated a misconception that all hash marks were tenths.

Some students omitted the whole number in their answer to the 3 /4 number line giving the
answer three quarters. Of these eight students, six of them answered three and three quarters
successfully on the Keyboard task. One student offered three quarters as an answer for both

tasks.

4.5.2.1.3 Reading /s on a number line.

The number line Q. 16e required students to read */s on a number line partitioned into six
equal parts (see Figure 4.33). Some successful students counted spaces, for example, in
explaining his answer of /s, Nicky said "I counted up how many spaces it's divided into, and
it's pointing to." Other successful students counted lines, as Sarah explained, "Well there's six
lines this time and it's the fifth one of six." Using either strategy, 27.2% of the students

successfully identified the mark as °/s on this number line.

Figure 4.33. Number Line diagram Q. 16e, reading “/¢.

One misconception observed in the students' explanations to this question, also observed in
the previous question (Q. 11d), was reading the marks as tenths as if the number line were a
decimal number line. There were two variations of this. Some students read left to right as
Jess did as she explained her answer of point five, "'Cause it's not up to one yet. And I thought
one, two, three, four, five [points with finger]. And I did zero point five." Other students read
right to left, and used fractional language for the decimal as Will did, explaining his answer of
nine tenths, "If that's a whole, ten tenths, that's one less". The frequency of this inappropriate
decimal reading of number lines was 17%. This misconception would be undetectable on the

one decimal number line, Q. 16g, used in the present study.

This reading of the marks on number lines as if they were tenths was not the same as
estimating using tenths which Rebecca tried. She ignored the six marks that were there and
mentally partitioning the line into different sized parts. Rebecca explained her estimation,

"Um I split the line into ten and the arrow's pointing where the eight is." Her estimation was
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very close to 0.8333, the decimal equivalent to /s, but she was still coded as incorrect.
Rebecca's strategy was mathematically correct, but she was not accurate enough to be coded
correct on this particular question because there were six spaces clearly marked. Jess and Will
quoted in the previous paragraph, on the other hand, were using a mathematically incorrect

strategy.

The misconception of counting lines not spaces was observed in the students' responses in all
three schools. For example in explaining her answer of ¢/5, Claire said, "Because that's six and
there's seven marks." Students with this misconception started counting "one" at the mark at

0. The frequency of this misconception in the present study was 10.2%.

The counting lines not spaces was an error also demonstrated on the Freddo task (Q. 41) (see
section 4.2.2.1) and a third (3 out of 9) of the students who used this misconception in the
number line task repeated the misconception on the Freddo task. In contrast another third (3
out of 9) were successful on the Footy Card task (Q. 42), and the final third were incorrect on
the Freddo task for other reasons. Overall, 46.6% of all the students did not use the counting
lines not spaces misconception on any of the three tasks: the number line (Q. 16¢), the Freddo
task (Q. 41) or the Footy Card task (Q. 42). However, 37.5% (9 out of 24) of the students who
had counted the marks correctly on this number line then counted lines not spaces
unsuccessfully in one or other of the broken ruler tasks (the Freddo task or the Footy Card

task). The use of the misconception in one context did not predict its use in another context.

4.5.2.1.4 Frequency of success on number line questions.

The frequency of success on the eight number line tasks varied from 27.2% for Q. 16¢
discussed above, to 71.6% for Q. 16b iterating a half to place 1'/, on a number line (see Table

4.20). The question for Q. 16¢ was to mark where one quarter would go on this number line.
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Table 4.20

Frequency of Success on Number Line Tasks

Question  Diagram success

16b ‘I’ 1(2 71.6%
[ |

marking one and a half

v

16¢ 0 ! 2 55.7%
I I

marking a quarter

16f 0 J 1 55.7%
I I I |

16g 6 V7 8 52.3%
S T S A T

16d 0 1 2 3 { 4 38.6%
e L L B S S S B B

16a Students drew their own number line and marked %/ 3 33%

16h 0 } ! 31.8%
| ! ! ! ! | ! : —s

16e 0 } 1 27.2%

A Number Line score was calculated for each student, being the number of questions correct
out of eight (see Table 4.21). These scores illustrated the range of performance level in the
group, and all three schools had students with scores of 0 and 8. The most common score was

3 with just over a quarter of the students achieving that level of success.

Table 4.21

Spread of Number Line Questions Correct

Score

0 1 2 3 4 5 6 7 8

Success  6.8% 11.4% 13.6% 28.4% 10.2% 8% 2.3% 6.8% 12.5%

There were 45 different pathways through the eight number line questions; a pathway being
the pattern of correct and incorrect responses. One of those pathways was all incorrect and
another pathway was all correct and 17 students had either of those patterns of success, see

Table 4.22. Excluding those two possibilities, there were 43 different patterns of success for
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the 71 students with a Number Line score of 2 to 7. Despite the frequency of success
suggesting that there was a pathway through the number line tasks, Q. 16b for example
having a greater frequency of success than Q. 16g, the students' performance indicated that
there were many different paths towards a coordinated understanding of fractions on number
lines. These results do not support the idea that there was a pathway through number line
questions based on making partitions being more difficult than reading partitions, nor based

on number lines labelled 0 to 1 being easier than number lines that are greater than 1.

Table 4.22

Permutations of Correct and Incorrect Response to the Number Line Questions: Pathways

Score
0 1 2 3 4 5 6 7 8
Number of students 6 10 12 25 9 7 2 6 11
Different pathways 1 5 6 14 7 5 2 4 1

4.5.2.1.5 Associations between number line questions and measurement concepts.

The Number Line score was used to calculate correlations between performance on the
measure sub-construct of fractions and measurement concepts. Using Kendall's Tau, there
was no significant association between students' Number Line scores and the tasks assessing
the key concept of attribute (see Table 4.23). There were substantial associations with the
conceptual tasks, both length and area contexts, of the key concept of additivity. These broken
ruler tasks and area calculations showed a stronger effect size than the tools and procedures
category. There was also substantial associations between the students' Number Line scores
and the key concept of units in the conceptual length tasks (e.g., measuring the Keyboard),
and also the tools and procedures tasks assessing this concept. The concept of proportionality
had typical associations with the students' Number Line score. The students' Multiplication

score had a substantial association with their performance on the number line tasks.
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Table 4.23

Correlations Between Number Line Score and Measurement Concepts

Correlation
Minimal © >.07 Typical t>.20 Substantial t > .34
Attribute
Additivity TPADA t=.324,p=.001 CADL t=.384,p <.000
CADA t=.363, p<.000
Unit CUNA 1=.307,p=.001 CUNL t=.408, p <.000
TPUNL t=.354, p <.000
TPUNA 1 =.348, p <.000
Proportionality CPRL t=.229,p=.010
TPPRA 1= .223,p=.017
TPPRL t=.210, p =.025
Multiplication MULT t=.364, p <.000

4.5.2.2 The relative size of fractions: the Fraction Pair task.

The Fraction Pairs task (Q. 22) was used to assess the students' understanding of the relative

size of fractions.

All fifty-six video records of the students completing the Fraction Pairs task were double
coded by another mathematics education researcher who had coded fraction pairs before in
another research project. To be correct a student had to give the correct answer with a
mathematically correct explanation. There were 15 instances out of 448 where this second
coder disagreed with my categorisation of the student being correct or incorrect. Half of the
coding discrepancies resulted from a difference in my criteria for gap thinking in the fraction
pair 35 and /s (Q. 22a) from other research projects. Other coding discrepancies were
resolved by discussion of a transcript of the students' explanations by the two coders.
However, it was agreed that in the fraction pair */s and */7, some explanations did not provide
enough detail to confirm whether a correct or incorrect strategy was used, and for this reason |

had decided not to report the frequency of success of that particular fraction pair.

4.5.2.2.1 Successful strategies.

In the fraction pair */s and '/s (Q. 22a), the same denominator and compare numerators

strategy was observed. It was the most common correct explanation when comparing */s and
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’/s, and was illustrated by Lily's explanation, "Because there's the same denominator and

seven's larger."

A description more closely linked to the visualisation of area models common in classroom
activities, can be seen in Zannah's explanation for the same fraction pair comparison; */s and
’/s. After reaching for paper and being told she had to "do it in your head", Zannah chose /g
as the larger fraction and explained: "Because this one is covering more of the shape. Because
three eighths is only covering three sections and this one's covering seven sections." This

explanation drew on comparisons.

The complement to one strategy was additive thinking which was appropriate for fractions
between zero and one with the same denominator. This was demonstrated by Sylvie's
explanation "Because of the eight [points to the denominators], that one [points to '/s] needs
one more to get to the whole. And that one [points to */s] needs five more." The same
complement to one strategy was used by Kate in her explanation, "Because there's only more
piece to make a whole for seven eighths. And for three eighths you'd need another, you'd need
another um five, more pieces." Michael illustrated the role of the denominator in the
complement to one strategy as the number that represented the whole: "This one's larger
[points to 7/8] because it's closer to the [undecipherable] the denominator whatever it's
called". In other research projects (see e.g. Clarke & Roche, 2009), these three explanations
would have been classified as gap thinking (using the difference between the numerator and
the denominator). However, in the present study, on this particular pair, they were classified
as correct mathematical reasoning. The term complement-to-one was used by Pearn and
Stephens (2004) to describe gap thinking, a mathematically incorrect explanation. But I am
using the term in this pair to illustrate that it is a correct strategy when used with appropriate
fraction pairs, although it cannot not be generalised successfully. The thinking in Sylvie's,

Kate's and Michael's explanations used additive word patterns.

There were some explanations that may have been a mixture of two strategies or that would
need further probing to determine which of the two strategies the student was using. For
example, Ebony chose "/s as the larger fraction and explained, "Well this is near the beginning
[points to 3/8]. And this is near the end [points to 7/8]. Just one from the end." She may have
been visualising a length or circle diagram, which would have an end. On the other hand, she

may have been thinking of the number 8 (the denominator) as being the end.
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The successful strategies for comparing the fractions */4 and “/s (Q. 22b) have been reported

above with respect to the use of equivalence (see section 4.5.1.3).

The fraction pair '/, and */s (Q. 22¢) was successfully compared using benchmarking. For
example, Ruby explained "Um, I think that's bigger [points to 5/8]. Because that's half [points
to 2] and five is bigger than one half, of eight". The fractions were also compared drawing on
the concept of unit-forming. In this approach >/ was thought of as being composed of two
unequal sized pieces; '/» plus another piece. Rose illustrated this in her explanation, "Because
this [5/8] is like three quarters out of eight and this is only half; and so it's one quarter extra."
Rose had an Equivalence score of 1 so I do not believe that she meant that 5/8 was nearly 6/g or

3/s. She was using quarters to indicate pieces.

The fraction pair %4 and *, (Q. 22d) was successfully compared using equivalence
understanding; 2/4 was a half and 4/2 was two. Tom attempted to rename 4/2 as a mixed
number, "this is a whole and a half — no two wholes". In other words, */» was a whole plus
another piece (in this case, another whole) and bigger than the other fraction which was less
than a whole. Some students used benchmarking to one rather than a half by identifying 4/, as
an improper fraction. For example, Kate explained "Because the four is bigger than two and

it's an improper fraction".

The successful strategy comparing denominators when numerators are the same was
observed in the comparison of the fraction pair */5s and */7 (Q. 22¢). This was illustrated in the
explanation of why Sarah chose ¥/s as larger, "Because the top numbers are both four, but
there's seven and five on the bottom; and seven means that the pieces are littler. So four of

them wouldn't equal four of the fifths."

The successful use of benchmarking or common denominators in the comparison of */; and */g

(Q. 22f) has been reported above (see section 4.5.1.3).

The residual strategy was observed in the size comparison of /s and /s (Q. 22g). Sarah
provided an example of this residual reasoning: "because if I imagine a pie cut into sixths and
you do five of them. And I imagine a pie cut into eight and there's seven of them; that's a little
more." When prompted, "How do you know?" she elaborated, "Because eighths are smaller,

and like seven of them would be closer to a whole than five sixths."
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Common denominators was a strategy used successfully in the comparison of the fraction pair
3/4and "/ (Q. 22h). This was illustrated in Lily's explanation of how she decided that "/ was
larger: "I tried to get thirty six [waves finger across both denominators]. And I times that by

nine [points to 3], and that by four [points to 7]."

One student used an operator sub-construct approach in the fraction pair */4 and "/s (Q. 22h)
which could be rephrased as whether seven was more or less than three quarters of nine. One
student, Seth, did this successfully, reasoning "'cause that one was three quarters [points to /4]
and this one [points to '/s] was just a little over three quarters because a quarter of nine,
because a quarter of nine would be one point- no, like two point three. Yeah, umm, two point;
two point two five. And three, two point two fives would be- is six point seven five."
Summarising Seth's explanation: '/; of 9 was 2.25 (using partitioning); /4 was equivalent to
673/, (drawing on equivalence); seven was 6.75 and another bit (drawing on unit-forming). So

7/ was larger than 3 /4.

The frequency of success on seven of the pairs is reported in Table 4.24. For 78.4% of the

students the order asked was also the sequential order of difficulty.

Table 4.24

Frequency of Success on Fraction Pair Task

Pair

3/8 7/8 2/4 4/8 1/2 5/8 2/4 4/2 4/5 4/7 3/7 5/8 5/6 7/8 3/4 7/9

Success 90.9% 72.7% 54.5% 39.8% notreported 13.6% 12.5% 6.8%

A fraction pairs score was calculated as the number correct out of seven (Q. 22¢ being
excluded). There was a spread of performance, with about 25% of the students scoring 0 or 1,
about 60% scoring 2, 3 or 4, and about 15% scoring 5 or above (see Table 4.25). Around 85%

of the students were successful on four pairs or less.

Table 4.25

Percentage of Students with each Fraction Pairs Score from 0 to 7

Score

0 1 2 3 4 5 6 7

Frequency 4.5% 22.7%  159%  20.5%  22.7% 4.5% 2.3% 6.8%
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4.5.2.2.2 Misconceptions: gap thinking and whole number strategies.

Three main misconceptions are reported; gap thinking, higher or larger numbers, and bigger
denominator indicates bigger fraction thinking. The double coding revealed that a highly
detailed list of strategies was unwieldy. However, there was broad consensus between the two
coders about the general types of strategies used and their frequency. All explanations which
were identified as gap thinking by either coder were transcribed from video or audio files and
analysed, along with some non-examples. A third coder, who was a mathematics education
lecturer, looked at these transcripts and triple coded them and any discrepancies were resolved

through discussion.

The most instructive place to discover all the variations of gap thinking explanations was in
the students' responses to the fraction pair °/s and "/z (Q. 22g). This was because the gap
answer was distinctive: "they're the same". The students were shown the fraction pair /s and
’/s on a card and instructed, "please point to the larger fraction or tell me if they are the same".
Both a gap answer and a gap explanation were needed as evidence of gap thinking. Gap
thinking was observed in students from all three schools on this fraction pair. Meg used the
complement to one strategy, "one more to become a whole" (see Table 4.26). Tony used the
same strategy, explaining "Because one up on the five sixes is a whole. And one up on the
seven eights is a whole." With this fraction pair, a complement to one strategy was not

mathematically correct.
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Table 4.26

Variations of Gap Thinking in Explanations of why °/¢ and /s are Considered the Same

gap thinking variation transcript of students' explanation

complement-to-one Meg: They're the same because five sixths has got one more to
become a whole. And seven eighths it also has one more to
become a whole.

complement to one Jade: They're the same.
Interviewer: And how did you work that out?

Jade: Because five out of six is one piece left and seven out of
eight is one piece left.

numerical comparison of Claire: They're the same.
numerator and Interviewer: How do you know?

denominator Claire: Because there's both, because the top numbers are both one

less than the bottom numbers.

equivalence string: Hannah: They're the same.
2/3, 3/4, °/10 Interviewer: And how did you decide?

Hannah: 'Cause they're both two thirds, that's another way to say
them. 'Cause seven plus one is eight and five plus one is six.

fractional language George: They're the same.
(sixth, eighth) indicating [nterviewer: And how did you decide?

complement to one George: Because they're like. Five sixths there's one more. There's

one more sixth to make a whole. And it's one more eighth.

counting and shading Courtney: They're the same.
Interviewer: And how did you decide?
Courtney: Because they both need one more to be coloured in.

Jade used the gap as a "bit" strategy, and described "one piece left". Brad used the same
strategy but with the word "spaces", "Because you've got. They're the same way. Um how

much spaces to go."

Claire showed attention to the numerical difference between numerators and denominators,
"the top numbers are both one less than the bottom numbers". Patrick's explanation used the
word "plus" to compare the difference between numerator and denominator, "Because one

plus five equals six and one plus seven equals eight [points to 5/6 and 7/8]".

Hannah offered one of the string of equivalences that was offered by the students in the
present study 5/6 is 7/8 or 2/3 or 3/4 or’/ 10, "they're both two thirds". No one child offered all of

these equivalences in one answer, but it would appear from their specific responses that any
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fraction one less than the whole was equivalent to any other fraction one less than the whole.
Hannah also used the word "plus" in a numerical comparison of the difference between
numerator and denominator in a further explanation of her equivalence approach. The
equivalence of fractions one less than the whole could explain Jordan's explanation of why /s

and /s was the same, "Three quarters is almost the whole".

The fraction pair */s or '/s also revealed that the use of the fractional language of sixths and
eighths did not automatically rule out gap thinking. If the students who used this fractional
language used "sixth" to indicate a part with a size and an "eighth" to indicate a part of
another size, then they could not have concluded that 5 /¢ and 7/8 were the same. A "sixth" had
the same status as a "piece" in these gap thinking explanations. This was illustrated in
George's explanation of why the fractions were the same, "Five sixths there's one more.
There's one more sixth to make a whole. And it's one more eighth." Explanations that used
fractional language and did take into account the size of the pieces could be correct residual
thinking or incorrectly executed residual thinking or incorrectly executed reasoning about the

number and size of the parts.

Courtney used a counting and shading explanation, "they both need one more to be coloured

in".

Gap thinking was used by 50% of students for the fraction pair, */s and "/s. An answer of "the
same" was almost exclusively due to gap thinking. Only one student, Freya, claimed the
fractions /¢ and "/ were "the same", but was not using gap thinking. Instead she used a faulty
residual explanation. When gap thinking was present, this fraction pair, with its distinctive
gap answer, enabled the full range of gap thinking explanations to be elaborated. With these

six variations of gap thinking identified, other fraction pairs can be examined.

In the fraction pair */4 and */s in which both fractions were equivalent and hence the correct
answer was "the same", 73% of the students were successful. Although some of the incorrect
answers were /4, the fraction with the smaller gap, none of the explanations indicated gap
thinking. Of the just over a quarter of students who were incorrect on this task, most errors
were whole number based. For example, Ricky used the higher or larger numbers
misconception, explaining that */s was larger: "That one, because there's a bigger number on
the bottom and a bigger number on the top." Jonno used the whole number misconception
that the bigger denominator indicates the bigger fraction, explaining that "because there's four

over eight and eight's the larger number at the bottom."
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The improper fraction */; in the fraction pair %/4 and */; (Q. 22d), caused confusion for some
students. For example, Patrick chose %/, as the larger fraction, explaining "Well, I knew that if
you add two more it will equal four, so the closest number. I still [points to 4/2], I don't know
this one still." The gap between the fraction was the same, and some students offered the
explanation that there was the same numbers in both. For example Simon explained that the
fractions were the same "'cause they're. On this one the two's at the top and the other one the
two's at the bottom and they've both got the four. On the other one the four's at the bottom and
the other one's the top." This explanation was specific to improper fractions, and was similar
to other strategies where students flipped the improper fraction, making a proper fraction.
Further probing would be needed to rule out gap thinking. However, none of the 13 children
who offered the same numbers in both explanation used a linguistic structure similar to any of
the gap thinking examples for the fraction pair °/s and '/g where the difference was also the
same. There was no complement-to-one (with or without fractional language), no numerical
difference as addition or subtraction, no third equivalent fraction, and no colouring in
analogies. I have concluded that no gap thinking was evident in Q. 22c, the fraction pair %/4

and 4/2.

It was uncommon, but possible, for some students to use gap thinking linguistic structures,
particularly the numerical difference between numerator and denominator but choose the
larger gap. Only four students did this and it was most noticeable in the fraction pair */s and

’/s (Q. 22a) because it caused the student to pick the smaller fraction.

The rest of the pairs divide into two groups, those in which gap thinking would give the
wrong answer, and those in which the student would get the right answer for the wrong
reason. I will start with the former, as they are slightly easier to "hear" and code. In some
fraction pairs the gap thinking answer resulted in an incorrect answer with incorrect
mathematical thinking. Both a gap answer and a gap explanation were needed as evidence of

gap thinking.

It was in fraction pair */; and /s (Q. 22f) that the fine distinctions between the gap thinking
strategy and not convincing enough size comparisons become apparent. The close
examination of gap thinking would not be complete without examples of the boundaries
between gap thinking, possible gap thinking, and other correct or incorrect strategies that
could be mistaken for gap thinking. In Table 4.27, I provide examples of these distinctions
between strategies from the transcripts of students' explanations of the size comparison of */;

and °/s. In the example of gap thinking, Lara used fractional language, "sevenths" and
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"eighths". However, further probing revealed that, like some of the fractional language

examples in comparing /s and /s, this fractional language did not indicate an understanding

of parts of different size. Another example of gap thinking (not in Table 4.27) was Patrick's

explanation that /g was the larger fraction "Because um three and five is eight [points to 5/8]

but three and four is seven [points to 3/7] so three is less than."

Table 4.27

Fraction Pair */; and °/s and Distinctions Between Gap Thinking, Possible Gap Thinking, and

Non Gap Thinking

Strategy Explanation from transcript
gap thinking Lara: [pointing to /s]
I: And how did you decide?
Lara: Because three sevenths isn't that close compared to five eighths.
I: How do you know?
Lara: Because [mumbled]. Because if you were going three to seven it
would be four. And five to eight would be three.
not gap thinking Nicky: That would be the smaller [points to 3/7]
(insufficient I: Ok, and how did you decide?
explanation of Nicky: 'Cause it's that, is four eighths [points to 5/8], no that is three
number and size of eighths off. That is four sevenths off [points to 3/7]. One seventh is
parts) smaller. No, that would be smaller [points to 5/8]
I: OK
Nicky: No that would be, wait, which one are we doing, bigger or
smaller?
I: The larger number.
Nicky: Yeah. That one will be bigger [points to 5/8], because that's only
three eighths off and one eighth is smaller than one seventh. So that's
only four sevenths off [points to 3/7], that's five eighths off [points to
5/8]. No, that's three eighths off so that would be bigger but, no smaller.
That would be bigger [points to 3/7].
possible gap James: That is [points to /s]
thinking I: Which one, sorry?

James: That one
I: And how did you decide?

James: [undecipherable] because that's three sevenths, it's not bigger
than that. and that's [points to /3] 3 more to one whole

I: And tell me about the */; then.
James: It's not near one whole, and that's [points to “/g] bigger

The middle example in Table 4.27 is an illustration of an explanation that was not sufficiently

detailed enough to be coded as correct. Nicky used fractional language and tried to grapple
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with the size of the pieces and the number of the pieces. He almost used residual thinking to
compare three eighths and more than three sevenths as the amount away from the whole, but

was coded as incorrect because he chose the smaller fraction in the end.

James' explanation was an example of a new category devised in the present study — possible
gap thinking. Some mathematically correct strategies "sounded" like gap thinking. Careful
listening was required to distinguish between the strategies, even with the benefits of video
footage and transcripts. James may have had the right answer for the right reason;
benchmarking, where */; was less than a half and "not near one whole". Or James may have
been explaining gap thinking, describing /s as having three more to go to get to one whole. A
possible gap thinking coding indicated that there was not enough evidence to classify the

strategy as gap thinking, but there was certainly a strong suspicion that it could be.

Gap thinking was observed in the fraction pair *s and */7 (Q. 22¢). Gap thinking would
produce the correct answer, but with an unsatisfactory explanation, for all fraction pairs
between zero and one with the same numerator. For example, Lara used the complement-to-
one version of gap thinking, "'Cause it's only one away from being a whole" (see Table 4.28).
She got the right answer, */s, for the wrong reason. But it was further probing that confirmed

that her reasoning was gap thinking, "And this is three away from being a whole".



Table 4.28

Fraction Pair “/s and */; and Distinctions Between Gap Thinking, Possible Gap Thinking, and

Benchmarking

Strategy Explanation from transcript
Gap thinking Lara: This one [points to */s]
I: And how did you decide?
Lara: 'Cause it's only one away from being a whole.
[: Mmm?
Lara: And this is three away from being a whole
Not gap thinking: ~ Chris: [points to */s]
correctly I: How did you decide?
benchmarking Chris: Well, five, ff; four fifths is almost a whole

to 1/2 and to 1

Not gap thinking:

correctly
benchmarking
to l/2 and to 1

I: Mmm?
Chris: And four sevenths is um, a bit higher than half

Adam: This one. [points to 4/s]

I: And how did you decide?

Adam: Um four is closer to five.

I: Can you tell me a bit more about that?

Adam: Um. Four. The four and the seven, there's more less, like, um
close to a half, but this one's like almost a whole.

Possible gap Meg: Four fifths are the same, [ mean are the larger, 'cause four is closer
thinking to five and four isn't really close to seven.

Chris and Adam's explanations, on the other hand initially sounded like a complement-to-one
gap thinking, but their further explanations demonstrated that they were benchmarking to just
over a half and nearly a whole. They were coded as correct, providing a correct answer and
using the mathematically correct strategy of benchmarking. The fraction pair ¥/s and ¥/ also
lent itself to benchmarking because */s was close to one and */; was just over a half. It was
difficult to hear the difference between an alternative correct strategy (benchmarking) and a

mathematically incorrect strategy (gap thinking).

Meg's explanation demonstrated that further probing was sometimes needed to confirm the
use of gap thinking. In this case, that was not carried out and so she was coded as possible gap
thinking. Meg could have been using a complement-to-one variety of gap thinking, "four is
closer to five". However, Meg may have been benchmarking, "four is closer to five". The

examples of Chris, Adam and Meg illustrate how coding this fraction pair proved difficult.
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The gap thinking answer in the fraction pair */4 and "/ (Q. 22h) was /4 and sometimes a
student's explanation made this clear, for example Brad said "because it's less pieces, it's less
numbers to get from three to four than seven to nine." However, many answers of 3 /4 were not
based on gap thinking because an explanation grappling with the size of the denominators and
the number of pieces could easily conclude (incorrectly) that */; was the larger fraction
because for students who were reasoning qualitatively, the difference between the fractions

(1/36) was very small.

This question was the last of eight fraction pair questions and if the student gave the
explanation, "like the other ones" and their previous reasoning had been gap thinking, I
assumed gap thinking to be the reasoning during the interview. However, a transcript of such
an explanation did not provide evidence of gap thinking, and so I have coded these
explanations as possible gap thinking. It would have been better to prompt the student for
further explanation during the interview. This affected 8% of the explanations to this pair */4
and /o. However, some students clearly offered gap thinking explanations. For example,
Patrick explained that /4 had the smaller gap, "Well this one I just had to add one more [3/4]

and this one you just add two."

The gap thinking answer for the fraction pair '/, and */s was '/, because it had the smaller gap.
In this pair the gap thinking strategy produced the wrong answer with incorrect mathematical
thinking. For example, Brad chose '/, as the larger fraction because "It takes. There's less to

get from one to two than from five to the eight."

Some fraction pairs were more difficult than others to compare (see Table 4.29). But not
every pair elicited gap thinking. The highest proportion of gap thinking occurred on the pair
’/¢ or /3 where half of the students demonstrating this strategy.
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Table 4.29

Frequency of Success on Fraction Pair Questions and the Incidence of Incorrect Strategies

Fraction Pair

3/8 7/8 2/4 4/8 1/2 5/8 2/4 4/2 4/54/7 3/7 5/8 5/6 7/8 3/4 7/9

Success 90.9% 72.7% 54.5% 39.8% NR 13.6% 12.5% 6.8%
Gap Thinking 2.3% 0% 6.8% 0% NR  21.6% 50%  23.9%
Possible Gap 0% 0% 0% 0% 11.4%  3.4% 0% 8%

Whole Number 0 15.9% 159% 3.4% NR  239% 182% 18.2%

Other (incorrect) 6.8% 114% 228% 56.8% NR  37.5% 19.3% 43.1%

Whole Number: higher or larger numbers, or bigger denominator indicates bigger fraction strategies

NR: not reported

Individual students demonstrated gap thinking on none, some, or many of the fraction pairs
(see Table 4.30). A score for gap thinking was calculated by how many fraction pair questions
(excluding Q. 22e) elicited a gap thinking explanation. Possible gap thinking was excluded
from this score, as was the correct complement-to-one strategy in the fraction pair */s and /.
Fewer than half the students did not use a gap thinking explanation on any of the seven
fraction pairs. Just over fifth offered a gap thinking explanation once, and a further fifth used
gap thinking two or three times. Fewer than 10% of the students repeatedly used gap thinking
four or five times. Overall, 52.3% of the students demonstrated gap thinking one or more
times during the seven fraction pair questions reported. Choosing the larger gap was

uncommon and only four students did this.

Table 4.30
Intensity of Gap Thinking Usage

Gap Thinking score
0 1 2 3 4 5
Frequency 47.7% 22.7% 14.8% 6.8% 6.8% 1.1%

Excludes results from Q. 22¢

In the present study, I examined gap thinking separately from two whole number thinking
strategies: the higher or larger numbers, and the bigger denominator indicates bigger fraction
misconceptions. Rebecca compared °/s and /s by choosing the fraction with the larger
denominator, "Eight is a larger number than six". This was an example of the bigger

denominator indicates bigger fraction strategy. Jasmine compared the same fraction pair by
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choosing the fraction that had the larger denominator and larger numerator, "Um, I did five is
higher than three, and eight is higher than seven." This was an example of higher or larger

numbers. Both students gave the right answer but for wrong reasons.

All explanations which were identified by either coder as higher or larger numbers, or, bigger
denominator indicates bigger fraction were transcribed. The two coders conferred and the
coding was agreed upon. However, Q. 22e was excluded from the results reported here

because it had been omitted for gap thinking frequencies.

Whole number strategies had been identified by the researchers in the Rational Number
Project and elaborated by recent research (see section 2.1.5.1.2) and included the
misconceptions higher or larger numbers, bigger denominator indicates bigger fraction
thinking, gap thinking, and the addition strategy (adding the same number to the numerator
and denominator). However, the presentation of these misconceptions was not uniform (see
Figure 4.34). The presentation of the higher or larger numbers and the bigger denominator
indicates bigger fraction misconceptions was more prevalent in the students who had low
Fraction Pair scores, whereas gap thinking was less prevalent in students with low Fraction
Pair scores. Each student is represented by a line or a space on the x-axis, which is numbered
1 to 88. The students have been ordered by increasing Fraction Pairs score; those with a score
of 0 are numbered 0 to 4 and are closest to the y-axis and those with a score of 7 are
numbered 83 to 88 and are furthest away from the y-axis (see Table 4.31). The students have
the same position (and number) in both graphs. The height of the line represents how many
explanations (out of seven) by an individual student used the strategies. If these strategies
were not used by the student, then there is no vertical line. The top graph shows the intensity
(how many explanations) of the misconceptions of higher or larger numbers and/or the bigger

denominator indicates bigger fraction. The bottom graph shows the intensity of gap thinking.



Table 4.31
Ordering of Students' with each Fraction Pairs Score from 0 to 7
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Score
0 1 2 3 4 5 6 7
frequency 4 20 14 18 20 4 2 6
number 1-4 5-24 25-38 39-56 57-76 77-80 81-82  83-88

on graph

Higher nunbers/larger denominator

Students in Fraction Pair Score orderOto 7

1 4 7101316 19322528313437404346 49525558 616467FOT3T6T9 B2 BIEE

Gap thinking
Ll

Students in Fraction Pair Score orderQOtao 7

1 4 710131619 222528313437 4043 4649 52555861 6467 TOT3 7679828588

Figure 4.34. Higher or larger numbers and bigger denominator is bigger fraction (top), and

gap thinking (bottom) in low to high Fraction Pair score order.
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There were just over a quarter of students with a Fraction Pair score of 0 or 1, and they are
represented by numbers 1 to 24 on both graphs. The graph of the incidence of higher or larger
numbers and/or bigger denominator indicates bigger fraction thinking shows a high frequency
(15 out of 24 students) and a high intensity (many explanations per student) of these whole
number thinking strategies in the 24 students who had no success or only one correct fraction
pair. The students with a Fraction Pair score of 0 or 1 accounted for all the instances of these
strategies being used four, five or six times on the seven fraction pairs. Only four students
used higher or larger numbers, or bigger denominator indicates bigger fraction thinking, had a
Fraction Pair score of 2 or higher. Two of the students with a Fraction Pair score of 3 and two

of the students with a Fraction Pair score of 4 used the two misconceptions.

On the other hand, only six of these same 24 students with a Fraction Pair score of 0 or 1
demonstrated gap thinking. Gap thinking lingered for students with a Fraction Pairs score 2 to
4, (numbered 25 to 76) and there was a range of intensity (number of explanations per
student), from no use of gap thinking to four gap thinking explanations, in these middle
performers. One student with a Fraction Pair score of 5 gave a gap thinking explanation, but
gap thinking was not used by students with Fraction Pair scores of 6 or 7. Gap thinking

presented differently to the other two whole number strategies.

The difference in presentation of the three misconceptions, higher or larger numbers and/or
bigger denominator indicates bigger fraction, and gap thinking also occurs with respect to the
students' Equivalence scores. A third of the students had an Equivalence score of 0 or 1 so it
was possible to describe the incidence of these misconceptions in students with a range of
performance on equivalence tasks. The frequency and intensity of the occurrence of the
misconceptions higher or larger numbers and/or bigger denominator indicates bigger fraction
is represented in the top graph in the figure below (see Figure 4.35). The students are in a
different order to the graphs above which were ordered by Fraction Pair score (see Figure
4.34) because in both the graphs below they have been ordered by increasing success at
equivalence questions. The students have the same position on the x-axis in both the top and
bottom graphs (see Table 4.32). Students with an Equivalence score of 0 are numbers 1 to 15
along the x-axis in both graphs. There were no students with an Equivalence score of 13, so
the five students with an Equivalence score of 12 are numbers 84 to 88 on the x-axis on both
graphs. In the both graphs below, the intensity (number of explanations) of the
misconceptions is represented by the height of the vertical line. If an individual did not use of

the strategies then there is no vertical line from their position on the x-axis.



Table 4.32
Ordering of Students' with each Equivalence Score from 0 to 13
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Equivalence Score

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Frequency 15 14 4 8 2 3 9 10 5 6 2 5 5 0
Number on 1- 16- 30- 34- 42- 44- 47- 56- 66- 71- 77- 79- 84-
graph 15 29 33 41 43 46 55 65 70 76 78 83 88

Higher numbers/larger denominator

1 4 710131619 322252831343740453464905255 5861 6467 TOTITE 79 82 8588

Students in Equivalence Score orderOto 12

Gap thinking
Led

1 4 710131619 22252831 343740434649 5255526l A46T7TOTIT7AT 828588

Students in Equivalence Score orderOto 12

Figure 4.35. Use of higher and larger numbers and/or bigger denominator indicates bigger

fraction misconceptions (above) and gap thinking (below) in low to high Equivalence score

order.
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The incidence of the higher or larger numbers and/or bigger denominator indicates bigger
fraction misconceptions was most prevalent in the students who had success on three or less
equivalence questions, represented by students numbered 1 to 41. Only three students used

these strategies out of the students who had Equivalence scores of 4 to 12.

Gap thinking, on the other hand, presented differently to the other two whole number
misconceptions. Two students used gap thinking who had an Equivalence score of 0. One of
these students, Shelby, while getting none of the questions correct that contributed to the
Equivalence score, did correctly identify /s as larger than '/, in the Fraction Pair task (unlike
all of the other 14 students who also had an Equivalence score 0). Her awareness of
equivalence was just beginning. The other student, Cath, chose the bigger gap in the fraction
pair */s and /s which was an unusual presentation for gap thinking. Both of these students
gave one gap thinking explanation out of seven explanations. The other 13 students with an
Equivalence score of 0 were giving many incorrect explanations for fraction pair comparisons

but none of these strategies were gap thinking.

There was a higher frequency of gap thinking in the students with Equivalence scores 1 than
of 0 and gap thinking was used by students with Equivalence scores up to 10. The highest

intensity was in the students with Equivalence scores of 3 to 7.

