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Abstract 

Much research on fractions has concentrated on the sub-constructs of measure, quotient, 

operator and ratio from Kieren's model of coordinated fraction knowledge (Kieren, 1980).  In 

the primary school, partitioning, equivalence and unit-forming also can be used to describe 

children's approaches to fraction tasks (Kieren 1988, 1992, 1993, 1995). Given the approaches 

used to teaching fractions, other areas of the curriculum such as multiplicative thinking, 

measurement and spatial knowledge could affect students' understanding of fractions. 

In one-to-one interviews, 88 Grade 6 students were asked 65 questions designed to ascertain 

their understanding of fraction, measurement, geometry and/or visualisation, and 

multiplication concepts. The students' answers and explanations were recorded on a record 

sheet at the time of interview and audio- and video-recording enabled later detailed analysis. 

The associations between four categories based on Lehrer's key concepts (2003) for spatial 

measurement (attribute, additivity, units, and proportionality) and the measure sub-construct 

of fractions were analysed. The measure sub-construct was assessed using number lines, 

fraction comparison tasks, and length and area diagrams. 

From detailed examination of students' explanations, insights into misconceptions were 

gained. Gap thinking in fraction pair size comparisons was discovered to be triggered at the 

same time as equivalence understanding began. The limitations of a part-whole double count 

approach to fractional area diagrams was noted.  

Further, Kieren's four-three-four model (1988, 1992, 1993, 1995) describing coordinated 

fraction knowledge for analysing students' fraction understanding at the upper primary school 

level was evaluated.  Use of the model enabled descriptions of students' responses to tasks to 

be placed in a framework of understanding which connected these three underlying concepts 

and the four sub-constructs.  

 

  



 
 

Publications from the present study 

Mitchell, A., & Horne, M. (2008). Fraction number line tasks and the additivity concept of 

length measurement. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating currents 

(Proceedings of the 31st annual conference of the Mathematics Education Research 

Group of Australasia, Brisbane, pp. 353-360). Brisbane, Australia: MERGA. 

Mitchell, A., & Horne, M. (2009). There are more than part-whole strategies at work in 

understanding non-equal-parts fraction area models. In R. Hunter, B. Bicknell, & T. 

Burgess (Eds.), Crossing divides (Proceedings of the 32nd annual conference of the 

Mathematics Research Group of Australasia, Wellington, pp. 371-378). Palmerston 

North, New Zealand: MERGA. 

Mitchell, A., & Horne, M. (2010). Gap thinking in fraction pair comparisons is not whole 

number thinking: Is this what early equivalence thinking sounds like? In L. Sparrow, 

B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education 

(Proceedings of the 33rd annual conference of the Mathematics Research Group of 

Australasia, Fremantle, pp. 414-421). Fremantle, Australia: MERGA. 

Mitchell, A., & Horne, M. (2011). Measurement matters: Fraction number lines and length 

concepts are related. In J. Way & J. Bobis (Eds.), Fractions: Teaching for 

understanding (pp. 52-62). Adelaide, Australia: The Australian Association of 

Mathematics Teachers. 

 
 

  



 
 

Acknowledgments 

I would like to thank the children who shared their mathematical thinking with me in this 

study. Without their participation, there would be no thesis. 

The principals and teachers of these schoolchildren welcomed me, gave me a room to work 

in, and were unflaggingly accommodating as I withdrew students from classes. I thank them 

for supporting this research. 

I would like to thank my supervisors Professor Doug Clarke, Dr Andrea McDonough, 

Associate Professor Sue McNamara, and Associate Professor Marj Horne. Doug and Andrea 

enabled me to believe that I could start this project, supported my application for a post-

graduate scholarship, offered constructive advice, and gave me the opportunity to co-author 

articles and conference papers, and learn from participation in other research projects. Sue and 

Marj questioned my ideas rigorously, delighted in my small discoveries, and were unshakable 

in their belief that I could finish this project. 

There were many people who gave their own time to help me with this thesis: double coding 

interview data, discussing statistics, critiquing interview tasks, wrangling digital technology, 

reading drafts, proof reading, or giving sound advice. Thank you: Tony Barnard, Emeritus 

Professor Alan Bishop, Dr Ginny Bratton, Jill Brown, Dr Jonathan Carter, Professor Judith 

Chapman, Professor Philip Clarkson, Dr Jill Cheeseman, Lorraine Davis, Wendy DiTirro, Dr 

Angus Gordon, Emeritus Professor Tom Kieren, Rose Knight, Penny McQueen, Dr Sylvia 

Mainwaring, Dr Donna Merwick Denning, Dr David Mitchell, Ian Mitchell, Dr Jill Mitchell, 

Anne Roche, Matt Sexton, Dr Max Stephens, Dr Megan Smart, Dr Rohan Steel, Stuart Steel, 

Dr Craig Tischler, Catherine Trethowan, Donato Vicendese, and Richard Williams. The 

mistakes that remain of course are all mine. I am fortunate that many friends and colleagues 

were also cheering from the sidelines, and although there are too many of you to name 

individually, I sincerely thank you for your encouragement.  

I would also like to thank those who in doing their jobs so well made my research and writing 

easier: Liz Norris, Rikki Bochow, Liz Ryan, Professor Elizabeth Warren, Associate Professor 

Ken Smith, Daryl Bailey and the ACU library staff, and the ACU information technology 

staff. I would also like to thank the members of The Mathematics Education Research Group 

of Australasia for organising a peer reviewed conference every year and being so supportive 

of postgraduate students' presentations. 



 
 
For financial assistance to complete this thesis I would like to thank the University for an 

ACU postgraduate scholarship, my parents Jill and Ian Mitchell, the Faculty of Education for 

their postgraduate student grants, the Mathematics Education Research Group of Australasia 

for a bursary to attend an overseas conference, Professor Doug Clarke and Associate 

Professor Marj Horne for support to attend conferences, and Dr. Valerie Tarrant. Thank-you 

Dr Deborah Seiffert, Associate Professor Barbara Clarke, Dr Jill Cheeseman, Dianne Cullen, 

Ann Downton and my supervisors for employment as resident advisor, essay marker, 

professional development presenter, tutor, and research assistant. Every bit has helped. 

And finally to anyone who is reading this as they pursue their own research – good luck and 

God speed. After all, it was written for you. 

  



 
 
Table of Contents 

 

Chapter 1: Introduction ..................................................................................... 1 

1.1 Background to the Study .................................................................................................. 1 

1.2 Research Questions .......................................................................................................... 5 

1.3 Structure of the Thesis ...................................................................................................... 6 

Chapter 2: Literature Review ............................................................................ 8 

2.1 Critical Examination of the State of the Field .................................................................. 9 

2.1.1 Procedural and conceptual knowledge. ..................................................................... 9 

2.1.2 Measurement. ............................................................................................................ 9 

2.1.2.1 Attribute. ........................................................................................................... 10 

2.1.2.2 Additivity. ......................................................................................................... 12 

2.1.2.3 Unit. .................................................................................................................. 18 

2.1.2.4 Proportionality. ................................................................................................. 20 

2.1.3 Multiplication. ......................................................................................................... 21 

2.1.4 Visualisation. ........................................................................................................... 22 

2.1.4.1 Visual and non-visual thinkers. ........................................................................ 22 

2.1.4.2 Visual imagery and inscriptions. ...................................................................... 24 

2.1.4.3 Interpreting figural information and semiotic analysis..................................... 24 

2.1.4.4 Inscriptions. ...................................................................................................... 25 

2.1.4.5 Visual imagery. ................................................................................................. 26 

2.1.5 Fractions. ................................................................................................................. 28 

2.1.5.1 Measure. ........................................................................................................... 32 

2.1.5.2 Quotient. ........................................................................................................... 38 

2.1.5.3 Operator. ........................................................................................................... 39 

2.1.5.4 Ratio. ................................................................................................................ 40 

2.1.5.5 Partitioning. ...................................................................................................... 40 

2.1.5.6 Equivalence. ..................................................................................................... 41 



 
 

2.1.5.7 Unit-forming. .................................................................................................... 42 

2.1.5.8 Conceptual links between fractions and measurement. .................................... 44 

2.1.5.9 Four levels of response in Kieren's model. ....................................................... 45 

2.1.5.10 The use of Kieren's four-three-four model in the research literature. ............ 47 

2.1.6 Research methods used in measurement and fraction research. .............................. 49 

2.2 Research Questions ........................................................................................................ 51 

2.3 The practical significance of the present study .............................................................. 51 

Chapter 3: Methodology and Methods ........................................................... 53 

3.1 Methodology ................................................................................................................... 53 

3.1.1. Interpretivism. ........................................................................................................ 53 

3.1.1.1 Theories of learning. ......................................................................................... 55 

3.1.2 Advantages and disadvantages of task-based interviews. ....................................... 58 

3.2 Method: one-to-one task-based interview ...................................................................... 61 

3.2.1 The Present study. ................................................................................................... 62 