The number of students at each Equivalence score was not the same (see Table 4.14). The
percentage of students using gap thinking at each Equivalence score (see Figure 4.36)
revealed that gap thinking was not common for students with an Equivalence score of zero,
emerged at the same time that equivalence knowledge emerged (Equivalence score of 1),
increased in intensity (number of explanations used by individual students) as early
equivalence knowledge developed, and then was resolved when students had an Equivalence
score of 11 and 12. Of the four students who had success with exactly two of the equivalence
questions, and so were not yet competent with all of the contexts for equivalence, all
demonstrated gap thinking on at least one fraction pair. Gap thinking affected at least 50% of
the students in each Equivalence score from 2 to 9. There were no instances of gap thinking
by students who had an Equivalence score of 11 or 12. Intensities of 2 and 3 instances of gap
thinking have been shaded the same colour, and intensities of 4 and 5 have been shaded the
same colour. The higher intensity (four or five gap thinking explanations out of seven)

occurred across a range of Equivalence scores, from 3 to 7.
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Figure 4.36. Percentage of gap thinking students at each Equivalence score.

A non-linear association between gap thinking and equivalence has been described above.
Using Kendall's tau, the only linear correlation between students' Gap Thinking scores and
measurement concepts was a negative typical association with CADL, the broken ruler tasks
(t =-.239, p = .009). The negative correlation indicated that as performance on broken ruler
tasks increased, the intensity of gap thinking decreased, and vice versa. The only linear
correlation between students' Gap Thinking scores and other fraction tasks was a negative
typical association with the Fraction Pie Part B task (t = -.214, p = .028) and this task is

described in section 4.5.2.4.

Students with an Equivalence score of 2 to 9 (48 students), gave a sub-sample to analyse for
any linear correlations between gap thinking and other fraction and measurement tasks. The
percentage of gap thinkers in this sub-sample was much higher than the overall rate, at 70.8%.
Gap thinking in this sub-group (Equivalence score 2 to 9, with intensity was not factored in)
had:
e anegative substantial correlation with Part B of the Fraction Pie (1 =-.370, p=.011),
e a negative substantial correlation with using a ruler to measure a streamer (TPADL, 1
=-344,p=.014),
e anegative typical association with offering standard units for area measures, TPUNA,
(t=-.306, p =.029), and
e anegative typical association with broken ruler tasks, CADL, (t =-.288, p =.033).
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There was no significant association between this gap thinking in this subgroup (with

Equivalence scores of 2-9) and the students' Multiplication score.

4.5.2.2.3 Association between Fraction Pair score and measurement concepts.

There were substantial associations between the students' fraction pairs score and additivity
measurement tasks in both length and area contexts: broken ruler tasks (CADL), calculating
the area of half rectangles (CADA) and calculating the area of a rectangle (TPADA) (see
Table 4.33). There was also a substantial association between the students' Fraction Pair score
and conceptual units measurement tasks in both length and area contexts (measuring the
Keyboard (CUNL), and calculating the area of an array with leftovers (CUNA) and offering
standard units for area measurements (TPUNA)). There was also a substantial association

between the students' Fraction Pair score and their Multiplication score.

Table 4.33

Correlations Between Fraction Pair Score and Measurement Concepts

Correlation
Minimal Typical 1> .20 Substantial t > .34
Attribute TPATA t=.253,p=.007
Additivity TPADL 1=.232,p=.010 CADL t=.342, p <.000

CADA t=.398, p <.000
TPADA t=.346, p <.000

Unit TPUNL 1 =.277, p=.003 CUNL 1= 461, p <.000
CUNA 1 =347, p <.000
TPUNA 1 =.400, p <.000

Proportionality CPRL t=.254, p=.005
TPRL t=.234,p=.014
TPPRA t=.283, p=.003

Multiplication MULT t = .430, p <.000

The fraction pair */4 and */ (Q. 22d) included an improper fraction. The Keyboard task (Q. 39)
also included an improper fraction in the answer, three and three quarters. There were 71.6%
of the students either correct on both tasks or incorrect on both tasks (see Table 4.34). Of the
six students who correctly named “/, as the larger fraction, one gave an answer with four
instead of three as the whole number in the Keyboard measurement task. There were 19

students who correctly named the improper fraction in the Keyboard task as three and three
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quarters (or other acceptable answer), but 14 of them gave answers to the fraction pair
question that indicated their unfamiliarity with the symbolic inscription of improper fractions:
e some students flipped the 4/2 to make 2/4,
e some students said */, was not a fraction, and

e some students said there were the same numbers in both.

Table 4.34

Students Performance on the Fraction Pair %/, and */, and the Keyboard Task

. ) 4 . .2 4, .
Fraction Pair “/4 and "/, correct Fraction Pair “/4 and “/, incorrect

Keyboard task correct 29 19

Keyboard task incorrect 6 34

4.5.2.3 Non-congruent area diagrams: Fold Me a Quarter task.

The Fold Me a Quarter task (Q. 13) was chosen to assess another aspect of the measure sub-
construct of fractions; the use of fraction understanding to quantify non-congruent parts of an
area diagram. The student was asked to fold a kinder square piece of paper into quarters, and
when they had done that, to fold another kinder square into quarters another way (see Figure
4.37). 1 then used their pieces of paper to ask them to compare the area of one part
(square/triangular/rectangle quarter) of the paper with one part on their other kinder square.
After this area comparison, I showed them another kinder square that I had folded into
quarters another way (I had all three foldings prepared and showed whichever they had not
used) and asked them to compare the area of one of those parts with the parts on their folded
kinder squares. This made three comparisons: square with triangle, square with rectangle, and
rectangle with triangle. Students were given a score out of 3 according to the number of
successful comparisons that they made. A score of 3 was achieved by 61.4% of the students,

5.7% achieved a score of 2, and 33% achieved a score of 0 or 1.
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Figure 4.37. Non-congruent quarters in Fold me a Quarter task.

Successful explanations used fraction reasoning, dynamic imagery, or comparisons by eye.
Claire used fraction reasoning when comparing the triangle and square parts that she had
folded, saying, "No they're the same, because they are the same pieces of paper [touches both
kinder squares] and.", and concluding after prompting, "And each piece of paper has the same
amount um sized quarters." When shown a new kinder square folded into rectangle quarters
she successfully explained that "Um that one's the same size, but it's just in a different shape."
Sylvie also explained correctly for her own folding "Because they are same size of paper and I
just folded them in quarters but different ways" and similarly when comparing my folded
kinder square with her own "Because they are the same size of paper and both cut into four".
The dynamic imagery strategy was similar to that used in the Similar Shapes task (Q. 36h)
(see Figure 4.4), with students mentally breaking the triangle quarter and rearranging it to

make the square.

Incorrect explanations included noticing that the perimeter was longer on the triangle and
concluding that that would indicate a bigger area. Some of the students who had a score of 0
or 1 had explanations revealing this misconception. For example, Tyler explained that the
triangle part was larger (I had used the word area in the question) "'Cause the outside is
longer." Tyler identified that the perimeter of the triangle was longer (correctly), but
extrapolated (incorrectly) that that also indicated a bigger area. Other incorrect answers were
less clear, such as Alex's: "Because this, oh hang on. It's because it's a bit more wider [touches
triangle] than this one [touches square]. Because this is all equal [points to square] edges, and
not here [points to triangle]". He may have been using perimeter comparisons or area

comparisons but it was difficult to tell from his explanation.
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Despite the Fold Me a Quarter task and the Similar Shapes task (see Figure 4.4, Q. 36h) both
assessing the comparison of non-congruent areas, there was not a significant association
between them (using Kendall's tau). Of the 54 students (61.4%) who had scored 3 on the Fold
Me a Quarter task (see Figure 4.38), 49 (43 and 6) also explained that the shaded shapes in the
Similar Shapes task had the same area. However, six of the 49 who stated that the areas were
the same (incorrectly) reasoned specifically that this was because the perimeters were the
same. A further 32 did not articulate this same area equals same perimeter reasoning in the
area comparison (Q. 36h) but they had identified incorrectly that the perimeters were the same
during the perimeter comparison (Q. 36g). Of the 54 students who made three correct area
comparisons in the Fold Me a Quarter task, 11 of them also correctly identified the shaded
areas in the Similar Shapes task as the same (using fraction reasoning, dynamic imagery or
global visual comparisons) and that the triangle had the larger perimeter. Hence overall,
12.5% of the 88 students successfully compared all non-congruent areas in the Fold Me a
Quarter task and the shaded shapes in the Similar Shapes task (Q. 36h), and successfully
compared the perimeters in the shaded shapes (Q. 36g). These 11 students used dynamic
imagery to rearrange the area or fraction reasoning on all three of the Fold Me a Quarter area

comparisons.
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Figure 4.38. Comparison of students' with Fold Me a Quarter score of 3 and performance on

Similar Shapes shaded shapes questions.

Five students made two correct comparisons in the Fold Me a Quarter task. Three of them
explained that the areas of the shaded shapes were the same in the Similar Shapes task (Q.

36h) and that the perimeter of the shaded triangle was longer (Q. 36g).

There was a much higher frequency in the low performing group (Fold Me a Quarter score of
0 or 1) (see Figure 4.39) of correctly identifying the shaded triangle as having the longer
perimeter, than there was in the high performing group (Fold Me a Quarter score of 3).
However, for five of the six students, this then led to the conclusion (incorrectly) that the

shaded triangle also had the larger area.
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Figure 4.39. Comparison of students' with Q. 13 Fold Me a Quarter score of 0 or 1 and

performance on Similar Shapes shaded shapes questions (Q. 36g and h).

Perimeter comparisons were more successful in the students with weaker area knowledge but

increased skill at area comparisons appeared to disrupt perimeter knowledge rather than add

to it. There was no probing about perimeters in the Fold Me a Quarter task, so the

misconception that perimeter and area were always related was not revealed in this task.

The Puzzle task (Q. 57) required geometric reasoning or dynamic visualisation to rearrange

three shapes into a square. More students who made none or one successful area comparison

in the Fold Me a Quarter task were unsuccessful at the Puzzle task than successful (see Table

4.35). However, of the 54 students who gave three correct explanations for the area

comparisons of the three non-congruent quarters in the Fold Me a Quarter task, 26 were

successful on the Puzzle task and 28 were unsuccessful.
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Table 4.35

Comparison of performance on the Puzzle task and the Fold Me a Quarter task

Fold Me a Quarter non-congruent area comparisons

3 correct 2 correct 0 or 1 correct
Puzzle correct 26 3 7
Puzzle incorrect 28 2 22

4.5.2.4 Non-equal-parts diagrams.

Two tasks are reported in this section, the Fraction Pie task and three questions from the

Fraction Sort task.

45.2.4.1 The Fraction Pie task.

The Fraction Pie task (Q. 14) was a non-equal-parts diagram and the student was asked what
fraction of the circle was Part A and what fraction of the circle was Part B (see Figure 4.40).
Initial double coding using transcripts and video footage of 58 of the 88 students completing
the task was carried out by a practicing secondary mathematics teacher who also had a
Masters by Research degree in mathematics education. An abbreviated coding protocol was
used with 18 descriptors. These descriptors and the task were not familiar to the double coder.
One error of my coding of correct/incorrect was picked up by the double coder in a student's
self corrected response to Part A. Given that this was the only error in 116 answers, [ am
confident about using my coding of correct and incorrect answers. A second, detailed coding
and double coding of all explanations for answers of one third, one fifth, two fifths, one
seventh, and two sevenths using transcripts (including from audio files) was completed. Any

discrepancies in coding were resolved through discussion.

Figure 4.40. Fraction Pie task diagram.
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The frequency of success on Part A of the Fraction Pie task, recognising one quarter, was
70.5%. The correct answer to Part B was a sixth, and 27.3% of students in the present study
were successful at both offering this answer and a mathematically correct explanation. All

students who were successful on Part B had been successful on Part A.

Some students appeared to recognise the shape of the quarter in Part A of the Fraction Pie task

m

as a prototype. For example, Noah explained "'cause it's a circle and. I just know that because
if I see a circle and I see that. I just know it's a quarter, I just do." Other students mentally
broke the left hand side of the diagram into a half of a half and Alec described this as "well A
and E take up half [touches A and E], and they have the same area, so you cut that in half and
A's a quarter." Some students imagined the radius between A and E and mentally extended it
across the right hand side. This explanation might also be a justification after recognising a
prototype but there is no specific evidence of that in explanations such as Felix's: "'Cause if
you did four quarters, it would be half and half [traces real diameter and imaginary diameter

extending from radius between A and E]".

Successful strategies in Part B included either imagining the left hand side divided
symmetrically as a mirror image of the right hand side, or numerically calculating that three
on one side would mean six altogether. For example, Jack explained "There's three of the
same size on this side. So that means there would be able to fit, uh, three of the same shape on
the other side. And that's six. And that would be one of them." No student expressed their

strategy specifically in an operator context; one third of a half is one sixth.

Mathematically correct strategies that were not executed correctly in Part B included
comparing the size of Part B to a quarter (the size of Part A). This appeared to use either an
operator approach or a unit-forming approach. However, no children were coded as correct
using these approaches as they either gave an incorrect answer or could not explain their
answer of one sixth with sufficient detail. In all, 23.1% of the students approached

quantifying Part B by comparing it to Part A (a quarter).

The operator approach was used by Matthew who used geometrical reasoning to state
correctly that Part B was two thirds of a quarter, but was unable to name this as one sixth and
so was coded as incorrect. Zak gave the answer of point seven, explaining "It would be. I
don't really know how to say it. I think it would be, maybe zero point seven." When asked to
explain he added, "That's a quarter [points to A] and if [lays pen across imagined diameter],

that would be zero, under one [points to B], so." Zak appeared to be describing Part B as 0.7
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of a quarter but may have lost track of the unit because he left his answer as point seven and

was coded as incorrect.

Other students may have been using a unit-forming approach, imagining Part B plus a small
part equalled a quarter. The correct calculation would have been a sixth plus a twelfth equals
a quarter and in this context, answers of one fifth, one seventh, one eighth, and one third
(thought to be the unit fraction smaller than one quarter) were estimates of the part that was
"nearly a quarter". Some students used faulty partitioning and thought that Part B was half a
quarter. It is not clear from explanations such as Elsie's, that Part B was "Um, slightly smaller
than a quarter", or Lara's, that Part B was "I don't know, it's a quarter of a quarter, yeah, three
quarters of a quarter", whether these were a unit forming (correct additive) or an operator

(correct multiplicative) approach.

Two students gave the correct answer of one sixth but their explanations were not sufficiently
precise to be coded as correct. However, these two students were using a mathematically
correct strategy, they compared the size of Part B to the quarter (Part A), but could not fully
explain it:
e C(Claire said "Because a quarter is four and half is two so that's half of a quarter, [half?]
is going to be a sixth." and
e George said "Because half a quarter. I think it's half of a quarter so it might be a

sixth."

The frequency of the incorrect answer of one third on Part B was 12.5%. Eight of the 11
explanations concentrated on the right hand side (three parts). Some did not mention the left
hand side, but others explicitly said that there were parts of different sizes in the whole circle.
For example, Emma explained her answer of a third "'Cause in this half they're in thirds.
There's three things and it's one, there's one of them so that makes it one third." The other
three answers of one third were accompanied by explanations that compared Part B to Part A

(but the students thought incorrectly that '/; was smaller than '/4.)

The answer of one fifth could be due to the double count misconception because there were
five parts. However, there were a variety of explanations that were offered for an answer of
one fifth or two fifths. Four students used the unit forming or operator approach described
above (and are represented by strategy 1 on Table 4.36). One other student did not
demonstrate any double counting behaviour, but gave the answer of one fifth (Strategy 2).

Alex tried to make equal parts by tracing imaginary lines on the fraction pie and then touching
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five imaginary pieces clockwise around the circle. It was a geometrical and almost iterative
approach, but unsuccessful. Strategies 1 and 2 were mathematically correct approaches but

executed inaccurately.

Table 4.36

Different Explanations of an Answer of '/s in the Fraction Pie task

Strategy Frequency

1 Part B is '/s because it is almost a quarter (Part A); estimating using operator 4
thinking or unit forming thinking.

2 PartBis /s; iterating inaccurately. 1

3 Parts A and B are both a quarter and a fifth depending on whether it is area 1
or number that is relevant ("how much room" or "how many pieces").

4 Part A and B are both fifths, but not equal fifths. 1

5  Part A is a quarter and Part B is a fifth, but not an equal fifth. 1

6  Part A is two fifths because there are five parts but A is twice as big as B; 1

and Part B is one fifth because the piece is half the size of A.

7  Part A is one fifth because there are five pieces, but Part B is two sevenths 1
because there are two Bs in an A (seven parts).

8  Part A is one fifth and Part B is two fifths because there are non equal parts. 1

9 Part A is a fifth because there are five pieces, but Part B is a third using 1
operator thinking or unit forming thinking.

10 Part A is one quarter and Part B is one fifth because there are five pieces. 2

11 Part A is one fifth as is Part B because there are five pieces. 8

12 Part A is one fifth and Part B is two fifths because A is already coloured; or 2

because it is the second fifth.

The next nine students, Strategies 3-10, offered variations of double counting behaviour but
indicated that the size difference between the pieces had been noticed. For example Ruby
explained why Part B was a fifth but not an equal fifth "because there are five pieces in it.
Um, it would be an equal fifth if they were a bit smaller and they were the same size, but
they're not. Because those two are bigger than those three; so technically they're fifths, they're
just not equal fifths." Shannon also offered a conditional double counting explanation for Part
A "it is one quarter though because how much room it has. But still it's one fifth 'cause how
many pieces there is." Students qualified their double counting behaviour by offering different
answers for Part A and Part B. For example, Ebony argued that Part A is one fifth because
"it's split up into fifths, but not equal" but Part B was two fifths. In Ebony's explanation, the
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difference in size between Part A and Part B had been noticed and a different name offered
for the second part. This was not always the case for a second answer of two fifths (see

Strategy 12).

Many successful students had imagined the entire right hand side of the fraction pie flipped
back to make a left hand side, and could see this would make six equal parts. However, all the
students who imagined the radii on the right hand side of the diagram extending back through
A and B, made seven parts, (see the left hand side image of Figure 4.41). I believe that they
thought that these parts were equal parts (not noticing that there would be four in one half and
three in the other half). Other students visually estimated Part B to be half of Part A, and for
some this was confirmed (mistakenly) by this same extending back of the radii from the right
hand side, (see the right hand side image of Figure 4.41). For some of these students, Part A
was two sevenths because it was made of two pieces of Part B which was one seventh
because it was one out of seven (supposedly) equal parts. Sometimes this was overlaid with
(conditional) double counting behaviour. For example, while Part A was one fifth because
there were five parts, Part B was two sevenths because there were seven parts imagined. For
example, Cameron explained "if you've got two Bs or two Ds, if you add them up together
then it should make one A. So it's two and the total of the other ones. One, two, three, four,
five, six, seven." Trying to make equal parts was a mathematically correct partitioning

strategy, but in these examples it was not executed successfully.

Figure 4.41. Lines imagined by students attempting to make equal parts on the Fraction Pie
task.

The final two strategies, (11 and 12), were true double count behaviours with Mia explaining
"In fractions, how many is coloured in goes on top, yeah. And then you count the squares of
the whole thing and you put that underneath."” Unconditional double counting on both Part A
and Part B was used by 9.1% of the students and both parts were named one fifth. Two
students gave different answers to Part A and Part B, naming Part B two fifths, but there was
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no evidence in their explanation that they did this because they had noticed that the parts were
unequal. Josh visualised double counting and so had already mentally coloured in Part A
before mentally colouring in Part B, explaining his answer of two fifths as "I just did that one.
And then that one would be coloured. So that's one, two." Tamika named Part B two fifths
because it was the second fifth, explaining that she worked it out "The same as A, except that

it's the second".

An answer of one fifth for Part B was offered by 21.6% of the students (this excludes
Strategies 7, 8, 9 and 12 because another answer was offered for Part B). Under half of these
answers of one fifth were accompanied by unconditional double counting behaviour. While
28.4% of students in the present study gave an answer of one fifth in Part A and/or Part B,
five of the 24 were attempting to use mathematically sound strategies; nine of the 24 qualified
their double counting explanations; and ten of the 24 used double counting without
qualification in both Part A and Part B, explaining that both parts were one fifth because there

were five pieces (or two fifths because it was the second fifth).

4.5.2.4.2 The Fraction Sort task.

The Fraction Sort task consisted of 24 cards (fraction diagrams) that the students had to sort
into piles labelled '/4, '/s, */3 and other. Diagrams were used that assessed students' knowledge
of unit (‘/4 and '/s) and non-unit (*/s) fractions in discrete, length, and equal parts and non-
equal-parts area diagrams. Some of these cards were used to assess students' knowledge of
equivalence (see section 4.5.1.1). Seven of the cards used to assess students' understanding of
area representations of unit and non-unit fractions (see Figure 4.42) were a circle divided into
six equal parts (Q. 19a), a circle divided into quarters (Q. 19g), a square divided into quarters
(Q. 19h), a circle divided into three equal parts with two shaded (Q. 19q), a rectangle divided
into three parts with two shaded (Q. 19p), a rectangle divided into four unequal parts, one of
which was a sixth (Q. 19b) and a triangle divided into three unequal parts (Q. 19r). The
triangle area diagram was actually an equivalence task and while two students mentally
restructured and named the shaded part six ninths, they put the card in other, instead of /3.
However, it could also be used to explore students' understanding of non-equal-parts
diagrams. One of the cards used to assess students' understanding of length representations of

unit fractions was a line with a middle quarter shaded (Q. 191).
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DB

(19a) 97.7% (19g) 100% (19h) 97.7% (191) 81.8%

SII"

(19q) 98.9% (19p) 100% (19b) 50% (19r) 0%

Figure 4.42. Frequency of success on some Fraction Sort cards.

Due to the size of the task, a sub-group of ten students' answers and explanations for all 24
cards were double coded by a mathematics education lecturer. There were no disagreements
over correctness of the students' responses. Using simplified coding descriptions, all

discrepancies in coding were resolved through discussion.

Students' correct strategies for Q. 19b, the non-equal-parts diagram of '/, included imagining
an extra line to make equal parts (see Figure 4.43). The frequency of success on this card was
50%, while 25% gave an incorrect answer but noted the unequal parts, and 25% gave an

unconditional double count explanation.

Figure 4.43. Students' imagined lines for the Fraction Sort cards.
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While no students were able to see the equivalence of % as %/3 (Q. 19r), two students were
able to see that six out of nine equal parts were shaded after mentally restructuring the
diagram (see Figure 4.43). Including these two students, and those who answered other, and
those who answered two thirds but noted that the pieces were not the same, 37.5% of students
noted that that the diagram did not have equal parts. However, 62.5% either stated the answer

2 .. .
was “/3 or gave an unconditional double count explanation.

Double counting behaviour was observed in the rectangle sixth (Q. 19b) and the triangle (Q.
19r) as well as the non-equal parts Fraction Pie task (Q. 14) (see Table 4.37). The Fraction Pie
task had the lowest rate of double counting behaviour, but this was partly due to students
being asked about both parts which drew their attention to the fact that the parts were different
sizes. The highest rate of unconditional double counting behaviour was observed in the
triangle %/3. Overall, 69% of students demonstrated double counting (including Strategies 7, 8,
9, 10, 11, and 12 in Table 4.36) in one or more of the four questions: Fraction Pie Part A,
Fraction Pie Part B, Q. 19b, and/or Q. 19r. Increasing geometrical complexity of diagrams
increased the rate of double counting, but 31% of students did not use this strategy in any of

these four questions. This 31% was made up of students from all three schools in the study.

Table 4.37
Frequency of Unconditional Double Counting Explanations in the Fraction Pie Task and Two

Non-Equal Part Fraction Sort Cards

Fraction Pie (Q. 14) rectangle '/s (Q. 19b) Triangle %5 (Q. 19r)

11.4% 25% 62.5%

Clearly, mentally restructuring the triangle was the geometrically the most difficult for the
students. The students found it easier to imagine the equal parts in the rectangle than they did
in the circle (both sixths) as demonstrated by the higher frequency of success of Q. 19b (see
Figure 4.3). All four students who partitioned the Fraction Pie into seven parts by extending
the radii on the right hand side back through the left hand side (see Figure 4.41) correctly
made equal parts on the non-equal parts rectangle (Q. 19b). It was easier to make six equal
parts successfully in the rectangle (Q. 19b) than the circle (Q 14b). However, the fraction /¢
in a circular inscription, in itself, was not an impediment for 97.7% of the students who
placed the equal parts sixth card (Q. 19a) correctly (see Figure 4.42). Similarly, all students
correctly identified the quarter in Q. 19g, so for the 29.5% of the students who could not
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identify the quarter in the Fraction Pie Part A, it was not the fraction '/4 in a circular

inscription, in itself, that was the problem.

It was also observed that students did not necessarily offer the same explanation across the
three tasks. In fact, Mia who is quoted above defining double counting behaviour (Strategy 12
in Table 4.36), successfully restructured the rectangle to see one sixth. She was one example
of students who used different explanations on different tasks and 71.6% of the students did
this. Only four students (4.5%) demonstrated unconditional double counting on Part A and B
of the Fraction Pie task, the rectangle '/, and the triangle . Another student gave the double
count answer for each of the questions, but explained each times that the parts were not equal.
Of the 22.7% of students who gave correct responses for Part A and Part B of the Fraction Pie
and the rectangle one sixth, just less than a third of them resorted to double counting when
confronted with the triangle (Q. 19r). Similarly, of the 29.5% of students who correctly
explained that Part B of the Fraction Pie was a sixth, not all of them correctly restructured the
rectangle (Q. 19b) to see a sixth, but none of them gave an unconditional double counting

explanation.

The students' who used double counting across the fraction sort tasks had similar sounding
explanations for each question, indicating that they were not attending to the size of the parts
of the diagrams. However, many students who were successful on non-equal-parts diagrams
also had double count sounding phrases in their explanations for cards that were equal-parts

diagrams (see Table 4.38).
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Explanations for Fraction Sort Cards Illustrating the Double Count Phrasing

Task Explanations
19¢ Jess: I put that there because there's four and only one shaded in and that's
circle a quarter.
one quarter Jade: A quarter. 'Cause, um, there's one coloured in and [mumble] there are
four
equal parts
19¢g Jess: [touches each segment with little finger as a count. Thinks. Then
circle places in sixth pile] I put it there because there's six there and then there's
one sixth one um shaded, and there's six.
Jade: One sixth because there's six pieces and one's coloured
equal parts
19b Jess: Yeah I put that there [quarter] because there's four shaded [sic] and
rectangle one shaded and it's a quarter.
sixth Jade: One sixth, because if you put a line down there [indicates with

non-equal parts

19r
triangle
¥/ 9= i/ 3

non-equal parts

finger] there would be six spaces; one coloured.

Jess: That's kind of the same of all of those [indicates other cards in 2/3].
And that would be really weird if I did a different decision...

Jade: Same as that one [points to rectangle */3 in two thirds pile]. Oh wait.
Other because that space's smaller [touches shaded tip]

45.2.4.3 Association between Part B of the Fraction Pie task and measurement

concepts.

There was a substantial association between students' performance on Part B of the Fraction

Pie task and the conceptual tasks of the units concept in a length context (CUNL) (see Table

4.39). The entry-level task for this category was the Keyboard task.
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Table 4.39

Correlations Between the Part B Of The Fraction Pie Task and Measurement Concepts

Correlation
Minimal © >.07 Typical t>.20 Substantial t > .34
Attribute
Additivity CADL t=.201,p=.043
CADA t=.269, p=.007
Unit CUNA 1=.231,p=.031 CUNLt=.413,p<.000
TPUNA 1t =.324, p=.002
Proportionality CPRL t=.207,p=.042
Multiplication MULT t=.334,p=.001

The double count misconception in the Fraction Pie task (Part A and Part B) had two
presentations: unconditional (both parts were one fifth because there are five pieces) and
conditional (either including a coda such as "but not equal fifths", or indicating that the two
parts had different fraction names) (see Table 4.36). Of the ten students who gave
unconditional double count responses to the Fraction Pie task, three gave the correct answer
of three and three quarters to the Keyboard task (Q. 39). One student offered the imprecise
estimation three point nine. The other incorrect answers were four and a third, four and a half,
three and a quarter, three and a bit, three and two halves, and twelve centimetres. Of the nine
students who gave conditional double count explanations for the Fraction Pie task, five of

them gave the correct answer to the keyboard.

4.5.3 The quotient sub-construct.

The Sharing Custard Tarts task (Q. 20) was designed to assess the students' understanding of
the quotient sub-construct of fractions. Each of the four questions was presented with the task
card and figurines (e.g. Q. 20a, see Figure 4.44) and the children could use pen and paper to
work out their solutions. Some students drew lines from the people to their shares to keep
track. There were successful strategies mostly at the intuitive level using partitioning and unit
forming understandings and 22.7% of the students could successfully partition three strips of
liquorice to share equally between five people and name the share as three fifths, or six tenths.
A further 39.8% of the students could divide the liquorice so that every person had an equal

share, either as fifths or a half and a tenth, but could not name the share successfully.



Figure 4.44. Sharing Liquorice, three pieces between five people (Q. 20a).

In the area context (Q. 20b, see Figure 4.45), 26.1% of students could successfully make five
equal shares and name it correctly, and a further 36.4% could make five equal shares, either as
fifths or a half and a tenth, but were unsuccessful at naming this correctly. Harry found the
partitioning difficult with a circular area diagram. He divided a circle into six parts and after
puzzling over more drawings he thought aloud, "there's no way you can cut it up into five
pieces". Harry was able to articulate the need for partitioning into five parts but could not
execute it and appeared unable to use an abstract conjecture, if it was cut into five pieces |
would... In contrast, he had mentally partitioned the liquorice strip into five and marked the
divisions with a sweep of the back of a pen. He had then drawn the partitioning on his own
diagram adding the abstract explanation, "it's even"; indicating to the interviewer that for the

purposes of sharing, the pieces were equal sized even if his drawn pieces were not quite even.

Figure 4.45. Sharing Custard Tarts, three pieces between five people (Q. 20b).

Two further questions were asked with similar task cards and figurines. An improper fraction
answer (/s or 1°/s) was generated by the problem of five people sharing seven custard tarts
(Q. 20c) and 20.5% of the students could successfully share and name the share in this
problem. A further 35.2% of the students could create or imagine equal shares but could not
name one person's share successfully. An easier division, but still resulting in an improper
fraction answer, was needed to calculate nine pieces of liquorice shared equally between four
people (Q. 20d). Either repeated halving, or dividing into quarters led to the correct answer of
2'/, and 61.4% of the students did this and named one person's share correctly, while a further

13.6% could do the sharing but not name the share correctly.
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One of the 88 students successfully offered a fraction as division explanation, three shared
between five is three fifths, and only on one of the four questions. So as a test of the technical-
symbolic level of understanding of the quotient sub-construct, this understanding was used

successfully on only 1 out of 352 occasions (0.003%).

4.5.4 The operator sub-construct.

The Simple Operators task (Q. 18) was used to assess the operator sub-construct. Three initial
questions were solved mentally, but students were not asked to explain their answers. As
reported in the description of the baseline performance of the group (see section 4.1 above),
98.9% of the students said that three was half of six. However, only 39.8% could calculate
that two and a half times six was 15. Incorrect answers included: thirteen, thirteen and a half,
and eighteen. These answers indicated that the students could double six but were unsure
about what to do with the half, despite having just been asked, half of six. Two thirds of nine
was calculated mentally by 68.2% of the students. For the last two questions of this task the
students could use pen and paper. The fraction problem a third of a half was successfully

solved by 25% of the students.

4.5.5 The ratio sub-construct.

The Bookworms task (Q. 12) required the students to quantify the proportional change in
books eaten, given different amounts for different bookworms (see Figure 4.46). The
bookworms ate six times, three times, and twice as much (left to right) as the one on the far
right. In the first question, one book was placed under the bookworm on the far right (Q. 12a)
and 71.6% of the students successfully explained that the other bookworms would eat (right
to left) two, three, and six books. Four books were placed under the bookworm second from
the right (Q. 12b) and 51.1% of the students successfully explained that the bookworms
would eat (right to left) two, four, six, and twelve books. Nine books were placed under the
bookworm third from the right (Q. 12¢) and 46.6% of the students successfully explained that
the bookworms ate (right to left) three, six, nine, and eighteen books. Overall, 40.9% of the
students were successful on all three questions. There were many different incorrect answers
offered for the three scenarios presented, some additive rather than proportional, but only
eight which did not have four amounts from smallest to largest (right to left) and six of those

had a repeated value.
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Figure 4.46. Fractions ratio sub-construct, Bookworms task Q. 12.
4.5.6 Correlations between Equivalence score and other fraction sub-constructs.

The students' Equivalence score (0-12) had substantial associations with their performance on
other fraction concepts (see Table 4.40). The measure sub-construct was represented by the
students' Number Line score (see section 4.5.2.1.4), the Fraction Pair score (see section
45.2.2.1), and Part B of the Fraction Pie task (see section 4.5.2.4.1). Using Gilpin's
conversion table (1983), there was a common variance of 51% (and a substantial association)
between the students' Equivalence score and their Number Line score. However, there was no
significant association (p = .167) between the students' Equivalence scores and Q. 16g, the
decimal number line representing 6.8. It was not surprising that there was a substantial
relationship between the students' Equivalence score and their fraction pairs score as there
were two questions in common (Q. 22b and Q. 22f). However, there was no significant
association (p = .096) between the students' Equivalence score and comparing the fraction
pair */s and /3 (Q. 22a). There was also a substantial association between the students'

Equivalence scores and Part B of the Fraction Pie task.
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Table 4.40

Correlations between Equivalence score and other fraction concepts

Correlation
Minimal Typical Substantial
T >.07 7>.20 T >34
Measure (Q. 16) Number Line Score 1=.510, p <.000
(Q. 22) Fraction Pairs Score 1=.674, p <.000
(Q. 14) Fraction Pie Part B =418, p <.000
Quotient (Q. 20a) Liquorice T=.262,p=.002
(Q. 20b) Custard Tarts T=.336, p <.000
Operator (Q.18b)2 '/ x 6 T=.447,p <.000
Ratio (Q. 12) Bookworms 1=.390, p <.000

The operator sub-construct was represented, in these correlation calculatons, by just one
question, what is two and a half times six? There was a substantial correlation between the
students' Equivalence score and the operator sub-construct. There was a substantial
association between the students' Equivalence score and the ratio sub-construct represented by
the students' performance on the Bookworms task (Q. 12), although it had the weakest effect

size of the substantial correlations presented here.

Summary

In the first section of this chapter I reported tasks with 100% frequency of success and 0%
frequency of success to describe the base line and upper limits of the students' performance in
the present study. In the second section of the chapter I presented the frequency of success on
measurement concepts, and described students' strategies, evident in their explanations, to
some of the tasks. In the third section of this chapter I reported on the frequency of success of
the tasks designed to distinguish between geometric thinking and dynamic imagery, but was
unable to provide frequencies of the use of each strategy. In the fourth section I reported the
students' Multiplication score calculated from their performance on four of the multiplication
questions included in the multiplication and division section of the interview. The last, and
largest section of this Results chapter reported students' frequencies of success, pathways
through tasks, and strategies evident in their explanations on the fraction concept of
equivalence and the sub-constructs of measure, quotient, operator, and ratio. The associations

between fraction concepts and measurement concepts were reported.
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Quotations of students' explanations of successful strategies and misconceptions, transcribed
from audio or video recordings, provided illustration and evidence of specific strategies.
Examination of the data by six different double coders enabled me to report on frequencies of

success and frequencies of specific strategy use with confidence.

The Results chapter has been structured by tasks, categorised under constructs. The data can
now be analysed in terms that interrogate the three research questions that developed out of
the literature review. The following Discussion and Implications chapter draws together the
threads of common understandings or observations across different tasks in order to elaborate

on these three key questions.
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Chapter 5: Discussion of results and

Implications of the present study

This chapter has been structured by the research questions. These research questions emerged
from a review of the literature as did the criteria for task selection for the one-to-one task-

based interview.

e What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?

e I[s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?

e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?

I discuss the strategies children's explanations reveal, the association between performance on
measurement tasks and performance on fraction tasks, and the explanatory power of Kieren's
four-three-four model. The implications arising from the discussion of the findings have been

presented with the discussion of each question.

5.1 Research Question 1: students’ strategies and explanations

The first research question addressed is:
e What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?
Correct strategies and misconceptions were evident in the students' explanations. These
included:
e the perimeter indicates area misconception, and the same area indicates same
perimeter misconception;
e correct unit-forming and correct operator thinking (not successfully executed);
e dynamic imagery and geometric reasoning;
e the gap thinking misconception; and

e correct benchmarking thinking (sounding like the gap thinking misconception).
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The literature on misconceptions as a perfectly good rule misapplied was the starting point of
the interpretation of the students' responses to interview tasks (see e.g. Cockburn, 2008;
Ginsberg, 1997; Thompson, 1982). A misconception may be sometimes a partial
understanding along a path to a more correct or a fuller understanding. All the strategies are
discussed and connected to the research literature from the Literature Review chapter to both
confirm or refine descriptions of correct strategies and misconceptions, and to note the

prevalence of individual misconceptions.

A straightforward understanding of answer and explanation based on work by M. Clements
and Ellerton (1995; 2005) has been described in the Methodology and Methods chapter:

e correct answer, correct reasoning

e correct answer, incorrect reasoning

e incorrect answer, mathematically correct/partially correct reasoning

e incorrect answer, incorrect reasoning
The analysis of strategies in this chapter shows that these categories could be used to describe
the answers and explanations of students in the present study and further elaboration of these

categories is illustrated by the students' explanations.

Some research literature from the study of classroom interactions has been used in the
interpretation of results and to frame the implications of the findings of the present study and
includes:

e sociomathematical norms: "what counts as a different mathematical solution, a
sophisticated mathematical solution, an efficient mathematical solution, and an
acceptable mathematical solution" (Cobb & Yackel, 1996);

e teacher listening behaviours (Davis, 1997; Empson & Jacobs, 2008);

e specialised content knowledge (Hill, Ball, & Shilling, 2008).

5.1.1 The perimeter indicates area, and the same area indicates same perimeter

misconceptions.

The perimeter/area misconceptions were illustrated in the students' explanations of their
reasoning in the Similar Shapes task (Q. 36g and h) and the Fold Me a Quarter task (Q. 13).
There were instances in both the Fold Me a Quarter task and the shaded shapes pair of the
Similar Shapes task (Q. 36h) of students using the magnitude of the perimeter of the shapes as
a justification for their decision about the magnitude of the area of the shapes. In the Fold Me

a Quarter task (see Section 4.5.2.3), students such as Tyler concluded that the triangle part
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(one way he had folded into quarters) was larger than the square part (the other way that he
had folded into quarters) because "the outside's longer". This explanation was evidence of the
perimeter indicates area misconception. The power of "topological intuitions" had been
described by Piaget et al. (1960, p. 279) and noted in the intervening 50 years (see e.g. Barrett
& D. Clements, 2003; Doig, Groves, & Fujii, 2011; Kidman, 2001).

It seems perceptually counter-intuitive that a longer perimeter does not correspond to a larger
area because in the case of similar shapes, the magnitude of the perimeter can in fact indicate
the magnitude of the area. This was illustrated by the first two pairs of similar shapes in the
present study (see Figure 4.4, Q. 36a and b, Q. 36b and c). Perimeter indicates area thinking
was a mathematically correct strategy in these two pairs. One attribute (length) could be used
to describe another (area). However, the magnitude of the perimeter did not indicate the
magnitude of the area in the last two pairs of the Similar Shapes task (Q. 36e and f, Q. 36g
and h). In the third pair of the Similar Shapes (Q. 36e and f), the perimeters of the non-similar
rectangles were the same but the areas were different. And in the last pair, the perimeter of the
shaded triangle was longer than the shaded rectangle but the areas of the shaded shapes were

the same.

Using perimeter indicates area thinking in the last two pairs of shapes was a perfectly good
rule misapplied or "faulty extensions of productive prior knowledge" (Smith et al., 1993, p.
152). In the wider field of mathematics education, the incorrect approaches of students on
tasks were usually coherent and logical (Jenkins, 2010), and reasonable from the student's
perspective (Cobb, 2011a). In the present study, seven students (8%) correctly explained that
the perimeter of the shaded triangle was longer (Q. 36g) but incorrectly concluded that the
shaded triangle had a larger area (Q. 36h). These students were inappropriately generalising,
in the context of triangles and squares, that the magnitude of the perimeter of a shape was
directly related to the magnitude of its area. The research on misconceptions suggested that
students recognised patterns but generalised them to mathematical contexts where they were

not appropriate (Cockburn, 2008).

Students could generalize the premise that perimeter indicates area into other inappropriate
contexts. For example, Bella used geometric reasoning, matching edges and parts of edges, to
conclude that the perimeters of the tall rectangle and the fat rectangle were the same (see Q.
36f, Figure 4.4). She then demonstrated the perimeter indicates area misconception when
comparing the areas, explaining that "Because if the perimeter would be the same, the area

would be the same too." The explanatory power of the misconception, which had been correct
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in the previous two questions, was strong enough to prevent her from using a visual geometric
check in the area comparison; dynamic imagery could be used to place the taller rectangle
inside the fatter rectangle and the part that was too tall would not take up the other half of the
fat rectangle. This particular instance of the perimeter indicates area misconception required
the overriding of topological intuitions about area and shape. This phenomenon is supported
by Smith, diSessa, and Roschelle's observation that "Some misconceptions are powerful

enough to influence what students actually perceive" (1993, p. 162).

The misconception same area indicates same perimeter was more prevalent in the shaded pair
of shapes (Q. 36g and h) than the perimeter indicates area misconception. Thirty nine students
(44.3%) explained (incorrectly) that the perimeters of the shaded shapes were the same (Q.
36g) and used the word half or halves in their explanation, but an eighth of them (5 of 39) did
not then describe the areas of the shaded shapes as the same (Q. 36h). All of the students who
used dynamic reasoning (dynamic imagery or geometric reasoning about area) to explain that
the perimeters of the shaded shapes were the same also described the areas as being the same
in the following question. Students did not look at the perimeter to gauge the magnitude of the
area, they used geometric and/or fraction reasoning about the area to make an incorrect
deduction about the perimeter. The same area indicates same perimeter misconception was
not confirmed by topological intuitions because the longer perimeter (the triangle) was not
connected to the larger area. An explanation of why the perimeters were the same using the
word half or halves or dynamic reasoning in conjunction with an explanation of why the two
the areas were the same was offered by 47.7% of the students. It was possible to
unsuccessfully use geometric reasoning about length or to unsuccessfully consider the length

of the perimeters and decide that they were the same.

The areas of the shaded shapes (Q. 36h) were identified as the same by 76.1% of students but
not all explanations were mathematically correct. Some verbalised that the misconception that
perimeter and area are related (explaining that the areas were the same because the perimeters
were the same) and were coded incorrect. However, of the 67% coded as correct, two thirds of
them (39 of these 59 students) had also explained incorrectly that the perimeters of the shaded
shapes were the same in the previous question. Most (35 of 39) of the successful students
used fraction reasoning and/or dynamic imagery or geometric reasoning in both explanations

comparing the perimeters and the areas.

Only 22% of all the students correctly explained why the areas of the shaded shapes were the

same and why the perimeter of the shaded triangle was longer. For example, Cameron
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explained that the perimeter of the triangle was longer in the first comparison (Q. 36g) and
noted how compelling the perimeter was in suggesting the magnitude of the area (Q. 36h),
explaining, "this might look bigger [points to triangle] but it's actually, they're both halves"
(see Table 4.3). Only 4.5% of the students correctly compared the four perimeters and the
four areas in the Similar Shapes task (Q. 36a, b, ¢, d, e, f, g, h).

The same area indicates same perimeter misconception was detected in the Similar Shapes
task because both area and perimeter questions were asked, but was not as obvious in the Fold
Me a Quarter task (Q. 13) because no question about perimeter was asked. Of the 54 students
who had correctly compared the area of three non-congruent quarters in the Fold Me a
Quarter task (see Figure 4.38) 49 of them explained why the areas of the similar shapes were
the same (Q. 36h). However, 6 of those 49 explained (incorrectly) that the areas were the
same because the perimeters were the same, and 32 of the 49 had explained that the
perimeters were the same in the previous question (Q. 36g). Only 11 of the 54 supposedly

high performing students had a coordinated area and perimeter understanding.

The word "area" was specifically used in both the Fold Me a Quarter task and the Similar
Shapes task. Previous research (Mitchell, 2005), had highlighted that the word "bigger" could
refer to either the attribute of length (perimeter) or area. Researchers advised that to
understand an incorrect answer the researcher had to determine the question that the student
was answering correctly (Ginsberg, 1997; Greer, 2009). The use of the word area in the
interview question (does one have a bigger area than the other or are they the same, rather
than which shape is bigger) was an attempt to distinguish between students who had
misconceptions about attributes (length and area) and students who were interpreting the

question differently to the intent of the questioner (as a question about "bigger" perimeter).

Most students did not verbalise a systemic understanding of attributes of measure in the
measurement tasks. Although all students identified a length dimension on the Blocks of Ice
task (Q. 54), their conceptual knowledge of the attribute did not appear to coordinate:

o that length can be a straight path, a bent or curved path, or a perimeter;

o that the spatial measures are length, area, volume and angle (Lehrer, 2003);

e that width, depth and height measure different dimensions but the same attribute

(length); and
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e that the perimeters of shapes can be used to compare shapes if the shapes are
mathematically similar (e.g., two circles or two squares) but not if the shapes are non-

similar (e.g., non-similar rectangles or different shapes).
5.1.1.1 Implications.

Only 4.5% of the students correctly explained all eight perimeter and area comparisons in the
similar shapes task (Q. 36 a, b, ¢, d, e, f, g, h), with 22% successful on both the perimeter and
area comparisons of the shaded shapes (Q. 36g and h). This has implications for measurement
instructional trajectories. Some researchers described knowledge of attributes as a first stage
(see e.g. Outhred et al., 2003; Wilson & Rowland, 1993) with the suggestion that this stage
was completed in early measurement learning. Other researchers cautioned that the attribute
of length presented with increasing complexity (Barrett, et al., 2006). Frameworks of ideal
knowledge, such as Lehrer's eight key concepts for measurement, enable the revisiting of
measurement concepts such as attribute throughout primary school and into secondary school.
The results of the present study (22% of Grade 6 students successfully compared perimeters
and areas of non-congruent halves) suggest that the measurement concept of attribute needs

revisiting in primary schools as increasingly complex contexts are introduced.

The perimeter indicates area misconception appears to originate in correct mathematical
thinking: the perimeter of similar shapes indicates the magnitude of the area. This intuitive
topological consideration is then inappropriately generalised to a different context; non-
similar shapes. Piaget and others would argue that the perimeter indicates area misconception
was linked to topological intuitions; the explanations of the students in the present study
suggest that those topological intuitions become firmly connected to the logical deduction that
area indicates perimeter. Students could "see" the perimeters of the non-congruent shaded
halves as the same because of reasoning about the areas despite the fact that the perimeter of
the triangle was longer. The perceptual information was discounted because of the importance
of the inappropriately applied area reasoning. An implication of these findings for teachers is
that intervening to try and resolve this misconception will be more complicated than a pre-
emptive simple example to prevent the generalisation to inappropriate contexts. Just
separating the topological intuitions (consideration of the perimeter) from the consideration of
area will not prevent the misconception. Smith et al. (1993) suggested learning was concerned
with "learning to use what you already know in either wider or more restricted contexts" (p.
136). The many contexts of perimeter and area comparisons and the meaning attached to

words like "bigger" will need to be reflectively explored.
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In the present study, the successful use of fraction reasoning when comparing non-congruent
halves or quarters did not indicate that the same area indicates same perimeter misconception
had been resolved. In fact, 44.7% of the students believed that area and perimeter were
directly related in the shaded shapes (Q. 36g and h). Of the 54 high performing students (who
had made three correct area comparisons of non-congruent quarters) only 11 were successful
on both the area comparison and the perimeter comparison of the non-congruent shaded
halves in the Similar Shapes task (Q. 36h and g). The use of fraction reasoning in area
comparisons did not cure the dominance of topological perceptions (perimeter indicates area)
nor its inductive reverse (same area indicates same perimeter) but obscured these
misconceptions. The observation that fraction reasoning can mask these misconceptions rather
than resolve them has implications for how teachers think about correct answers with correct
explanations in constructivist classrooms: just because a student can use a more sophisticated
strategy correctly does not mean that he or she has resolved earlier misconceptions. The focus
of the similar shapes tasks was length and area knowledge. Fraction reasoning obscured a

misconception in the measurement domain.

5.1.2 Unit forming thinking and operator thinking.

The use of operator thinking or unit-forming thinking was demonstrated in Part B of the
Fraction Pie task (Q. 14b). None of the 26.1% of students who used the operator approach or
unit-forming approach in Part B of the Fraction Pie task (Q. 14b) were able to provide both a
correct answer and a sufficiently precise explanation, even though either of these approaches
were mathematically correct. If the students had been able to execute their strategy they
would have been successful. Their answers, one eighth, one seventh, one sixth, and one fifth
were reasonable estimates of either two thirds of a quarter (operator thinking), or of Part B as
a part that when added to a smaller amount would equal one quarter (unit-forming thinking).
This was an example of a wrong answer but with full or partial mathematical understanding

(see e.g., M. Clements & Ellerton, 1995).

The incorrect answers given by these students in the present study did not indicate that they
had poor partitioning skills; they were attempting the more difficult interpretations two thirds
of a quarter is a sixth, or a sixth plus a twelfth equals a quarter. Thompson had described the
research question "what is the problem that this student is solving, given that I have attempted
to communicate to him the problem in my mind" (1982, p. 154) as a legitimate field of
investigation (for a constructivist as opposed to an environmentalist). This question is still

relevant almost thirty years later and enabled me to interpret the students' incorrect answers
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coupled with partially correct explanations. Only Matthew's operator thinking explanation
was precise (two thirds of a quarter) but he was unable to calculate that two thirds of a quarter
was a sixth. Zak's answer of zero point seven for Part B was obtained by placing his pen
horizontally across the diameter to make four quarters and then explaining that Part B was
"point seven". This indicated operator thinking but it was not clear whether he had maintained
the unit correctly; there was not enough elaboration of his answer to determine whether he
meant point seven of a quarter [not articulated] or whether Part A had become the whole and
his answer was point seven (of one). Kelly used unit forming and explained that Part B was a
fifth "because it's got a smaller area, it's not as big as a half or a quarter". However, in the
other students' less precise explanations it was difficult to hear the difference between
(correct) additive thinking and (correct) multiplicative thinking: half a quarter, three quarters
of a quarter, just less than a quarter. Their answers were estimates: one eighth, one fifth, one
sixth, one seventh. The explanations were ambiguous: did "just less than a quarter" indicate
the result of operator thinking, or an addend in unit-forming thinking. This made it possible to
categorise the students as using operator or unit forming thinking, but not which of those

strategies they had used.

One of the answers given by students who were using operator thinking or unit forming
thinking was one fifth. The answer of one fifth, however, did not automatically signal the
students' use of the incorrect double count misconception. I had noted this possibility in
earlier research (Mitchell, 2005) and it was again confirmed in the present study in which four
of 24 of the students who answered one fifth were not double counting, but instead were using
either (correct but not fully executed) operator thinking or unit forming thinking. One fifth
was offered as an answer by 27.3% of the students and this compares with 13.6% in a larger
study by Clarke et al. (2007).

The frequency of success on Part A (one quarter) was 70.5% and this compares to 83% in a
larger study (Clarke at el.,, 2007) and 76.5% in a smaller study (Mitchell, 2005). The
frequency of success on Part B (one sixth) in the present study was 27.3% and this compares
to 42.7% in a larger study of Grade 6 students (Clarke et al., 2007), and 35.3% (Mitchell,
2005) and 10% (Stewart, 2005) in smaller studies of Grade 6 students. These frequencies
suggested that Grade 6 students in many different schools found this restructuring of non-

equal-parts diagrams difficult.

All of the students in the present study successfully identified a quarter of a circle in an equal-

parts diagram (Q. 19g, see section 4.5.2.4.4) but only 70.5% identified the quarter in the Part
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A of the Fraction Pie task. The non-equal parts aspect of the task appeared to be the difficulty,
not the fraction or the circle diagram. All the students who were successful on Part B of the
Fraction Pie had been successful on Part A. The restructuring needed for the sixths appeared
more difficult than the restructuring for quarters. Although 42.7% of the students successfully
explained why Part B was a sixth, 97.7% of all the students could explain why the one shaded
part out six on an equal parts circle diagram was one sixth in (see Figure 4.42). This suggests
that it was the non-equal parts context, not the fraction (one sixth) or circle diagram that was

difficult for students.

Researchers had reported that pre-service teachers focussed on the correctness of the answer
(Jansen & Spitzer, 2009) and equated correct answers with mathematical understanding, and
equated incorrect answers with carelessness or confusion (Crespo, 2000). Directive listening
by teachers focussed on whether a child's answer matched an expected response (Empson &
Jacob, 2008). The term directive listening corresponded to the term evaluative listening used
by Davis (1997). Teachers who used this type of listening in classroom contexts were
listening for something, not listening to the students (Even, 2005) and this could result in
teachers overestimating what students knew (Empson & Jacobs, 2008) by assigning
understanding to correct answers with vague explanations (Even, 2005). In the present study,
two students gave the correct answer of one sixth with the explanation that Part B of the
Fraction Pie was a quarter of a quarter; directive listening would have focussed on the correct
answer and possibly attributed the explanation to vaguely explained partitioning, and missed

the operator approach or unit-forming approach altogether.

Observational listening (Empson & Jacobs, 2008), on the other hand, was a term used to
describe teachers listening to students and trying to work out what the students were actually
thinking. Davis had described this as interpretive listening (1997) and noted that it occurred in
his case study of a teacher when she began to acknowledge the differences in individual
children's responses to mathematical tasks. Empson and Jacobs (2008) specified one-to-one
task-based interviews as contexts for the use of observational listening. In research on mental
computation, the change in focus from speed and accuracy to verbalising strategies required
this type of listening (Sparrow & Mclntosh, 2004). Observational listening underpinned the
methodology of the present study and enabled the discussion of the students' strategies and
misconceptions. This made it possible to identify the (correct) operator thinking and unit
forming thinking used by students despite their incorrect answers. This was further illustrated

in the classification of the strategies that generated the answer of one fifth (see Table 4.36):
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e (correct but not fully executed) operator or unit forming thinking (4 students),
e (correct but not fully executed) physical iteration (1 student),
e conditional double counting (9 students), and

e the unconditional double count misconception (10 students).

Some of the students made the quantification of Part B of the Fraction Pie task difficult by
their approach. For example, ignoring the radius between the quarters and using a mirror
image of the right hand side to get six parts was the easiest approach and was an example of
partitioning. Equivalence knowledge was used to double (additively or multiplicatively) three
to get six parts. No student in the present study explained their reasoning as one third of a
half, which was the easier of the two operator approaches. Two thirds of a quarter was the
other operator approach, but the execution proved too difficult for the one student who
quantified his operator thinking. Other students were attempting the same operator approach
but were not precise in specifying the calculation; "nearly a quarter." The unit forming
approach to Part B was simple in first principles, possible to estimate, but difficult to
calculate, for example one six plus one twelfth was one quarter. Students' unsuccessful
attempts at this task using either the operator approach or a unit-forming approach did not
mean that they could not partition. Careful observational listening is needed to distinguish
between an inability to partition or an inability to fully execute the more difficult unit forming

or operator approaches to this task.

Responsive listening (Empson & Jacobs, 2008) by teachers encompassed trying to understand
individual student's approaches and responding to them individually and instantaneously,
whilst keeping 25 children engaged and included, in the group dynamic of a single lesson.
Davis had termed this hermeneutical listening (1997). Observational listening was possible
and manageable in the one-to-one task-based interview used in the present study. All the
different understandings were coded and classified and interpreted but I did not have to

respond to the students' understandings in a classroom context.

5.1.2.1 Implications.

The comparison of the frequencies of success of the present study and the other empirical
studies reported in the research literature suggest that the present study is not an outlier result.
The original Fraction Pie diagram (Cramer et al., 1997) was used in the previous studies but a

mirror image of the diagram was used in the present study. Although the results of the present
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study cannot be generalised because a representative sample was not used, the findings of the

present study have implications for Victorian students and teachers.

The implications of these findings are for responsive listening by teachers. If a student offers
an answer of one fifth to Part B of the Fraction Pie task in the classroom, the teacher will need
to respond to the strategy that the student is using to effectively help the student towards a
successful answer and strategy. If a student has used a unit forming approach and estimated
that one addend is a fifth they will not be helped towards correctly executing this strategy if
the teacher responds to them by talking about double counting (which also gives an answer of
one fifth). If the teacher wants to encourage a student to consider several strategies, it might
be more effective to explain how the student's preferred strategy can be executed correctly
before the student can focus on an alternative strategy. For example, the teacher may wish to
respond to Matthew by validating his operator thinking on a separate equal-parts diagram
(dividing each quarter into thirds and demonstrating that two thirds of a quarter is a sixth),
and only then asking him to either consider another student's approach to the task (e.g.,
partitioning) or to come up with another strategy himself that would generate an answer of a

sixth.

5.1.3 Dynamic imagery.

The visualisation tasks were selected to determine students' preference for dynamic imagery
or geometric reasoning. The research literature described a difference between dynamic
imagery and geometric thinking using the terminology visual processing/spatial ability for
dynamic imagery (Bishop, 1983; M. Clements, 1983). It was possible to distinguish between
dynamic imagery and geometric reasoning in some of the students' responses to the
Wattanawa Block task but it was not possible to do this with all the students' explanations.
For some students, the lack of a vocabulary to talk about dynamic imagery and geometric
reasoning, made it impossible for the interviewer to differentiate between the two strategies
on some of the visualisation tasks. The students may not have been aware that there were
several different strategies for attempting visualisation tasks, and so they did not make the
distinctions clear in their explanations. The authors of literature on interview methodology
had cautioned that children's responses to tasks gave researchers only their explanations not
their thinking (Ginsberg, 1997) and this was echoed by authors interested in mathematics
education and linguistics (Barwell, 2009). This distinction between thinking and explanation
was evident in the interpretation of the students' responses because determining the strategy

was difficult.
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The students' responses to clarifying questions in the interview demonstrated the impact that
their perception of directive and observational listening had upon their participation in a one-
to-one task-based interview. The use of confirmatory questions that were intended to reflect
back to the student their own reasoning were often unsuccessful and appeared to prompt the
student to agree with the interviewer. Alex demonstrated this in her ready agreement to both a
dynamic imagery rephrasing of her strategy and a geometric rephrasing of her strategy. Alex
deferred to me as the interviewer signalling that she no longer believed me to be engaged in
observational listening. Her second-guessing of which strategy she thought I wanted to hear

suggested that she had positioned me as being engaged in directive listening.

Previous research had identified that querying an answer signalled to a child that the answer
was incorrect (Ginsberg, 1997). Barwell (2003) had elaborated that the linguistic structure of
a question determined that what was said in response was by definition an answer. Students
were sensitised to interpret a query as a suggestion that they should offer another answer. The
query operated as a repair, a positioning of the students' response as inconclusive and needing
elaboration or as inappropriate and needing reframing (Woofitt, 2005). In the interview used
in the present study, students quickly accepted that every answer was followed by a query
about strategy, and that this was not a repair because they were told this at the beginning of
the interview: "I won't tell you whether you get an answer right or wrong. But I will probably
always say, and how did you work that out?" as this was stated before the tasks were offered.
However, the visualisation tasks illustrated that confirmatory questions could be interpreted as
a repair by students who then responded to observational listening as if it were evaluative

listening.

5.1.3.1 Implications.

It was not possible in the interview format to determine what visualisation strategy the
students used. In order to assess students' visualisation skills it may be necessary for future
research projects to include a preparatory classroom based intervention in which students
investigate different strategies for tasks and establish a shared vocabulary to discuss these
strategies (which may impact positively on their visualisation skills). The knowledge of
geometric reasoning, dynamic imagery, fraction reasoning and the intersections between them

may also enable students to offer clearer explanations to fraction tasks that use diagrams.
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5.1.4 The gap thinking misconception.

The gap thinking misconception was evident in the Fraction Pairs task (Q. 22) and emerged at
the same time as equivalence knowledge emerged. There was a lower frequency of success on
the fraction pairs in the present study than in another Victorian research project (Clarke &
Roche, 2009; Clarke et al., 2007; 2011; Clarke, Roche, Mitchell, & Sukanic, 2006), but the
order of difficulty (by frequency of success) was the same. In the fraction pair, °/s and /s, in
the present study, gap thinking was used by 50% of the students, which was greater than the
29.4% who gave the answer of "the same" in the larger study (Clarke & Roche, 2009). Gould
(2011) reported that 8% of Year 7 and 8 students in another study argued that a residual pair
of fractions were the same. In the fraction pair */7 and */s, in the present study, gap thinking
was used by 21.6% of the students which was similar to the 21.2% reported by Clarke and
Roche (2009). Clarke and Roche (2009) reported that 4.3% of students were correct on all
eight pairs which was similar to the 6.8% of students who had a Fraction Pair score of 7 (Q.

22e was excluded from frequencies of success).

In order to describe how gap thinking is a perfectly good rule misapplied, I will elaborate on
several contexts where additive thinking is correct when comparing fraction pairs. Sylvie
explained that '/ was larger than */s: "Because of the eight, eight [points to the two
denominators]. That one [points to 7/8] needs one more to get a whole and that one [points to
3/8] needs five more." This additive word pattern, to get to a whole, was used correctly in this
comparison. A variation of this was Patrick's explanation for the same fraction pair, "This
one's larger [points to 7/8] because it's closer to the [d(undecipherable)], the denominator,
whatever it's called." Kate's explanation correctly used additive thinking, "Because there's
only one more piece to make a whole for seven eighths. And for three eighths you'd need
another, you'd need another um five, more pieces". Fraction pairs between 0 and 1 with same
denominator were a context in which additive thinking was appropriate when making

comparisons of the size of fractions.

Of the 20.4% of the students in the present study who used doubling or halving explanations
for the fraction pair %/ and “/s it was difficult to distinguish whether some were demonstrating
a ratio understanding or whether they were using correct additive thinking in this context of a
half. Some students clearly used multiplicative language. For example, Nicky used the term
"simplify" indicating a ratio understanding when explaining "if you simplify four eighths you
make it go down to two quarters, you simplify that again it would be one half." Jai used

multiplicative language, "this is times by two to get that, and this is times by two, so it's both
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equal". Some students used additive language. For example, Emma explained that "four plus
four is eight and two plus two is four." Some students used both additive and multiplicative

"

language. For example Hannah explained "'cause if you do two plus two is four, and four plus
four is eight. So they are pretty much times two." However, some students explanations of
doubling or halving did not clearly indicate whether their thinking was additive or
multiplicative (both of which would be correct). For example, Julia said "four is half of eight
and two is half of four, so they're both half of what the whole is" but it was not clear whether
this was proportional or additive halving. In the context of equivalences to a half, additive

thinking would be a strategy that would give a correct answer and be mathematically

appropriate.

Gap thinking used incorrect additive explanations (see Table 4.26). For example, gap thinking
in the fraction pair /s and "/s could sound like "one more to become a whole" or "one piece
left" (complement-to-one thinking); "because the top numbers are both one less than the
bottom numbers" (numerical comparison of numerator and denominator); "Cause they're both
two thirds...seven plus one is eight and five plus one is six" (equivalence string); "there's one
more sixth to make a whole. And it's one more eighth" (fractional language as complement-
to-one); and "they both need one more to be coloured in (counting and shading). This residual
context for gap thinking, where both fractions are one away from the whole, was the first to

appear and the last to be resolved in the present study.

Gap thinking explanations from other fraction pairs illustrated additional variations of
additive language: Tony explained (incorrectly) why 5/8 was larger than 3/7, "Because you
count up from that, six seven eight [points to 5 of 5/8] and it's a whole. And you have to count
up, that's six seven eight, that's three. And this one is four five six seven and that's four". Brad
explained (incorrectly) why 1/2 was larger than 5/8, "It takes. There's less to get from one to

two than from five to the eight". Gap thinking used additive language.

Although gap thinking had several variations, it involved calculating the difference between
numerator and denominator rather than using proportional reasoning to rename or create a
new fraction. It was possible that gap thinking was a perfectly good strategy misapplied.
Additive thinking could be used correctly to compare the size of fractions with the same
denominator between 0 and 1. Additive thinking also could be used to correctly recognise

. 1 .
equivalences to /»: numerator plus numerator equals denominator.
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The use of the word plus in the explanation of the equivalence to a half of %/4 and */s by four
students illustrated the extent of the additive language. Hannah had early equivalence
knowledge (an Equivalence score of 3). She used gap thinking for five of the seven fraction
pair questions although she picked the fraction with the larger gap which was an unusual
presentation, although this strategy was observed in Cramer and Wyberg (2009) and used the
word "plus" in four of those explanations and "one number to add to" in the other. Patrick
used the word "plus" in his correct explanation of why %4 and */s were both "half numbers",
but used various addition words in his three gap thinking explanations: "three and five is
eight" (Q. 22f), "one plus five equals six" (Q. 22g), and "this one I just had to add one more"
(Q. 22h). He, like Hannah was a very early equivalence learner with an Equivalence score of
2. On the other hand, Jordan had an Equivalence score of 7 and was in Equivalence Band E,
and had explained that "two plus two is four and four plus four is eight" to correctly identify
that %/, and */s were "like half". His only gap thinking error was on the fraction pair */s and /s
where he used an equivalence-string explanation: "'Cause five over six is nearly the same and
seven over eight is nearly the same and it's like three quarters." Emma also had an
Equivalence score of 7 and was in Equivalence Band D, but did not offer any gap thinking
explanations for the fraction pairs. She used addition to expand her explanation of halving:
"they're halved, so they would be the same. So there's four plus four is eight and two plus two
is four". Jordan and Emma's use of the word "plus" suggested that students' multiplicative
understandings of the terms double or half also had an additive resonance and although they
used an additive word pattern, they could co-ordinate the additive and multiplicative contexts

correctly.

Gap thinking was not used by any student as a strategy for the fraction pair %4 and */s; no
student compared a difference of two and a difference of four. If gap thinking were present it

appeared that it was trumped by the additive word pattern for a half.

Gap thinking emerged at the same time as early equivalence understanding (see Figure 4.35).
This was not a linear association. The first equivalence tasks that students were successful at
in the present study involved equivalences to a half. All of the students in Equivalence Band
B had an Equivalence score of 1 and all but one of the 14 either recognised %/, and */s as
equivalent in the Fraction Pairs task, or had rolled three gold and three white beans in the
Golden Beans task (Q. 22b) and successfully offered two names for the fraction, three sixths

and a half. Gap thinking was resolved in students with an Equivalence score of 11 and 12.
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It seems counter intuitive that a misconception that used incorrect additive language could be
connected to equivalence which is multiplicative and proportional. However, early
equivalence knowledge could sound additive because the word pattern for equivalences to a
half could use the word "plus" as Emma's explanation demonstrated. The quotations from
students above demonstrated that the additive language lingered for some students. The
additive nature of gap thinking did not sound like the equivalence explanations of experts but
highlighted the additive sound of early equivalence knowledge. Cockburn (2008) suggested
that misconceptions revealed children's thinking. The gap thinking misconception reveals the

additive base of early equivalence understanding.

The subgroup of students with an Equivalence score of 2 to 9 had a higher frequency of gap
thinking (see section 4.5.2.2.2). The students in this sub-group who did not use gap thinking
performed well on

e making a new zero-point in broken ruler tasks,

e realigning a ruler when measuring a streamer that was longer than 30 cm,

e using cm’ to describe units that have length and width, and

e not double counting in Part B of the Fraction Pie task.

The association between success on Part B of the Fraction Pie task and non-presentation of
gap thinking by students with an Equivalence score of 2-9, suggested that the double count
misconception was worth investigating with respect to this subgroup of 48 students This
interpretive analysis used a finer grained analysis than the dichotomous variables of the
statistical analysis (correct/incorrect at Part B of the Fraction Pie task and use/non-use of the
gap thinking strategy if Equivalence score 2-9) and categorised the students into three groups:

a) no gap thinking (fourteen students),

b) one instance of gap thinking in the seven fraction pairs (fourteen students), and

¢) two to five instances of gap thinking (twenty students).
Double counting behaviour was also considered in two other tasks: the triangle %/3 (Q. 19r)
and the rectangle '/s (Q. 19b) in the Fraction Sort task. The double counting behaviour in the

three tasks was also classified as conditional or unconditional (see Table 4.37 and Table 4.38).

The fourteen students in category (a) did not use the gap thinking misconception in any of the
seven fraction pairs, nor did they use double counting (0%) in Part B of the Fraction Pie task.
In the two Fraction Sort questions, however, five of the 14 (35.7%) used double counting

once or twice.
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The fourteen students in category (b) used gap thinking once in the Fraction Pair task, and
three of them (21.4%) used conditional double counting in Part B of the Fraction Pie task. A

further 42.9% used double counting in either or both the two Fraction Sort tasks.

The twenty students in category (c¢) used gap thinking for two or more fraction pairs, and four
of them used unconditional double counting (20%) and one used conditional double counting
(5%) in Part B of the Fraction Pie task. A further 50% used double counting in either or both

of the two Fraction Sort questions.

The subgroup made up of students with an Equivalence score of 2-9 was created in order to
target gap thinking by removing students with an Equivalence score of 0 (who may or may
not become gap thinkers) and students with an Equivalence score of 10-12 (who may or may
not have been gap thinkers). Students who did not use gap thinking did not use double
counting for Part B of the Fraction Pie and had the lowest frequency of double counting in the
two other tasks. The use of double counting in the three questions increased in frequency as
the intensity of gap thinking increased (evident in the number of gap thinking explanations)
from 35.7% for category (a) to 64.3% for category (b) to 75% overall for Category (c).
Unconditional double counting in Part B of the Fraction Pie task was only seen in students
with Gap Thinking scores of 2 and above (in this sub group of students with Equivalence

scores from 2 to 9).

The students who imagined an area diagram in the residual pair °/s and "/s, and were gap
thinkers, used double counting language to describe "one more to be coloured in" for this pair
and so had folded back to an image whose interpretation was limited (double counting) and
not generalisable (partitioning and comparisons). Double counting was appropriate for limited
contexts (equal-parts diagrams) but became a misconception when applied to other examples:
non-equal-parts diagrams or residual partitioning comparisons. Inappropriate double counting
appeared to (incorrectly) confirm gap thinking. In this particular pair, it would seem that the
additive language was compelling. The original term residual thinking had been coined by
researchers in the Rational Number Project to describe a student invented strategy, which the
researchers attributed to the use of circle models in fraction instruction (Post et al., 1986; Post
& Cramer, 1987). Cramer and Wyberg (2009) reported that instruction using fraction charts

provided Grade 4 students with strong mental images when comparing residual fractions.

The data in the present study suggested that gap thinking resolved itself: if students had an

Equivalence score of 11 or 12, gap thinking was not present. On the other hand a coordinated
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knowledge of partitioning (not having the double count misconception) might offer some
protection against the development of gap thinking. There was no proof of cause and effect in

the present study, however, this detailed analysis offers some direction for further research.

5.1.4.1 Implications.

Gap thinking is a misconception of equivalence. If teachers thought of gap thinking as one of
the misconceptions of equivalence, they might target their responses to this misconception
with more precision. They could choose examples carefully to illustrate the thinking, and
revisit the images of unit forming and partitioning that students need to fold back to when
thinking about mathematical symbols. The traditional part-whole interpretation has labelled
gap thinking as one of several whole number thinking strategies but gap thinking and two
other whole number thinking strategies (higher or larger numbers, and bigger denominator
indicates bigger fraction) did not present in the same way. The findings of the present study
indicate that the difference (additive) language of gap thinking may be a hangover from an
early additive understanding of equivalence. Attention needs to be drawn to the appropriate
contexts for additive thinking:

e equivalences to '/, and

e when comparing fraction pairs between 0 and 1 with the same denominators.
Attention also needs to be drawn to inappropriate contexts for additive thinking, particularly

residual pair comparisons.

The 50% of students in the present study who used gap thinking when comparing the fraction
pair °/s and /s, did not fold back to an image of partitioned areas and use residual thinking to
compare the parts needed to make the whole. Just as '/s and '/s are different sized pieces in the
comparison of partitioned unit fractions so too the residual '/s and '/g are different sized pieces
in the comparison of */¢ and /s Residual comparisons were the first gap thinking type to
emerge and the last to leave. The use of gap thinking when comparing the fraction pair */s and
’/s was demonstrated by students in each Equivalence score from 1 to 10 (except by the four
students with an Equivalence score of 2). It is possible that the double counting
misconception reinforces the use of gap thinking in a residual pair. Students need to be able to
fold back to the understanding that non-equal-parts area diagrams are not named using the

double count misconception, so that residual pairs are not incorrectly confirmed as equivalent.

A highly detailed knowledge of gap thinking is needed for improvements in teachers'
pedagogical content knowledge. Specialised content knowledge (Hill et al., 2008), a
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knowledge of mathematics and a knowledge of students, is necessary for pedagogical content
knowledge. The link between the importance of specialised content knowledge and Japanese
lesson study was made by Knapp, Bomer, and Moore, (2011), who, along with Doig, Groves
and Fujii (2011) highlighted the study of constructs as an integral part of Japanese lesson
study.

5.1.5 Benchmarking/Gap thinking.

Two strategies (correct/incorrect) with similar initial explanations were evident in the Fraction
Pairs task (Q. 22e, */s and */;). Students' answers, initial explanations, and follow up
explanations designed to elicit the gap thinking misconception demonstrated that
observational listening involved careful listening. The similarity of initial explanations of
misconceptions and correct mathematical thinking was revealed by observational listening
and further interpretation was possible using the terminology and concepts of classroom
interaction research: Hermeneutical or responsive listening by teachers (Davis, 1997; Empson
& Jacobs, 2008), and calculational explanations, equivalent explanations and parallel

explanations of peer conversations (Cobb, Yackel, & Wood, 1992).