3.2.2 The instrument. ........................................................................................................ 64 

3.2.2.1 Multiplication. .................................................................................................. 65 

3.2.2.2 Fractions. .......................................................................................................... 65 

3.2.2.3 Measurement. ................................................................................................... 70 

3.2.2.4 Visualisation. .................................................................................................... 74 

3.2.3. Interview protocols. ................................................................................................ 75 

3.2.3.1 Recording of data. ............................................................................................ 76 

3.3 Analysis of Data ............................................................................................................. 78 

3.3.1 Coding protocols. .................................................................................................... 79 

3.3.1.1 Double coding of data. ..................................................................................... 81 

3.3.2 Descriptive statistics and correlations. .................................................................... 82 

3.3.3 Validity. ................................................................................................................... 88 

3.3.3.1 Construct validity, face validity, content validity. ........................................... 88 

3.3.3.2 Credibility and reliability. ................................................................................ 90 



 
 

3.3.4 Ethics. ...................................................................................................................... 93 

3.3.4.1 Protecting the rights and welfare of the participants. ....................................... 93 

3.3.4.2 Ensuring the accuracy of scientific knowledge. ............................................... 95 

3.3.4.3 Protecting intellectual property rights. ............................................................. 96 

3.4 Limitations ...................................................................................................................... 97 

Summary of Methodology .................................................................................................... 98 

Chapter 4: Results ............................................................................................. 99 

4.1 Students' Baseline and Ceiling Performance .................................................................. 99 

4.2 Length and Area Measurement Results ........................................................................ 102 

4.2.1 Attribute. ................................................................................................................ 102 

4.2.1.1 CATL: conceptual tasks, attribute concept, length context. ........................... 102 

4.2.1.2 CATA: conceptual tasks, attribute concept, area context. .............................. 104 

4.2.1.3 TPATL: tools and procedures tasks, attribute concept, length context. ......... 106 

4.2.1.4 TPATA: tools and procedures task, attribute concept, area context. ............. 107 

4.2.2 Additivity. .............................................................................................................. 108 

4.2.2.1 CADL: conceptual tasks, additivity concept, length context. ........................ 108 

4.2.2.2 CADA: conceptual tasks, additivity concept, area context. ........................... 110 

4.2.2.3 TPADL: tools and procedures tasks, additivity concept, length context........ 111 

4.2.2.4 TPADA: tools and procedures tasks, additivity concept, area context. ......... 112 

4.2.3 Units. ..................................................................................................................... 113 

4.2.3.1 CUNL: conceptual tasks, units concept, length context. ................................ 114 

4.2.3.2 CUNA: conceptual tasks, units concept, area context. ................................... 117 

4.2.3.3 TPUNL: tools and procedures tasks, units concepts, length context.............. 118 

4.2.3.4 TPUNA: tools and procedures tasks, units concept, area context. ................. 118 

4.2.4 Proportionality. ...................................................................................................... 120 

4.2.4.1 CPRL: conceptual tasks, proportionality concept, length context.................. 120 

4.2.4.2 CPRA: conceptual tasks, proportionality concept, area context. ................... 122 



 
 

4.2.4.3 TPPRL: tools and procedures tasks, proportionality concept, length context.

 .................................................................................................................................... 122 

4.2.4.4 TPPRA: tools and procedures tasks, proportionality concepts, area context. 123 

4.3 Visualisation ................................................................................................................. 124 

4.4 Multiplication Results .................................................................................................. 129 

4.5 Fraction Results ............................................................................................................ 130 

4.5.1 Equivalence. .......................................................................................................... 130 

4.5.1.1 Fraction Sort task. ........................................................................................... 130 

4.5.1.2 Golden Beans task. ......................................................................................... 134 

4.5.1.3 Fraction Pairs task. ......................................................................................... 135 

4.5.1.4 Fraction Algorithms: Addition. ...................................................................... 138 

4.5.1.5 Frequency of success on equivalence tasks. ................................................... 138 

4.5.1.6 Equivalence pathways. ................................................................................... 140 

4.5.1.7 Correlations between Equivalence score and measurement categories.......... 147 

4.5.2 The measure sub-construct. ................................................................................... 149 

4.5.2.1 Number lines. ................................................................................................. 149 

4.5.2.2 The relative size of fractions: the Fraction Pair task. ..................................... 160 

4.5.2.3 Non-congruent area diagrams: Fold Me a Quarter task. ................................ 180 

4.5.2.4 Non-equal-parts diagrams............................................................................... 185 

4.5.3 The quotient sub-construct. ................................................................................... 195 

4.5.4 The operator sub-construct. ................................................................................... 197 

4.5.5 The ratio sub-construct. ......................................................................................... 197 

4.5.6 Correlations between Equivalence score and other fraction sub-constructs. ........ 198 

Summary ............................................................................................................................. 199 

Chapter 5: Discussion of results and implications of the present study .... 201 

5.1 Research Question 1: students' strategies and explanations ......................................... 201 

5.1.1 The perimeter indicates area, and the same area indicates same perimeter 

misconceptions. .............................................................................................................. 202 



 
 

5.1.1.1 Implications. ................................................................................................... 206 

5.1.2 Unit forming thinking and operator thinking. ....................................................... 207 

5.1.2.1 Implications. ................................................................................................... 210 

5.1.3 Dynamic imagery. ................................................................................................. 211 

5.1.3.1 Implications. ................................................................................................... 212 

5.1.4 The gap thinking misconception. .......................................................................... 213 

5.1.4.1 Implications. ................................................................................................... 218 

5.1.5 Benchmarking/Gap thinking. ................................................................................ 219 

5.1.5.1 Implications. ................................................................................................... 221 

5.1.6 Summary of answer, explanation types, and teacher and student conversations. . 222 

5.2 Research Question 2: Associations between performance on fraction and measurement 

tasks .................................................................................................................................... 223 

5.2.1 Substantial associations with fractions: units and additivity categories of 

measurement. .................................................................................................................. 224 

5.2.1.1 The Keyboard task. ......................................................................................... 225 

5.2.1.2 Broken Ruler tasks. ........................................................................................ 228 

5.2.1.3 CUNA and CADA. ......................................................................................... 231 

5.2.1.4 Attribute. ......................................................................................................... 231 

5.2.1.5 Proportionality. ............................................................................................... 232 

5.2.1.6 TPUNA. .......................................................................................................... 233 

5.2.1.7 Implications. ................................................................................................... 234 

5.3 Research question 3: Kieren's four-three-four model ................................................... 235 

5.3.1 Measure sub-construct. .......................................................................................... 236 

5.3.1.1 Partitioning concepts drawn on in the measure sub-construct. ...................... 237 

5.3.1.2 Equivalence concepts drawn on in the measure sub-construct. ...................... 242 

5.3.1.3 Unit-forming concepts drawn on in the measure sub-construct. .................... 246 

5.3.2 Quotient sub-construct. .......................................................................................... 248 

5.3.2.1 Partitioning concepts drawn on in the quotient sub-construct. ....................... 248 



 
 

5.3.2.2 Unit-forming concepts drawn on in the quotient sub-construct. .................... 249 

5.3.3 Ratio sub-construct. ............................................................................................... 250 

5.3.4 Levels of response. ................................................................................................ 250 

5.3.5 Implications. .......................................................................................................... 251 

Chapter 6: Conclusions ................................................................................... 253 

6.1 Research Question 1: Strategies ................................................................................... 254 

6.2 Research Question 2: Associations .............................................................................. 255 

6.3 Research Question 3: Kieren's four-three-four model .................................................. 256 

6.4 Directions for further research ...................................................................................... 257 

Reference List .................................................................................................. 259 

Appendices ....................................................................................................... 280 

Appendix A: Data Collection Interview ........................................................ 281 

Introduction ........................................................................................................................ 281 

Materials list ....................................................................................................................... 282 

Interview script ................................................................................................................... 283 

Multiplication and division ............................................................................................. 283 

Pen and paper measurement tasks .................................................................................. 288 

Fractions ......................................................................................................................... 290 

Measurement .................................................................................................................. 312 

Dynamic imagery ........................................................................................................... 337 

Record Sheet ................................................................................................................... 345 

Appendix B: Ethics .......................................................................................... 352 

Appendix C: Summary Statistics for Victorian Government Schools ...... 372 

  



 
 
List of Figures 

Figure 1.1. Fraction Pie task. ..................................................................................................... 4 

Figure 1.2. Representation of two papers folded into quarters and labelled. ............................. 5 

Figure 2.1. Perimeter of an L shape (adapted from Battista, 2006). ........................................ 14 

Figure 2.2. One dimensional counting strategy for the area of an array (Battista, et al., 1998).