Experience with students had taught me that confirmatory questions had not been successful
in the visualisation tasks and therefore in the Fraction Pair task I used non-directive probes.
Despite this, there were still 11.4% of responses to the fraction pair */s and */7 which were
possible gap thinking, and which further questioning had not elicited the distinction between
gap thinking and benchmarking (see Tables 4.28 and 4.29). For example, when comparing the
fraction pair */s and */; Lara chose */s as the larger fraction "'Cause it's only one away from
being a whole." The prompt "mmm?" encouraged her to elaborate "And this is three away
from being a whole" (see Table 4.28). Lara was using the gap thinking misconception,
calculating the complement to one for each fraction and choosing the fraction with the smaller
gap. In contrast, Adam explained his answer of */s with "four is closer to five." The prompt,
'Can you tell me a bit more about that?", encouraged him to elaborate "The four and the
seven, there's more less, like um close to a half, but this one's like almost a whole." Adam was
benchmarking to a half and one and using a correct mathematical strategy. Chris was also
benchmarking (see Table 4.28) explaining his answer of */s with "four fifths is almost a
whole." When prompted, "mmm?", he added, "And four sevenths is um, a bit higher than a
half." These paired strategies, benchmarking and gap thinking, were difficult to distinguish in
fraction pairs because the answers were the same and the initial explanations were similar:

e "'Cause it's only one away from being a whole."
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e "four is closer to five."

e "four fifths is almost a whole."

Both strategies had been identified in the research literature. Benchmarking had been reported
in Australia (Clark et al., 2007; Clarke & Roche, 2009), and was called the transitive or
reference point strategy in the United States (Behr & Post, 1986; Behr et al., 1984; Post et al.,
1986; Post & Cramer, 1987). Gap thinking had been described in Australia (Clark et al., 2007;
Clarke & Roche, 2009; Gould, 2011; Pearn & Stephens, 2004) and was one of four whole

number dominance strategies described by Post and Cramer (1987).

Observational listening (Empson & Jacobs, 2008), or interpretive listening (Davis, 1997) was
used to understand strategies that children were using. In another context, I had identified that
careful listening was needed to correctly interpret students' strategies (Mitchell, 2004).
Cockburn (2008) suggested that one way of tackling misconceptions was to check a student's
response even when he or she answered correctly in case the student and the teacher were
focusing on different angles of the task. Observational listening and non-directive prompts to

elaborate further explanations were needed in the fraction pair examined here.

The fact that the similarity of initial explanations (and the same answers) for paired strategies
obscures the distinction between correct mathematical reasoning and incorrect mathematical
reasoning has implications for how teachers respond to students and how students explain
their thinking to each other. For example, if the teacher were explaining the benchmarking
strategy for the fraction pair */s and */7 and said "four fifths is nearly a whole", Adam might
hear his benchmarking strategy (four is closer to five) confirmed but Lara would also hear her
gap thinking strategy confirmed (it's only one away from being a whole). Lara might not
experience cognitive conflict between the teacher's strategy and her own, because if the
difference was difficult enough to hear as a researcher with access to transcripts, it would also
be difficult for Lara to hear the distinction between the mathematically correct reasoning of
the teacher and her own mathematically incorrect reasoning in the classroom. Researchers had
suggested that teachers using directive listening interpreted vague explanations as correct
mathematical reasoning if the answer was also correct (Even, 2005). It is possible that
students listening to classroom conversations react in the same way: if the answer was the
same as theirs and the explanations were similar, they would assume their strategy was the

same as the teachers.
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In some classrooms calculational explanations counted as an acceptable mathematical
argument despite the fact that calculational explanations made it difficult for students to
recognise whether they had equivalent strategies or parallel strategies (Cobb, 2011b).
Calculational explanations retell the calculational steps of a strategy rather than describe the
purpose of the calculations (Cobb et al., 1992). This should not be confused with Skemp's
distinction between relational and instrumental thinking (Cobb, 2011b). For example, if we
imagine that Lara, Adam and Chris were working together to solve the fraction comparison
task */s and */5, the terminology of peer conversation would enable us to describe their initial
explanations as calculational: "'Cause it's only one away from being a whole" and "four is
closer to five" and "four fifths is almost a whole." All three children describe a difference
calculation and none explain why they are doing this. At this point they might imagine that
they are agreeing on the strategy (that they have equivalent strategies). Even if Lara added
"And this is three away from being a whole", Adam might still not realise that she was not
benchmarking like he was, unless he knew to listen for gap thinking. Parallel interpretations
have the same answer and the same initial calculational explanation, but are actually different
strategies. Lara and Adam have parallel strategies. Adam and Chris who are both
benchmarking have equivalent strategies. Cobb, Yackel and Wood's (1992) examples of
calculational, parallel, and equivalent explanations were of addition by Grade 2 children. The
explanations are used here in an imaginary classroom interaction to elaborate this

phenomenon in a fraction context in Grade 6.

5.1.5.1 Implications.

Observational listening by teachers may require interpretations not only of answers and initial
explanations but also prompting for further explanations and/or consideration of responses to
other carefully chosen tasks. The students' responses when comparing the fraction pair */s and
4/7 demonstrated that these initial answers were considered acceptable mathematical answers
by the students in the interview context. The establishment of sociomathematical norms
around acceptable mathematical explanations could include the valuing of a why statement

with calculational explanations.

The implication of the illustration of (apparent) parallel explanations in the present study of
Grade 6 students is that students may also need to acquire a repertoire of descriptions of
strategies and misconceptions at this level. Cobb et al., (1992) were working with Grade 2
students and excellent teaching by the classroom teacher enabled students to increase their

knowledge of addition strategies. Grade 6 teachers have access to a repertoire of descriptions
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of strategies and misconceptions to draw on when responding to student explanations.
However, for students to recognise parallel explanations, they may need to acquire a similar
sophisticated repertoire of possible strategies in order to make sense of other students'

explanations.

5.1.6 Summary of answer, explanation types, and teacher and student

conversations.

The discussion of the students' correct strategies and misconceptions revealed finer
distinctions in the right answer/wrong answer, partially correct/incorrect reasoning unpacking
of students' responses to mathematical tasks (see Table 5.1). This is an elaboration of the
description by M. Clements and Ellerton (1995, 2005). The perimeter indicates area
misconception in the Similar Shapes task highlighted an undetected conceptual conflict in a
correct answer for a correct reason. The Fraction Pie task illustrated that students could get
the wrong answer and still have partial mathematical understanding and be using a strategy
which if executed correctly would demonstrate correct mathematical reasoning. Gap thinking
could produce the wrong answer for the wrong reason or the right answer for the wrong
reason. The importance of further probing was highlighted in the discussion of the paired
strategies benchmarking and gap thinking in which a student could have the right answer for
the right reason (benchmarking), the right answer for the wrong reason (gap thinking), be
assumed to have the right answer for the right reason (benchmarking) when in fact they had
the right answer for the wrong reason (gap thinking), or be assumed to have the right answer
for the wrong reason (gap thinking) when in fact they had the right answer for the right reason

(benchmarking).



223

Table 5.1

Answer, explanation and further explanation types

Coded Answer Initial explanation Further explanation = Question
correct  correct  correct: dynamic imagery, or Wattanawa
geometric Block
correct  correct  correct: close to one benchmarking s 4y
correct  correct  correct, but listener unsure if probing caused Cubes

dynamic imagery, or geometric  agreement
reasoning used

correct correct correct: areas the same because  undetected conflict Similar

both half, or dynamic imagery with perimeter Shapes
incorrect correct  assumed correct: close to one gap thinking Ys 45
incorrect correct  incorrect: gap thinking 37 %l
correct  correct  assumed incorrect: gap thinking, benchmarking s Y

close to one
incorrect incorrect partial correct strategy: operator Fraction Pie,

or unit-forming Part B
incorrect incorrect incorrect: gap thinking, "the o g

same"
incorrect incorrect assumed gap thinking other tasks

5.2 Research Question 2: Associations between performance on fraction

and measurement tasks

The second research question addressed is
e s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?
As I could not confidently distinguish between the students' use of dynamic imagery in the
visualisation tasks and the use of other geometric reasoning (see sections 4.3 and 5.1.3), this
aspect of the question remains unexamined. The following section discusses the association

between the performances on measurement and fraction tasks.

The linear associations between the students' Number Line score and their performance in
measurement categories and multiplication have been reported in the Results chapter (Table
4.23). A Number Line score could be 0 to 8 (see Table 4.21) but there were 45 different
pathways through the eight number line tasks (see Table 4.22). There were substantial
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associations between the students’ Number Line score and the categories CUNL, CADL,

Multiplication, CADA, TPUNL, and TPUNA (in order of effect size).

The linear associations between the students' Equivalence score and their performance in
measurement categories and multiplication have been reported in the Results chapter (see
Table 4.17). An Equivalence score could be between 0 and 13 (see Table 4.15) although no
student scored 13. There were substantial associations between the students' Equivalence
score and the categories CUNL, Multiplication, TPUNA, CADL, and CADA (in order of

effect size).

The linear associations between the students' Fraction Pair score and their performance in
measurement categories and multiplication have been reported in the Results chapter (see
Table 4.33). A Fraction Pair score could be between 0 and 7 (see Table 4.25) because Q. 22¢
was excluded from the results. There were substantial associations between the students'
Fraction Pair score and the categories CUNL, Multiplication, TPUNA, CADA, CUNA,
TPADA, and CADL (in order of effect size).

The linear associations between the students' performance on Part B of the Fraction Pie task
and their performance in measurement and multiplication categories have been reported in the
Results chapter (see Table 4.39). In the present study, 27.3% of the students were successful
on Part B of the Fraction Pie task. There was a substantial association between the students'
performance on Part B of the Fraction Pie task and the category CUNL. The categories with
the next highest effect sizes were Multiplication and TPUNA but they had a typical

association with the students' performance on Part B of the Fraction Pie task.

5.2.1 Substantial associations with fractions: units and additivity categories of

measurement.

All the substantial associations between fraction categories and measurement categories were
with additivity and units tasks. The measurement category of conceptual tasks assessing the
units concept in a length context (CUNL) had substantial associations to all four fraction
categories. The effect size of the association to CUNL was larger than the students'
Multiplication scores. The measurement category of conceptual tasks assessing the additivity
concept in a length context (CADL) also had a substantial association with the students'
Number Line scores (which was a larger effect size than their Multiplication scores), their

Equivalence scores, and their Fraction Pair scores.
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The linear associations were calculated using Kendall's tau because the scores were non-
parametric. However, using Pearson's r produced similar results (this test assumed interval
data and so was not appropriate for the present study). The associations between the students'
Number Line score and CADL, CUNL, CADA and TPUNA had a larger effect size than their
Multiplication score but they were all typical not substantial associations. The substantial
correlations between the students Equivalence score and their performance on other tasks,
using Pearson's r, were in the same order as reported above using Kendal's tau. Both the
Students' Multiplication score and their performance in the CUNL category had substantial
associations with their Fraction Pair scores, with .002 separating them. TPUNA had the
highest typical association with the students' Fraction Pair scores. The categories CUNL,
Multiplication score and TPUNA were in the same order but all had typical associations with
the students' performance on Part B of the Faction Pie task. While a larger sample size would
give greater statistical power to these calculations, the results from the descriptive statistical

tests suggest that these tasks can be analysed further.

The measurement category units had conceptual links to Kieren's measure sub-construct.
Measuring contexts generated a leftover and quantifying this needed rational numbers.
Researchers in both measurement (Brown et al., 1995; Lehrer 2003) and fractions (Kieren,
1995; Lamon, 2007; Sophian, 2002) had proposed a conceptual link between measurement
and fractions. Russian researchers had suggested that measurement should be taught before
number (Davydov & Tsvetkovich, 1991) and the pedagogical suggestion to teach number
through measurement developed from this research (Dougherty & Venenciano, 2007). The
units category had a fractional component to three of the four task series (CUNL, CUNA, and
TPUNL) so it is not surprising that students' fraction knowledge was linked to their
performance on tasks in these categories. However, rather than using descriptive statistics to
position fraction knowledge as a prerequisite for fraction tasks in other domains (or vice
versa), I have used the descriptive statistics as a guide to focus my qualitative analysis on

examining the conceptual links between fraction and measurement tasks.
5.2.1.1 The Keyboard task.

The Keyboard task (Q. 39) was the entry-level task for the CUNL category. It was offered to
every student and 54.5% were successful. Maria's Water Bottle task with a frequency of
success of 52%, a simpler task with the same partial unit */4, was an item on the Grade 3
Assessment Improvement Monitor (AIM) test used in Victorian State-wide testing (Victorian

Curriculum and Assessment Authority, 2007) (see Figure 5.1). Taking into account that the



226

Grade levels of the students were different, but that the Maria's Water Bottle task did not have
whole units to co-ordinate and had multiple choice answers, frequency of success was similar
(for frequency of success see VCAA, personal communication). The performance of students

in the present study suggests that they are not an outlier sample.
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54.5% the present study Grade 6 52% Maria's Water Bottle task, AIM Grade 3

Figure 5.1. Comparison of frequencies on success on measurement context of three quarters.

The Keyboard task and the Number Line question 16d both were representations of 3%/,. The
research literature had suggested that some children may work out the leftover correctly but
misrepresent the count (Brown et al., 1995). The answer four and three quarters to the
keyboard task would fit this description and was offered by only two students. Similarly, the
answer three quarters correctly quantified the leftover part but left out the whole number part
of the count of units. Eight students had omitted the whole number part in their response to
the Number Line task (and had not self-corrected during their explanation) but six of them
answered successfully three and three quarters on the Keyboard task. The measurement
context would appear to cue these students into the improper fraction context more readily
than the number line context. Transfer between a measurement context and a number line
context had not occurred for these six students. However, the results suggest that folding back

to measurement contexts may be useful for students when thinking about improper fractions.

Some misconceptions that appeared in the number line questions did not appear in the
Keyboard task. For example, although eight students used the assuming decimal number lines
misconception in the number line question (reading the mark at 3%/4 as 3.3), five of them
correctly identified the length of the keyboard as 3°/4 or 3%3; These six students did not
transfer their understanding from the measurement context to the number line question, but
measurement inscriptions may provide an image to fold back to when interpreting number

lines.




227

The pair fraction pair %4 and */, (Q. 22d) included an improper fraction. Of the 35 students
correct on this fraction pair, 29 were correct on the keyboard (see Table 4.34). However, of
the 19 students correct at the Keyboard task who also incorrectly compared the fraction pair,
14 of them gave explanations for the fraction pair that demonstrated their unfamiliarity with
the symbolic inscriptions of improper fractions. Some flipped the */; to make it */4 some
pointed to */, and said it was not a fraction, and some said there were the same numbers in
both. All the students who answered 22g and 22h correctly were successful on the Keyboard.
A length inscription of an improper fraction appeared easier to interpret than the symbolic

inscription of an improper fraction.

There were 12 answers to the Keyboard task in which students gave four (instead of three) as
the whole number part of the answer (as discussed above two of these students gave the
answer of four and three quarters). Two thirds of those answers (8 out of 12) were given by
students with an Equivalence score of 0 and 1. Only one of the 15 students with an
Equivalence score of 0 was able to describe the Keyboard correctly as three and three quarter
pencils long. The successful students were able to use the quarter of the pencil past the edge
of the keyboard to iterate back along the leftover part, to mentally break the line into tenths
and give a decimal estimate or to mentally halve the fourth pencil and halve again. These
actions draw on partitioning (iterating and breaking into tenths) and unit-forming (*/4is '/> and
1/4). Measurement tasks with leftovers to quantify create a context in which students have to
use partitioning and unit-forming concepts without referring to pre-marked divisions. These
actions of dividing into equal pieces (partitioning) and non-equal pieces (unit-forming) are

also needed in the development of equivalence understanding.

Students with unconditional double counting in Part B of the Fraction Pie task were less likely
(3 out of 10) to be successful on the Keyboard task than students with conditional double
counting behaviour (5 out of 9) (see section 4.5.2.4.5). It is possible that the double count
misconception may interfere with students' understanding of partitioning and unit forming in

the Keyboard task

The results from the present study demonstrated that success with an improper fraction in the
measurement context did not automatically transfer to recognition of the improper fraction in
the Number Line task nor to the symbolic inscriptions of the Fraction Pair task. Measurement
contexts can be a useful context for understanding improper fractions but transfer across
domains is not automatic. Conceptual links between fractions and leftovers in measurement

can be made in the classroom. Yanik, Helding, and Flores (2008) used fraction bar kits in
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their length measurement activities. Using these bars to measure classroom objects, the
researchers encouraged the students to describe their measure in terms of wholes and then a
fractional part, determined by how many fraction bar wholes had been iterated and what
fraction bars had been used to quantify the leftover. The researchers then found that the
students were less likely to assume a number line was a "whole" and paid more attention to
the scale. This classroom activity was designed to help resolve the misconception of treating a
number line marked from 0 to more than 1 as one whole. This misconception had also been
observed in the present study in Q. 16a and Q. 16c (see section 4.5.2.1.1). In a description
using mixed units, the whole units are the same size and the partial units are the same size.
The double count misconception is analogous to the non-specifying of mixed units. Both
improper fractions and the double count misconception have counterparts in measurement
activities and may be easier to resolve in those contexts. This would then provide an image to
fold back to when students are thinking about improper fractions and double counting in the

fractions domain.

5.2.1.2 Broken Ruler tasks.

The measurement category CADL had an association with a larger effect size than the
students' Multiplication score to their Number Line score. The broken ruler task, Freddo (Q.
41) was the entry-level task and 56.8% of the students were successful. The harder task, Footy
Card (Q. 42), was also a broken ruler task. A comparison between the frequencies of success
(see Table 5.2) of students in the present study on the Freddo task and student performance in
the American National Assessment of Educational Progress (NAEP) testing (47% success on
a similar broken ruler task and 41% on a broken ruler task with less friendly numbers) shows
that the students in the present study are not an outlier sample. A similar result had been
obtained in the United Kingdom on a pen and paper test with a line drawn over 1 to 7 on a
ruler with 49.1% of 12-year olds successful (n > 500) (Hart, 1981). In a separate interview
study of 89 New South Wales Grade 6 students, 69% of students successfully identified the
length in a similar broken ruler task (Bragg & Outhred, 2004).
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Table 5.2

Comparison of Frequency of Success on Broken Ruler Tasks

Task and Test Success  Grade level

Freddo: an object on a diagram over 3 to 8 cm on a ruler. 56.8% 6
Q. 41, interview, the present study.

A diagram of a bar over 3-8 inches on a ruler. 47% 7
NAEP 1984, multiple choice, cited in (Kamii & Clark, 1997).
A diagram of a toothpick over 8 to 12'/, cm on a ruler. 41% 8

NAEP 2003, multiple choice, cited in Nguyen (2010).

The frequency of success in the present study (52.3%) on a decimal number line (see Figure
5.2) was very similar to the success in the New Zealand numeracy project (50.2%, Vince
Wright, personal communication, January 23, 2008). However, the frequency of success of
38.6% on Q. 16d (3'/4) was less than the 87.2% of Grade 6 students correct on the same

number line in a multiple choice format (Lesh et al., 1983).
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52.3% (the present study Grade 6) 50.2% (New Zealand Year 7)

Figure 5.2. Comparison of frequency of success on decimal number line tasks.

The misconception of counting lines not spaces had been reported in the literature on broken
ruler tasks in junior primary school children (Lehrer et al., 1998) and in senior primary school
children (Bragg & Outhred, 2004). In Bragg and Outhred's Australian study, 53% of the
Grade 6 students used the same misconception on a task using a ruler with marks but no
numerals to measure a length. This was similar to the 48.9% of students in the present study
who demonstrated the counting lines not spaces misconception in either the Footy Card or
Freddo task. The counting lines not spaces misconception had also been reported in the
literature on number lines (Pearn & Stephens, 2007) and 10.2% of the students in the present

study used this incorrect strategy on the number line marked at */s (Q. 16e), calling it /7.

The use of the misconception in one context, number lines or broken ruler tasks, did not
predict performance in the other (see section 4.5.2.1.3). Only 33% (3 out of 9) of the students
who used the misconception on the number line task (Q. 16¢) did so on the Freddo or Footy

Card tasks. Only 37.5% (9 out of 24) of the students who had been successful on the number
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line question (Q. 16e) used the counting lines not spaces misconception on the broken ruler
tasks (either the Freddo or the Footy Card task). This misconception was not the cause of the
association between performance in the measurement category and performance in this
particular fraction number line question. A misconception may be a perfectly good rule
misapplied, in this case that the verbal counting sequence begins at one, but it is not
applicable to every possible context. Further research could target this specifically and ask the

students why they counted from 1 in one context and not another.

The responses to the broken ruler tasks highlighted a distinction between two strategies used
when students' drew their own number lines (Q. 16a). Both the ratio misconception (using
other ratios such as 6 out of 9 to represent */3 on a number line) and unsuccessful partitioning
(placing */3 two thirds of the way along the line but labelling 1 incorrectly) demonstrated that
the students had strategies that showed correct mathematical thinking but did not
accommodate the specific conventions of number lines (see section 4.5.2.1.1). However, the
difference in performance by students with these two misconceptions, on broken ruler tasks,
suggests that the unsuccessful partitioning was a less co-ordinated understanding of scales
than the ratio misconception. A similar percentage of students with the two misconceptions
(69.2% and 70%) were successful on the Freddo task (Table 4.19). Of the students who used
the ratio misconception, 53.8% (7 of 13) were successful on the Footy Card task. In contrast,
10% (1 of 10) of the students who used partitioning unsuccessfully on the number line task

were successful on the Footy Card task.

There was a linear association between the measurement category CADL and the students'
fraction Number Line scores. A higher CADL score was often paired with a higher Number
Line score, while a lower CADL score was often paired with a lower Number Line score. On
individual tasks, however, the relationships were more complex. There was no clear trajectory
through the number line questions. The results did not suggest that marked partitions or
marking partitions was easier, nor whether number lines from 0 to 1 were easier than 0 to 2.
There was no significant association between the students' Equivalence scores and Q. 16g, the
decimal number line representing 6.8. The counting lines not spaces misconception in a
number line context or a broken ruler context was not predictive of its use in the other
context. However, despite the similar overall frequency of the misconceptions of unsuccessful
partitioning (11.4%) and ratio representations (14.8%) (see Table 4.19) when drawing their

own number line (Q. 16a), the contrast in the students' performance on the broken ruler tasks
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suggests that the students using the ratio misconception, while incorrect, had a greater

understanding of length scales than those using unsuccessful partitioning.

5.2.1.3 CUNA and CADA.

The construct validity of some tasks was undermined by novel representations (concrete
materials and inscriptions). This lack of familiarity was evident in the interview in the
students' handling of the length representations in the Fraction Sort task (Q. 19m, 1 and t) and
the pattern blocks in the Pattern Block task (Q. 17). Alternative tasks would be needed to
further investigate associations between these aspects of the measure sub-construct and
measurement categories. The Cuisenaire rods in the Cuisenaire Units task (Q. 48) were
unfamiliar to the students, and the difficulty, not predicted by the pilot study, of the Array
with Leftovers task (Q. 46) may explain why the CUNA category did not have strong

associations with other tasks.

It appeared that the tools and procedures task for the additivity construct in an area context
(TPADA) was a prerequisite task for the tasks used to assess the conceptual aspect of the
additivity concept (see Table 4.5). However, the conceptual category, CADA, had a larger
effect size than the tools and procedures category, TPADA, in associations with the students'
Number Line scores, Equivalence scores, Fraction Pair score, and performance on Part B of
the Fraction Pie task. The area of half rectangles was a measurement context in which a

simple fraction component could illustrate conceptual links across domains.

5.2.1.4 Attribute.

There were no significant associations between CATA, CATL, or TPATA (TPATL had 100%
frequency of success) and the students' Number Line score (see Table 4.23), nor their
performance on Part B of the Fraction Pie task (see Table 4.39). There was a typical
association between TPATA and the students' Fraction Pair score (see Table 4.33) and a
minimal association with their Equivalence score (see Table 4.17). The concept of attribute
has been seen as a foundational understanding in measurement instructional trajectories (see
e.g., Outhred et al., 2003; Wilson & Rowland, 1993). The concept of attribute has also been
seen as being necessary for the understanding of fraction diagrams (see e.g., Steinle & Price,
2008). However, in the present study, the misconceptions of an understanding of the key
concept of attribute appeared to be quarantined. This may be due to construct validity

problems with the tasks chosen to assess attribute. Or it may be because fraction knowledge
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masks rather than cures the perimeter indicates area/ same area indicates same perimeter

misconceptions (see discussion in section 5.1.1).

5.2.1.5 Proportionality.

There was a typical association between the measurement categories CPRL, TPPRL and
TPPRA (CPRA had 100% frequency of success) and the students' Equivalence score (see
Table 4.17), their Number Line score (see Table 4.23) and their Fraction Pair score (see Table
4.33). There was a typical association between the measurement category CPRL and the
students' performance on Part B of the Fraction Pie task (see Table 4.39). Since the
conceptual link between order, equivalence, ratio and proportion had been elaborated in the
research literature (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984; Confrey, 2008; Lesh,
Post, & Behr, 1988; Lamon, 1993), the small effect sizes found in the present study were

unexpected.

In the present study 80.7% of the students successfully chose Tim as having the biggest steps
in the Steps task (Q. 44). In a pen and paper version of this task (National Center for
Educational Statistics, 2007), 41% of Australian Grade 4 students were successful on the
2003 Trends in International Mathematics and Science Study. Age and the testing format may
have influenced the contrasting frequencies of success. In present study 47.7% of the students
chose and used an equal interval ruler (or imagined equal spaces on a non-equal marked ruler)
in the Choosing Rulers task (Q. 45). Similarly, Pettito (1990) had found that 42.9% of

children in late Grade 3 (n = 21) chose the equal spaced ruler.

The tasks assessing the measurement construct of proportionality were not quantified; the
students only had to nominate the direction of change. In developing the interview tasks, if a
proportionality task included quantification I classified it as a (fraction) ratio task. The results
suggest that there is not a strong association between the concept of proportionality in an
unquantified context and fraction constructs. If the proportionality (measurement) tasks had
included a fractional component as the units category did, there may have been stronger

associations.

There were analogous tasks in length and area at the easiest level: Part B of the Paperclips
task (Q. 40b) and Part B of the Draw Your Own Array task (Q. 38b). It would have been

possible to develop an analogous task in the area context to the Steps task and it is a limitation
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of the present study that this was not done. However, a task analogous to the Choosing Rulers

task suitable for Grade 6 students was not developed for the present study.

5.2.1.6 TPUNA.

In general, conceptual categories had stronger associations than tools and procedures
categories to fraction constructs. The categories of CUNL and CADL have been analysed in
the previous section. However, the category of TPUNA consistently had substantial
associations with the Fraction constructs (Equivalence scores, Number Line scores, and
Fraction Pair scores) and, like students' Multiplication score, a typical association with Part B

of the Fraction Pie task. This was an unexpected result.

In developing tasks for the interview, I had thought that knowing to offer cm as the unit for
length tasks, and to offer cm? as the unit for area tasks was rote learned. Therefore, I did not
specifically ask the students to explain why they had offered the units that they did, hence I do

not have verbal explanations to interpret.

Around 70% of students in Equivalence Bands A, B and C had TPUNA scores of 0 (see Table
4.18). Around 30% of students in Equivalence Bands D and E had TPUNA scores of 0. No
students in Equivalence Band F had TPUNA scores of 0. Equivalence Band E represents the
first band where equivalence knowledge was used as part of another strategy, such as
benchmarking or creating common denominators. However, while there was an association
between low Equivalence scores and the use of incorrect units (cm) in area tasks, and high
scores and the use of correct units (cm?), the specific difference between Equivalence Band D

and Equivalence Band E was shown not to be important.

Arrays were used in tasks to assess area knowledge. All students in the present study could
use coordinates on a grid on the Treasure Map task (Q. 50, see Figure 4.1) thus demonstrating
that they could see an array structure. Battista et al. (1998) had noted that when younger
children have to physically draw units on arrays, some drew each square in its entirety rather
than using one line to show the edge of two adjacent squares. This did not occur in any of the
88 inscriptions that the students made in the present study (see section 4.2.4.4). Outhred and
Mitchelmore (2000) had developed the Draw Your Own Array task and 71% of the Grade 4
students in their study were successful at restructuring the rectangle. In the present study,
89.8% of the students created an acceptable array or indicated an array with row and column

hash marks. Of the nine students who were unsuccessful on Part A of the Draw Your Own
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Array task (Q. 38a), seven had a TPUNA score of 0 (offered cm incorrectly), one had a
TPUNA score of 1 (offered informal units but not cm? nor cm), and one had a TPUNA score
of 2 (offered cm? and not cm). If the TPUNA category was in fact a conceptual category, then
the units aspect of the task may be an extension to traditional trajectories of array
understandings. Battista's array trajectory (2007) and Outhred and Mitchelmore's trajectory
(2000) had been based on children in Grades Prep to 4 (see section 2.1.2.2). Offering correct
formal units may need to be incorporated into trajectories for array understanding that extends

to Grade 6.

5.2.1.7 Implications.

The measurement to partitioning/equivalence/unit-forming to measure sub-construct
conceptual pathway was demonstrated by the substantial associations between the
measurement categories, additivity and units, and the fraction constructs, equivalence and the
measure sub-construct (Number Line, Fraction Pair, and Fraction Pie tasks). This pathway
was also evident in the analysis of students' explanations to particular tasks. This pathway has
been examined in reports of classroom interventions (see e.g. Cobb et al., 2011; Nguyen,
2010; Yanik, Helding, & Flores, 2008) and in theoretical models (Confrey, 2008). The
understanding of key concepts of measurement matter, and can be conceptually connected to
fraction understanding. The multiplication to equivalence to ratio pathway (see e.g., Confrey,
2008) is also an important pathway, as demonstrated by the substantial association between
students' Multiplication scores and fraction constructs, but it is not the only pathway to
fraction understanding. The present study has shown that there are opportunities for making

conceptual connections between fractions and length and area measurement.

Conceptual measurement tasks are important for the development of the measurement to
partitioning/equivalence/unit-forming to measure sub-construct pathway. Using broken rulers
is as important as using a ruler. Measuring with items with units that leave a leftover is as
important as co-ordinating the iteration of a whole number of units. Although it was
quarantined in the present study, a systemic knowledge of attribute could be part of the
curriculum. Spatial measures are length, area, volume and angle. Length presents in
increasingly complex ways from straight paths to perimeters. Area means tiling or

restructuring in two dimensions not "what's inside" in a three dimensional context.
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The use of formal units appears to be more than just tools and procedures knowledge. An
implication of this is that further research is required to extend descriptors of array

understandings in the elaboration of these trajectories.

5.3 Research question 3: Kieren's four-three-four model

The third research question investigated was:

e Can we use Kieren's four-three four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?

There were two key structures to Kieren's four-three-four model. Firstly, there were four sub-
constructs, measure, quotient, operator, and ratio, supported by three concepts, partitioning,
equivalence, and unit forming. Secondly, while the constructs described different contexts for
rational numbers, a child's engagement with each construct could be at four levels:
ethnomathematic, intuitive, technical-symbolic or axiomatic deductive (1988, 1992, 1993,
1995). Pirie and Kieren (1994a; 1994b) had described the process of dynamical learning, and
highlighted the role of folding back to earlier images rather than permanently moving past
earlier understandings, and this can be connected to Kieren's four levels of engagement with

fractions tasks.

Kieren's earlier five-part model had many citations in the research literature both in its own
right (Kieren & Nelson, 1978; Kieren & Southwell, 1979; Leung, 2009; Norton & Wilkins,
2010) and as the framework for the Rational Number Project research (see e.g. Behr, Harel,
Post, & Lesh, 1992; Behr, Post, & Silver, 1983). Researchers citing the Rational Number
Project research often use the five-part model (see e.g. Charalambous & Pitta-Pantazi, 2006;
Clark et al., 2003; DeWindt-King & Goldin, 2001; Tepylo & Moss, 2011). Some researchers
using the five-part model noted the double count misconception which could develop from
the part-whole sub-construct, but they continued to use the model while cautioning against
simplistic interpretations of part-whole (see e.g. Gould, 2005; Lamon, 2007; Mosely, 2005).
Research by radical constructivists with other frameworks has continued (Confrey, 2008;
Nguyen, 2010; Steffe, 2003). Other research with less prominent theoretical frameworks did
not cite Kieren's work (see e.g. Duzenli-Gokalp & Sharma, 2010; Petit et al., 2010; Rayner,
Pitsolantis, & Osana, 2009). Kieren's four-three-four part model remains rarely cited in the
research literature. On the other hand, the Pirie-Kieren model describing learning as a
dynamical recursive process had been taken up by researchers who examined children's

learning (Martin 2008) and pre-service teachers (Borgen, 2006).
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5.3.1 Measure sub-construct.

In selecting and designing tasks for the present study, I focussed on the measure sub-construct
and the concept of equivalence. The measure sub-construct included three aspects. Some tasks
(bolded) were reported in the Results chapter and have been discussed earlier in this chapter:

e area and length diagrams or contexts (Tightrope Walker, Q.15; Puff Machine, Q. 23;

Fraction Sort, Q. 19; Fraction Pie, Q. 14; Fold Me a Quarter, Q. 13),

e comparisons of the relative size of fractions (Fraction Pairs, Q. 22; Density, Q. 25),

e Number lines (Q. 16).
Kieren had included length and area diagrams as part of the measure sub-construct in his
reframing of the part-whole sub-construct (1992). The research literature had categorised the
comparison of the relative size of fractions (order) as part of a broad part-whole sub-construct
(see e.g Behr, Wachsmuth, Post, & Lesh, 1984), as part of the measure sub-construct (Lamon,
1999; Ni, 2000), as part of equivalence and ratio understanding (Behr et al., 1992), or as
understanding fractions as numbers (Clarke & Roche, 2009). Following Lamon (1999), I have
classified the Fraction Pair task as a measure sub-construct task. Number lines have been
accepted as an example of the measure sub-construct by researchers using Kieren's (1980)
five-part model (see e.g, Clarke, Roche, & Mitchell, 2011; Lamon, 1999; Pearn & Stephens,
2007) and by researchers in the Rational Number Project (see e.g., Bright et al., 1988).

Different strategies for individual tasks illustrate different aspects of the measure sub-
construct, links between sub-constructs, or different levels of response. Hence the Fraction
Sort task, the Fraction Pie task, the Fold Me a Quarter task, the Fraction Pairs task, and the
Number lines task will be discussed in this section with respect to the specific concepts as
appropriate:

e partitioning concepts drawn on in the measure sub-construct

e partitioning concepts drawn on in length measurement tasks

e cquivalence concepts drawn on in the measure sub-construct

¢ unit-forming concepts drawn on in the measure sub-construct
For example, there were several correct strategies that were evident in the students' responses
in the present study to the Fraction Pair task (see Table 5.3) but the different strategies will be
reported in the partitioning (5.3.1.1), equivalence (5.3.1.2), and unit-forming (5.3.1.3)
sections. The misconception of gap thinking will be discussed in the equivalence section.
Seth's strategy for the fraction pair */4 '/o which used operator thinking will be discussed in the

links across the four sub-constructs section (5.3.5).
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Table 5.3

Strategies for Fraction Pairs

Fraction . Fraction Concept
. Possible Correct Strategy P
Pair Drawn On
s g same denominator and compare numerators;  partitioning
visualisation of area partitioning
complement to one unit-forming
2/4 4/8 equivalence equivalence
Uy g benchmarking unit forming or equivalence
s compare '/, and ¥/, equivalence and partitioning
benchmarking to one equivalence
mixed number unit forming and equivalence
s g same denominator, compare numerator partitioning
benchmarking equivalence and unit forming
7 g benchmarking equivalence and unit forming
5/6 7/8 residual thinking partitioning
s o equivalence and residual thinking; equivalence and partitioning

common denominators

equivalence and partitioning

5.3.1.1 Partitioning concepts drawn on in the measure sub-construct.

Kieren’s description of the concept of partitioning was linked to children’s actions of making
equal parts and exploring the multiplicative relationships between different sized parts: the
"folding space" (1995). Partitioning privileged the actions of making or imagining equal parts
rather than double counting pre-shaded area diagrams (Confrey, 2008; Kieren, 1983, 1995).
However, making equal parts and comparing the results of two different partionings is also an
aspect of the partitioning concept. In regard to the measure sub-construct, three aspects of
partitioning are discussed:

e making equal parts (including using visualisation),

e the double count misconception, and

e comparing different sized parts or different numbers of equal sized parts.

When faced with non-equal-parts area diagrams some students, who understood that
partitioning was based on equal parts, imagined equal parts. For example, in the Fraction Sort
task the students had to choose the fraction represented by a diagram of a rectangle divided

into four non-equal parts (a sixth, see Figure 4.43, Q. 19b). This task had a frequency of
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success of 50%. For example, Jade described imagining an extra line to make equal parts
"because if you put a line down there [indicates with finger] there would be six spaces; one

coloured."

Making equal parts was also evident in the non-equal-parts diagram of the Fraction Pie task
(see Figure 4.41). Some students recognised the need to make the same number of partitions
in both halves. For example, Jack explained how he made the same sized parts on both halves
of the circle, "There's three of the same size on this size. So that means there would be able to
fit, uh, three of the same shape on the other side. And that's six. And that would be one of

them."

The students who imagined lines back through the left hand side from the radii on the right
hand side of the Fraction Pie diagram (see Figure 4.41) were attempting to make equal parts.
They either forgot to exclude the line dividing the quarters, or they believed that the
imaginary lines divided the quarters in halves and therefore incorrectly made sevenths. It
would appear that no cognitive conflict was generated by these imagined lines creating four
parts in the left half and three parts in the right half. The initial premise, making equal parts,

was a mathematically correct strategy but not executed successfully.

Partitioning was also utilised in the Number Line task Q. 16a, in which the students had to
draw a number line and mark two thirds on it. Some students combined successful
partitioning and successful measure sub-construct knowledge by marking %/; two thirds of the
way between 0 and 1 on the number line. Students partitioned by eye, by iterating with their
fingers, or by using a ruler. The 33% frequency of success on this question was lower than the
51% frequency of success on the same question in a larger study (Clarke et al., 2007). One
misconception observed in the present study was the incorrect labelling of 1 on the number
line. Some students marked %/ two thirds of the way along the line but then labelled 1 at the
position of /5. These students had drawn upon partitioning concepts but they did not co-
ordinate the labelling conventions of number lines with their partitioning, possibly using 1 to

indicate l/3.

This misconception was related conceptually to marking %4 on a number line marked 0 to 2 at
a half (a quarter of the way along the line) by partitioning the whole line into quarters. This
misconception had been noted in the research literature (Clarke et al., 2007, 2011; Kieren,
1993; Petit et al., 2010). This response was observed in the present study on Q. 16¢c. However,
not all students making this error had done this in both questions (Q. 16a and 16c). This
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indicated that the different contexts affected whether the partitioning misconception would

emerge.

The double count misconception was associated in the literature with the use of limited part-
whole definitions of fractions (Kieren, 1988; Lamon, 2007). In the measure sub-construct
tasks, the Fraction Pie task and the Fraction Sort task in the present study, the double count
misconception is classified as a misconception of partitioning. The unconditional double
count misconception answer of one fifth, because there were five parts, to both Part A and
Part B of the Fraction Pie task was given by 9.1% of the students. This was less than half of
the 21.6% of students who gave the answer of one fifth to either Part A or Part B of the
Fraction Pie (see Table 4.36). The offering of conditional double counting explanations, such
as Ruby's, "because there are five pieces in it. Um, it would be an equal fifth if they were a bit
smaller and they were the same size, but they're not. Because those two are bigger than those
three; so technically they're fifths, they're just not equal fifths" was observed in the present

study and had also been reported in previous research (Post et al., 1985).

Although the concept of part-whole in the original research by Kieren (1980) and the Rational
Number Project researchers (Behr et al., 1983; Behr et al., 1992) was broader than a static
double count, researchers suggested (see e.g., Lamon, 2007) than teachers' instruction on the
part-whole concept was limited. Resolving the double count misconception may be complex.
Simple explanations may confirm a misconception because of the similarity of the linguistic
structure of correct and incorrect calculational explanations. For example, both Jess and Jade
gave almost indistinguishable explanations as to why the Fraction Sort card diagram of one of
six equal parts shaded was one sixth (see Table 4.38):

e "because there's six there and then there's one um shaded, and there's six."

e "because there's six pieces and one's coloured."
One of these students then verbalised the double count misconception when sorting the card
with a diagram of one shaded part out of four non-equal parts (a sixth):

e "Yeah I put that there [quarter] because there's four shaded [sic] and one shaded and

it's a quarter."
e "because if you put a line down there [indicates with finger] there would be six pieces;

one coloured."

If a teacher used a correct explanation like Jade's, "because there's six pieces and one's

coloured" to explain the strategy of partitioning on an equal-parts diagram, then Jade's correct
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partitioning thinking would be confirmed. The difference between the explanations to the card
with the non-equal-parts diagram (a sixth) showed that Jess' explanation was still
calculational, "Yeah I put that there [quarter] because there's four shaded [sic] and one shaded
and it's a quarter”. Jade's explanation on the other hand, included
e a calculational aspect, "there would be six pieces; one coloured.”
e how she arrived at the calculation, "because if you put a line down there [indicates
with finger] there would be six pieces"

e but not an explicit statement of why she did this (to make equal parts).

In the Fraction Pairs task (Q. 22) the comparison of the relative size of fractions was
presented as symbolic inscriptions. Some, but not all, of the strategies used for comparisons
drew upon simple partitioning concepts (see Table 5.3):

e comparing different numbers of equal parts, or

e comparing different sized parts.

For the fraction pair /s and 7/8, the comparison could involve folding back to an image of
partitioning into eight equal parts and then comparing different numbers of these parts. This
was expressed in the technical symbolic language of Lily, "Because there's the same
denominator and seven's larger." Students who visualised a diagram drew on images of
partitioning actions to decide that '/s was the larger fraction. The classification of these
strategies as partitioning in a fraction comparison context corresponds to their classification
as part-whole in research based on other models (see e.g., Cramer & Wyberg, 2009). In the
present study, improper fractions were an extension of this use of comparison after
partitioning..Some students called */, an improper fraction signalling that four haves was more
than one half. For example, Kate explained "Because the four is bigger than two and it's an
improper fraction". These students also co-ordinated their knowledge of equivalence with this

partitioning: either renaming %/4 as a half or benchmarking to 1.

The fraction pair */s and */; was analogous to unit-fraction pairs. Comparison were based on
the size of the pieces because the number of pieces was the same. This strategy had been
described in the research literature (Behr et al., 1984; Clarke & Roche, 2009; Clarke et al.,
2008; Cramer & Wyberg, 2009; Post & Cramer, 1987; Post et al., 1985) and was observed in
the present study. For example, Sarah chose */s as the larger fraction "Because the top
numbers are both four, but there's seven and five on the bottom; and seven means that the

pieces are littler. So four of them wouldn't equal four of the fifths." In classroom activities the
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actions of partitioning generate unit fractions which are then compared: a fifth is bigger than a
seventh. This partitioning and comparison action can be extended to the same number of
pieces of different sizes: four fifths is bigger than four sevenths because if you have the same
number of pieces you want the bigger pieces. I argue that these comparisons are part of the
partitioning concept and are drawn upon in the measure sub-construct context of fraction pair

(presented with symbolic inscriptions) comparisons.

Residual thinking is the third strategy that is part of the broad understanding of the actions of
partitioning. Residual thinking had been described in the literature as comparing the unit
fraction leftover in fraction pairs such as 3/¢ and /s (Post, Behr et al., 1986; Clarke & Roche,
2009; Cramer & Wyberg, 2009). In classroom activities, the action of partitioning produces
fractional parts of kits or diagrams which are then compared: in this case the residual pieces

are compared.

An aspect of partitioning not investigated in this thesis was the multiplicative relationship
between pieces. For example Kieren describes paper folding problems such as what folds are

needed to get from thirds to twelfths (1995).

The measure sub-construct encompassed the contexts of number lines, area diagrams and
relative size comparisons. The concept of partitioning involved many understandings. The
making of equal parts on number lines or diagrams, or the imagining of equal parts on non-
equal-parts diagrams, was one aspect of partitioning. Linked to this was resolving the double
count misconception. Another aspect of partitioning was comparing the results of partitioning.
Three strategies used in the Fraction Pair task illustrate this: comparing the number of pieces
if the pieces are the same size, comparing the size of the pieces if there are the same number
of pieces, and comparing two residual pieces. In the present study, all these aspects of

partitioning were used by students explaining their responses to measure sub-construct tasks.

5.3.1.1.1 Partitioning concepts drawn upon in length measurement tasks.

Partitioning was drawn upon in length measurement contexts. Visualising equal partitions was
a feature of the responses to the length measurement task, Q. 39 Keyboard (see Figure 4.9).
Some children worked mentally left to right and divided the final pencil into tenths, or split it
in half and half again. Other children worked from right to left with the part left over the end
of the keyboard and iterated backwards to discover it was a quarter. These explanations

indicated that partitioning was also used in measurement contexts. Subsequent research has
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confirmed a conceptual link between equi-partitioning and length and area tasks (Nguyen,

2010).

The perimeter comparisons of the shaded shapes in the Similar Shapes task (Q. 36h) revealed
that students could drawn upon partitioning and not recognise that their fraction partitioning
knowledge was masking a misconception about the relationship between perimeter and area.
Students recognised that the shaded shapes were both partitioned in halves. However, they
used this knowledge to incorrectly deduce that the perimeters must be the same. This use of
fraction partitioning may mask the geometric misconception and this was not flagged by

Kieren's model which is a framework of ideal knowledge in fractions.

5.3.1.2 Equivalence concepts drawn on in the measure sub-construct.

In Kieren's reframing of part-whole, in the four-three-four model (1988, 1992, 1993, 1995)
the concept of equivalence was given its own category which had conceptual connections to
not just the ratio sub-construct, but also the measure, quotient and operator sub-constructs. In
the five-part model for fraction understanding the part-whole sub-construct included order and
equivalence (Post et al., 1985), and equivalence was linked to ratio (Post et al., 1985; Wong &
Evans, 2007).

In the present study, equivalence understanding was drawn upon in the measure sub-construct
number lines tasks. This was suggested by the common variance of 51% (and a substantial
association) between the students' Equivalence score and their Number Line score (see Table
4.40). However, there was no significant association (p = .167) between the students'
Equivalence scores and Q. 16g, the decimal number line representing 6.8 suggesting that the
use of only decimal number lines to assess the measure sub-construct may not have content

validity and that co-ordinating an understanding of fraction number lines may be important.

The ratio misconception was observed in the first number line question in the present study
and 14.8% of the students placed */3 incorrectly when drawing their own number line (for
example, at 2 out of 3, 6 out of 9, 6.66 out of 10, or 8 out of 12). These students drew on
equivalence knowledge, for example, %/3 is the same as 8 out of 12, but they could not co-
ordinate this successfully with the conventions of a number line (that 2/3 1s two thirds of the
way between 0 and 1). This behaviour had been observed in earlier research on the same task

(Clarke et al., 2007).
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Equivalence understanding was drawn upon in the measure sub-construct tasks using area and
length diagrams. There were eight cards in the Fraction Sort task (Q. 19) that represented
equivalent fractions (see Figure 4.20). For example Rohan explained why the length ¥/ was
?/3, "And this is two thirds 'cause it's four sixths and if you halve it it will be two thirds". Only
two students could successfully restructure the triangle divided into three non-equal parts into
%/ (Q. 19r) but neither could rename this */3. Equivalence understanding, in the length and
area diagram context of the measure sub-construct, required both visualisation and numerical
skills. There was also a substantial association between the students' Equivalence scores and
Part B of the Fraction Pie task (see Table 4.40) suggesting that partitioning and equivalence
concepts were co-ordinated by the students who could correctly name Part B of the Fraction

Pie as one sixth.

It was not surprising that there was a substantial relationship between the students'
Equivalence score and their Fraction Pair score as there were two questions in common (Q.
22b and Q. 22f) (see Table 4.40). However, there was no significant association (p = .096)
between the students' Equivalence score and comparing the fraction pair */s and /s (Q. 22a).
This supports the argument that this particular fraction pair drew on partitioning rather than

equivalence knowledge.

The comparison of fractions could require the recognition of equivalent fractions such as %/
and */5 (Q. 22b). Previous research had demonstrated the importance of one half as a first step
to equivalence understanding (see e. g. Callingham & Watson, 2004). In the present study, the
(in this instance correct) additive language was revealed in some students' explanations of one
half. For example, Emma explained why ?/4 and */s where the same, "Well 'cause, you just,
they're all, they're halved, so they would be the same. So there's four plus four is eight and
two plus two is four." Similarly Jack's explanation illustrated that the relationship could be
additive or multiplicative but that this was not clear in students' use of the word half, "they're
both half. Of the bottom number". Multiplicative thinking was evident in Nicky's explanation
using the word simplify, " 'cause two quarters and four eighths; if you simplify four eighths

you make it go down to two quarters, you simplify that again it would be one half".

Another strategy that drew on equivalence was benchmarking where fractions were compared
to a third fraction such as to '/,. For example, Lily chose /s as larger than */; explaining,
"Because half of eight is four and means that's gone more, that's more than a half. And that
one's three point five. And to go over a half, that has to be four." Adam used benchmarking to

explain why */s was larger than */;. "Um. Four. The four and the seven, there's more less, like,
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um close to a half, but this one's like almost a whole." In both of these examples
benchmarking is not possible without knowing that ]/2 is equivalent to 4/8, 3 '5/7 or 2'5/5. A
related strategy drawing on equivalence was using common denominators. This was
illustrated in Lily's explanation of how she decided that "/o was larger than */4, "I tried to get
thirty six [waves finger across both denominators]. And I times that by nine [points to 3], and
that by four [points to 7]." Common denominators are used to make friendly equivalent

fractions.

The partitioning concepts (correct strategies and the double count misconception) drawn upon
in the comparison of the residual fraction pair 5/6 and 7/8 have been discussed above in the
partitioning section (5.3.1.1.1). Gap thinking, a misconception of equivalence (see section
5.1.4), was used on this residual pair by 50% of the students in the present study. A co-
ordinated knowledge of equivalence includes understanding why residual pairs are not
equivalent. A classroom activity that addressed equivalence was the Japanese lesson study
activity the Janken game (paper, scissors, rock). Students received different pattern blocks for
a win with paper (green sixth), scissors (blue third), or rock (yellow half) (Yamamoto, 2007).
The practical problem that the children discovered needed solving was how to give "change"
if their opponent had run out of one sort of pattern block. Trading (equivalence) solved this
(Yamamoto, 2007). In addition, I would argue, the activity provided students with an image
of residual fraction comparisons. */5 (two blue blocks or four green blocks) as change for a
whole, given for a win with scissors from a child with no blue blocks left, was not equivalent
to the /4 (five green blocks) given as change for a whole given for a win with paper by a child
with no green blocks left. The transactions in this game give students a concrete image to fold

back to of the equivalence of 2/3 and 4/6 and the non-equivalence of the residual pair 2/3 and 5/6.

I have argued in this thesis that gap thinking could be thought of as a misconception of
equivalence. Kieren's four-three-four model is explanatory, not in the sense of describing a
mechanism, but in the sense of naming the key concepts and their connections. Fraction size
comparisons can be classified as measure sub-construct tasks. Different fraction pairs draw on
partitioning, equivalence or unit-forming. The as much as meaning of equivalence is drawn
upon in additive initial understandings of equivalences to one half, illustrated in Emma's use
of the word plus. This meaning is related to unit-forming: a fractional part can further be
made up of parts added together (Kieren, 1999). The as many as meaning of equivalence is
drawn upon in multiplicative understandings of equivalences to one half, illustrated by

Nicky's use of the word simplify. This aspect of equivalence is related to partitioning: if a
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fractional part is divided into equal parts, this action is replicated on all parts so that the whole
is made of, simultaneously, these smaller equal parts and equal parts the size of the original

fractional unit. This understanding was explored by Clark and Kamii (1996).

The gap thinking misconception is a misconception of equivalence. Additive calculational
explanations are inappropriately generalised. They are (incorrectly) confirmed by the
partitioning or unit forming concepts drawn upon when comparing the fraction pair 3/sand /g
and the unit forming aspect of equivalence drawn upon in recognising equivalences to one
half. Gap thinking is reinforced by the double count misconception (a partitioning
misconception), in the residual fraction pair /s and /s, Drawing on (correct) partitioning
concepts in this fraction pair, grounded in concrete materials or inscriptions, may help resolve
the gap thinking misconception. Students who consistently use equivalence as part of
strategies such as benchmarking and common denominators did not exhibit gap thinking
indicating that this may have contributed to the resolution of this misconception. Kieren's
terminology of unit-forming, partitioning, and equivalence, and the measure sub-construct
enable the framing of this discussion of the gap thinking misconception. It would be possible
to use the sub-construct part-whole as an overarching term for partitioning, equivalence and
unit-forming, and propose the same explanation for the gap thinking misconception within the
framework of the five-part model: either Kieren's model (1980) or the Rational Number
Project framework (Behr et al., 1992; Behr et al., 1983). However, the elaboration of the four-
three-four model (Kieren, 1988, 1992, 1993, 1995) enabled the fine-grained analysis and

focuses attention on possible strategies to assist in resolution of misconceptions.

Some research used the five-part model to demonstrate student proficiency in each of the five
categories, finding that students performed best in part-whole and weakest in measure
(Charalambous & Pitta-Pantazi, 2006; Leung, 2009). However, equivalence was not a
separate category in these two projects and I have argued that equivalence could be drawn
upon in the four sub-constructs (e.g., measure) and thought of a concept in its own right (or
part of the Rational Number Project's construct of part-whole). The results of the present
study showed that equivalence was an important facet of students' fraction understanding with
substantial correlations to other fraction constructs. Including or excluding an equivalence
component in a task would have changed the construct validity of the category in those two

research projects that used the five-part model.
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5.3.1.3 Unit-forming concepts drawn on in the measure sub-construct.

Confrey (2008) defined equi-partitioning as multiplicative and different from "breaking,
fracturing, fragmenting, or segmenting in which there is the creation of unequal parts". Kieren
had also made this distinction, calling this other sort of restructuring into unequal parts unit-
forming or the combining space (Kieren, 1995). This concept was drawn upon in students'
explanations of measure sub-construct tasks. The number line context and unit-forming has
not been analysed in this thesis. How the unit-forming concept is drawn upon in the other
measure sub-construct contexts of non-equal parts diagrams and fraction pair comparisons is

elaborated in the following paragraphs.

In non-equal-parts diagrams, the concept of unit forming reinforced that double counting
would be inappropriate. The research literature had reported classroom activities in which
students worked with non-equal-parts diagrams approaching the naming of parts from a unit-
forming perspective not with the partitioning misconception of the double count (Kieren,
1995; Kieren et al., 1996). Students' attempts to compare Part B of the Fraction Pie to Part A
have been discussed at length in section 5.1.2. For example some answers of a fifth were an

estimation of a fifth plus a-small-fraction equals a quarter.

It was the students' choice of strategy that determined whether the Fraction Pie task assessed
simple partitioning (three on one side so six altogether), unit forming (a sixth plus a twelfth is
a quarter), or the harder operator (two thirds of a quarter), which were observed in the present
study; or equivalence (a half is three sixths), or the easier operator (a third of a half) which
were not observed in the present study. Being unsuccessful on the Part B of the Fraction Pie
task did not mean that they could not partition. Some had attempted the much more difficult
operator calculation (two thirds of a quarter) or the more difficult unit-forming calculation (a
sixth plus a twelfth is a quarter). Presmeg (1985) had cautioned against assuming that a child's
preferred strategy was their only strategy. Thus a false negative, analogous to the false
negatives for visualisation described by Bishop (1983), may result if observational listening is

not used.

Unit-forming was drawn upon in the measure-sub-construct context of the comparison of
fraction pairs (Q. 22). The complement to one strategy used in the fraction pair */s and /g
restructured the whole into two unequal added parts:

) 3/g plus 5/3, and

. 7/8 plus 1/g
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The concept of unit forming enabled the description of improper fractions as mixed numbers.
A mixed number is made up of two unequal parts added together, a whole number part and a
fractional part. This premise appeared to underpin Tom's explanation for the fraction pair %/4

and %/, "this is a whole and a half — no two wholes".

In the fraction pair */g and '/5 it was possible to use unit forming to think of */5 as made of two
unequal pieces, '/» and another piece. Rose used quarters to indicate pieces in her explanation
of why /s was the larger fraction, "Because this [5/8] is like three quarters out of eight and
this is only half; and so it's one quarter extra." Of course it was possible to use partitioning

and equivalence to see */sas */s plus '/s (benchmarking), which some other students did.

Although unit-forming can be seen as one aspect of the part-whole sub-construct, as a term
for a single concept, it can categorise some classroom fraction activities and highlight the
correct additive thinking required in a co-ordinated understanding of fractions. For example,
the place value approach to decimals (whole numbers plus tenths plus hundredths plus
thousandths) was reported as beneficial for students (Desmet, Gregoire, & Mussolin, 2010;
Roche & Clarke, 2011; Steinle & Stacey, 2011). Using a decimat to represent the additive
connection between the decimal parts (Roche, 2010, 2011) could be described as using unit-

forming understanding.

In another classroom activity, Colour in Fractions, children roll two dice (one with a numeral
for the numerator and one with “/x (x was 2, 3, 4, 6, 8, or 12) for the denominator. They then
coloured in the resulting area on a fraction wall (Clarke et al., 2008; Clarke & Roche, 2010).
The roll of the dice enabled improper and proper fractions. Equivalence was encountered
additively: four one-eighths was as much as one half. The activity was framed as exploring
equivalence and improper fractions but could also be classified as using unit-forming and
equivalence concepts. For example having rolled */4, a child can colour in three one-quarter
pieces; a half, a sixth and a twelfth; or any combination of fraction wall pieces that add up to
the roll of */4. The child also records this early addition symbolically. The mathematics is
similar to the unit forming activities that Kieren described in his combining space such as

making */4 out of fraction kit parts (1995).

Tasks such as Construct a Sum (see Figure 5.3, image supplied by Doug Clarke & Anne
Roche), developed by the Rational Number Project researchers (Behr et al., 1986; Behr,
Wachsmuth, & Post, 1985) where students had to make two fractions that would add to close

to but not equal to one (given a choice of specified numerals), were the types of activities that
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helped students move from an intuitive understanding of unit-forming to a technical-
understanding in the measure sub-construct in the context of the relative size of fractions.
Results from a later study showed that 25.4% of Grade 6 students created a combination
between 0.9 and 1.1 (Clarke et al., 2008, 2011).

Figure 5.3. Construct a Sum
5.3.2 Quotient sub-construct.

The quotient sub-construct described sharing or fractions as division contexts (e.g., Clarke,
2006; Kieren, 1992; Lamon, 1999). For example three pizzas shared between five people

yielded a fractional share.

5.3.2.1 Partitioning concepts drawn on in the quotient sub-construct.

In the Sharing Custard Tarts task (Q. 20), some children elected to draw a diagram of five
children sharing three custard tarts. Some used French division, as the Dutch called it
(Streefland, 1991), and divided each tart into five equal parts. Some had the partitioning
knowledge to name this correctly as three fifths. Other students' physical partitioning was
successful but they named the share incorrectly as three fifteenths. Harry's partitioning of
circles was less developed and after trying halving and quartering, he said, "there's no way
you can cut it up into five pieces." The ability to keep track of the whole when more than one
whole was used, which Lamon (1999) called unitising, was connected to the partitioning
knowledge called upon in this quotient task. Only one student used the technical symbolic

understanding that three shared between five was three fifths.

The present study demonstrated that partitioning and unit-forming were drawn upon in
quotient sub-construct tasks. Researchers had advocated the use of the sharing context as an
introduction to fractions instead of part-whole (Empson, 1999; Mamede et al., 2005). The

Dutch fraction curriculum had an emphasis on fair sharing (Streefland, 1991). The connection
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between fractions and division was shown to be hampered by the use of part-whole as the
dominant form of fraction instruction (Lamberg & Middleton, 2009). In the present study,
Kieren's four-three-four model quotient has framed the elaboration of the connection between
the quotient sub-construct and the underpinning concepts of partitioning, equivalence (not
analysed here), and unit-forming. The model does not advocate a trajectory but has
explanatory power of why a quotient sub-construct context can develop early fraction

understanding.

5.3.2.2 Unit-forming concepts drawn on in the quotient sub-construct.

Some students started their attempts at sharing using halving. This had been noted in the
literature as an early partitioning strategy (Pothier & Sawada, 1983). In the problem of five
people and three custard tarts this resulted in five halves with one half left over. Some
students then partitioned this left over half into five parts. This process produced five equal
shares (of a half and a tenth) but not five equal parts. Re-unitising was difficult for some
students who incorrectly named the share as a half and a fifth. Unit-forming concepts were
drawn upon in this (correct) strategy of making a share out of two unequal pieces. This correct
strategy was often only partially executed as naming the share correctly as six tenths or three

tenths required complex partitioning knowledge.

Confrey (2008) used the term equi-partitioning to encompass sharing problems, such as 15
coins between 3 pirates, or 1 cake between 4 people, which would be classified as quotient
tasks in Kieren's five part-model (1980) or four-three-four model (1993). The unit-forming
aspect of naming non-equal shares that arise in students' attempts to apportion equal amounts
in the quotient sub-construct context is clearer in Kieren's four-three-four model than in

Confrey's equi-partitioning model.

Much of the research on fractions as division contexts suggested the inclusion of the quotient
sub-construct alongside a part-whole sub-construct (Clarke et al., 2007; Lamon, 2007). The
use of partitioning and unit-forming concepts by students in attempting these tasks supports
Kieren's classification of these sharing contexts as the quotient sub-construct which draws on
partitioning, equivalence, and unit-forming concepts making clear the contribution of the

various concepts that make up "part-whole" knowledge.
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5.3.3 Ratio sub-construct.

In the design of tasks to investigate ratio, discrete contexts were chosen in the Fraction Sort
task (Q. 19f and 19x), in the Golden Beans task (Q. 21a and 21c), and in the Show Me Thirds
task (Q. 27). It was assumed that most of the instruction prior to the data collection would
have focused on a part-whole interpretation of these types of tasks because the curriculum
documents were framed in this construct, however as the present study was not a classroom

study no evidence was collected to support this.

5.3.4 Levels of response.

Kieren's four-three-four model differentiated between levels of understanding as well as
different constructs (1993). However, his four levels, ethnomathematic, intuitive, technical-
symbolic, and axiomatic- deductive, did not fit seamlessly with empirical data and combined

approaches were observed (Kieren, 1988).

Kieren had identified an ethnomathematic response to a sharing task as "each gets a bite and
Mom puts the rest in the fridge" (1988, p. 172). In the similar Sharing Custard Tarts task (Q.
20b), no Grade 6 student in the present study offered an ethnomathematic response. Most
students in the present study operated at the intuitive level using strategies framed by school
mathematics. The success of these responses varied and included strategies such as French
division, repeated halving, and non-exhaustive sharing (a share is a half and a bit), but all
were attempting the task at an intuitive level. One student used the technical-symbolic
approach and did not need to tie their understanding of the task to a real context or diagram.
Classroom activities such as the Sharing Chocolate Game (Clarke, 2006) are designed to elicit

the fractions as division response or technical symbolic level approach.

The Pirie and Kieren model of dynamical learning (1994a, 1994b) with its emphasis on the
movement between levels with the notion of folding back, is a better explanatory model than
the static four level descriptors in Kieren's four-three-four model. In the present study, folding
back, has been a more useful way of elaborating one of the ways that partitioning, unit-
forming and equivalence are drawn upon in the measure and quotient sub-constructs, than
categorising students responses using the four levels of the four-three-four model. The Pirie
Kieren model also has more purchase in the research literature (see e.g. Borgen, 2006; Martin,

2008).
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5.3.5 Implications.

A strength of the four-three-four model was its explanatory power to describe the underlying
concepts of partitioning, equivalence and unit-forming and link them to the four sub-
constructs measure, quotient, operator and ratio. A co-ordinated understanding of "part-
whole" in other models would include the three concepts of partitioning, unit-forming and
equivalence but not use these terms (see e.g. Behr, Harel, Post, & Lesh, 1992; Lamon, 2007).
In that way, the four-three-four model could be seen as an elaboration of the framework used
by the Rational Number Project researchers in which the part-whole sub-construct was an
underlying construct that developed into the four sub-constructs (Behr et al., 1983). However,
it was not substitutable for the five-part model often attributed to the Rational Number Project
by other researchers (see e.g., Clark et al., 2003), nor the six-part model (including decimals)

in which part-whole was one of six sub-constructs (Behr & Post, 1992).

The adoption of the four-three-four model would not be incompatible with the research
already conducted using variations of the five-part model. The four-three-four model reframes
the part-whole sub-construct and its relation with the other sub-constructs. Researchers have
called for the broadening of teachers' pedagogical repertoire of part-whole instruction (see
e.g., Cramer & Wyberg, 2009; Lamberg & Middleton, 2009; Lamon, 2007). However,
elaborating the categories of partitioning, equivalence (both already in use) and unit-forming
would be one way to do it, while still working in the overall research framework influenced

by Kieren (1980) and the Rational Number Project (Behr et al., 1992; Behr et al., 1983).

One way to begin this elaboration of the underlying concepts of partitioning, equivalence and
unit-forming would be in the classification of classroom activities. Teachers know that games
such as Colour in Fractions (Clarke & Roche, 2010), problems such as Construct a Sum (Behr
et al., 1986), and inscriptions such as decimats (Roche, 2010) are the types of activities that
develop fraction understanding. Being able to classify the partitioning, equivalence and unit-
forming aspects of these activities adds to their pedagogical power. In addition, the concepts
could be elaborated through developing teachers' pedagogical content knowledge of strategies
for fraction tasks. The interplay of partitioning, equivalence and unit-forming in the
misconception of gap thinking provides an example. In addition the distinction between
fraction pairs that are compared using partitioning rather than equivalence can help teachers

focus on the use of specific aspects of tasks to elicit specific mathematical thinking.
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The present study was not a comparative study. I have not evaluated Kieren's model with
respect to Steffe's learning trajectories (2002) or Confrey's trajectories (2008) for fraction

understanding.

Kieren's four-three-four model for rational number knowing (1988, 1992, 1993, 1995) was an
ideal model. Lehrer's eight key concepts of spatial measurement were also an ideal model of
measurement understanding. Neither of these models offered hypothetical learning
trajectories, unlike Steffe's work on fractions (Steffe, 2002) or Confrey's work on rational
number (Confrey, 2008; Nguyen, 2010). The results of the present study, particularly the
spread of Equivalence scores from 0 to 12 demonstrated that the underlying concepts are still
relevant in upper primary school. However, the four-three-four model does not provide detail
of instructional sequences, it can only serve to frame interventions developed by teachers or

researchers.

It is not clear from Kieren's explanation of his four-three-four part model (1995) whether the
terminology is intended for use in instruction or only for teachers' and researchers'
conversations. Anecdotally, the introduction of the Early Numeracy Interview in Victoria was
accompanied by the use of terminology such as "counting on" in professional pedagogical
conversations and also in instruction, and this led to the children using the terminology in
their explanations in class. For example a six year old might explain, I counted on from the
bigger number. If the names of constructs were used in classrooms, as equivalence and ratio

already have been, then this may be a powerful organising conceptual tool for students.

The four-three-four model explicitly links the measure sub-construct with length and area
measurement contexts. My elaboration of the measure sub-construct included number line
tasks, tasks using non-equal diagrams, and fraction pair comparisons which had precedence in
the research literature (Kieren, 1992; Lamon, 2007; Ni, 2000). The associations between the
students' Number Line scores, Fraction Pair scores and performance on Part B of the Fraction
Pie task, and their performance on measurement tasks illustrated that the conceptual links
between the measure sub-construct of fractions and the measurement categories of additivity

and units are worth further investigation.
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Chapter 6: Conclusions

This study investigated three things:

e What strategies are evident in students' explanations of their thinking in a one-to-one
task-based interview?

e s there an association between performance on measurement tasks and performance
on fractions tasks? Is there an association between the use of the use of dynamic
imagery on visualisation tasks and performance on fractions tasks?

e Can we use Kieren's four-three-four model of fraction understanding (1988, 1992,

1993, 1995) to describe the fraction understandings of students in the present study?

Data on 88 Grade 6 children's performance on measurement, visualisation, multiplication, and
fractions tasks, along with their explanations of the strategies they used to attempt those tasks,
were collected using a one-to-one task-based interview. Each interview lasted on average two
and a half hours. Notes on record sheets and transcripts from audio and video data supported

my interpretive analysis of the students' explanations.

Dimensional sampling was used to select three schools with different socio-economic
categorisations. The present study did not have a representative sample and so the results are
not generalisable. However, the comparison of the frequency of success on several tasks used
in the present study with the frequencies of success of the same or similar tasks in state or
national tests (see e.g., Figure 5.1, Table 5.2, Figure 5.2) demonstrated that the sample is not
an outlier group. The baseline tasks on which all students were successful (see Figure 4.1) and
the ceiling task on which no student was correct (see Figure 4.3) show that all the students
had some understanding of unit fractions, the array structure, and simple multiplication (or
repeated addition). Similarly errors and related strategies demonstrating misconceptions such
as gap thinking was observed in all three schools and, despite only a 12.5% frequency of
success on the Array with Leftovers task (Q. 46), there were students who answered correctly
in all three schools. The misconceptions and sophisticated strategies were not the result of the
individual instruction of one teacher. Therefore the findings of the study have implications for

other students in other schools.
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6.1 Research Question 1: Strategies

The students' explanations of five strategies in particular, some of which were

misconceptions, were examined in depth.

The same area indicates same perimeter misconception was not evident in the Fold Me a
Quarter task (see Figure 1.2) but was evident in the comparison of the perimeters of two non-
congruent halves in a length measurement task. The more sophisticated fraction reasoning,
that the areas were the same because they were both half, was successful in the area
comparison, but obscured the measurement misconception that perimeter and area are always

related.

As identified in the Introduction chapter, observational listening was required to distinguish
between the double count misconception and the mathematically correct but only partially
executed operator (or unit-forming) approach in the Fraction Pie task (see Figure 1.1). The
answer given might imply a particular misconception but asking the students for an
explanation revealed that some students were using quite sophisticated strategies which, had

the students been able to execute them fully, would have led to a correct answer.

It was not possible in the present study to distinguish between the use of dynamic imagery or
geometric reasoning on visualisation tasks because any probing questions positioned the
interviewer as using evaluative listening. Students did not seem to have the language to

explain dynamic imagery or geometric reasoning.

Gap thinking in fraction pair comparisons was shown to emerge at the same time as early
equivalence understanding. Students whose equivalence understanding was strong exhibited
no gap thinking, but nor did nearly all of the students who had an Equivalence score of 0. Gap
thinking is additive in nature and this suggests that early equivalence understanding may also
be additive in nature. Regarding this strategy as a misconception of equivalence (but
confirmed by the double counting misconception) may broaden teachers' specialised content

knowledge.

The correct strategy of benchmarking could present with an answer and calculational
explanation that was initially indistinguishable from the misconception of gap thinking. Both

gap thinking and benchmarking generated the correct answer for one fraction pair comparison
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and the initial explanation sounded similar. It was only after a prompt for further explanation

that the differences could be established.

In the introduction, one aspect of the significance of the study that related to this investigation
of children's strategies, was the complex task that teachers face responding to individual
children and the whole class in a constructivist environment. The analysis of these five
strategies only illustrates just how complex that task is. Teachers cannot assume that a correct
answer and explanation using one domain (fractions) indicates misconception-free thinking in

another (length measurement).

Responsive listening includes responding to the student's strategy (Empson & Jacobs, 2008).
For example, if a child has used a unit-forming approach to the Fraction Pie task, but gives
the answer (estimate) of one fifth it will be no use if the teacher talks about the double count
misconception (which can also generate the answer of one fifth). Instead the teacher has to
determine if the child is using unit forming (one sixth (Part A) plus one twelfth is one quarter
(Part B)) or operator thinking (two thirds of a quarter is a sixth) and respond to the specific
strategy. They must be ever alert that students do not perceive them to be using evaluative

listening.

A belief in constructivism also involves anticipating misconceptions. If teachers are to tackle
the gap thinking misconception, then they will need to provide experiences of residual
fractions that form a strong image for students to fold back to. And it is not just teachers who
will increase their knowledge of strategies and misconceptions. If students are to learn
through peer conversation then they must establish the classroom norm that calculational
answers are only partly acceptable mathematical answers. They will also have to develop their
own knowledge of strategies, such as gap thinking and benchmarking so that they recognise

when they have equivalent explanations or parallel explanations.

6.2 Research Question 2: Associations

The findings of the present study show that there is an association between fractions and
measurement understandings. It is strongest between the measurement categories of additivity
and units, and the fraction sub-construct of measure. One aspect of the significance of the
present study that relates to this investigation of a conceptual link between fractions and
measurement, is the development of curriculum that makes these associations evident. Some

research is already underway in this field using fraction strips in length measurement
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activities to quantify partial units (Yanik et al., 2008). The findings of the present study
indicated that it was the conceptual tasks more than the tools and procedures tasks that were
co-ordinated in the students' understanding and the curriculum should specify this. For
example, broken rulers are a simple addition to the standard curriculum on length
measurement. The present study also had some implications for area trajectories. An
unexpected result was the substantial association of volunteering formal units in area
problems (cm®) and success on fraction tasks. This suggests that the coordination of formal

units might be an extension of array trajectories already developed for younger children.