 .................................................................................................................................................. 16 

Figure 2.3. Synthesis of terminology used in visualisation research. ...................................... 23 

Figure 2.4. The Wattanawa Block task: dotted lines represent unseen edges. ......................... 25 

Figure 2.5. Kieren's model of rational number knowing (1993). ............................................. 31 

Figure 2.6. New Zealand assessment interview decimal number line. .................................... 33 

Figure 2.7 Non-equal-parts tasks. ............................................................................................ 37 

Figure 3.1. Classification of tasks for the equivalence concept of fractions............................ 66 

Figure 3.2. Classification of tasks for the measure sub-construct of fractions. ....................... 67 

Figure 3.3. Fraction Pie task diagram used in the research literature (left) and the diagram 

used in the present study (right). .............................................................................................. 68 

Figure 3.4. Classification of tasks for the quotient sub-construct of fractions. ....................... 69 

Figure 3.5. Classification of tasks for the operator sub-construct of fractions. ....................... 69 

Figure 3.6. Classification of tasks for the ratio sub-construct of fractions. ............................. 70 

Figure 3.7. Classification of the conceptual tasks of the concepts of measurement. ............... 72 

Figure 3.8. Classification of the tools and procedures tasks of the concepts of measurement.74 

Figure 3.9. Example of record sheet, Fraction Pair task (Q. 22g)............................................ 77 

Figure 3.10. Scan of recording for part of Fraction Sort task (Q. 19). ..................................... 78 

Figure 4.1. Task cards or materials used in tasks with 100% frequency of success. ............. 100 

Figure 4.2 Diagrams used in tasks with a 97-99% frequency of success (Q. 18a was verbal).

 ................................................................................................................................................ 101 

Figure 4.3 Triangular 2/3, Q. 19r (left) and mental re-partitioning required (right). .............. 101 

Figure 4.4. Diagrams used for Similar Shapes task (Q. 36), and the geometric visualisation 

explained by some students to show that both shaded parts were half................................... 103 

Figure 4.5. Diagram used in Blocks of Ice task, Q. 54. ......................................................... 107 

Figure 4.6. Diagrams used in tasks assessing a conceptual understanding of additivity in a 

length context. ........................................................................................................................ 109 

Figure 4.7. Diagrams used in tasks assessing a conceptual understanding of additivity in an 

area context. ............................................................................................................................ 111 

Figure 4.8. Area Calculation, Rectangle task. ........................................................................ 112 



 
 
Figure 4.9. Task card (left) used for the Keyboard task (Q. 39), and mental visualisation 

(right). ..................................................................................................................................... 115 

Figure 4.10. Array with Leftovers task (squares and wooden blocks were 2 cm square). .... 117 

Figure 4.11. The Dragonfly task. ........................................................................................... 118 

Figure 4.12. Steps task (Q. 44). .............................................................................................. 121 

Figure 4.13. Choosing Rulers (Q. 45): pie image with one of the rulers. .............................. 121 

Figure 4.14. Draw Your own Array task Q. 38b. ................................................................... 122 

Figure 4.15. Flags task. .......................................................................................................... 124 

Figure 4.16. Design task. ....................................................................................................... 125 

Figure 4.17. Cubes task. ......................................................................................................... 126 

Figure 4.18. Puzzle task (Q. 57) pieces. ................................................................................. 126 

Figure 4.19. Wattanawa Block task. ...................................................................................... 127 

Figure 4.20. Task cards used for assessing equivalence in the Fraction Sort task (Q. 19) and 

frequencies of success. ........................................................................................................... 131 

Figure 4.21. Three of twelve dots or one of four columns: numerical and spatial equivalence.

 ................................................................................................................................................ 133 

Figure 4.22. Students' performance on Equivalence tasks: Band A ...................................... 141 

Figure 4.23. Students' performance on Equivalence tasks: Band B ....................................... 142 

Figure 4.24. Students' performance on Equivalence tasks: Band C ....................................... 143 

Figure 4.25. Students' performance on Equivalence tasks:  Band D ..................................... 144 

Figure 4.26. Students' performance on Equivalence tasks: Band E. ...................................... 145 

Figure 4.27. Students' performance on Equivalence tasks: Band F. ...................................... 146 

Figure 4.28. Number lines with 2/3 correctly placed. ............................................................. 151 

Figure 4.29 Examples of ratio misconceptions for placing 2/3 on a number line. .................. 151 

Figure 4.30. Two thirds on a number line with 1 at one third................................................ 152 

Figure 4.31.  Possible double count inscription, and three-past-two inscription. .................. 153 

Figure 4.32. Number line diagram Q. 16d, reading 3 3/4. ...................................................... 155 

Figure 4.33. Number Line diagram Q. 16e, reading 5/6. ........................................................ 156 

Figure 4.34. Higher or larger numbers and bigger denominator is bigger fraction (top), and 

gap thinking (bottom) in low to high Fraction Pair score order. ............................................ 174 

Figure 4.35. Use of higher and larger numbers and/or bigger denominator indicates bigger 

fraction misconceptions (above) and gap thinking (below) in low to high Equivalence score 

order. ....................................................................................................................................... 176 

Figure 4.36. Percentage of gap thinking students at each Equivalence score. ....................... 178 

Figure  4.37. Non-congruent quarters in Fold me a Quarter task. ......................................... 181 



 
 
Figure 4.38. Comparison of students' with Fold Me a Quarter score of 3 and performance on 

Similar Shapes shaded shapes questions. ............................................................................... 183 

Figure 4.39. Comparison of students' with Q. 13 Fold Me a Quarter score of 0 or 1 and 

performance on Similar Shapes shaded shapes questions (Q. 36g and h). ............................. 184 

Figure 4.40. Fraction Pie task diagram. ................................................................................. 185 

Figure 4.41. Lines imagined by students attempting to make equal parts on the Fraction Pie 

task. ......................................................................................................................................... 189 

Figure 4.42. Frequency of success on some Fraction Sort cards. .......................................... 191 

Figure 4.43. Students' imagined lines for the Fraction Sort cards. ........................................ 191 

Figure 4.44. Sharing Liquorice, three pieces between five people (Q. 20a). ......................... 196 

Figure 4.45. Sharing Custard Tarts, three pieces between five people (Q. 20b). .................. 196 

Figure 4.46. Fractions ratio sub-construct, Bookworms task Q. 12. ...................................... 198 

Figure 5.1. Comparison of frequencies on success on measurement context of three quarters.

 ................................................................................................................................................ 226 

Figure 5.2. Comparison of frequency of success on decimal number line tasks. .................. 229 

Figure 5.3. Construct a Sum ................................................................................................... 248 

 

  



 
 
List of Tables 

Table 3.1 Corresponding Terms Between Social Constructivism and Radical Constructivism 

(Cobb et al., 2011) .................................................................................................................... 56 

Table 3.2 Profile of Participants and Schools for the Main Data Collection 2008 ................. 63 

Table 3.3 The Selection of Number Line Tasks to Represent Research-based Criteria ........... 68 

Table 3.4 Double Coding of Students' Responses in the Present Study ................................... 82 

Table 3.5 Magnitude of Kendall's Tau Correlation Coefficient and Sample Sizes to Detect 

Differing Effect Sizes of Associations Between Variables Using Gilpin's Tables (1993) ........ 86 

Table 4.1 Attribute: Frequency of Success ............................................................................. 102 

Table 4.2  Explanations for the Perimeter Comparison in Q. 36g ......................................... 104 

Table 4.3 Explanations for the Area Comparison in Q. 36h .................................................. 105 

Table 4.4 Additivity: Frequency of Success............................................................................ 108 

Table 4.5 Two Way Table of Association Between the Calculation of the Area of a Rectangle 

(Q. 63)  and Area of a Half Rectangle (Q. 33) ....................................................................... 113 

Table 4.6 Units: Frequency of Success .................................................................................. 114 

Table 4.7 Two Way Table of Association Between TPADA and TPUNA............................... 120 

Table 4.8  Proportionality: Frequency of Success ................................................................. 120 

Table 4.9 Visualisation: Frequency of Success ...................................................................... 128 

Table 4.10  Two Way Table of Association Between The Puzzle task and the Wattanawa 

Blocks task .............................................................................................................................. 129 

Table 4.11 Percentage of Students With Each Multiplication Score ..................................... 129 

Table 4.12 Counting behaviour in explanations of equivalence Fraction Sort cards ............ 134 

Table 4.13 Explanations using the word "plus" in correct responses to the fraction pair 2/4 

and 4/8 ..................................................................................................................................... 136 

Table 4.14  Frequency of Success on Thirteen Equivalence Tasks ........................................ 139 

Table 4.15 Spread of Equivalence Questions Correct ........................................................... 140 

Table 4.16 Equivalence Bands: Seven Broad Groupings of Performance on Equivalence 

Questions ................................................................................................................................ 147 

Table 4.17  Correlations Between Equivalence Score and Measurement Concepts.............. 148 