6.3 Research Question 3: Kieren's four-three-four model

Kieren's four-three-four model was shown to have significant explanatory power in describing
students' strategies for tasks in the measure sub-construct. The broadening of the measure sub-
construct to include number lines, fraction pair comparisons and area diagrams was possible
in this model. The present study was able to analyse in fine detail the way partitioning,
equivalence and unit-forming concepts were drawn upon in response to measure sub-construct
tasks. At its simplest, partitioning, equivalence and unit-forming just elaborate the part-whole
construct. However, the use of these concepts and their connections to all the sub-constructs
enabled analysis of students' performance on fraction tasks to be classified in a more

informative way than the use of part-whole.

The significance of this finding relates back to the big picture presented in the introduction. If
one-to-one task-based interviews are used in Victorian schools as formative assessment tools
(see e.g. Department of Education & Training, 2001; Department of Education and Early
Childhood Development, 2009b) then clear theoretical frameworks are needed to enable
teachers to interpret the data that they collect. Kieren's four-three-four part model is
particularly relevant to primary school children's performance and strategy use because it
explicitly details both underlying concepts (partitioning, equivalence, and unit-forming) and
levels of understanding with the four sub-constructs. The four-three-four part model for
fraction understanding does not detail a learning trajectory, and so cannot provide a
developmental path, unlike the Early Numeracy Project's growth points for number
knowledge (Clarke et al., 2002). However, it could frame teachers' interpretation of a fraction
interview, and could be used to extend teachers' pedagogical content knowledge of the

fractions domain.
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Equivalence has been a term in use with both teachers and students and so the concept has a
recognised space in the curriculum. A strength of the four-three-four model was its
categorisation of unit-forming. This gives prominence to the many correct additive aspects of
fraction understanding. The concept can be used to describe students' strategies but also to
describe the mathematical focus of a task. Students and teachers both use the word
equivalence in classroom conversations. Extending the vocabulary to include partitioning and

unit-forming would extend the explanatory power of the model to the students themselves.

6.4 Directions for further research

The present study has opened up a range of possibilities for further research. It was a study
framed using observational listening. However, all of the findings could be investigated in a
classroom study of responsive listening. Understanding of the strategies, the associations
between measurement and fractions and the explanatory power of Kieren’s and other models
would benefit a classroom based longitudinal study. Some research possibilities are given

below.

e A classroom study of gap thinking
0 Thinking of gap thinking as a misconception of equivalence,
0 Focusing on the correct contexts for additive strategies: pairs with the same
denominator between 0 and 1, and equivalences to a half,
0 distinguishing between double counting and correct partitioning strategies in
fraction area diagrams,
0 including a longitudinal component to track gap thinking and equivalence

knowledge.

e [Evaluation of another model for fraction understanding. For example, the present
study did not compare Kieren’s model (1995) to Steffe (2002) to determine if this had

the explanatory power to describe the data found in the present study.

e Investigating the volunteering of cm” as a unit for area measurement and linking this

to models of the understanding of arrays.

e A classroom study investigating the effects of the students using the terminology of
Kieren's four-three-four part model.

0 Linking partitioning and fraction size comparisons,
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Naming unit-forming activities,

Introducing additive (as much as) equivalence and ratio (as many as)
equivalence,

Using measurement contexts such as measuring length with fraction strips
(Yanik et al., 2008), the Keyboard task (Q. 39) or broken ruler tasks and
linking these to the measure sub-construct,

Using sharing contexts in early fraction work.
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Appendix A: Data Collection Interview

Introduction

This appendix contains the interview script, task cards, and images of materials used in the

data collection interview. In this interview protocol:

Italic text described what the interviewer did.

Plain text was what the interviewer said.

Students were not told whether their answers were correct or incorrect. But they were
usually asked, "and how did you work that out?"

If students answered "don't know" or did not offer an answer, they were not asked
"How did you work that out?", instead they were prompted to elaborate if they could,
for example, "If you knew what to do, what do you think you might do?" or "What are
you thinking?"

Students were praised and encouraged by being thanked for sharing their thinking, or
helping pack up tasks. If students were having obvious difficulty with many questions,
while they remained willing to participate, they were given the option of saying "I
don't know" to tasks that they felt that they could not attempt.

All task cards in this appendix are reproduced at a similar size to the actual materials
used during data collection. Most were laminated. Task cards for the pen and paper
test, Q16a Number line and 16b Number line, and Q38a Draw Your Own Array, were
printed on plain paper and were consumable, that is, the students wrote or drew on
them.

The actual script used by the interviewer during the interview did not include masters
of task cards, nor references, but these have been added to this reference appendix
version for readers of the thesis. These images have not been labelled as figures.

A prepared record sheet was used during the interview to note students' responses and
this follows at the end of the interview tasks. It was slightly larger, but has been
reduced to fit the margins of the pages in this thesis.

The order of the interview tasks was: multiplication and division, four pen and paper

measurement tasks, fractions, measurement, geometry and visualisation.
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e If tasks were used or adapted from other sources an acknowledgement in italics
appears after the question. If there is no acknowledgement, it can be assumed that the

task was developed by me in conjunction with other ACU staff.

Materials list

The content of the task cards were developed or adapted by me and many were digitally
produced by Rikki Bochow, at Acornweb.com.au, using Adobe Illustrator. I produced tasks
Q. 22, Q. 26, Q. 44, Q. 46 and Q. 48 using Microsoft Word 2003 tools. The task cards were
printed on coloured paper and cut and laminated as necessary. Paper and pen and a 30cm
ruler, marked in cm but not mm, were on the interview table and available if the student chose
to use them except in tasks where the interviewer specifically requested that they not be used,
for example, Q. 11 Missing Number or Q. 22 Fraction Pairs. Some other objects were used in
the tasks and they are detailed below:
e Multiplication and division
0 Tennis balls in a packet of three.
e Fractions
0 Kinder squares (12.5cm x 12.5cm coloured paper squares)
0 Pattern blocks: two yellow hexagons, two red trapeziums, two blue rhombi,
one 2cm orange square, one green triangle
Figurines of people (6¢cm high)

Golden beans (lima beans spray-painted gold on one side)

o O O

Doll for tightrope walker (artist's doll with movable joints)
0 String tightrope

e Measurement
O 93cm streamer

Nine 33mm and four 50mm paper clips

DVD case (rated G)

Cuisenaire rods

o O O O

Sixteen 2cm square, orange pattern blocks
0 Kinder squares (12.5cm x 12.5cm coloured paper squares)
e Spatial visualisation and geometry
0 Flagon stick
0 2cm wooden cubes and models of Q. 58 Cube Rotations multiple choice

answers
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0 2cm wooden cubes and model of Q. 60 Blocks
Interview script

The interview begins with the following words by the interviewer:

Are you happy to do some maths with me today?

I am interested in how you think when you are doing maths. I have a whole lot of tasks to do
with you here. I won't tell you whether you get an answer right or wrong. But I will probably
always say, and how did you work that out? You can tell me what you were thinking while
you were working out the problem. Or, sometimes you just know an answer, so then you can
explain how you know that you are right. If you change your mind about an answer while you
are explaining it, that's fine, you just tell me your new answer.

Some of the questions might be easy. Some might be hard. Some of the things you might not
have been taught yet, so just do your best.

When resuming an interview, repeat part or all of the above as necessary.

Multiplication and division

All tasks in the multiplication and division section were from the Victorian Department of
Education and Early Childhood Development (DEECD) Early Numeracy Interview booklet,
(Department of Education & Training, 2001). The task numbering was different to the
DEECD interview as some of those tasks were omitted. This interview can be found in Clarke
et al., (2002) and can also be downloaded as the mathematics online interview from

http://www.eduweb.vic.gov.au/edulibrary/public/teachlearn/student/mathscontinuum/onlinein

terviewbooklet.pdf

Q. 1 Tennis Ball task.

Put out 1 packet of 3 tennis balls.
Here is a packet of tennis balls. How many balls
would there be in four packets? How did you work

that out?

If the child appears to be counting all, ask
Could you do that another way, without counting

them one by one?
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Q. 2 Dots Array task.

Here are some dots. Show card for an instant, in the orientation shown.

I'm going to hide some.

Cover the bottom 4 x 3 section and the bottom half of the 3 dots above it

a) How many dots are there altogether on the whole card? How did you work that out?
If the child appears to be counting all, ask:

b) Could you do that another way, without counting them one by one?

LEL LA X

Q. 3 Teddy Cars.

Not offered.

Q. 4. Sharing Teddies on the Mats.

Not offered.
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Q. 5 Children at the Movies.

There are fifteen children altogether at the movies. They are sitting in three equal rows. How
many children are in each row? How did you work that out?
Adaption for this data collection, if the student answers 45, prompt with, "there's fifteen

altogether."

Q. 6 Multiplication Problems.

Show the child the card 3x10. Establish what the child prefers (e.g., do you say three times
ten or do you say three tens) Remove the card.

Tell me the answers to these questions

Read the problems one at a time.

a) 3%10

b) 2x7

¢) 10x7

d) 3x50

e) 4x30

f) 5x7

X
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Q. 7 Division Problems.

Show the child the card 16 + 2. Establish what the child prefers (e.g., do you say "sixteen
divided by two?" or do you say "sixteen how many twos?" or do you say "how many twos in
sixteen?") Remove the card.

Tell me the answers to these questions

Read the problems one at a time.

a)l6 +2

b) 60 + 10

c) 80 + 4

d)24+3

e)35+5

f)35+7

Q. 8 Off to the Circus.

Ninety-seven people are going to the circus. Twenty people can ride in each bus. How many

buses will be needed to get all ninety-seven people to the circus?




Q. 9 Sharing Our Money.

287

Pen and paper methods are acceptable for this task.
Show the child the card $52
Share fifty-two dollars evenly between four people.

How much does each person get? How did you work that out?

Q. 10 In Your Head.

Show the child the card with the expression 23 x 4.
Please tell me the answer for 23 % 4.

How did you work that out?

13 X%
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Q. 11 Missing Number.

Show the child the orange card with54 x = 2

a) The answer to fifty-four times something ends in 2.What can you tell me about this missing

number? ...Pointing to the space after the multiplication sign.

How did you work that out?

b) Could it be any other number? How do you know?

04X _=

Pen and paper measurement tasks

Q. 62 Staircase Array, (Battista, et al., 1998),

Q. 63 Area Calculation of a Rectangle,

Q. 64 Dragonfly,

Q. 65 Witch's Hats. (Adapted from Presmeg, 1985).

The pen and paper test on the following page was read aloud if necessary. The tasks were
numbered Q. 62 to Q. 65 in my coding, although they were completed after Q. 11 in the

multiplication and division section, and before Q. 12 in the fractions section.
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The area of the big rectangle is being
measured using 1cm square tiles.

But there are not enough tiles to cover the
whole shape.

What is the area of the big rectangle?

3cm

4cm

What is the area of this rectangle?
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This ruler measures in centimetres.

What is the length of the dragonfly?

F =

A child put a row of witch's hats along the
side of a swimming pool. The pool was 25
metres long. The child put one witch's hat at
each end of the pool, and one every five
metres in between.

How many witch's hats did he put out
altogether?
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Fractions

Q. 12 Book worms.

Place pictures of four bookworms and a pile of books in front of child.

This bookworm ...point to third bookworm...eats twice as much as this bookworm...point to
smallest

This one....point to second...eats three times as much as this one....point to the smallest.

This one....point to first...eats six times as much as this one....point to the smallest

This bookworm...point to third...eats twice as much because it is twice as tall.

And this one...point to second...eats three times as much because it is three times as tall.

And this one...point to first...eats six times as much because it is six times as tall.

a) If this one eats one book...place one book in front of smallest...how many books do the
other bookworms eat? If necessary, repeat introduction...

How did you work that out?

b) If this one eats four books...place 4 books in front of third...how many books do the other
bookworms eat? How did you work that out?

c) If this one eats this many books...place 9 books in random arrangement in front of second
bookworm...how many books do the other bookworms eat? How did you work that out?
Adapted from Clark and Kamii (1996)
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Q. 13 Fold Me a Quarter.

Hand the child one square piece of paper (kinder square).

a) Please fold the square into quarters.

Hand the child a second square piece of paper.

Please fold this into quarters a different way.

b) Let's look at these two parts indicate a quarter on each of the child's folded pieces of
paper. What can you tell me about the area of these two pieces? Point to non-congruent
quarters. Does one piece have a larger area than the other or are they the same?

How did you work that out?

¢) This is another square that has been folded. Show child third kinder square, folded into
quarters a different way (squares, triangles, or sticks prepared earlier).

What can you tell me about the area of these pieces? Point to a quarter on their square and a
shaded quarter on third prepared kinder square.

How did you work that out?

Repeat with other comparison — their second quarter and the third prepared kinder square.
Developed by Anne Roche and Doug Clarke, Australian Catholic University (ACU).
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Q. 14 Fraction Pie.

Show the child the fraction pie diagram. Point to the region as it is named in the question.
a) What fraction of the circle is part A? How did you work that out?
b) What fraction of the circle is part B? How did you work that out?

Adapted from fraction assessment interview in Cramer et al. (1997).

Q. 15 Tightrope Walker.

Place pegs and tightrope walker in front of child, and show picture of tightrope walker. Use
gender of child in asking question- he/she

This is a tightrope walker. He/she uses this rope to practise. Because he/she falls off, he/she
has put some marks along the rope so that he/she knows how far along he/she got before
falling off.

a) Please put a peg on the rope to show where half way across would be. How did you work
that out?

b) Roughly, where would nine-tenths of the way across be?

¢) Indicate second mark If he/she fell off here, how far across would he/she have got?
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Q. 16a Number Line.

Give the child a blank piece of paper and pen.

Please draw a number line and mark two thirds on it.

If child does not mark O or 1, ask where does zero go? ... Where does one go?
How did you work that out?

Clarke et al. (2007).

Q. 16b Number Line.

Place number line B (0, %2 marked) in front of child

If this is half, point to half, please mark where one and a half would be.
If child does not label fraction say, please label it one and a half.

How did you work that out?

Bright et al. (1988).

Q. 16¢ Number Line.

Place number line C (0, 1, 2 marked) in front of child

Please mark where one quarter would be.

If child does not label fraction say, please label it one quarter.
How did you work that out?

Pearn and Stephens (2007).
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Q. 16d Number Line.

Place number line D (0-4 marked) in front of child. Indicate hash mark pointed to by arrow
What number or fraction is that point on the number line? How did you work that out?

Adapted from Lesh, Landau, and Hamilton (1983).

Q. 16e Number Line.

Place number line E (0, 1 marked, with evenly spaced hash marks) in front of child. Indicate
hash mark pointed to by arrow
What number or fraction is that point on the number line? How did you work that out?

Adapted from Novillis (1976).

Q. 16f Number Line.

Place number line F (0, 1 marked, with non-evenly spaced hash marks) in front of child.
Indicate hash mark pointed to by arrow.
What number or fraction is that point on the number line? How did you work that out?

Adapted from Pearn and Stephens (2007).
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Q. 16g Number Line.

Place number line G (6-8 marked) in front of child. Indicate hash mark pointed to by arrow.
What number or fraction is that point on the number line? How did you work that out?

Ministry of Education (2007) (New Zealand).

Q. 16h Number Line.

Place number line H (0-1 and beyond marked in even spacings with arrow on improper

fraction) in front of child.

What number or fraction is that point on the number line? How did you work that out?

v
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Q. 17 Pattern Blocks.

Place pattern blocks on the table (2 yellow hexagons, 1 red trapezium, 2 blue rhombi, 1 green
triangle, and 1 orange 2cm square).

You can move the blocks and pick them up if you need to.

a) A blue is what fraction of a yellow? How did you work that out?

b) A blue is what fraction of a red? How did you work that out?

c¢) This time the blue is a whole. What could you call the red, if the blue is one? How did you
work that out?

d) If the green is a half, what would you call the yellow? How did you work that out?

Adapted from tasks developed by Doug Clarke, ACU.
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Q. 18. Simple Operators.

Administer verbally, first three to be done in child's head:

a) What is one-half of six?

b) What is two and a half times six?

¢) What is two-thirds of nine?

d) What is one third of a half? If no answer given or child is thinking, ask

Would you like to try that with pen and paper? How did you work that out?

e) What is one half of a third? If immediate answer given, ask How did you work that out?
Otherwise offer paper and pen and then ask Can you tell me about what you've done?

If diagrammatic methods used for d and e, ask did you think about the other questions —half
of six, a fifth of ten, two thirds of nine — as a picture as well? How did you think about them?
Adapted from Clarke et al. (2007).

Q. 19 Fraction Sort.

Place cards with "*/,", "'/¢", "?/3" and “others", and fraction sort cards, in front of child. Point
to cards when saying fraction name. Start with simple circle quarter.

Here are some cards that represent different fractions. Some are one quarter, some are one
sixth, some are two thirds and some are none of those so we can call them others indicate
cards.

Please sort the fractions into the correct group. If the picture isn't one of these fractions, you
can put it near "others". Tell me what you're thinking as you go.

Some representations adapted from Baturo (2004); National Center for Educational Statistics
(2007)













Q. 20. Sharing Custard Tarts and Liquorice.
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a) Place 5 people and the picture of the 3 pieces of liquorice in front of child.
Five people are sharing three strips of liquorice equally.

The liquorice can be cut anywhere. How much of a strip does each person get?
Provide the child with pen and paper to draw if necessary.

b) Place 5 people and the picture of the 3 custard tarts in front of child

Five people are sharing three custard tarts equally.

The tarts can be cut anywhere. How much custard tart does each person get?
Provide the child with pen and paper to draw if necessary

¢) Place 5 people and the picture of the 7 custard tart in front of child

This time, seven custard tarts were shared equally between the five children.
How much custard tart does each child get?

Provide the child with pen and paper to draw if necessary.

d) Place 4 people and the picture of the 9 pieces of liquorice in front of child.
Now there are only four children. They are sharing nine strips of liquorice equally.
How much of a strip does each child get?

Provide the child with pen and paper to draw if necessary.

Adapted from Clarke et al. (2007). Similar tasks appear in Keijzer and Terwel (2002); Lamon

(1999)
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Q. 21 Golden Beans.

Place on the table 6 beans that are gold on one side and white on the other

a) Here are six beans that are gold on one side and white on the other demonstrate as you say
this Please toss the beans like this (demonstrate).......

Now you have a turn. What fraction of the beans have landed gold side up? How did you
work that out?

(If 6 white or 6 gold land face up, then ask the child to toss them again)

b) Is there another name for that fraction?

If necessary prompt, Can you think of an equivalent fraction?

¢) This time I'm going to add some beans. Please toss the beans again.

Add three beans so that 9 beans are on the table with 3 gold/white and 6 white/gold facing up
in a mixed up arrangement.

If nine beans had landed like this, what fraction of the group of beans is gold/white (the
colour of the three beans)?

How did you work that out?

d) Is there another name for that?

If necessary prompt, Can you think of an equivalent fraction?

How did you work that out?

Task adapted from one developed by Doug Clarke, ACU.
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Q. 22 Fraction Pairs.

Show the child each fraction pair card, one at a time, a-g

Please point to the larger fraction, or tell me if they are the same.......

How did you decide?

Don't allow use of pen and paper

h) If successful on at least 6 of 7 pairs, place selection of fractions on individual cards in
front of child.

These are some of the same fractions as before. Please put them in order from smallest to
largest. Tell me about the order that you have put them in. Where would zero go? Where
would one go?

Adapted from Clarke et al. (2007).
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Q. 23 Puff Machine.

Show the child picture of the puff machine

This machine measures how much air, in litres, I can blow out of my lungs. What is the

reading on the machine?

©Oe®

Litras
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Q. 24 Arc, Angle, Area.

Place card with circle unit fractions in front of child. Point to shaded pieces

a) Which shaded part is bigger? How do you know?

b) I asked some other children how they knew that it was the bigger part. One said, because
the angle here (point to angle) was bigger. One said, because you could cover this space with
more tiles point to shaded parts. And the last one said, because this line is longer (trace arc of
larger shaded part with finger). What do you think of their explanations?

¢) Did you use any of those ideas to help you decide which shaded part was bigger?

— [ — [ T

25. Density.

Place the card 2/5 to 3/5 in front of the child.

a) Is there a fraction between two-fifths and three-fifths? If child says yes, ask, what is it?
If the child says two and a half-fifths ask, What is another name for that?

How did you work that out?

b) Are there any other fractions between two-fifths and three-fifths?

If child answers yes, ask How many are there?

How do you know?

Task developed by Doug Clarke, ACU. Similar tasks in appear in Lamon (1999).
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L

Q. 26 Fraction Algorithms.

Place pen and paper and algorithm cards in front of child.
Here are some fraction problems. These are addition, this is take-away and this is

multiplication. Can you work out the answer to these? You can do them in any order you like.

3 1
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Q. 27 Show Me Thirds.

Place picture of cupcake arrays (4) and pen in front of child

These are some cupcakes that have been iced.

a) Without counting them all one by one, can you see half of the tray? Please use the pen to
show me the halves.

If necessary....Can you do it without counting every cupcake?

How did you work that out?

b) Can you see thirds? (Use the pen to show me). How did you work that out?

¢) Can you see sixths? (Use the pen to show me). How did you work that out?

Adapted from Lamon (2002).

@
S —

Q. 28 Crossroads.

Place diagram of crossroads in front of the child.

This is the whole. Indicate the whole shape. What fraction of the whole shape is shaded? How
did you work that out?

Adapted from Victorian Curriculum and Assessment Authority (2006).
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Q. 29 Ending on a Positive: Fraction.

Place Cuisenaire rods in front of child.
Show me any fraction you like using these rods.

If child is correct, tell them so. If not, modify task or offer new task until they get one correct.

Q. 30 Off the Record.

You have done lots of different tasks about fractions today. Which did you like best? Why
was that?

When you have done fractions in class, what sort of activities have you done?

Have you seen any of the questions we did today before?

Did you think the tasks we did today were easy or challenging or both?

Reflect back child's experience.
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Measurement

This section of the interview is introduced with:

For some of the tasks you might use pen and paper or a ruler.

Q. 31 Streamer.

I tried to cut one meter piece of streamer. Please measure how long the streamer is (allow the
child to use a pen to mark the streamer if necessary, but without prompting).... What did you
find?

If correct number but no units given in answer, prompt for units, eg ninety what?

How far out was I? (If child is unclear, ask how far off one meter was 1?)

Adapted from the Early Numeracy Interview, Department of Education & Training (2001).

Q. 32. Measure a DVD with a Ruler

(if incorrect on Q. 31).

Here is a DVD. Here is a ruler. Please measure this length of the DVD with the ruler (indicate
longer side). What did you find?

If correct number but no units given in answer, prompt for units, e.g. nineteen what?

Adapted from the Early Numeracy Interview, Department of Education & Training (2001).
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Q. 33 Area Calculation — Half Rectangle.

Place 3 by 4cm rectangle diagram, shaded in halves, in front of child.
What is the area of the shaded part?
If correct number but no units given in answer, prompt for units, e.g. twelve what?

How did you work that out?

3cm

dcm

Q. 34. Square to Triangle Sequence —Cutting

(if incorrect on Q. 13 and/or Q. 33).

Give child two kinder squares and scissors.

Please cut the square in half... indicate diagonally. Now move the pieces around to make a
new shape. Does this square have a bigger area, does this shape have a bigger area or do they
have the same area?

How did you work that out?

Task developed by Catherine Trethowan (Watsonia Heights Primary School).
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Q. 35 Missing Oval

(if incorrect on Q. 33, or incorrect area units on Q. 62).

Show array diagram with oval missing grid lines.

This rectangle was covered with one centimetre square tiles. Point to complete tile But some
of them have been rubbed out. What is the area of this rectangle?

If correct number but no units given in answer, prompt for units, eg 20 what?

How did you work that out?

Battista, et al. (1998).
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Q. 36. Similar Shapes.

Show child shape comparison pictures one at a time.

The perimeter is the length around the outside of a shape. Trace perimeter with finger.

a) What can you tell me about the perimeter of these two shapes.

If necessary, does one have a larger perimeter than the other or are they the same?

How do you know?

b) The area is how many units fit inside the shape. Trace inside shape with finger.

What can you tell me about the area of these two shapes?

If necessary, does one have a greater area than the other or are they the same?

How do you know?

Repeat for each pair: a) and b) square, c) and d) circle, e) and f) rectangles, g) and h) shaded

rectangle halved

N
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Q. 37 Four Triangles

(if correct on Q. 36h).

Place task cards in front of child.

Here are four triangles. They are right angle triangles and these lengths are Scm and this
length we don't know (indicate on diagram.)

a)These four triangles have been moved to make this shape (point to rectangle).

What is the area of this shape? How did you work that out?

b) What is the area of this shape (point to square)? How did you work that out?

¢) What is the area of this shape (point to trapezium)? How did you work that out?

Adapted from National Center for Educational Statistics (2007).
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Q. 38. Draw Your Own Array.

Give child tile and rectangle diagram and show one 2cm square pattern block.
This is one tile, place block on square tile in diagram.

a) Please draw the tiles on this rectangle. What is the area of this rectangle?

If correct number but no units given in answer, prompt for units, eg thirty what?
How did you work that out?

Drawing on diagram is required, ruler permitted

b) Inverse relationship between size of tile and count (if incorrect on Q. 36h)
Show child picture of two draw your own array diagrams, one with bigger tile.
This is the same as your diagram. If you used this tile instead, would you need more or less or
the same number of tiles? How did you work that out?

Adapted from Outhred and Mitchelmore (2000).




320




321

Q. 39 Keyboard.

Place picture of keyboard and pencils in front of child.

Some children were measuring things in the classroom using pencils as their units. How long
is this keyboard in pencils?

If a whole number given, prompt, e.g. Is it exactly four?

If correct number but no units given in answer, prompt for units, e.g. three and three quarter
what?

How did you work that out?

v

Q. 40. Using Paperclips to Measure

(if incorrect on Q. 39).
Place paper clips (33mm and 50mm) and DVD in front of child.
Please measure the width of the DVD with the paper clips.
(indicate shorter length of DVD).

If child hesitates Use the paper clips to measure the
DVD.

What did you find?

If correct number but no units given in answer, prompt

for units, e.g. four what?

How did you work that out?
Adapted from Department of Education & Training (2001).
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Q. 41 Freddo Frog.

Place picture of broken ruler measuring Freddo Frog in front of child.

This centimetre ruler is broken. It is measuring a Freddo frog. How long is the Freddo frog?
How did you work that out?

Adapted from Bragg and Outhred (2004).

(Permission to use Freddo Frog image in this thesis given by Kraft Foods, see Chapter 3,
section 3.2.1.3)
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Q. 42 Footy Card

(if correct on Q. 41).

Place picture of ruler with no numerals measuring a footy card in front of child.
This ruler measures in centimetres but there are no numbers on it.

What is the length of the footy card? How did you work that out?

Adapted from Bragg and Outhred (2004).

$10009 Wvay




324

Q. 43 Straightening Wires

(if incorrect on Q. 41)

Place diagram of two wires in front of child

These are two pieces of wire that can be moved. Between the dots is the same length.

If the wires were straight would they be the same length, or would one be longer than the
other? How did you work that out?

Adapted from Battista (2006).
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Q. 44 Steps.

Place paces table in front of child

a) Some children were measuring the length of the room by counting how many steps they
took. This shows how many steps each child took across the classroom.

Point to name ... Jack took 10 steps, Emily took 8 steps, Max took 9 steps, Tim took 7 steps.
Who takes the biggest steps? How did you work that out?

Adapted from National Center for Educational Statistics (2007).

Name Number of steps

Jack 10

Emily g

Max 9

Tim 7
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Q. 45 Choosing Rulers

(if correct on Q. 44).

Place rulers and object in front of child.

Here are some rulers marked in millimetres.

a) Please choose a ruler that will help you measure the length of the pie. How long is the pie?
How did you work that out?

b) Can you use any other of the other rulers to measure? Why/ what did you find?

Adapted from Petitto (1990).
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0 100
l 10 20 30 40 50 60 70 80 90 |

Q. 45c Two Sizes of Paperclips.

(if incorrect on Q. 44).
A child was using paperclips to measure the length of this DVD. He/she has these two

different sizes. If they used these ones...indicate group with longer length... would s/he use
more or less or the same number as these ...indicate other pile.

How did you work that out?
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Q. 46 Array with Leftovers.

Place card with array, and 16 orange 2cm square pattern blocks in front of child.

Here is a shape. Trace around outside of shape with finger. Please use the tiles to measure the
area of the shape. A tile fits in this square.

Demonstrate that one tile fits in a partitioned square.

What is the area of the shape? How did you work that out?
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Q. 47. Packing Boxes.

(if correct on Q. 46).

Place diagram in front of child.

In this cup factory, the cups are always boxed as pairs. So a cup is put in a box, and then two
are boxed together like this....indicate on diagram. Then those boxes are packed into crates.
Three boxes like this fit up the side of the crate. Three boxes like this fit along the end of the
crate. And five boxes like this fit down the length of the crate....indicate on diagram. How
many cups fit into the crate....indicate single box? How did you work that out?

Adapted from Battista (2007).
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Q. 48. Cuisenaire Units.

Place square and Cuisenaire rods in front of child.
We can use these rods to measure the area of this square. If this is a square unit indicate a

"white one", what is the area of the square? How did you work that out?
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Q. 49 Perimeter of an L shape.

The perimeter of a shape is the length around the outside. So the perimeter of this rectangle is
this length, plus this length, plus this length, plus this length,

run finger along 8 by 7 rectangle sides (8, 8, 7, 7).

What is the perimeter of this shape? Point to L shape How did you work that out?

Adapted from Battista (2006).

7cm 7cm

8cm 8cm




Q. 50 Pirate Treasure Map.
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Place diagram of pirate treasure in front of child

This is a treasure map.

a) Please tell me what is on square D3. How did you work that out?
b) What are the co-ordinates for the square with the palm tree in it?

How did you work that out?

A B C D E

-
e
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Q. 51 Sawmill.

Place picture of log and circular saw in front of child.

At the sawmill they want to cut this log into eight pieces. They can move it indicate on
diagram backwards and forwards. The saw goes bzzzt like that to cut it indicate vertical cut.
How many cuts will they need to make with the saw to get eight pieces? How did you work
that out?

Adapted from Presmeg (1985).
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Q. 52 Angle Pieces.

Place pieces of circle in front of child.

Indicate smaller piece These are two fractional pieces from different circles. Can you show
me with your finger what the whole circle would look like.

Indicate larger piece Can you show me what the circle that this piece came from would look
like.

Indicate smaller piece This is one sixth of a circle. If this is one sixth, what fraction of its

circle is this piece? How did you work that out?
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Q. 53 Area Calculation — Triangle

(if correct on Q. 33).

Place 3 by 4 triangle diagram in front of child.

What is the area of this triangle?

If correct number but no units given in answer, prompt for units, e.g. twelve what?

How did you work that out?

3cm

dcm
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Q. 54 Blocks of Ice.

Show child picture of ice hotel. Have you heard about the ice hotel? Everything is made of
ice, the chairs, even the roof and the beds. This man is going to build an ice hotel out of ice
with these big blocks of ice.

What could he measure about these blocks? Show me on the diagram what that would be.

If necessary, what attributes of the blocks could he measure?

What else could he measure?

Repeat until child can not come up with more attributes. If child does not volunteer a length
measure or an area measure, prompt with, could he measure a length? Could he measure an

area? Show me on the diagram what that would be.

Q. 55 Connections.

You have done some measurement tasks and some fractions tasks with me. Can you see

anything similar about fractions and measuring?
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Dynamic imagery

Q. 56 Flags.

Place plastic flag in front of child, "blowing" to the right.

When this flag is blowing in the wind on top of a flag pole the pattern on it looks like this.
The pattern goes through to the other side. When the flag blows in the opposite direction,
move flag through 180 degree rotation, the pattern looks different.

This is a different flag. Point to the flag at the top of the diagram.

One of these is the same as this flag but it is blowing in the opposite direction... point to row
of 4 flags and then model 180 degree rotation with hand.

Which one is it? How did you work that out? Ask confirmation question if unclear about

whether dynamic imagery or geometric properties of shape reasoning was used.

Adapted from Australian Council for Educational Research (1978).
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Q. 57 Puzzle.

Place the green card with the shading on the table. Randomly place the six mauve shapes
beside the green card (mix these up to avoid prompting).

This is like a jigsaw puzzle. I have this card with a square on it...I'm wondering, without
moving any pieces yet, if you can find three pieces that you think would fit together like a
puzzle to cover the square exactly, Please point to them if you think you know.

If the child suggests three correct pieces, push the others to one side, and ask them to try and
show how they fit. Ask confirmation question if unclear about whether dynamic imagery or
geometric properties of shape reasoning was used.

Department of Education & Training (2001).
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Q. 58 Cube Rotations.

a). Place task card and real cubes in front of child.

This shape, point to first shape, has been made with cubes like these. Can you please make
this shape with the blocks.

Place fixed models of cube shapes in front of child.

b). One of these four shapes is the same as the top one, but it has been moved around in the
air. The other three are different shapes. Which one is the same as the top one? How did you
work that out?

Ask confirmation question if unclear about whether dynamic imagery or geometric properties
of shape reasoning was used.

Adapted from National Center for Educational Statistics (2007).
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Q. 59 Design.

Show the child the white page with the design on it.

a) Pointing to the small pieces on the page, Which piece is not part of the design? This may
take a little while.

If some time passes without comment or action...Would you like to tell me what you are
thinking?

Once the child has decided which piece is not part of the design....How did you work that
out?

Ask confirmation question if unclear about whether dynamic imagery or geometric properties
of shape reasoning was used.

Department of Education & Training (2001).
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Q. 60 Wattanawaha Block Rotation.

Place H models in front of child.
These two blocks are the same, and they have coloured corners that match.

This one has moved in the air and landed like this. Arrange blocks as diagram

J F
1 E =
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a) What colour would go on that corner (point to corner 2)?
How did you work that out?
b) Please describe how the shape moved.

Adapted from M. Clements (1983).