Table 4.18 Volunteering cm2 and Equivalence Band ............................................................. 149 

Table 4.19 Number Line Strategies (Q. 16a) and CADL score .............................................. 154 

Table 4.20 Frequency of Success on Number Line Tasks ...................................................... 158 

Table 4.21 Spread of Number Line Questions Correct .......................................................... 158 



 
 
Table 4.22 Permutations of Correct and Incorrect Response to the Number Line Questions: 

Pathways ................................................................................................................................. 159 

Table 4.23 Correlations Between Number Line Score and Measurement Concepts ............. 160 

Table 4.24 Frequency of Success on Fraction Pair Task ....................................................... 163 

Table 4.25 Percentage of Students with each Fraction Pairs Score from 0 to 7 ................... 163 

Table 4.26 Variations of Gap Thinking in Explanations of why 5/6 and 7/8 are Considered the 

Same ....................................................................................................................................... 165 

Table 4.27 Fraction Pair 3/7 and 5/8 and Distinctions Between Gap Thinking, Possible Gap 

Thinking, and Non Gap Thinking ........................................................................................... 168 

Table 4.28 Fraction Pair 4/5 and 4/7 and Distinctions Between Gap Thinking, Possible Gap 

Thinking, and Benchmarking .................................................................................................. 170 

Table 4.29 Frequency of Success on Fraction Pair Questions and the Incidence of Incorrect 

Strategies ................................................................................................................................ 172 

Table 4.30 Intensity of Gap Thinking Usage .......................................................................... 172 

Table 4.31 Ordering of Students' with each Fraction Pairs Score from 0 to 7 ...................... 174 

Table 4.32 Ordering of Students' with each Equivalence Score from 0 to 13 ........................ 176 

Table 4.33 Correlations Between Fraction Pair Score and Measurement Concepts ............ 179 

Table 4.34 Students Performance on the Fraction Pair 2/4 and 4/2 and the Keyboard Task .. 180 

Table 4.35 Comparison of performance on the Puzzle task and the Fold Me a Quarter task185 

Table 4.36 Different Explanations of an Answer of 1/5 in the Fraction Pie task .................... 188 

Table 4.37 Frequency of Unconditional Double Counting Explanations in the Fraction Pie 

Task and Two Non-Equal Part Fraction Sort Cards .............................................................. 192 

Table 4.38 Explanations for Fraction Sort Cards Illustrating the Double Count Phrasing .. 194 

Table 4.39 Correlations Between the Part B Of The Fraction Pie Task and Measurement 

Concepts ................................................................................................................................. 195 

Table 4.40 Correlations between Equivalence score and other fraction concepts ................ 199 

Table 5.1 Answer, explanation and further explanation types ............................................... 223 

Table 5.2 Comparison of Frequency of Success on Broken Ruler Tasks ............................... 229 

Table 5.3 Strategies for Fraction Pairs .................................................................................. 237 

 

 

 



1 
 

Chapter 1: Introduction 

This thesis is about a conceptual link between fraction and measurement understanding. It is a 

qualitative inquiry that seeks to investigate students' performance on fraction and 

measurement tasks as well as analyse the strategies that they offer in their explanations of 

their answers. It is an interpretive study that examines students' explanations and uses 

descriptive statistics to quantify associations between fraction and measurement constructs. In 

the present study, I conducted one-to-one task-based interviews with 88 Grade 6 students, 

offering 65 tasks that assessed their understanding of length and area measurement, dynamic 

imagery, multiplication, and fraction understanding. Each student was interviewed for up to 

three hours over several sessions, and my record sheets of the students' responses at the time, 

and subsequent transcripts of audio and video data, enabled me to classify their answers and 

explanations. Criteria for task selection focused on key concepts of measurement and key 

concepts of fraction understanding articulated by frameworks in the research literature. 

Correlations between these categories were calculated. The interpretation and implications of 

students' strategies (correct strategies and misconceptions), correlations between measurement 

and fraction understanding, and the explanatory power of Kieren's framework for fraction 

understanding (1995), are discussed in later chapters. In this chapter, I will outline the 

background to the study, present the research questions that developed out of my synthesis of 

the research literature, and provide a guide to the structure of the thesis by outlining the 

chapters to come. 

1.1 Background to the Study 

For students, fractions form the basis for other mathematical understandings, and underpin the 

development of proportional reasoning and later topics in mathematics, including algebra and 

probability. Researchers have suggested that  

• to be able to think proportionally was a turning point in mental ability (Cramer, 

Post, & Currier, 1993), 

• fractions led to proportional reasoning in ratios, rates, probability, percentages, 

and operators (Ohlsson, 1988), and 

• the ability to see constants and variables developed from the ability to recognize 

proportional relationships (Lamon, 1999).  
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Hence fractions and decimals, as topics in themselves, were regarded as an enduring and 

important part of the primary and junior secondary mathematics curriculum (Lamon, 1999).  

At the heart of this thesis is an interest in how children understand fractions. Before I began 

this thesis I was a teacher searching for  

• a vocabulary to talk about fractions to students that would enable them to move 

towards an understanding of proportional reasoning,  

• examples of tasks that would enable students to articulate the salient aspects of 

different representations of fractions, 

• knowledge about how to have conversations with students so that they could 

generalise from one fraction task to another and recognise misconceptions, 

• deeper personal knowledge of how different domains in mathematics intersect 

with fraction learning, and 

• research-based discussion on the effect on children's understandings of fractions if 

less teaching time was given to the space and measurement domains in school 

mathematics term planners. 

However, before I could answer the questions concerning classroom practice I needed to start 

with the more fundamental question: what are the understandings of fractions, space, and 

measurement of primary school children?  

Curriculum documents provided a snapshot of the learning outcomes suggested for different 

grade levels in all domains of mathematics. These outcomes and the explicit and implicit 

strategies that they privilege changed over time. For example, the strategies for the 

comparison of the relative size of fractions have been revised three times in the last fifteen 

years in curriculum documents for Victorian schools. In the Curriculum Standards 

Framework (Board of Studies, 1995), children at the end of Level 4 (Grade 6) were expected 

to use common denominators to "compare and order fractions with different denominators 

(for example, using equivalent fractions)" (p. 46). A decade later, in a draft document of the 

(then) forthcoming Victorian Essential Learning Standards (Department of Education & 

Training, 2005), the common denominator procedure was described as one of several 

strategies that students should develop in order to work with fractions. Other strategies were 

described but not explicitly named. For example, students should "accurately estimate the size 

of fractions and decimals in the vicinity of 0 and 1 relative to 0, 1/2 and 1" (p. 23). In the 

research literature this strategy had been called the transitive strategy or reference point 

strategy in the United States (Behr, Wachsmuth, Post, & Lesh, 1984) and benchmarking in 
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Australia (Clarke & Roche, 2009). However, in the 2006 revised curriculum document, this 

benchmarking strategy was omitted (Department of Education & Training, 2006). Instead, 

neither common denominators nor benchmarking were mentioned as strategies to be used by 

Grade 6 students. They were to "use estimates for computation, and apply criteria to 

determine whether estimates are reasonable or not" (p. 23), but no elaboration of the strategies 

to be used (or taught) was provided. In the Victorian Essential Learning Standards, 

conceptual understandings were implicitly part of the curriculum because to make a 

reasonable estimate children would use strategies and number sense rather than a rote 

understanding of common denominator procedures. What was lost in the 2006 revision of the 

2005 draft was the explicit inclusion of strategies that would guide the teaching and learning 

decisions made by practicing teachers. Without this explicit elaboration of useful strategies, a 

chance to provide examples of an understanding of fractions was lost. 

There were several different misconceptions in children's fraction understanding that had been 

reported in the research literature. One misconception was confusing the number of pieces 

with the size of the fractional parts (Carrahar, 1996; Saxe, Taylor, McIntosh, & Gearhart, 

2005). The double count – number of pieces shaded over number of pieces altogether- did not 

form a good basis for further knowledge (Kieren, 1993). The double count of shaded and 

unshaded parts became a misconception when students used this strategy for non-equal-parts 

diagrams, and this was described as the double count misconception.  

In collecting some fraction assessment tasks from the research literature in order to pilot a 

one-to-one task-based fraction interview for my Master's project, I was interested in the types 

of factors that had impressed me as a classroom teacher when using the Early Numeracy 

Interview (Clarke et al., 2002; Department of Education & Training, 2001). These included 

the affective response of the children, the opportunity for students to self correct, and the 

finding that some children in my Grade 5/6 class had discarded strategies that used number 

sense in favour of algorithms (sometimes faulty). I interviewed Grade 5 students and asked 

them to identify Parts B and A in a circular model that had unequal sections (see Figure 1.1). 

This task had been designed to elicit the double count misconception if it were present 

(Cramer, Behr, Post, & Lesh, 1997). Some children named Part A as 1/5 instead of 1/6 of the 

whole circle because it was one out of five parts (Mitchell & Clarke, 2004), demonstrating the 

double count misconception. However, some children gave the answer of 1/5 but had been 

comparing the smaller part (Part D) to the quarter (Part B), and had estimated 1/5 as being 

smaller than 1/4. They were not therefore demonstrating the double count misconception. 
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Children could give an incorrect answer with incorrect mathematical thinking or an incorrect 

answer but have a partially correct mathematical approach (M. Clements & Ellerton, 2005). 

The interview had revealed this distinction between a double count explanation or an 

estimation explanation, both with an answer of 1/5. 

 

Figure 1.1. Fraction Pie task. 

The use of length and area concepts in fraction tasks was of interest to me, and I investigated 

this using the Fold Me a Quarter task, in a Teacher Professional Leave study in 2005 (see 

Figure 1.2). I interviewed Grade 5 and Year 8 children using a one-to-one task-based 

interview and asked them to fold a square of paper into quarters, and then another identical 

square of paper into quarters another way (Mitchell, 2005). I then showed them two squares 

the same size as those they had just folded that were partitioned into square and triangle 

quarters (see Figure 1.2). I asked them which shaded piece, A or B, would give them more. 

Some children identified the triangle quarters as having "more" than the square quarters 

despite the large squares (or whole) being the same size. My experience as a teacher was that 

students have often been presented with length and area diagrams in fraction tasks or to 

support fraction activities. In short, children were often given fraction tasks in visual forms. 

To solve such tasks children had to interpret the diagram and work with the fraction content 

of the task. To do this they had to draw upon fraction knowledge and/or length and/or area 

knowledge, and/or properties of shape and/or the ability to mentally move parts of the 

diagram around. If students answered fraction tasks incorrectly, teachers might not know 

whether it was a lack of the fraction knowledge needed to complete the task, or whether the 

students did not have the measurement or spatial knowledge to complete the task successfully. 

This was reinforced by my analysis of the Fold Me a Quarter task and I suggested that some 

children did not have complete conservation of area (Mitchell, 2005).  
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Figure 1.2. Representation of two papers folded into quarters and labelled. 

The research literature had provided examples of fractions tasks that required conceptual 

understanding, such as the Fraction Pie (see Figure 1.1) and these could be used to elicit 

children's strategies. Kieren's five sub-constructs of rational number (1980) had framed my 

Master's project as well as my Teacher Professional Leave project. These five constructs were 

part-whole, measure, quotient, operator, and ratio. Kieren modified this model (1988, 1992, 

1993, 1995) and  

• incorporated part-whole into the other four sub-constructs, 

• added three underpinning concepts: partitioning, equivalence, and unit-forming, and 

• elaborated four levels of response to the concepts/sub-constructs: ethnomathematical, 

intuitive, technical-symbolic, and axiomatic deductive. 

I have termed this later version the four-three-four model and discuss it in depth in section 

2.1.5. Kieren also argued that leftover parts of units in measurement contexts were described 

using rational numbers (1976, 1980, 1988, 1992, 1993, 1995). In order to pursue my interest 

in children's strategies for solving fraction tasks, the link between fractions and measurement, 

and the importance of research-based frameworks for one-to-one interviews, I took leave from 

my teaching position and began my PhD in 2005. 

1.2 Research Questions 

Three questions emerged from the review of the literature: 

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 
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These questions can be linked to very broad concerns in the mathematics education field. 

Firstly if we embrace constructivist learning then we are faced with the enormity of the role of 

the teacher in responding to the variety of correct and incorrect strategies that a class of 

children bring to every task. The elaboration of the variety of mathematical strategies is part 

of developing the ability of members of the teaching profession to embrace these learning 

contexts. Secondly, if we believe there to be a conceptual link between fractions and 

measurement, then uncovering an association in children's performance in these two domains 

raises issues for the design of the curriculum. Thirdly teachers in Victorian schools are using 

one-to-one task-based interviews as a normal classroom pedagogical tool (Department of 

Education and Early Childhood Development, 2009b; Department of Education & Training, 

2001). If one-to-one interviews are supported by a sound connection to a theoretical 

framework then teachers are able to interpret and classify the detailed individual responses, 

use this as formative assessment and link this to classroom practice. Investigating the 

explanatory power of Kieren's four-three-four model (1988, 1992, 1993, 1995) contributes to 

this larger picture of making one-to-one task-based interviews a usable teaching strategy. 

None of these big picture questions can be answered in full in the present study, but they 

position the findings and their contributions to the field of mathematics education. 

1.3 Structure of the Thesis 

In this introductory chapter I have presented the background to the study and foreshadowed 

the questions that came out of the literature review and their significance.  

In the Literature Review chapter, the research literature concerning length and area, 

multiplication, visualisation, and fractions provides examples of students' strategies for 

solving tasks in these domains. The literature on length and area measurement is framed using 

the constructs attribute, additivity, unit, and proportionality: an adaption of Lehrer's eight key 

concepts for measurement (2003). The terminology used in the field of visualisation has been 

synthesised using the research of Bishop (1983) and Presmeg (2006a). Kieren's four-three-

four model for rational number knowing (1988, 1992, 1993, 1995) frames my interpretation 

of the fraction research literature. A critique of the methodologies used in the field of 

fractions research is offered. I conclude the chapter with the three research questions that 

emerged from the review of the literature. 
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The Methodology and Methods chapter has four sections: 

• a discussion of the qualitative methodology of the present study, 

• a brief description of the participants and local context, and a description of the 

instrument, research protocols, and validity, 

• an elaboration of the methods of analysis, and 

• a discussion of the limitations of the study. 

The Results chapter is structured by constucts. Measurement tasks are reported first in relation 

to the key concepts attribute, additivity, unit, and proportionality. Visualisation and 

multiplication tasks are then reported. The fraction constructs are reported in the last section 

of the chapter, and have been categorised using Kieren's constructs (1988, 1992, 1993, 1995): 

the concept of equivalence, and the sub-constructs of measure, quotient, operator, and ratio. 

Quotations from transcripts of students' explanations and photos of students' inscriptions are 

presented as evidence for the classification of their strategies. The associations between 

performance in measurement categories and performance on fraction tasks are reported. 

Examples are provided that show that partitioning, equivalence and unit-forming concepts 

have been drawn upon in the students' responses to tasks assessing the different sub-

constructs. 

In the Discussion and Implications chapter, I consider the three research questions that 

emerged from the literature review. I interpret the results and discuss the ramifications of each 

of those questions.  

The final chapter includes a summary of the discussion and interpretation of each research 

question, which I then connect back to the broad concerns that have been raised in this 

introduction, before elaborating my conclusions about the findings. The thesis concludes with 

suggestions for further research.  
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Chapter 2: Literature Review  

I began the present study with an interest in the conceptual links between measurement and 

fraction tasks, and in the strategies that children have used to solve these tasks. In this review 

of the literature I examine the mathematical domains of measurement, visualisation and 

fractions to identify both the strategies used by children and the theoretical frameworks used 

by researchers.  Boote and Beile's criteria for writing literature reviews (2005) provided the 

approach used in this chapter: the research is placed in its historical context, I resolve 

ambiguities in the terminology, the research questions are positioned within a theoretical 

framework, and the methodologies of research in the field are evaluated. 

The constructs of the theoretical frameworks of the measurement, visualisation, and fraction 

domains provide the sections for these three research areas. The constructs of attribute, 

additivity, unit, and proportionality provide the theoretical framework for the literature on 

length and area and were adapted from Lehrer's eight key concepts of spatial measurement 

(2003). The ambiguities in the visualisation field caused by the use of different terms for the 

same concept or parts of concepts are resolved by developing a hierarchy list. In the fractions 

domain the constructs of Kieren's four-three-four model (1988, 1992, 1993, 1995) provided a 

framework for the examination of the research literature. The measure sub-construct of 

fractions is examined in more depth because the conceptual links to the measurement domain 

are more evident in these tasks. A discussion of a brief history of fractions research enables a 

critique of methodologies used in the field. 

This chapter includes research up to 2007, as this was the literature that informed the present 

study and in particular the development of the data collection instrument. Research literature 

concerning children's explanations has been included in the Methodology and Methods 

chapter. The Discussion and Implications chapter includes two types of new literature: 

research on fractions and measurement published after 2007, and literature concerning 

classroom interactions that had been originally excluded from this literature review because 

the present study was not a classroom investigation. However, the terminology and concepts 

used in classroom interaction research has subsequently proved useful in framing the findings 

based on the children's explanations.  
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2.1 Critical Examination of the State of the Field 

2.1.1 Procedural and conceptual knowledge. 

Researchers in mathematics education have differentiated between procedural and conceptual 

understanding. Skemp (1976) described the kind of learning that was focused on procedures, 

for example, turning a fraction upside down and multiplying as a technique for dividing by a 

fraction, and called this instrumental understanding. Relational understanding on the other 

hand, described the making of a mental map that connected mathematical concepts. 