Q. 66 Wet-day Timetable.

Think about all the tasks that we have done and the materials that we have used. If it was wet

day timetable, would you play with any of these things?
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. Doubles 13. Fold me a quarter
+  Count all by ones CPMEK D a. b. [ .
. Other c. same / square / triangle / strips Imagery task
b . both quarters C PMf K
*  Multplication fact ®  looks bigger crplanation
: - has longer sidc/sides C PMf K
*  Skip comnt/ Doubles ne !
. Count all by ones - could fit over/ inside
«  Other . dynamic re-arrangement
3. Teddy cars Imagery task . other
4. Sharing teddies on the mat Imagery task a ; ; e/
5. Children at the movies Imagery task .' SHII:)C qum inangle / staps Tmagery task
a. Answer CPMEKE D oth quarters C PMEK
+  Multplication/division fact explanation ® looksbigga explanation
. Skip count CPMFK D . has longer sxde_/sxdes C PMf K
. Cout all by ones . could fit over/ inside
. Other . dynamic re-arrangement
6. Multiplication problems Imagery tack . other
a.3x10 d.3x350 CPMfFK D
b.2x7 e 4 %30 explanztion e. san;e :hsqwe / tnangle / strips
. 10x7 fax7 CPMfFK D . oth quarters
7 Division problems Imagery task . looks bigger Imagery task
a.16-2 d.24-3 C PMfK D *  haslonger side/sides C PMf K
b. 6D =10 e.35=5 expla.uanon - conld fit aver! inside Pxp]analinn
c. 804 £35=7 CPMEK D . dynamic re-arrangement C PMf K
8. off to the circus Imagery task ®  other
Answer 14. Fraction pie Imagery task
C PMfFK D a. . Answer, C PMf K
. looks like a quarter explananon
- umagined linc across L to R C PMf K
9_ Sharing our money (552 between . five pieces
4) CPMEKD . half afa half
¢+ Mentally }
. Pen and paper used 14b. Answer explanation
. Shon division algorithm . mmagined lines across L to K CPMfK
. Share by 1s . imagined RHS as LHS
10. In your head (23 ¥ 4) Imagery task - five picces
Answer cP MI K D - three pieces on RHS
explanation - Other
CPMfFK D
11. Missing number (54 ¥ _=_ _2) | Imagery task 15. tightrope walker
a. Answen CPMIK D a_ half way Tmagery task
explanstion ® 2 dots on each side C PMfK
CPMEK D - 3 spaces on each side explanation
C PMFf K
*  bycye
b. Answer . other
b. 9/10ths Imagery task
. byeye C PMf K
R S 1wl explanation
12. Bookworms Imagery task * justless than 1 whole C PMf E
a.Answer, 1 (dot uader first) * ferates 1/10
. Comparative: Twice, double, CPMFK D . uses marks
half, third, two/three/sx times explanation * uthe
. multiplication equation c2nd mark . Imagery task
language. 2x1, 3x1, Gxl C PMFEKE D . DNonhle connt lines/ spaces C P Mf K
. skip couating . Counts lines and zero-pt. explanation
s other *  Other C PMfK
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Name School Date
16. number lines 17. Pattern Blocks
a. two thirds Imagery task a. blue of yellow. Answer Imagery task
. 0 to 1 and 2/3 marked correctly C PMf K strategy CPMfFK D
*  prompt for 0, 1 needed explanation explanation
. other ratio used eg 0-9 C PMf K CPMEK D
. 0 to 1 non-prompt and 2/3 Imagery task
marked over 1 b. blue of red. Answer CPMfK D
. 2/3 at strategy explanation
e other CPMf K D
Imagery task
b. 0. ¥2 marked, please mark one and ¢CPMEK D
c. red of blue. Answer explanation
a half Imagery task
. tterates ¥ C PMf K strategy EDBP Mf i D
© byeye explanation COMER D
. uses arrow on RHS as number C PMf K -
explanation
. other d. green is half. yellow is. Answer CPMfK D
strategy
c. 0. 1, 2, please mark one quarter
. half and half again of one unit Imagery task
. iterates %, guess and check C PMf K
* by eye (no other marks) explanation
. quarter of 2 C PMEK 18. Simple operatars
. atl Y a. half of 6 Imagery task
. other b. two and a half times six C PMfK D
d. 0- 4, read arrow. Answer ¢ two thirds of nine explanation
. after 3, divided into parts Imagery task d a third of a half CPMFK D
. omitted whole number. parts C PMf K . mentally,
read correctly explanation . drawing,
. counts lines and zero-pt C PMf K . pen and paper
. counts lines successfully e a half of a third
. Counts spaces . automatic commutitivity
. Decimalises count . mentally,
. Other . Drawing
. Pen and paper
e 0-1 evenly spaced hash marks, read f. confirmatory question fora. b, c
arrow. Answer TImagery task
. counted spaces C PMf K
. double count explanation
. counted lines successfully C PMf K 19. Fraction sort Imagery task
. counted lines and zero-pt Sx inh:tfanlc D
. decimalises count CPP Mf E D
. other
Imagery task
f. 0-1. non evenly spaced hash marks, cP Mf K D
explanation
read arrow. Answer Imagery task CPMFE D
. imagines missing line C PMf K T ek
*  byeye explanation C %eﬁf K D
. one half and half'quarters C PMf K explanation
(geometric reasoning) c PP Mf K D
. counts ]m.es successfully Tmagery task
. counted lines and zero-pt CPMFKE D
. counts spaces explanation
. decimalises count CPMEKE D
. other Imagery task
g. 6-8, read arrow. Answer CPMFKE D
. units and leftovers, Imagery task explanation
. counted lines successfully C PMf K CPMEK D
¢ counted lines and zero-pt explanation Imagery task
. omitted whole number leftover C PMfK CPMEK D
part read correctly explanation
. other CPMfK D
Imagery task
h. 0-1 and beyond, improper CPMEK D
Answer Imagery task explanation
. units and leftovers, C PMf K C PMfK D
. counted lines successfully explanation Imagery task
¢  counted lines and zero-pt C PMf K [ Mf K D
. omitted whole number, leftover explanation
part read correctly CPMFK D
. other Imagery task
CPMIEK D
explanation
CPMfK D
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Name School Date
Imagery task b. 5 peogle, 3 custard tarts. Imagery task
CPMfFK D Answer CPMIK D
explanation explanation
CPMFK D CPMIEK D
Imagery task . Recognizes similar problem
C PMIK D Lype as (a.).
explanation . mentally immediately as
CPMFK D division
Imagery task *  mentally.
cP M.‘f K D . guess and 1iterate
explanation . Drawing into fifths
CPMFK D . Drawing- guess and share
ijma[g)egﬁ'msé D . Drawing other
explanation
CPMfFK D
?ageg[;asé n c. 5 péople, 7 custard tarts. Enﬂfe:‘y':as:l’( .
! Answer CPMIK D
ECXPII‘?H;;_J{'OHK o explanation
C PMIK D
Imagery task . mentally immediately as
C lp;nw K D division
cxplanation » mentally,
Smap wm:_f{ D . guess and iterate
gery . .
p lp;n M;:, E D . EZW££, ;ﬂl;;ltlllsmatewholes and
EXPP [:H.OHK D . Drawing, all into fifths
Tma ok . Drawing- eliminate wholes then
gery guess and share,
CPMIFK D .
lanation . Drawing- guess and share,
EXPP Mf K D . Drawing other
Imagery task
C PMfK D
lanati
EXPP ]:HWK D d. 4 peogle and 9 pieces of liquornice. Imagery I.ask
T Answer CPMIi K D
magery task lanation
exp
¢ lp;n[:gonK D CPM{TK D
EXPP Mf K D . xdr.lentally immediately as
Tmagery task ivision
CPMfK D *  mentally,
explamation . guess and iterate
CPMFE D . Drawing — elummnate wholes,
Imagery task then into quarters
CPMFK D . Drawing, all into quarters
explanation *  Drawing- eliminate wholes then
CPMFK D guess and share
Tmagery task . Drawing- gness and share,
CPMfFK D . Drawing other
explanation
S.._I.)..,E[,{-E 11. Golden beans
Imagery task N Imagery task
cPMfEK D b. equivalent fraction. CPM K D
explanation explanation
CPMfE D c CPM{K D
Imagery tack d. equivalence.
CPMfFK D
explanation 12. Fraction pairs Imagery task
CPMEE D a 3/8 and 7/8 orsame C PMf K D
]2.0. Sh.aring custard tarts and Ema}g)egﬂmsé( 5 explanation
51[;.;2;?3 strips of liquorice explanation D the same and compares N CPMIK D
£ - 1,
Answer CPMFE D benchmarkmg to ¥z and 1

. mentally immediately as
division

mentally,

guess and 1terate
Trawing- gness and share
Drawing, into fifths
Drawing, other

residual thinking(1/8<5/8)
residual thinking closer ta 1
other (satisfactory)

compares n only 73

more area

. gayp thinking (1 < 35)

. smaller numbers mean bigger
fractions

« s s s s 8

s othsr (unsatisfactory,

Rl
unsatig ory)
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. ather (unsatisfactory)

. ‘Written algorithm
[ diagram

Name School Date
b. 2/4 or 4/8 or same H 3/4 and 7/9 or same
Imagery task Imagery task
. equivalent CPMfK D . benchmarks C PMfK D
*  both# explanation [ converts to common D explanation
e  2ishalfof 4, 4ishalfof 8 CPMfK D ¢ other (satisfactory) CPM K D
. 4 1s double 2. 8 is double 4 . residual thinking
. Other satisfactory . higher or larger numbers
. More area . gap thinking
. Higher or larger numbers . other (unsatisfactory)
. Denominator
= Gap thinking Inagery task
*  Other unsatisfactory CPM{K D
explanation
C PMfI K D
c. Y2 and 5/8 or same 3. Puff machine
Imagery task Answer Imagery task
*  benchmmkswonehalf | C P Mf K D +  Describes unit and left overs, CPMEE D
= COMMON (CNOMMNALons Ji Lot cxplanahion lines/spaces are fifths, 0.2, (skip | explanation
*  Other (satisfactory) CPMfK D counting) CPM K D
* more arca . Describes unit and leftovers,
. Higher or larger numbers lines are. .
*  Becausei’s half ¢ Uses whole numbers
. Gap thinking (1=3) [ Other
. Other (unsatisfactory)
24. Arc, angle, area
d2/4 and 4/2 or same @ Answer Imagery task
Imagery task CPM K D
. equates to ¥ and 2 CPMIK D . Uses ‘fvclrds Ar?}'ang]efarea Expl;n;{t}on[{ o
. converts fo ¢ on explanation . Describes arc line, lines
denominators CPMFK D meeting, line rotating, space, fit
*  benchmarks to 1 (improper or inside
more than one) ‘ other
. other (satisfactory) b.
. all are correct
* more atea [ like me in
. 215 half of 4
- Compares numecrators or ¢ Ar they are 1ncuﬂ;':t
denominators ¢ Are, aﬂgle, area, other
. Other (unsatisfactory) 25. Density
a Answer Tmagery task
. prompt for equivalence C PMf K D
e. 4/7 and 4/5 or same explanation explanation
Imagery tack C PMfE D
® N the same and ccmpared D CPMfFK D b. how many?
. size of the pieces different explanation . infinite number
. converts 1 common D CPMfK D . lots/many
*  benchmarks to Y2 and 1 . other
*  residual thinking(1/5=3/7) explanation
. other (satisfactory) . density/equivalence/
. more area . other
. compares denominators only
. gap thinking (1 <3) 26. fraction algorithms Imagery task
®  ofier (unsatisfactory) 5/6 +1/6 CPMIK D
. Mentall explanation
eatatly C PMf K D
£3/7 and 5/8 or same - « . Written equation/answer
gety ta [ Written algorithm
. ‘benchmarks to ¥2 C PMfK D Di
. converts to common D explanation : e ma ok
3 ta:
. other (satisfactory) CPMfK D Ya +1/2 C gerMyf K D
*  residual thinking(3/8<4/7) ¢ Melly explanation
*  Igher or larger numbers . &nnen e;lmtftzjnfnaﬂs“’ﬁ CPME D
. gap thinkmg (3<4) . ritten algor
. other (unsatisfactory) . diagram
13+ % agery task
g 5/6 and 7/8 or same ¢ PMfK D
Imagery task ‘ xmm.lly con explanation
.
*  benchmarks to ¥ CPMf K D nften equation/answet CPMi K D
I . ‘Wnritten algorithm
. converts to common D explanation . diagram
. other (satisfactory) CPMfK D
1 Ima; task
e residual thinking 4% -2/4 P E D
. higher. or larger numbers . xe.ntally - ) explanation
- gap thinking L Wntten equation/ answer CPMIE D




Name School Date
vx 1/3 Imagery task 34. Square to triangle sequence- Imagery task
CPMEK D cutting C PMf K
. Mentally .
. Written equation/answer explanation Answer ) explanation
quat CPMEfK D . Same b/c nothing added or C PMf K
. Wmten algorithm taken away, just moved
had diagram . looks bigger
27. Show me thirds Imagery task - Triangle has longer side/sides
a. halves. Answer CPMEK D . Other
. count top/bottom line explanation
e  byeye CPMEK D
. count all 35. Missing aval Imagery task
*  other Answer C PMf K
b thirds. Answer s Prompt for units explanation
*  count top/bottom hne e Multiplication, R by C C PMf K
. count rows . Skip count rows/columns
* countall . Count in R/C by ones
. other . Count by ones
c sixths. Answer
. count top/bottom line
®  countrows 36. Similar shapes
e countall Perimeter | »  Looks bigger Imagery task
*  halfofl/3 [ *  Line/s longer C PMf K
. other ‘ . Would fit inside explanation
28. Crossroads Imagery task C PMf K
Answer CPMfEK D
. Reumtized to/ “saw”™ 4 by 4 explanation
squares CPMIK D Area . Looks bigger Imagery task
. Counted by ones, fours - Line/s longer C PMf K
. Double count ‘ - Would fit inside explanation
. Multiphed rows and columns - bic > perim C PMf K
. Other
29. Ending on a positive fraction *  Looks bigger Imagery task
. Line/s longer C PMf K
*  Would fitnside | explanation
30 Off the record - Has no perim C PMf K
Like best
Why Area - . Looks bigger Imagery task
e Line/s longer C PMf K
My e  Would fit inside | cxplanation
In class S e . blc > perim C PMf K
Seen questions
Perimeter Looks bigger Imagery task
Easy/challenging/both . Lines longer € PMfK
31. Streamer Imagery task . Dynamic explanation
a. length. Answer CPMEK D C PMf K
*  Prompt forunits explanation
. Iterated 30cm lengths using CPMfK D
ruler Arca e  Looks bigger Imagery task
. Marked iteration. pen/ finger . Lines longer C P Mf K
. Iterated whole ruler - Dynamic explanation
e Other C PMf K
b. from 1 meter. Answer
32. Measure DVD with a ruler Imagery task Perimeter : ﬁ:: ::ig: ]énagaﬁftas;
Answer CPMfK D +  Dynamic & explanation
. Prompt for units explanation C P Mf K
. Used zero as starting point CPMIEK D * Both half
. Other
33. Area calculation- half rectangle | Imagery task Area *  Looks bigger Imagery task
Answer CPMfK D *  Line/s longer C P Mf K
. Prompt for units_____ explanation . Dynamic explanation
*  Half of 12 (rectangle) CPMf K D *  Both half C PMER
. Not 12 . Because have
e Multiplied two lengths Same perm
. Other
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Name School Date
37. Four triangles Imagery task 44. Steps Imagery task
1. answer C PMfK D Answer C PMf K D
explanation explanation
CPMfFK D ®  the least steps C PMfFK D
- the smallest/ bigger mumber
b. answer s other
45. Choosing rulers Imagery tasic
a. ruler: measure: C PMfK D
. Chose 1 muler and measured explanation
© answer - Tried and discarded somemlers | C P Mf K D
b.
] . Chose 1 ruler and measured
proportional . Tried and discarded some mlers
38. draw your own array Imagery task o Notequal
= | a.area of reactangle. Answer CPMfK D
A explanation
*  Prompt forunits CPMFK D
" ‘.“.Cd ruler to mark hash marks, 46. Array with leftovers Imagery task
joined rows and columns ®  Whole tiles plus lefiovers CPMfK D
] used ruler to measure 2cm at a explanation
time CPMf K D
] used ruler to rule columns, rows
. by eve grid structure
. individual tiles
. other
b. inverse. Bigger tile. Answer 47. Packing hoxes Imagery task
o ®  Multiplied 3 by 3 by § (by2) CPMFE D
*  bleil’s bigger »  Multiplied 5 by 6 by 3 by 2 explanation
s other - Skip counted CDPMFK D
39. Keyhoard Imagery task
Answer CPMFK D
»  Prompt forunits explanation
. Descaibed lefiovers C PMfK D 48. Cuisenaire array Imagery tack
CPMFK D
explanation
CPMFK D
40. Using paperclips to measure Tmagery task
Wer C PMfK
. Long _ short explanation
] Prompt forumits CPMFK D
. Used 1dentical units
. Named nen-identical units 49, Perimeter of an L shape Imagery task
. no gap/overlap Answer CPMfK D
. Described leftovers . Geometric reasoning explanation
40b. units and count ®  Estimated unknown lengths, by | € P Mf X D
eye
- Measured unknown/all lenpths
with ruler — ratic cale
41. Fredda frog Imagery task - Mecasured unknown lengths
Answer CPMfK D with rler- added to given
. 8 take away 3 explanation lengths
*  Menially realigned 3 to 0/1 C PMf K ®  Measured all sides with ruler
. Counted spaces and added
- Counted hach marks success/y . Other
. Counted hash marks inc zero-p
» Other 50. Pirate treasure map Imagery task
a_square D3 Answer CPMfFK D
42. Footy card Imagery task ®  armay structure explanation
Answer C PMfK *  other CPMfK D
»  Counted spaces explanation b. palm tree?
. Counted hash marks success/y C PMf K Answer
»  Counted hash marks inc zero-p ®  armay structure
. Other - olhict
51. Sawmill Imagery task
43. Straigtening wires Imagery task Eight pieces, # of cuts. CPMIK D
Answer CPMFK D Answer explanation
»  byeye explanation ®  Algebraic CPMFK D
. l:om;j:ed spaces cor .},v[_f K D - bic one is at the and
»  counted dots as end of spaces . b’_'c there 15 8
»  counted dots *  diagram

. other
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C PMfK D

55. connections

. Both use numbers

. Can descnibe leftovers
. No connection

56. Flags Imagery task
Answer C PMfK D
. Dynamic imagery explanation
. Geometrnic reasoning CPMfK D
57. Puzzle Imagery task
CPMfFK D
v explanation
C PMfFK D
Tick the three selected if any
. Successful fit immediately
without adjustment
. Successful fit after some
adjustment
. Unsuccessful
58. Cube rotations Imagery task
a. Makes model C PMfK D
b. Picks rotated cube. explanation
Answer C PMfK D
. Dynamic imagery
. Geometric reasoning
59. Design Imagery task
Circle the selected piece (if any) C PMf K D
. None or explanation
@ %_‘ @ C PMfK D
. Dynamic imagery
. Geometric reasoning
60. Wattanawaha block rotation Imagery task
Comer 2 CPMfFK D
. Dynamic imagery explanation
C PMfK D

. Geometric —opposite a.

Name School Date
52. Angle Pieces 61. Wet Day Timetahle
. Compare angle
. Compare arcs
. Compare widths
L] rotates
. other
53. Area calculation triangle Imagery task PP staircase
Answer CPMfFK D answer
. Prompt for units explanation units
e  Half of 12 (rectangle) C PMfK D PP area of rectangle
* Notl2 answer
® Y base imes height ii:;a:mﬂy
. Multiplied two lengths L
. Other PP swimming pool
54. Blocks of ice Imagery task

C PMf K D
explanation
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Appendix B: Ethics

Approval from the Australian Catholic University Human Research Ethics Committee.
Approval from the Department of Education and Early Childhood Development.

Information letter for Director of Northern Metropolitan Region, Department of Education

and Early Childhood Development.
Information letter to Principals and consent form (principals).
Information letter to participants and consent forms (parents/guardians and children).

Approval from Cadbury to use the Freddo image.
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Australian Catholic University
Brisbane Sydney Canberra Ballarat Melbourne

@ ACU National

Human Research Ethics Committee

Committee Approval Form

Principal Investigator/Supervisor: A/Prof Marj Horne Melbourne Campus
Co-Investigators: Melbourne Campus

Student Researcher: Anne Mitchell Melbourne Campus

Ethics approval has been granted for the following project:
Primary school children's understanding of fraction concepts

for the period: 10" October 2006 - 30" June 2008
Human Research Ethics Committee (HREC) Register Number: V200506 79

The following standard conditions as stipulated in the National Statement on Ethical Conduct in
Research Involving Humans (1999) apply:

(i) that Principal Investigators / Supervisors provide, on the form supplied by the Human
Research Ethics Committee, annual reports on matters such as:
« security of records
+ compliance with approved consent procedures and documentation
« compliance with special conditions, and

(i)  that researchers report to the HREC immediately any matter that might affect the ethical
acceptability of the protocol, such as:
= proposed changes to the protocol
+ unforeseen circumstances or events
» adverse effects on participants

The HREC will conduct an audit each year of all projects deemed to be of more than minimum risk. There
will also be random audits of a sample of projects considered to be of minimum risk on all campuses each
year.

Within one month of the conclusion of the project, researchers are required to complete a Final Report
Form and submit it to the local Research Services Officer.

If the project continues for more than one year, researchers are required to complete an Annual Progress
Report Form and submit it to the local Research Services Officer within one month of the anniversary date
of the ethics approval.

/L’ AR IRt
B Date: 12.10.2006

(Research Services Officer, Melbourne Campus)

Signed:

(Committee Approval.dot @ 15/10/04) Page 1 of 1
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iZanad
res ethics To:Marj Horne/patrick@patrick, Annie Mitchell/patrick@patrick
Sent by: Jo 1
Mushin e

bee:

20/12/2007 10:25 Subject: Ethics Modification V200506 79

AM
Dear Marj and Annie ,

Thank you for submitting the request to modify form for your project V200506 79 Primary School
Children's Understanding of Fraction Concepts.

The Chair of the Human Research Ethics Committee has approved the modification, please take this
email as confirmation of your approval.

We wish you well in this ongoing research project.
Kind regards,

Jo

e 3 e 3 ke 3 e o e ok o ok o ke o8 o o o8 3 6 o6 o sk ke ok s ke ol s fe ol s ol o e ok o ok sk ook ok ok ok ok ok

Jo Mushin

Research Services Officer (Ethics)
Research Services

Australian Catholic University Limited
ABN 15 050 192 660

St Patrick's Campus

(Locked bag 4115)

115 Victoria Parade Fitzroy VIC 3065
Ph: (03) 9953 3158

Fax: (03) 9953 3315

Email: res_ethics@acu.edu.au
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Office of Learning and Teaching

S0S003302

Ms Annie Mitchell

Australian Catholic University
115 Victoria Parade
FITZROY 3065

Dear Ms Mitchell

Thank you for your application of 19 June 2006 in which you request permission to
conduct a research study in government schools titled: Primary School Children'’s
Understanding of Fraction Concepts.

['am pleased to advise that on the basis of the information you have provided your
research proposal is approved in principle subject to the conditions detailed below.

1.

2 Treasury Place

Should your institution’s ethics committee require changes or you decide to
make changes, these changes must be submitted to the Department of
Education and Training for its consideration before you proceed.

You obtain approval for the research to be conducted in each school directly
from the principal. Details of your research, copies of this letter of approval
and the letter of approval from the relevant ethics committee are to be provided
to the principal. The final decision as to whether or not your research can
proceed in a school rests with the principal.

No student is to participate in this research study unless they are willing to do
so and parental permission is received. Sufficient information must be
provided to enable parents to make an informed decision and their consent
must be obtained in writing.

As a matter of courtesy, you should advise the relevant Regional Director of
the schools you intend to approach. An outline of your research and a copy of
this letter should be provided to the Regional Director.

GPO Box 4367 o
East Melbourne, Victoria 3002 Melbourne, Victoria 3001 y y
. Victoria

Telephone: +61 3 9637 2000

DX 210083

The Place To Be
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5. Any extensions or variations to the research proposal, additional research
involving use of the data collected, or publication of the data beyond that
normally associated with academic studies will require a further research
approval submission.

6. At the conclusion of your study, a copy or summary of the research findings
should be forwarded to the Research and Development Branch, Department of
Education and Training, Level 2, 33 St Andrews Place, GPO Box 4367,
Melbourne, 3001. 3

I wish you well with your research study. Should you have further enquiries on this
matter, please contact Chris Warne, Project Officer, Research on (03) 9637 2272.

Yours sincerely

WMalen

Sandra Mahar
A/Assistant General Manager
Research and Innovation Division

[5/67/2006

enc

Annie .

Thank you for your letter dated 11 January 2008 in which you request approval for amendments to
your application to conduct research in schools titled: ‘Primary school students' understanding of
fraction concepts'.

The Department of Education and Early Childhood Development approves the amendments subject to
the conditions outlined in the original letter of approval.

Regards

Chris Warne

Senior Research and Policy Officer

Research Branch

Education Policy and Research Division

Office for Policy, Research and Innovation

Department of Education and Early Childhood Development
Level 2, 33 St Andrews Place

GPO Box 4367

MELBOURNE 3001

Ph: (03) 9637 2272
Fax: (03) 9637 2150
warne.christine.p@edumail.vic,gov.au
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Australian Catholic University
Brishane Sydney Canberra Ballarat Melbourne

% ACU National

Australian Catholic University Limited
ABN 15 050 192 660

Melbourne Campus (St Patrick’s)

115 Victoria Parade Fitzroy Vic 3065
Locked Bag 4115 Fitzroy MCD VIC 3065
Telephone 03 9953 3000

Facsimile 03 9953 3005
www.acu.edu.au

SEPTEMBER 12 2007

Wayne Craig

Regional Director

Northern Metropolitan Region

Department of Education and Early Childhood Development
Locked Bag 88

Fairfield 3078

RESEARCH IN SCHOOLS

TITLE OF PROJECT: PRIMARY SCHOOL CHILDREN’S UNDERSTANDING OF FRACTION
CONCEPTS

SUPERVISOR: ASSOCIATE PROFESSOR MARJ HORNE
STUDENT RESEARCHER: MS ANNIE MITCHELL, PhD CANDIDATE

Dear Mr Craig,

We are writing to inform you that we would like to approach two schools in the Northern Region to
conduct a pilot study of the tasks and protocols to be used in the research project, Primary School
Children’s Understanding of Fraction Concepts. We would like to contact the Principals of [school
names deleted] to ask their permission to conduct part of this research in their schools and to send
information letters to participants, and consent forms, to the families of Grade 6 students.

This research project aims to mvestigate the relationship between children’s understandings of fraction
tasks and any connections they may make with measurement concepts and spatial reasoning. This
research has ethics approval from the Australian Catholic Umiversity Human Research Ethics
Comunittee and the Department of Education and Early Childhood Development. Annie Mitchell 1s an
experienced primary school teacher, currently undertaking her PhD studies in mathematics education.
She will be conducting all the interviews, and has current Victorian Institute of Teaching registration.

CRIOCOS registered provider:
00004G, 00112C, D0873F, 00885B



Each child will complete a pen and paper test on m em gpace concepts.
then take part in two one-to-one t"isk based 111‘re1‘\f1ews sumlal in fonmt to the Ealh, Numemcv
Interview. All sessions would be audio-taped, and the answers to interview tasks recorded on a record
sheet, collected and analysed. Permission will be sought for a smaller number of students to be filmed
30 that a) the 1cco1dmg of strategics and coding of data can be “double checked” and b) footage of

hers and researchers in

children’s strategies for attempting fraction tasks can be shown to other teact
professional development sessions and at conferences including on the internet.

very lmportant topic in mathemarics. We are trying to find out more about students’

1 - mos of fractiong o that we ecan .mm-m.a onnorbimitiag for all ehidente The amidentg

pa1t1c1p1tu in the study may benefit from the opportunity to reflect upon their learning.

Please find artached a copy of the letter of approval from the Australian Catholic University Human
Research Fthics Committee. Also attached is a copy of the letter of permission to conduet this study
from Chris Warne, Research Branch, Education Policy and Research Division, Department of
Education and Early Childhood Development. Copies of information letters to Principals and
Participants are also included.

We believe that this work may provide valuable insights into mathematics learning in the middle years,
and we look forward to being able to share our major findings with you.

Yours faithtully

Maij Horne Annie Mitchell
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Australian Catho ic University

Rriskane Svdney Canbarra Ballzrat Melbourmne
SASDANE SYONgy Lanoara Sangral Viaimoume

Australian Catholic University Limited
ABN 15 (050 192 660

Melbourne Campus (St Patrick’s)

115 Victoria Parade Fitzroy Vie 3065
Locked Bag 4115 Filzroy MCD VIC 3065
Telephone 03 9953 3000

Facsimile 03 9953 3005
www.acu.edu.au

December 12 2007

Wayne Craig

Regional Director, Northern Metropalitan Region
Department of Cducation and Larly Childhood Development
Locked Bag 88

Fairfield 3078

Re: RESEARCH IN SCHOOT S

TITLE OF PROJECT: PRIMARY SCHOOL CHILDREN’S UNDERSTANDING OF FRACTION
CONCEPTS

Dear Mr Craig,

We are writing to inform you that we would like to approach two additional schools in the Northemn
Region to conduct one-to-one task-based interviews to be used in the research project, Prumary School
Children’s Understanding of Fracticn Concepts. We would like to contact the Principals of [school
names deleted] to ask thewr permission to conduct part of this rescarch in their schools and to send
information letters to participants, and consent forms, to the families of Grade 6 students.

Our letter to you on September 12 of this vear outlined the rationale for, and conduct of, the project.
This project has ethics approval from the Australian Catholic University Human Research Ethics
Comunillee and fom the Departinent ol Education and Early Childhood Developiuent (4 SOS003302).

Yours faithfully

Associate Professor Mar) Horne Annie Mitchell

CRIOCOS ragisterad provider:
00004G, 00112C, DOB73F, 00885B
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Australian Catholic University

Brisbane Sydney Canberra Ballarat Melbourne
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Australian Catholic University Limited
ABN 15050 192 660

Melboume Campus (St Patrick’s)

115 Victoria Parade Fitzroy Vic 3065
Locked Bag 4115 Fitzroy MCD VIC 3065
Telephone 03 9953 3000

Facsimile 03 9953 3005
www.acu.edu.au

[date]

[Principal’s name deleted]
Prineipal

[school name deleted]
[School address deleted]
[School address deleted]

PRINCIPAL LETTER FOR STUDENT PARTICIPATION IN RESEARCH PROJECT

TITLE OF PROJECT: PRIMARY SCHOOL CHILDREN’S UNDERSTANDING OF FRACTION
CONCEPTS

SUPERVISOR: ASSOCIATE PROFESSOR MARJ HORNE
STUDENT RESEARCHER: MS ANNIE MITCHELL, PhD CANDIDATE

Dear [Principal’s name deleted],

We are writing to ask your permission to invite Year 5 and Year 6 students in your school to take part
in a research project that aims to investigate the relationship between children’s understandings of
fiaction tasks and any connections they may make with measurement concepts and spatial reasoning.
Each child will complete a pen and paper test on measurement and space concepts. Many children will
then take part in two one-to-one task-based interviews, similar to the format of the Early Numeracy
Interview.

You will be informed about the progress of the research. If a student becomes distressed during an
interview, the interview will be terminated, and he/she will be returned to their class teacher or another
appropriate staff member for any necessary counselling or support, and you will be informed. Annie
Mitchell 1s an experienced primary school teacher, currently undertaking her PhD studies
mathematics education. She will be conducting all the interviews, and has current Victorian Institute of
Teaching registration.

The research would take place during class time. The pen and paper test may take up to one session
(one hour) to complete. The mterviews may take up to one session (1 hour) each to complete. Some

CRIOCOS registered provider:
00004G, 00112C, 00873F, 008858
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children will complete the assessment tasks in a shorter time and will immediately be able to return to
their normal program. Teachers will need to make their students available during class time. They will
also be asked to distribute and collect parental consent forms. A quiet room will be required for
conducting the interviews. All sessions would be audio-taped, and the answers to interview tasks
recorded on a record sheet, collected and analysed. Permission will be sought for a smaller number of

tndents to he filmead <o ﬂ\qf a) the recording of stratecias and coding of data can 1\13 “danhla chagl-ad”
stugents t¢ be fiimed so that @y il ISLCUILINE V1 SualCEiCs alil LULLILE VL Udua vall wUuuis LLUCUATUG

and b) footage of children’s strategies for attempting fraction tasks can be shown to other teachers and
researchers in professional development sessions and at conferences including on the internet.

Fractions 15 a very important fopic in mathematics. We are trying to find ouf more ahont students’
understandings of fractions so that we can improve opportunities for all students. The students
participating 1n the study may benefit from the opportunity to reflect upon their learning. We hope to
use the results in Annie Mitchell’s PhD thesis, to publish research papers in education journals, and to

present papers at education conferences.

Having given vour consent for the researchers to work with students in your school, you are fiee to

withdraw your consent or to discontinue participation in the project at any time, without giving reasons.

There will be no penalty for you or your school for withdrawing from the study. The p’irticipation of

students (and rhen pa1enrq crnt.en’r) |1111Tf113 and they are free to discontimue participation in the
ot . T

nrolect e
PLU‘JCL at art } i11d

As the data will be collected by wi‘rhdrawing students from the class, it will be possible for other
students in the grade, and teachers, to know who took part in the research. Written reports from the
study will not enable anyonc to identify individual children. The data collected throughout this study
may be used in publications, used in teaching or shared with other researchers, but confidentiality of
teachers’ and students’ identities will be maintained at all times. The video footage may be used for a)
“double checking™ our method of recording information on the record sheet and coding those answers
and b) in professional development sessions and shown at conferences to other teachers and
researchers, including on the internet. The name of your school may be kept confidential if you wish, or
you may consent to your school being named in order for the school commumnity to be thanked for
participating in this recearch.

Any questions regarding this project should be direeted to the Principal Rescarcher, Associate
Professor Mar] Home, School of Education, St Patrick’s Campus, 115 Victoria Parade, Fitzroy 3065
(Tel: 9953 3289).

Following the data analysis, we would be pleased to share a copy of our major findings with you
should you indicate an interest in this.

This study has been approved by the Human Research Ethics Committee at Australian Catholic
Umiversity. Ethics approval for this project has been granted by the Department of Education. Copies of

In the event that you have any complaint or concern about this study, or if you have any query that the
Principal Researcher has not been able to satisfy, you may write to: the Chair of the Human Research
Cthics Committee, C/o Research Services, Australian Catholic University, Melbourne Campus, Locked
Bag 4115, Fitzroy VIC 3065 (Tel: 9953 3157; Fax: 9953 3315). Any complaint or concern will be
treated in confidence and fully investigated. You will be informed of the outcome.

If you give permission for students at your school to be approached to participate in this project, we
would ask that you forward the attached parent information letters and informed consent forms to the
students and their families.

CRIOCOS registered provider:
00004G. 00112C. 00873F, 00885B
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Please indicate your response to the questions below and return the coloured copy to the researchers.

T coneant tn Chlr‘ﬂ"‘lfﬁ. 11 My e '\ﬂﬂ] I\PI'\G anmt (\ﬂf‘]]ﬂf’] 1o take nart 1in 1< Qfl‘(q‘ TaC f no
I consent to students 1n my school being approached to fake part in this study ves/ no
I consent to my school being named in publications or presentations: ves/ no
[ would like a copy or summary of the research findings: ves/ no

We look forward very much to your response.

Yours sincerely

Marj Horne Annie Mitchell
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Please indicate your response to the questions below and return the coloured copy to the researchers.
Name of School ...

Name of Principal ...

I consent to students in my school being approached to take part in this study: yes/ no

I consent to my school being named in publications or presentations: yes/ no

I would like a copy or summary of the research findings: ves/ no
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Australian Catholic University
Brisbane Sydney Canberra Bellarat Melbourne

% ACU National

Australian Catholic University Limited
ADN 15 050 192 660

Melbourne Campus (St Patrick’s)

115 Victaria Parade Fitzroy Vic 3065
T.ocked Bag 4115 Fitzroy MCD VIC 3065
Telephone 03 9953 3000

Facsuuile 03 9953 3005
www.acu.edu.au

JANUARY 29, 2008

PARENT INFORMATION LETTER FOR STUDENT PARTICIPATION IN RESEARCH
PROJECT

TITLE OF PROJECT: PRIMARY SCHOOL CHILDREN’S UNDERSTANDING OF FRACTION
CONCEPTS

SUPERVISOR: ASSOCIATE PROFESSOR MARJ HORNE
STUDENT RESEARCHER: MS ANNIE MITCHELL, PhD CANDIDATE

Dear Parent/Guardian,

We are inviting vour child to take part in a research project that aims to investigate the relationship
between children’s understandings of fraction tasks and any connections they may make with
measurement concepts and spatial reasoning. Each child will complete a pen and paper test on
measurement and space concepts. Many children will then take part in two one-to-one task-based
interviews, similar to the format of the Early Numeracy Interview. Participation in this research
project is voluntary.

If your child becomes upset during the interview, his/her participation in the research will cease, and
he/she will be returned to the class teacher or another appropriate staff member for any necessary
counselling or support. Annie Mitchell is an experienced primary school teacher, currently
undertaking her PhD studies in mathematics education. She will be conducting all the mterviews, and
has current Victorian Institute of Teaching registration.

The research will take place during class time. The pen and paper test may take up to one session
(one hour) to complete. The interviews may take up to one session (1 hour) each to complete. Some
children will complete the assessment tasks in a shorter time and will immediately be able to return to
their normal program. All sessions will be audio-taped, and the answers to interview tasks recorded
on a record sheet, collected and analysed. If you give your permission, the interview may also be
filmed.

CRIOCOS registerad provider:
00004, 00112C, 0087 3F, OUBBoE
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understandings of fiactions so that we can improve opportunities for all students. The studeuts
participating in the study may benefit from the opportunity to reflect upon their learning. We hope to
use the results in Annie Mitchell’s PhD thesis, to publish research papers in education journals, and
to present papers at education conferences.

out more 4

Having given your consent, you are free to withdraw your consent or to discontinue the participation
of your child at any time, without giving reasons. There will be no penalty for withdrawing from the
study for you or your child.

As the data will be collected by withdrawing students from the class, it will be possible for other
students and teachers at the school to know who took part in the research. Written reports from the
study will not enable anyone to identify your child. The data collected throughout this study may be
used in publications, used in teaching or shared with other researchers, but confidentiality of
teachers” and students’ identities will he maintained at all times The names of the schools
participating may be made public so that they can be thanked for taking part in the research. If you
are happy for the school to receive some feedback on how your child went on the interview tasks,
please tick the box on the consent form.

R i R -

.’—XIl\v L]th‘,bllUIlb l'egcuumg U.lli‘s IJ[UJBL[ b[lUlll\l Ut‘ LllIt‘LI.E(.‘l io dbbUlele J:'I.UJ.!:‘bbUI 1VJ.d1_] l'.LU[II.E‘ raci 11
of Education, St Patrick’s Campus, 115 Victoria Parade, Fitzroy 3065 (Tel: 9953 3289).