Analogously, Kieren (1976), distinguished between knowledge of fractions that was 

procedural in nature and an understanding of fractions that was intuitive and related to 

concept development. Hiebert and Carpenter (1992) used the terms procedural and conceptual 

knowledge to distinguish between instrumental and relational understanding (see also Hiebert 

& Lefevre, 1986). 

2.1.2 Measurement. 

The literature concerning length and area measurement is synthesised in the present study into 

four main constructs: attribute, additivity, unit, and proportionality. I include recognising 

increasingly complex formations such as straight paths, bent paths and perimeters in length 

measurement, and distinguishing between multiple attributes of a figure, as aspects of the 

attribute construct. For example, a single object can have a number of measurement attributes 

such as length, area, mass, temperature, or volume. The construct of additivity is defined in 

the present study as an understanding that the whole is the sum of the parts. This includes the 

concept of conservation, and the role of a zero-point on scales such as rulers. My synthesis of 

the construct of units includes describing a leftover part of a unit, using formal or informal 

units, and specifying identical or mixed units. An understanding of the inverse relationship 

between the size of the unit and the count forms the basis of the construct of proportionality 

in the measurement domain. These four constructs have been adapted from Lehrer's eight key 

concepts for spatial (length, area, area, volume) measures (2003), and concepts and strategies 

from the research on length and area measurement. Lehrer proposed eight key concepts for 

spatial measurement (2003): 

• Unit-attribute relationship (units match the attribute being measured), 

• iteration (a single unit can be moved to measure a spatial attribute, or the attribute can 

be subdivided into units), 

• tiling (units fill lines, planes, volumes, and angles without cracks) 
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• identical units (if the units are identical a count represents the measure, and mixtures 

of units have to be specified), 

• standardisation (formal units are used to facilitate communication), 

• proportionality (the size of the unit is inversely proportional to the count of the units), 

• additivity (the whole is the sum of the parts: conservation), and 

• origin (zero-point) (any point can be used as a zero-point: e.g., the difference between 

0 and 10 is the same as between 30 and 40). 

The list did not represent a trajectory. Lehrer's eight key concepts represented a coordinated 

understanding of measurement.  

Researchers in the measurement field have challenged the traditional teaching sequence based 

on Piaget's ideas about conservation: the use of gross comparison of length; the use of non-

standard units and manipulative standard units; and the use of instruments such as rulers (see 

e.g., D. Clements, 1999). However, the concepts themselves have informed an understanding 

of the measurement domain and so research that used such trajectories is included in my re-

categorisation of constructs. In the United States, length, area, volume and angle measurement 

have been classified as early geometry constructs (see e.g. Battista, 2007; Lehrer, Jenkins, & 

Osana, 1998). In Victorian curriculum documents, measurement has been a separate strand to 

space (geometry) (Board of Studies, 1995) and this is why in the present study I refer to 

measurement and geometry as separate domains. 

2.1.2.1 Attribute. 

The construct of attribute used in the present study encompasses both knowing that attributes 

are definable, and identifying them: 

• measurable attributes 

o a continuous property of an object is an attribute that can be measured, 

o spatial attributes are length, area, volume, and angle; non-spatial attributes 

include mass, time, temperature, 

• identifying attributes  

o attributes present with increasing complexity. For example, length: straight 

paths/bent paths/perimeter; or area: regular/non-regular/composite shapes, 

o different attributes of the same object can be distinguished and measured, 
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o one attribute may be used to measure another in particular cases, for example 

length for area in rectangles of the same width, or area for volume in regular 

prisms, and 

 substitutions can be overgeneralised (e.g., the perimeter indicates area 

misconception). 

A continuous attribute of an object can be measured. Wilson and Rowland observed, "We 

count discrete or separate objects and we measure continuous properties such as length, area, 

or volume" (1993, p. 176).  Researchers have distinguished between the spatial attributes, 

length, area, volume, and angle (Lehrer 2003; Outhred, Mitchelmore, McPhail, & Gould 

2003), and non-spatial measures, mass, temperature, time (Lehrer 2003), and gravity (Wilson 

& Osborne, 1992). Some frameworks were applicable for spatial measures only (Barrett & D. 

Clements, 2003; Lehrer 2003; Outhred et al., 2003). Other researchers have presented general 

principles for measurement (Wilson & Osborne, 1992; Wilson & Rowland, 1993). 

Attributes can present with increasing complexity. For example length can involve straight 

paths, bent paths, or perimeter. Area can be of regular, non-regular or composite shapes. 

Children's performance on length tasks involving bent paths (Barrett, D. Clements, 

Klanderman, Pennisi, & Polaki, 2006; Battista, 2006) was lower than on length tasks 

involving straight paths, indicating greater complexity. Misconceptions about length 

measurement have been demonstrated in perimeter tasks (Barrett, Jones, Thornton & Dickson, 

2003). 

Different attributes of the same object can be distinguished and measured. Confusions about 

attributes could occur when using area models for fraction tasks: "We assume that students 

are thinking about area and that they notice that the figure has been divided into three 

congruent parts, but we know that many students confuse length and area" (Wilson & 

Rowland, 1993, p. 172). In a longitudinal study, primary school children incorrectly tried to 

use a unit of length to measure an area (Lehrer et al., 1998). A child reflecting on attributes 

said, "I used to think area was about the size of the edges" (Kidman, 2001). Traditional 

instructional sequences started with identifying the attribute (Outhred et al., 2003; Wilson & 

Rowland, 1993) but because instructional sequences often referred to early primary learning, 

teachers have not returned to the concept of identifying the attribute in later grades.  

One attribute can substitute for another. Children have used length in area comparisons; 

attention is given to the length of fraction strips to differentiate between a half piece or third 
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piece but the length indicates the area of the strip. Using the magnitude of the perimeter of 

two similar shapes indicates which is larger; a circle with a larger circumference has a greater 

area than one with a smaller perimeter. However, misconceptions have occurred when one 

attribute has been used to represent another inappropriately. When non-similar shapes do not 

follow this pattern it appears counter-intuitive. Piaget described this misconception: "by 

altering the form of an area we automatically extend or reduce its perimeter, and this in turn 

affects the topological intuitions which form the starting point for children's thinking in the 

realm of space" (Piaget, Inhelder, & Szeminska, 1960, p. 279). Activities in middle and upper 

primary school have been used to try to counter the power of this misconception. For 

example, the same rope was wrapped around a 5 by 8 units rectangle (area = 40 units, 

perimeter = 26 units) and a 6 by 7 rectangle (area = 42 units, perimeter = 26 units) and the 

areas compared (Barrett & D. Clements, 2003). The perimeter indicates area misconception 

was present in incorrect comparisons of square and triangle quarters in the Fold Me a Quarter 

task (Mitchell, 2005) (see Figure 1.2). Children incorrectly assumed that the piece with the 

larger perimeter had the larger area. 

2.1.2.2 Additivity. 

The construct of additivity used in the present study is categorised into conservation and 

comparison, and restructuring the whole: 

• Conservation and comparison (position in space) 

o The whole may undergo a spatial transformation and the measure of the 

attribute will remain constant, 

o Direct comparison of two objects may be made using visual, numerical or non-

numerical means, 

o The concept of transitivity may be used to compare two items to each other by 

means of an intermediary object, 

o Scales (e.g. rulers) have a zero point, either explicitly stated or implied (Origin: 

Lehrer (2003)). 

• Restructuring the whole: space filling/subdividing  

o Conservation of the whole is maintained during subdivision of the whole into 

parts (Additivity: Lehrer (2003)), 

o Subdividing a whole into parts implies the use of iterated units (Iteration, and 

Tiling: Lehrer (2003)), 
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o The count of two spatial measures can be added if the objects are combined, 

for example two lengths, two areas, two volumes, two angles, 

o Arrays are an important model for early area measurement, 

o The area algorithm is multiplicative in nature and based on an array structure, 

o Inference using geometric reasoning rather than direct iteration may be used to 

describe measurements, for example of non-straight paths, non-regular shapes, 

non-congruent units. 

The concept of conservation describes the preservation of the whole when a) moved or 

rotated, b) partitioned, and c) subdivided and rearranged. The conceptual link between 

conservation and additivity was noted by Wilson and Osbourne (1992). Piaget's discussion of 

measurement used the ideas of end points and rotation to build up the concept of conservation 

in length and then area (1960). The whole could be moved in space (placed somewhere else) 

and the measure of the attribute would remain constant: the child "regards the new shape 

simply as an outcome of such a transformation rather than a new area to be compared with the 

original" (Piaget et al., 1960, p. 285). The direct comparison of two lengths could be through 

quantification or other means. In instructional models, making comparisons (unquantified) 

has been proposed as the next step after identifying the attribute (see e.g., Wilson & Rowland, 

1992). The concept of transitivity could be used to compare two items by means of an 

intermediary object. Failure to attain any of the three foundational ideas (transitivity, 

conservation, and unit) was suggested as a barrier to further conceptual understanding 

(Wilson & Osbourne, 1992). Again, the comparisons could be numerical or non-numerical.  

Non-quantified measurement could have sophisticated reasoning including the use of 

properties of shape (Battista, 2006). For example, to calculate the perimeter of the L shape 

(see Figure 2.1) a child would need to assume that lengths and widths added up to the same 

total even though they have been subdivided and rearranged (Battista, 2006). Using a not-to-

scale diagram emphasised that geometric thinking was an easier strategy to use than 

measuring the lengths. 
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Figure 2.1. Perimeter of an L shape (adapted from Battista, 2006). 

A ruler has the length scale on it, and has a zero-point explicitly marked. Any point could be 

chosen as a zero-point, Lehrer reminded us (2003), because the distance between 0 and 10, 

and 30 and 40 is the same. Broken ruler tasks have been used to investigate children's 

conceptual understanding of length (see e.g., Barrett & D. Clements, 2003; Bragg & Outhred, 

2000, 2004; D. Clements, 1999; Hart, 1981; Lesh, Landau, & Hamilton, 1983). They also 

appear as items on national assessments (see e.g., Kamii & Clark, 1997). For example, 

children were asked to measure a line (9 cm long) with a ruler that had been cut at the 3.5 cm 

mark and labelled from 4 cm to 20 cm, necessitating the mental creation of a new zero-point 

(Bragg & Outhred, 2000).  

The counting lines not spaces misconception was observed in some of these studies. Some 

children counted the mark at the edge of the object (the new zero-point) as one, thereby 

generating an incorrect count (one too many) for the length. Grade 6 students counted lines 

not spaces (Bragg & Outhred, 2004). In studies with younger children, Grade 1 students 

counted lines instead of gaps (McClain, Cobb, Gravemeijer, & Estes, 1999) and in a 

longitudinal study of Grade 1, 2 and 3 children (Lehrer et al., 1998) the incidence of the 

incorrect counting of the hash mark at the new zero-point as one decreased over the course of 

the teaching intervention. A variation of the misconception was to count the hash marks but 

not the edge of the object, thereby generating an incorrect count (one too few). For example, a 

Grade 4 child counted notches rather than lengths (Barrett, et al., 2003).  

Proficient use of a ruler did not guarantee that children recognised conceptually that iteration 

of a length was taking place, and the "learner's goal may be to count rather than to measure, 

which may or may not match the teacher's goal for the learner" (Joran, Gabriele, Bertheau, 

Gelman, & Subrahmanyam, 2005, p. 6-7). Bragg and Outhred (2000) reported a Grade 5 

student reflecting on his previous thinking about measuring, "No we just used to count stuff, 

you know,…like shoes and our hands, and them paddle pop sticks. I used to get things wrong 
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'cause I used to start at 1 like we counted" (p. 115). The researchers suggested that using 

informal units had focussed on counting and using a ruler was taught as a procedure. 

The whole can be restructured by filling or subdividing. Conservation is required. The whole 

is the sum of the parts even if they are rearranged. Piaget suggested that the concept of 

conservation "which entails the complete coordination of operations of subdivision and order 

or change of position ... was found to have been reached by one subject in 10 of those aged 6-

7, by half of those aged 7;0 – 7;6 [7 y to 7 1/2 y] and by three quarters of those aged 7;6 – 8;6. 

[7 1/2 y to 8 1/2 y]" (1960, p 114). A large British study found that 72% of 12 to 15 year olds 

could conserve both length and area (Hart, 1981), indicating that the frequency of children 

demonstrating conservation remained relatively unchanged from age eight and a half to age 

15. Without the expectation of conservation, measurement would not convince children of the 

inaccuracy of their visual comparisons, argued Carpenter (1975), as they simply believed that 

the relation between quantities had changed or was being evaluated on some new unrelated 

dimension. The use of dynamic geometry computer programs enabled 14 year old students to 

explore conservation with polygons (Kordaki, 2003). Conservation presents with increasing 

complexity.  

When tiling, children use units to fill lines, planes, volumes, and angles Lehrer argued (2003) 

and this could occur with physical objects or by subdividing a diagram. Wilson and Osbourne 

(1992) noted that gaps between units, or overlapping units, were tiling/iteration errors. Using 

wooden tiles could mask the principles of iteration because the children did not have to attend 

to tiling with no overlapping units; this was prevented by the raised edges of the tiles 

(Outhred & Mitchelmore, 2000). In a longitudinal study of children in Grade 1 to 3, Grade 2 

to 4, and Grade 3 to 5, a preference was observed for using a unit that had a similar shape to 

the item being measured, for example using triangle units to measure a triangle (Lehrer, 

2003). Lehrer (2003) explained that iteration could involve the re-using of units and that this 

drew upon an understanding of conservation. Providing fewer units than the total count was a 

strategy used by researchers to investigate children's iteration skills because for Grade 3 

students picking up units and re-using them was conceptually more difficult than tiling 

(Lehrer Jaslow, & Curtis, 2003). Similarly, children in Grade 1 to 5 were forced to re-use 

units when given two paperclips to measure a line longer than that, demonstrating their 

understanding of unit iteration (Bragg & Outhred, 2000). Tiling and iteration have been 

included in instructional sequences as concepts and skills needed for informal measurement 

(Outhred & McPhail, 2000). Iterating a 30 cm ruler to measure a 93 cm streamer created a 
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composite unit for length (Department of Education & Training, 2001), and 33% of Grade 4 

students were successful at this and at calculating the difference to 1 metre (Clarke, 

Cheeseman, McDonough, & B. Clarke, 2003). In the same study, 88% of the students could 

measure a 20 cm straw with a ruler. Rows or columns were composite units in area 

measurement (Izsak, 2005).  

Arrays can be a mental and physical restructuring of area diagrams. They have been described 

as meaningful subdivisions of space into a unit structure (Outhred & Mitchelmore 2000). The 

array structure was not always self-evident to Grade 2 children (Battista, 2003). A Grade 2 

child did not visualise an array structure on a diagram with a partially marked array (see 

Figure 2.2. Note, the numbers shown represented the child's counting and did not appear on 

the task card shown to the child). Instead she counted in a "one dimensional path as if they 

were travelling along a road with no awareness of their surroundings as if in a tunnel" 

(Battista, D. Clements, Arnoff, K. Battista, & Borrow, 1998, p. 528).  

 

Figure 2.2. One dimensional counting strategy for the area of an array (Battista, et al., 1998). 

Drawing an array rather than covering it with tiles was used as an assessment of Grade 1-4 

children's conceptual understanding of the array structure (Outhred & Mitchelmore, 2000). 

The researchers deliberately printed a square unit on the paper so that it couldn't be picked up. 

Some children had difficulty subdividing an area physically into an array. Some children did 

not appear to recognise the convention that a single line represented both the end of one unit 

and the start of another for adjacent units and drew individual squares instead of an array. 

Outhred and Mitchelmore (2000) categorised the children's attempts at drawing arrays as 

incomplete covering, visual covering, concrete covering, and measurement. Only by Grade 4 

were many children using an array structure to work out the area of the given rectangle. There 

were similar observations in other studies: Grade 2 children drew each unit in its entirety, 

rather than using a common edge (Battista, et al., 1998). Other children started by drawing the 

units on the edges of the shape but had difficulty co-ordinating a row by column structure 
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(Schifter & Szymaszek, 2003). Outhred and McPhail (2000) interviewed teachers and found 

that they taught area as a process of covering and counting not as subdividing a region.  

The area algorithm is multiplicative in nature and based on an array structure. Covering 

rectangles with square tiles, a common classroom activity, was described as promoting 

additive, one-dimensional thinking, rather than the multiplicative thinking that the area 

formula represented (Outhred & Mitchelmore, 2000). Strategies observed for the numerical 

count of arrays in a Grade 2 class included count all, and skip counts of columns or rows 

(Lehrer et al., 2003). In a study of Grade 6 students, 50% of them did not have the conceptual 

understanding that area was multiplicative (Kidman, 2001). Many were still thinking 

additively about the count and were not able to use array structuring. Lehrer (2003) noted that 

the use of area models for fraction problems was potentially troublesome because it assumed 

knowledge of the array structure that may not be in place.  

Conservation of the whole is maintained during multiplicative restructurings. The 

restructuring of area diagrams into arrays is possible because of the additive property of 

spatial measures: length, area, volume and angle. Researchers elaborated that while additivity 

did apply to some non-spatial measures such as mass it did not apply to others such as 

temperature (Lehrer 2003; Wilson & Osbourne, 1992; Wilson & Rowland, 1993).  