.(r

Following the data analysis, we would be pleased to share a copy of our major findings with you
should you indicate an interest in this, and provide an address to which it should be sent.
This study has been approved by the Human Research Ethics Committee at Australian Catholic

UIllVQlSlI} and D}f the uep'nnnem oI LOUC'!IlOll Victoria.

In the event that you have any complaint or concern about the way you or your child have been
treated during the study, or il you have auy query that the Principal Researcher has not been able to
satisfy. you may write to: the Chair of the Human Research Ethics Committee, C/o Research
Services, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy VIC 3065
(Tel: 9953 3157; Fax: 9953 3315). Any complamt or concern will be treated in confidence and fully
investigated. You will be informed of the outcome.

If you agree for your child to participate in this project, you should sign both copies of the Consent
Form, retain cne copy for yeur reccrds and refurn the other copy to your child’s class teacher which
will ‘[heu be collected by the researcher. We are asking for a small number of children be filmed so
that a) the filling in of record sheets with their answers to questions can be “double checked” by
another researcher and b) so that footage of children’s different strategies for attempting fractions
tasks can be shown to other teachers and researchers, and at conferences or professional development
sessions for teachers, including on the internet. If you are happy for your child to be part of the
sample that may be [ilimed, please tick the box next to “flming permmission™ on the consent form. 10
you would like your child to take part in the project but not be filmed, simply do not tick the box, and
they will not be filmed. ALL children will be audio-taped during the interview so that their responses
to the tasks can be written down.

Yours sincerely
Marj Horne Annie Mitchell

CRIOCOS registered provider:
000043, 00112C, 00873F, 00885B



Australian Catholic University
Brisbane Svdney Canberra Balarat Melbourne

Australian Catholic Umversity Limited
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PARENT CONSENT FORM (Parent copy)

Title of Project: Primary School Children’s Understanding of Fraction Concepts
Supervisor: Associate Professor Mar) Horne

Student Researcher: Ms Annie Mitchell, PhD Candidate

L e have read (or, where appropriate, have had read to me) and
understood the information provided in the Parent Information Letter. I am happy for my child to
complete a pen and paper test and take part in two mathematics one-te-one task-based interviews. I
understand that my child will be audio-taped while taking part in this research. Any questions I have
asked have been answered to my satisfaction. I agree for my child to participate m this activity,
realising that I can withdraw this permission at any time. I agree that the data collected may be
published or may be provided to researchers and teachers in professional development programs.

1 filming permission

I give my permission for my child to be filmed during the one-to-one task-based mterview. This
footage would be used a) for checking the researcher’s recording of information and b) for showing
at professional development sessions and at conferences. I understand that this may include
“snippets” of my child’s interview being made available on the internet.

1 Igive my permission for the school to receive some feedback on how my child went on the tasks

[] Iwould like a copy of the major findings of this research project

Please forward this to my address below (or care of the school)

CRIOCOS registered provider:
00004G, 00112C, 00873F, 008858
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(block letters)
NAME OF PARENT OR GUARDTIAN: e
(block lelters)
SIGNATURE DATE
SIGNATURE OF PRINCIPAL RESEARCHER .........cccooiivrenne. DATE ..o

ASSENT OF PARTICIPANTS AGED UNDER 18 YEARS

(the participant aged under 18 years) understand what this project is about.
What I will be asked to do has been explained to me. I understand that I do a maths test and will be
mterviewed about my answers to mathematics tasks. I am happy to be audio-taped during this
research. Information that I give may be used in publications and shared with other researchers and
teachers but my name will not be used. I agree to take part in the project, realising that I can stop at
any time without having to give a reason for my decision. If my parents have given permission for
me to be filmed, T understand that this will be used to check the researcher’s recording of information
and could be shown to other teachers and at conferences, or on the internet.

NAME OF PARTICIPANT AGED UNDER 18: e

(block letters)
SIGNATURE oo DATE. ..
SIGNATURE OF TEACHER OR PARENT WITNESS
DATE ...
SIGNATURE OF PRINCIPAL RESEARCHER ..o DATE ...

CRIOCQS registered provider:
00004G, 00112C, 00873F, 008E5B
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Australian Catholic University
Brisbane Sydney Canberra Ballarat Melbourne

% ACU National

Australian Catholic University Limited
ABN 15 050 192 660

Melbourne Campus (St Patrick’s)

115 Victoria Parade Fitzroy Vic 3065
Locked Bag 4115 Fitzroy MCD VIC 3065
Telephone 03 9953 3000

Facsimile 03 9953 3005
www.acu.ediau

PARENT CONSENT FORM (Researcher copy)

Title of Project; Primary School Children’s Understanding of Fraction Concepts
Supervisor: Associate Professor Marj Horne
Student Researcher: Ms Annie Mitchell, PhD Candidate

L have read (or, where appropriate, have had read to me) and
understood the information provided in the Parent Information Letter. I am happy for my child to
complete a pen and paper test and take part in two mathematics one-to-one task-based interviews. I
understand that my child will be audio-taped while taking part in this research. Any questions I have
asked have been answered to my satisfaction. T agree for my child to participate in this activity,
realising that T can withdraw this permission at any time. I agree that the data collected may be
published or may be provided to researchers and teachers in professional development programs.

[] filming permission

I give my permission for my child to be filmed during the one-to-one task-based interview. This
footage would be used a) for checking the researcher’s recording of information and b) for showing
at professional development sessions and at conferences. I understand that this may include
“snippets” of my child’s interview being made available on the internet.

] Igive my permission for the school to receive some feedback on how my child went on the tasks.

[1 Iwould like a copy of the major findings of this research project

Please forward this to my address below

CRIOCOS registered provider:
00004G, 00112C, 00873F, 008858



(block letters)
NAME OF PARENT OR GUARDTIAN: oo i
(block letters)
SIGNATURE ...cocoiiriiii e DATE .ot
SIGNATURE OF PRINCIPAL RESEARCHER ............occciins DATE ...

ASSENT OF PARTICIPANTS AGED UNDER 18 YEARS

I ) ~(the participant aged under 18 vears) understand what this project is ahout.
Wha‘r Iw Lll be asked 1u do has been explained to me. I understand that I do a maths test and will be
interviewed about my answers to mathematics tasks. I am happy to be audio-taped during this
research. Information that I give may be used in publications and shared with other researchers and
teachers but my name will not be used. I agree to take part in the project, realising that I can stop at
any time without having to give a reason for my decision. If my parents have given permission for
e (0 be Olmed, T understand that this will be used to check the researcher’s recording of information
and could be shown to other teachers and at conferences, or on the mfernet.

NAME OF PARTICIPANT AGED UNDER 18: i

(block letters)
SIGNATURE ..ottt DATE ...t e e s
SIGNATURE OF TEACHER OR PARENT WITNESS ...
DATL ...
SIGNATURE OF PRINCIPAL RESEARCHER .......ccocveiviieiicncceee e DATE .............

CRIOCCS reglstered provider:
00004G. 00112C, 00873F, 008358
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Cadbury Pty Ltd
636 St Kilda Road
Melbourne, Victoria 3004 Australia

PO Box 6134
St Kilda Road Central, Victoria 008 Fustraia

21* January 2011 : gg%;&
w wunu.cadbury.com.au

To: Annie Mitchell

1/23 Chapman Street

North Melbourne

Vic 3051

Dear Ms Mitchell

Request to use the Freddo image and FREDDO trade mark in PhD thesis

We understand that you (You) wish to use the image of the Freddo chocolate and the FREDDO trade
mark (the Images) in your doctorate thesis in mathematics education that will be available at the
Australian Catholic University (the Thesis).

You have asked for Cadbury Pty Ltd’s (Cadbury) consent to such use.

Cadbury consents to Your proposed use of the Images on the following terms:
1. You will only use the Images:

= for the purpose of the publication of the Thesis, in the manner depicted in your letter of 23 December 2010:;
and

* in Australia.
Neither party is required to make payment to the other party pursuant to this letter agreement.

3. You will not do any act or thing, and must ensure that no other person involved in the reproduction of the
Images does any act or thing, which might reasonably be expected to adversely affect the name or reputation
of Cadbury, Cadbury's products, and/or the FREDDO and CADBURY trade marks.

4. Cadbury consents to Your use of the Images for this one occasion.

5. You acknowledge that the trade marks, logos and the copyright subsisting in the Images (Cadbury Intellectual
Property) are the exclusive property of Cadbury or its related bodies corporate. Except for the specific terms of
this letter, Cadbury does not grant You a licence to use, copy or reproduce the Cadbury Intellectual Property.

6. Cadbury may terminate this letter agreement immediately by giving You notice if You breaches any obligation
contained in this letter and fails to remedy that breach within 14 days of receiving a notice from Cadbury
requiring You to remedy that breach.

7. This letter Is governed exclusively by the laws of Victoria, Australia and may only be amended in writing signed
by both parties. A party must not transfer or assign any rights or obligations under this letter without the prior
written consent of the other party.

creating brands @ @ REEN
people [ove @ z o'.}"‘..‘,.:.[(fg ﬂ

Cadbury Pry Lid ACN 004 551 473
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Cadbury Pry Led

636 St Kikda Road
Melbourne, Victoria 3004 Australia

PO Box 6134

Se Fida Fioad Cantrai, Vicvona BO0S fhuastraia
t +G1(0)3 9520 7444

f+61{0)3 9520 400

W . cadbury com.au

Picase confirm Your agreement to these terms by signing a copy of this letter and returning it to us as
soon as possible.

Yours sincerely

Zahra Banatwala
Cadbury Pty Ltd

Signed by:

Z Ryt

Print name:

AHE TwIALA

Print title:

_ Bearse Mo Pee - Teens

Date:

Pl Jom}_,%_zo i

e @ = & 45 pu

Cadbury Pry Lud AN 00 551 471
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Appendix C: Summary Statistics for

Victorian Government Schools

Reprinted from Department of Education and Early Childhood Development (2008).
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Summary Statistics for
Victorian Schools

March 2003 Next edition
July 2000

This brochure provides a ready reference for the latest statistics on school
sducation. lis reissuved wher a later set of infarmation bacomss availakle.

Size of the Victorian schoaol education system

1. Humbers of schools. studznts and teachers

Government  Catholic Independent A&l Schools

JHumber of schonle by school typs, Februay 2008
Primary 20

) 1,201 379 47 1,627
Prinary-secongary 53 13 123 s
Semngary 53 36 | 350
Spacis 76 & 1 28
Larguags 4 - - 4

Total 1,287 488 2 2,754

Humbar of students [FTE) by vear lavel, Fasruary 2007

MrCparatory 42,4001 14,172 EJEs2& B3 ELT.T
~ear 1 433750 14,1584 SETTE §3.0753
“gara L3TELE 135342 £E253 £3,390.8
“gar 3 437136 13BAD0T £.3030 83,5033
¥oard 43.813.3 13,0324 EJOE25 63,E30.2
“gar s 439069 141123 £.845 2 B1E64.3
“garg 441343 140520 71146 §5,300.5
Ungraded 50 - 435 40
r‘rlmar:,."bn‘l.u.l 30E,223.0 08,207.1 43 3820 447 B1Z.1
eary 37T 155264 11,3602 85,1243
“gara AT 153704 11,5420 £5,430.1
“earg 339318 150082 11,7631 &5.710.1
Yaar 10 3T.AR.E 14,3908 11,7175 61,100.0
~ear 11 7538 135263 12,3041 83,3542
“ear 12 205635 117314 10,975 52.421.0
Ungraded 32 - 240 453
Eocondory total 223 IM.E SEED4. 3 T334 721870
Spania #0053 1538 2455 5045
Language 13300 - - 1,3380
Tota 53B,8575 1840643 1140207  E355435
Cource: DCCCD Fobdruavy Schoa! Sormaua MIE- Figeres on sludont FTE Incude all chasges froen $he 2007

school enmolment sudlt process.
Kumber of tazching staf (FTE) In echaols on pay by echool type, ag atend of quarter

Decemiar Mzrch June Seplember  Decambear
2008 o007 2007 2007 2007
2rimary 18,8118 resoan 18.929.7 18,9961 1E794.3
Socondary 17,0454 7221 i7.305.8 i7.283.1 17,0561
‘SpecalP-12/ LangiOther 3,957.1 41305 4.175.2 42123 41775
Todal 33,8574 r4d,250.2 40, 470.7 40 4985 400375
Source: DEECD Cwartery Werkforoe Surmany rm

revtacd

2. Historical trend ir numbers of govarmment schools & students, February

¥ear  mWumberaor Number of Stugends (FTE)
Schaols Primary  Secondary  Speclal Langusge Tara!

1833 1,635 206, 21610 218,767 4 54136 10730 5280720
2003 1,615 2121344 2183407 5517.0 9T S3E300.1
2004 1,510 3113641 2205747 50202 1,01000 C40,071.8
2005 1,617 30s 21,618.3 72194 1,142 5383523
2006 1,606 207.576.3 222 E26.7 7, 756.1 1.184.0 5383433
2077 1,504 306,223 223 :90.6 50053 1,330 S3E85T 9

Comgpied by S:atistical Information and Analysis Unit- 3637 3225
bt Massw. eoucstko nvle goyv awisboutpublizafionsineasinfoidata it him

Department of Education and
Early Uhikihood Levelopment March 2008
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Profile of Victorian government school students

3.  MNumber (FTE)} of students by sex in government schools, Februany

ear Male Female Percenfage of male sfudenis
Primaiy ¥r7=-T0 ¥ri1{=72 Al Sfudens

1953 271.,859.0 Zar.213a0 5.7 5.7 47.8 14
2003 27T 49186 2608175 87 518 437 5.5
2004 27E. 370 2617018 87 520 43.4 5.5
2005 27E 3338 261,618.5 87 520 431 5.5
2006 27E. 1119 261.231.4 87 521 431 5.6
007 ITE.343.5 260.514.1 51.7 521 455 51.7

Source: DEECD Februaiy Soheno Census. NE: ¥r 710 Includes secondary ungraded shutents,
4.  Mumber (FTE} of students with disabilities in gowernment schools, August

Year i reguiar SCHOGs N special SChHonis Tofz! % of Inial student cohor
1959 8,262 5,506 13,768 262
2003 2351 EA4353 153,509 349
2004 13,864 7180 21,144 353
2005 3.824 7618 16,442 3.00
"200E 3499 7252 16,671 3.10
2007 3601 7,707 17,388 3.25

Doaroe: DEECD Awgost Softos! Cmnsus and reconds. "Excludes sludents in the Language Support Program.
3.  MNumber (FTE) of Indigenous studenis in government schocls and per cent

of student cohort, August

Tesr Primary ¥esrs 1-10 Years 11-12 Specisl Tola!
Number % Numper % HNumber % Numbsr % HNumber %
153G 33764 11 1,387.1 09 2778 0.5 0.8 1.3 51122 10
2003 4,018.3 1.3 16514 1.1 3480 0.5 1259 139 E.1448 11
2004 42633 14 1,836.1 12 JETT 06 1385 20 EJEB25.6 1.2
2005 43685 1.4 1,8983.1 1.3 4329 0.7 1518 2.1 E£.838.4 1.3
2D0E: 45027 1.5 21041 1.3 rA48.7 0.7 rsé.n 2.0 r2135 1.3
2007 46230 1.5 22520 14 5369 0.8 1763 22 75951 1.4

Bourpe DEECD Awgust Scios! Census rowreyised
ME Years 7—10 Includes secondary ungraded sousents.

6. Number of students — language backgrounds other than English, August

Yesr Spesk mainly Engilsh af home LGST COMTan nan-Engish ISngusges
Wes Pl Totai Sooken 3 home
2004 E3,080 72,733 135,323 Vighnameee, Arable, Tanoness, Turklsh
2005 g1,596 74,845 136,541 Visinamsase, Arable, Caniness, Turkksn
2008 E1,166 TE . 738 137,265 Vietnamese, Arable, Canionesa, Turilksh
2007 33423 79, E01 113,224 Vietnamese, Arable, Canionesa, Turklksh
Bourpe: DEECD Augws! Scihosl Census ME: 2007 Ngures can not be comoared bo pravicws pears cue o

3 change In defipllion. From 2007 onraands, a student s from a languspe background ather than English F
=ithier thie student or one paremtipusrdian speaks a language olner than Englsh ot home

T. Provision of languages other than English — government schools, August

Year Primary LOTE Secongary LOTE Languages wit righest
Stugsnis % Stugenis % Enraiments in W¥CE Linit 4

1999 72,696 88.7 115015 542 French, Serman, Japanese, Indaneslan

2003 267627 85.5 115,109 53.3 Chinese, French, Japanese, Geman

2004 271,192 86.7 121,443 56.0 Chinese, French, Japanese, Indonesian

2003 265,938 85.5 117,855 5349 Chinese, French, Japanese, Indonesian

2008 245E73 30.6 114,493 521 Chinese, French, Japanese, [Elan

Bource: DEECD Augwst LOTE Surveys
8. International students (fee paying) in government schools

Wear Al Juns 308h Msin counires of arigin

iEEE] TET Japan, China, Indonesia, Hong Kang, Vistnam
2003 2,712 China, Japan, Korea, Vienam, Hong Kong
2004 2,376 China, Korea, Japan, Viemnam, Hong Kong
ns 2 14E China, Korea, Japan, Viemam, Heng Kang
2006 2,126 China, Korea, Japan, Vieinam, Hong Kong
2007 2,538 China, Korea, Wigtnam, Japan, Hong Kong

Bouroe: DEECD International Educalion database.
3. VET in schools programs — certificate enrclments

Y& GOVEMMENt SCRo0/E MON-gOvEmmant Scho0ls Tols! CEmiicare enrmiments
jE=E 10,102 4773 14,378
2003 21,771 9,604 31,575
2004 25,585 11,976 37,361
2005 2B,E77 13,352 43323
2006 30,134 15,433 45,567
2007 31,758 17,008 4E,767
Bouroes VCAA databass - Excludes sludents whose home snrolmient is a non-schiool s=fing. Students

My ennad in more than one VET cerifioate
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Retention and transition rates

10. Apparent retention rates’ by sex and sector, February (per cent)

Year Apparent retention Yesrs 1012 Apparent retention Years 7-12
Gavt HNon-gov AN Schoais Govl  Pon-gov AN schools
1999 .z B9.0 g2 TBS 89.2 a1.z
2003 BE2.7 B35 5619 12 334 85.8
2004 g2.2 241 §7.2 §1.3 4.2 36
2003 2.7 2.0 [ 503 2.7 §5.1
2006 E11 L30 853 783 33.0 344
2007 E1.3 1.7 §3.5 7849 311 344
zle 74z E7.5 0.4 721 as5.0 775
Femaie 85.8 25.8 .7 8.4 28,3 1.8

dource: DEECD Fabruary Sohoo Cemsus. Reater r‘:|:|||1:||!‘I undsr Table 16 far defnfion of apearsnt relzntion
rale and explanation of cff=rences bebween Febmary and Sugust figures.

11. Tramsition rates for government schools, February jper cent)
100E-00 200203 2003-04 200405 200506 2006-07

Year 3—10 LT | ar2 ari a7 976 972
Yaar 10—-11 oS54 963 851 a7z 961 7.1
Yaar 11-12 E2.6 565 [ 843 534 £2.8

m—
Source: DEECD Aebvuan ool Census

12. Class sizes in government schools, February

TR0 2003 2004 2005 2008 2007
Primary clasees
Average class slze — all classes 254 229 2283 X6 4 123
Sercent of all clacees gver 30 (9%) 4 0.5 14 0.3 0.3 nz
Average class slze — Prep 23.2 187 197 196 194 194
Average class slze — P-2 243 210 208 ME ME 207
Percent of P-2 classes 1 orless (%) 174 527 544 5568 S50 44
Average class slze — Years 3£ 262 243 243 240 237 234
Secondary Englizh clazass
Average class slze — all classes 227 20 28 ML M5 HNE
Average class slze - Year 12 10 202 202 198 19.5 19.7
Bource: DEECD Ashniary Soicei Census  NB: Comparabke Interstate data is rof readlly avalanle as class

shoe Iz mof peart of the Natlonal Sohocls EtafisSics Coll=cion,

Regional summary — govermment schools

13. Schools, students, apparent retention (ARR) and class sizes by region,

February
Februar, 2007 Feb 1008 | Feh 2007
Reglon Schools  STutents ARR AvErage 0355 size

FTE| i0—12 712 | F-& APnim | P-2 AVFrm
Westem Metropalian 144 66,0966 81.2 E2.6 251 26.1 214 230
Morthem Metrapalitan 20 TTAGZAE| B84 ETE [ 234 28I | 25
Zastern Metropolltan 248 ids,0003| 855 BG3 252 263 |20 227
‘Southern Metropolltan 245 117.687.5| 82.68 E7.2 253 w3 |212 228
Sarwon Zouth Westem 141 406570 T2.68 E9.2 232 M3 208 221
Sramplang 13 2emETE| TR E7 6 27 23T |80 215
_odmon Malkee 163 L0.192.4) T4.B .3 226 24.0 197 212
Hums 1E3 33,.2072| 737 ESS 227 230D 122 210
Slppsiand 151 303066 723 634 224 238 1968 211
Metropolitan reglons d  Me62vTZ| 853 BG2 | 252 263 (212 22E
Hon-mefropolian regkens 755 170580 7| 73.4 E3.6 J2B 230 1968 212
Tolal 1534 5388579 813 TI3 243 254 (207 I3

Source: CEECD Februany ool Census

Projected growth in school enrolmenis

14. Projected growth in school-aged population, June (Source: ABS June 2008)

40,1000 Projected school age population
— -
440,000 L SRS S A —
—=— Primary (Aged 5-11)

420,000 il _
. —e— S2condary (Aged 12-17)

400000 o g

* R
330 o0a
LR | } } t } } t } } t t } t t } } |

2004 2005 2008 Z0M0 1z 2012 e s 2020
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Intarstate comparisons including some key indicators

Apparent retention rales

15.¥ear 10-12 apparenl relenlivn rales?, August {per centl) Full-Gie sludenls

August NEW e Gio SA WA T35 MNT ACT  Acsirails
Gowernmant
199 47 T35 T3z w848 ETE 675 TOO 1074 G635
2002 g6 ¥r2 T5D 629 EB6T TES 8908 1008 T2
2005 35 TI0  T2T B44  BE2  BF2  TEZ ==k 713
DS E32 758 T B46 E6D B44  TOO 10141 708
07 E7E6 782 TI3 =7 B3 BAT7 75T BG.6 703
&l schoole
faza mo o FBF O OTER T4 TIE B39 B4T 2.5 744
ais s =% ] HU b .o f£.4 [iL 5 fod = 1 [
05 Tiz @22 T3 V21 T2z 678 695 E5.1 TE.5
200G Ta0 &1 rfae VAT Ti4  6E0  EEO ga.9 I76.2
o7 724 21.8 TEE T2 EQ.E &E5.3 ES S ES.Q TES
Mzle gGrd FEO TF43 47 40 STOH 033 854 0.0
Femaie 7T4  BI7T B248 T0@ T3 TId GV 0.1 808
1€ ¥ear 7 12 apparcrt retention rates], Awgust (per oent) Full time studenis
August MWW W (=] 24 WA Tas HT ACT  Aushaiis
Eovernment
a0 G1.2 gE 7184 =S81 G665 BT 60D 1100 GE.4
2004 G5.B ™4 752 HA0 658 0 TLF F2D 1005 0.8
2005 G5.6 ™D 730 E1Y 654 €55 TOS 906 6o.4
2006 Gi5.1 e 718 E189 &51 832 TI3 1032 GBS
uds 4.5 755 711 840 531 i3 694 36.6 ok
All gehoole
-gag &7.E 752 775 E70 TiS5 BT 520 02.5 T3
2nnd 711 a1 /13 AN 7?h Thd san AR5 TET
2005 1.1 Bae 789 TOY TS BT 54 87.5 75.3
200E 0.8 TS5 TEE TS T18 BB 584 85.7 747
oar Ge.7 B01 TES T2Y TOL3 €54 617 852 743
Haie 847 TI3  Fi0 802 &5 ST4 24 4.0 388
Femais 740 &4 BIZ TOS TO4  FiQ 413 BAS 501
Sourps: A53, Schoo's Austran T -
releed

3

ASE Year 10-12 & T-12 appyent relenlion rabes refer bo Year 12 enroiment of shudents In fal-ime Sciho
educslon expreseed as & prosortion of Year 1007 enrdments e pears saller. DEECD calculafes s
refenfion rate on an FTE basls. Mode that apparent releniion mates cakbulated for February are Migher fran far
August &5 a number of Year 13 studems (eave during e e

Participation rates

17. Participation rates - all scheols, Augist (per cant of population)
Age  Yaar NEW Vi g SA WA Tas NT ACT  Aust
14 2004 373 988 9:0 ari 5.2 2.0 10ES 981
2005 a7. 388 977 4ez 99.1 B4 1112 884

3
3
2000 ar.o 0.0 ar.| 386 202 1033 0.1 107 7.2
2007 376 994 IrT 99l 350 995 E50 1123 954
15 2002 327 844 919 955 82 391 E6.5 1044 934
2005 335 980 919 965 822 945 L6 1070 249
2005 336 B9E3 9XE 96« 356 8898 6 1102 7
2007 331 952 9r8  OvE 340 1009 E3.9 1022 245
183 2002 794 B85S 834 §7:  T7eD 890 T4 1002 B35
2005 ™1 BEA1 grd AT« ITTY 8Y2 Tie 1010 &29
2005 802 902 32& 355 BO2 BYE 26 102y 842
2007 80.2 905 81 A0.E 7.7 BES8 T8 1044 244
ir 200£ g46 T8E 518 &TE 416 E99 HE 837 BEA
2005 E3.E TE 531 &58.0 2.E E7.4 E1.E g1e E4.5
2006 632 T2 £33 69°F 413 677 M2  9lF 644
2007 E3.2 796 438 V10 407 BY.E 490 2910 B4AS
18 2002 159 N7 £3 142 43 13.8 6.9 217 14.3
SIS ok 2B i T .3 2 4.2 4.5 144
2005 158 227 | 14.5 4.0 281 27 233 14.5
2007 158 223 =1 1d.2 35 25.0 3.3 223 14.4
13 2002 2.2 28 1.3 41 1.2 4.4 4.0 2.3 2.3
2005 2.1 24 11 A7 2 3B 44 2.1 21
2005 1.E 22 1.9 1.6 03 ER- 4.2 2.1 19
2007 1.E 2.3 1.3 1.9 08 3.7 2. 1.6 1.8

Source: ABS Schoo's Austraie KB Scrool paricipadon raes mow Inciude bof ful Hme and part time
studenis as wel as 14 year olde. Frestous mports showed full Ime sudents only for 15 % 12 y=ar clds



Year 12 completion rates

18. Victorian young people successfully completing Year 12 or eguivalent [per
cent)
(&} Par cent of young peopls (aged 13) wha have successfully completed Year 12 or
qualification st Suetrallan Guslifications Framework [AGF) 2 or abowa
TR0 2000 2007 2002 2033 2004 2005 2008
Vicioria 736 Ta4 To.7 To.E rr3d4 RS rmad 1D
Sourpe VAL & DIIRD catiicale compietion data and ABS populafon ssdmales. T m rEs] e

ME: The rale from 2003 mcludes actual complstions In the YET sscior. The rale up b 2002 includes an
estimate of WET compietions based on the ABS CEnsss.

(b} Parcent of 2024 year-ohds who have completed Year 12 or a gualflcation a2 AGF 2 or sbove
TR0 2000 2007 2002 2003 2004 2005 2000 2007

Victorla 829 8.6 mE21 r828 mLs rid¥ rEE8 BSB89
Auglralia 80.1 813 e B0 04 i3 2 8B 835
Bource” ABS SunEy of EQucstion and Work T = revsed

ME: In 2325 tne ASS lsu=d @ revision of this seres which has resull=d Ba changs to the hishorical seress.

Number of schools

19. Mumber of schools by sector, August 2007

Secrar NEW Vic @y 5A WA Tas NT ACT Aushala
Government 2,180 1,593 1250 E02 TEE I1T 149 3B B.353
Hon-goearnment a7 £33 468 2N 299 G ¥ 24 72
Takal 3107 2232 1.71% BO3 1068 327ve 1BS 132 9,561

Sourpe- ABD Sohoods Austals

Number of students

20. Government and non-government full-time enrolments, August

Secrar NEW Vic (=] 34 WA Tas NT ACT  Ausirala
gk
Sod TE3, 169 &24.,B4B 425575 17E303 227,232 £3,554 25,487 35504 2247574
-t 326,423 288,706 153,703 73,530 89,377 20,855 8,280 21,704 978,97E
Total 1,085,552 To4,664 534 534 250,323 316,609 83,813 5, TET 50,508 3,225,850
2004
Sovt T&2,229 E36.,218 245,505 ESEEE 2I9,7RE 28,335 35831 224374
-t 362,820 286.0B4 130,143 E3.ESE 108,300 8,655 23,353 1,052 240
Total 1,107,048 832,300 538355 48,522 136,086 83,282 27,020 53,780 3,331,854
2006
Gowd TA0433 538,836 450954 s4,794 228,817 E0,E05 35,353 224507
Mgt 367,247 188,312 135230 24,791 109,482 21,859 24231 1,102,232
Total 1,107,686 828,847 S47254 245425 338,300 83,504 3,550 3343135
2008
Gt 739,307 &38117 13,848 330,293 0,007 e, 506 35078 2,2438.2039
M-gowt 353,540 283,718 26,078 112,343 22447 5,074 24450 1120458
Total 1,108,347 828,836 T 245936 342 B4 82,454 37,580 53,535 r3. 358717
2007
Sod TIT,EIT E35BBY 475.55F 153,504 225.E11 £8,52 HEIT 228857
M-t 371,566 287070 219,020 E7.S45 114577 22,933 24,783 1,143145
Tkl 1,105,203 833,B68 537,303 IS51.445 3184588 81,858 53,337 3415523
Bourpe- ABS Sofoods Ausirails [ = reyised
21. Fulltime students in government sector, August (per cent)

Year NEW  Vic @id 54 WA Tas ACT

155 723 a8.1 ™.E Th.E ™E TE.A =4

2004 &§7.2 BE.2 0.2 EE.T 24 T3E 535

2002 5.8 BE.D 5.7 EE.D ETE T35 £3.3

2005 557 B8 E5.3 EEE ET.Z T28 585

2007 55.5 B4.3 EB.E E5.2 EEE 72 533

Ciff=rerce
FO0E~2007 -0.2 -0.2 4.7 4 =05 -0.B -0.3 =15 =14

Sowrce: ABT Sohouds Ausialla WE: Df=rencs from 2005-2007 reflecis the percentage poink difference

btz fhe 2007 and 200< rale.

Staffing details

22. Mumber of teachers [FTE] in government sector, August
Year NSW Vic L= 54 WA Tas NT ACT Australa
15859 501050 3JEAETH 25,1680 14,3520 44BEE.D 43510 ZH.0 2,665.0 15045110
2002 E02150 37 FEerde 31,1510 11,520 g 1350 4,253 ZEE.D 2,757.0 155,1550
2005 E0740 azq440 1,221.0 114730 45E2ED 42010 244.0 TELD 188540
2006 51,3845 JE80&T 31,6093 1153041 15733 41852 309.1 7352 158,142
2007 51,2850 3I&343 2 33,2030 11,8088 1EE3IET 41482 22531 2,673.1 180,711

Sourpe- AHE Sohools Ausiralls HE: The AED kas specHic definitiars for counting i=schers. This sxchndes

f=schiers not In =choals or ancliary sducabon =stablishments, fose on mone: San foor wesks kave and
casual relef feachers. The above eacher daka ars wsed In e natonal calouiations of studeni-teacher ralios.

(=]

[
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Student - reacher ratios

23, Sudent-teacher ratlos In government schools, August

Govenmeant Schonls HEW Wie Gl 54 A4 Tas  NT ACT  Aust
Primary 1249 7.7 172 160 163 176 157 1386 171 7.0
2004 7.0 182 15¢ 162 162 183 135 142 6.2
2005 167 161 155 161 163 1583 136 128 G.1
2006 5.2 158% 155 187 182 188 133 128 5.8
2007 16.2 157 155 15E8 154 1588 137 136 5.7
Socondary 1230 1a.7 12.¢c 127 24 12& 137 M.E& 1232 aT
2004 125 124 130 123 1.7 132 1.0 118 24
2003 124 120 130 128 120 122 1.6 118 24
2006 124 113 130 125 125 132 1.2 1138 24
2007 125 118 129 127 1.7 131 108 133 2.3

Zource: ABE Schiools Ausiala

Expenditure on school education

#4. Heal® (in-school) per student expenditure by state [%)— government schools
M3 e Sy 54 WA Tas NT ACT Aus

Prim 2304-035 9535 8583 BT 9318 10582 3113 12343 108 9573
Prim 200504 9,769 B, 76T 2803 373 106 3,510 12,865 10,903 9,639
“HOMTNe dverage H07 -5+ W4 +702  -F  +32T7 HId

Sec 2004-05 ST 138F 11,721 12,45 14,187 11,519 16,645 13453 12,284
Sec 200508 AT 11,329 11,800 12017 13,732 11,877 17,904 14,235 12,148
WO dumrage $30 BT 45 A1 #3AN % 4dTL HTT

-
s
-
s

ounce: Fepot an Govermment Sandoes 2008 ESew dolars ars previous years spsndiune I cument
year's colars after basing sxpendfure on e AS3 GOP price deflyior Z00S—(E=100. Bchools' dala ar= fotal
govemnent sxpendiume o grsernmend schools divided oy fwo y=ar average FTE shudent popwlsbion In
Z004-2005 and Z00S-200&. "Pemenfage dtersnce Dedgpssn sixisSsrriory resuli and rafional yeersge
expendbere for 200505

Student achievement — literacy and numeracy benchmarks

25. Percent achieving benchmark 2006*

NEW Wi Gig SA WA Tas NT ACT ALS
Yeard
Raading 3.1 #ii 45 3.1 1| 7.8 6.4 530
TR a1 3% a1EW s15m 3B a0ERe .17
Wrhiine 33.8 Ba.E 253 232 B EE.E 3.8 535
213 a0Se W0E% s34 L14% A3.E% a0E% 41.3%
NumeEey 958 5.5 EEE 315 234 25.4 543 230
AER alTe 413 a3 25w a20% a0E% .1.4%
Vear 5
Mgl y 0.3 as.n =12 2.0 -rd. ] T4.2 =.B [
A% i s31% 0 al4W s14% A2.0%  aME%E  41E%
Wriiine 333 878 B Eri 87 EE.1 EoX 538
. 20%  a0e  0d% a2 EW a2 Alf% a03% 4135
NUmeEsy 326 845 £5.4 233 250 70.0 230 50.3
23 e 8% TR .15m 23.3%  af4R 4135
Year?
Raading 884 845 E55 333 844 72.3 4.2 253
SME% W0Se L10% W04 W05 s2.0%  a05% E%
Wrliine 33.0 85.¢ 250 Erl B E1.E =1.4
B . THh AL MR F-RA ] 1.0 AP Er L]
Numergey  TLT 845 TEE iT.3 EEN 7.3 EEE
S.E% 0T p17%  0FW 7% 2% 40.5%  4.3%

Sounce: WCEETYA Matiorad Repan o Schaoing it Ausmaia-Preiminary paper 2006 2 kost recent Zaa are for
200E. Sheded ceils = ‘Al or abowe The national average”. KE: Katonal berchmarnk dats are subfect 1o sigiHicant
measurement ®mor. Cars should e iaken when making comoatisons belessn siafes

26, Victoran data — shudent cohort groups [2006)

Asacing Wriing Humerasy
Tear 3 Yearg Year T | ‘fear far & Woar T Teard Yeargs  Year T
o
Male -] 87T 335 952 896.7 53.2 952 b == -]
24% TR 05% | O5%  02% 8% | W07 J0S% 07%
camala SEE 221 352 580 88.6 57.7 SE.E 53 = ]
+1 % sl % .5% =0.5% =0.1% 20.3% | al.7%% 20.55% 2055
ndlgerowe  F15 59.7 20.7 918 835 B33 50T 44 EOLd
EA% i) £3. 2% 2.9% =1.7% 23.9% al.B%% ad.35% 2 05
LEBCTE =01 576 332 861 g7.0 553 24.7 iy 25
JII% 1T%  J0E% % S0.0% B | Dt a0E% 0T
Shaded cHis Indicate ‘st or above nafional average” Tor sib-growe. ME: Wizxsurement error a5 chowve.
27, Useful Websites znd on-line resources
Renor n Sovemmend Serines: Wl pC.goy. augsnings
Mathona' Repon on Schooing & Ausiqals sww. mossta.edu.au
Schoolr Ausiaia 5 IAUCETATS 308 ¥

Statstcal Tab'es—ERIS (AcDe1s wia “3@M menu)
Ed3ials hitps iporal.edused vl gov surepofssiatsiedsiatsFages detyul ason