Battista (2003, 2004, 2007) refined an earlier trajectory (Battista et al., 1998) for children's 

structuring of arrays as composite units in area contexts. The levels from his 2007 trajectory 

are presented below with the corresponding levels from 2004, 2003 and 1998 included in 

brackets, determined by tracking concepts and student examples in the articles:  

• Level 1: absence of units-locating and organising-by-composites processes (Level 1, 

Level 1, Level 1), 

• Level 2: beginning use of the units-locating and the organising-by-composites 

processes (Level 2, Level 2, Level 2 and 3A), 

• Level 3: units-locating process sufficiently coordinated to eliminate double-counting 

errors (Level 3, Level 3, no corresponding level), 

• Level 4: use of maximal composites, but insufficient coordination for iteration (Level 

4, Level 4, Level 3B), 

• Level 5: use of units-locating process sufficient to correctly locate all units, but less-

than-maximal composites employed (Level 5, Level 5, no corresponding level), 



18 
 

• Level 6: complete development and co-ordination of both the units-locating and the 

organising-by-composites process (Level 6, Level 6, Level 3C), and 

• Level 7: numerical procedures connected to spatial structuring, generalisation (Level 

7, no corresponding level, no corresponding level). 

Battista (2004) described a learning trajectory for the development of area measurement using 

arrays which provided a detailed framework for understanding the construct, in contrast to 

some instructional sequences which concentrated on the first few years of primary school and 

focussed on identifying attributes, comparing measures, using informal units and using a 

structure of repeated units (Outhred et al., 2003).  

2.1.2.3 Unit. 

The construct of units used in the present study contains two concepts: that attributes can be 

specified using appropriate units, and that spatial units and non-spatial units can be combined 

to make rates: 

• Attributes can be specified using appropriate units (Unit-attribute relations: Lehrer 

(2003)) 

o Iteration may result in "leftovers" and these leftovers can be described using 

rational numbers, 

o Numerical quantification and non-numerical qualitative comparisons can be 

made using iterated units (Identical units: Lehrer (2003)), 

o Informal, formal and standard units can be used as a unit of measure with 

identical or mixed units specified (Standardisation: Lehrer (2003)), 

o Iteration can involve composite units e.g. length: 30cm ruler repeated. Area: 

repeated addition of "rows", or a multiplicative understanding of row and 

column arrays, 

• Spatial units can be combined with non-spatial units to make rates (e.g. speed: 

distance (length) over time), or to describe some non-spatial attributes (e.g. density: 

mass over volume) 

Measuring with units can result in "leftovers" and those partial units have to be described. 

Wilson and Osbourne (1992) described measurement as a process whereby "First a suitable 

unit is chosen. Second, the unit is repeated, dividing the object into equal subdivisions with 

perhaps the fraction of a unit left over. Finally, the units are counted to produce a 

measurement of the object" (p. 91). Different strategies have been reported to describe such 

leftover parts of units: 
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• Qualitative statements could be made. For example, when describing a tower that was 

between 13 and 14 blocks high, children in Grade 2 and Grade 3 were happy to report 

the measure as 13 and a bit (Brown, Blondel, Simon, & Black, 1995). At these grade 

levels, the words a half could indicate a bit rather than a quantified fractional amount, 

• Leftovers could be quantified using fractions. Grade 6 students in the study tied to 

describe the leftover part of the unit using fraction terminology (Brown et al., 1995), 

• Leftover pieces could be combined using fractional reasoning. Children matched two 

half pieces to make units when measuring the area of a circle with a grid because the 

tiling did not match the boundary of the shape (Lehrer, 2003). On other non-regular 

shapes, a fourth of a unit plus a half of a unit plus a fourth of a unit made a whole 

(Lehrer et al., 2003), 

• Smaller units could be used. Pre-service teachers used this strategy to confirm the area 

of Montana (Hodgson, Simonsen, Lubek, & Andreson, 2003), 

• Mixed units could be specified. Mixtures of units needed to be clearly named, for 

example "5 yards and 3 inches" was not "8" (Lehrer, 2003). Mixed units were of 

different sizes and this was one strategy for managing partial units.  In Australia, the 

use of the metric system for measurement has meant that many mixed units are related 

by powers of ten. For example, 1.7 m is 1 m and 70 cm.  

Exposure to tasks in which measuring led to leftovers can draw attention to partial units. For 

example, measuring a straw that was four and a bit paperclips long was an assessment task for 

Grade Prep to 2 children in Victoria (Department of Education & Training, 2001). This 

measuring involved the iteration of a unit resulting in a leftover part. 

Informal units have been elaborated (hands, paces, tiles), as have formal units (imperial or 

metric measures) and standard units (the meter, the kilogram, and the second). The use of 

informal units and formal units represented stages in instructional sequences (see e.g., 

Outhred et al., 2003; Wilson & Rowland, 1993) but not necessarily a learning trajectory.  

Lehrer argued (2003) that choosing units involved both choosing units that matched the 

property being measured (e.g., area units for measuring area), and choosing the magnitude of 

those units (e.g., square foot or square inch). The construct of the unit has been a foundational 

idea in researchers' frameworks (see e.g., Wilson & Osbourne, 1992) and choosing an 

appropriate unit to measure an attribute was a step on instructional sequences (see e.g., 

Wilson & Rowland, 1993). 
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In regular arrays, rows or columns were described as composite units and used to skip count 

or to multiply (Outhred et al., 2003). The categorisations, no units, inexact units, exact units, 

and co-ordinated units (Barrett & D. Clements, 2003) corresponded to comparisons, informal, 

formal and composite units. The authors suggested that additive thinking was more common 

with inexact and exact units, while multiplicative thinking was used with co-ordinated units. 

For Grade 5 children, the number of units in a composite unit affected their choice to use 

composite units: four by four grids might prompt the use of composite units, but seven by 

nine grids did so less frequently (Izsak, 2005). In order to use composite units, children had to 

be able to conceptualise a row was four ones and one four (Izsak, 2005). Composite units 

require a coordinated understanding of units and additivity. 

2.1.2.4 Proportionality. 

The inverse relationship between the size of the unit and the magnitude of the count illustrates 

the construct of proportionality used in the present study:  

• There is an inverse relationship between increasing size of the unit and the count 

(Proportionality: Lehrer (2003)), 

o Scales (e.g. rulers) use proportional markings, 

o If the size of the units and the count of the units remains the same, the spatial 

measure remains the same. 

If the size of the unit is changed, the count changes. Young children in their first year of 

school could identify the direction of change by indicting who would get more or less when 

the size of the unit was changed (Sophian, Garyantes, & Chang, 1997). When shown a strip 

that measured four blocks long and asked how many smaller blocks would be needed to 

measure it (any answer greater than four was taken as correct), Grade 1 and Grade 2 children 

identified numerically, but not precisely, that more would be needed (Carpenter, 1975). In 

international testing 21% of Australian Grade 4 children identified who had the longest pace, 

given a chart with four children and the number of steps they had taken across a room 

(National Center for Educational Statistics, 2007). This indicated that comparing the size of 

the unit from the count was more difficult than predicting the direction of change in the 

magnitude of the count when comparing units. Hiebert (1979) demonstrated that non-success 

on basic Piagetian length conservation and transitivity tasks did not necessarily predict that 

Grade 1 children could not use units to measure. However, the children at this preoperational 

stage found a task coordinating different sized units difficult and fourteen out of sixteen of 

them showed no understanding of the inverse relationship between the unit size and the count. 
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Hiebert made a crooked "little roads for ants" with five black (7 cm) Cuisenaire rods and 

asked the child to make a straight road the same length using yellow (5 cm) rods (p. 244- 

255). This task required not just an understanding that more of the smaller unit would be 

needed but for the child to quantify this with concrete materials.  

Pettito (1990) offered Grade 4 children rulers marked at 10, 20, 30 etc: one with equal spaces 

and three with non-equal spacings. The children chose to use the ruler with equal spaces more 

often than chance. Grade 1, 2, and 3 students in a longitudinal study were offered two seven 

inch rulers to measure a stapler and a nine inch book (Lehrer et al., 1998). One ruler had equal 

units and the other had unequal units marked and 67% of Grade 3 students iterated the equal-

marked ruler to measure the book correctly. 

Converting between related units draws on the inverse relationship between them. For 

example, in a Grade Prep to 2 assessment task, after measuring a 93 cm streamer, children 

were asked, "how far off one meter was I?" (Department of Education & Training, 2001). 

Calculating the answer relied on quantifying the inverse relationship between metres and 

centimetres. Thompson and Saldana (2003) elaborated that related units of measure were 

ratios. For example, 1 mile was 1760 yards. 

2.1.3 Multiplication. 

Multiplication has been seen as an important pre-requisite to fraction as ratio understandings. 

Proficiency with multiplication and division was described as a prerequisite skill for 

generating equivalent fractions or working proportionally with quantities (Stafylidou & 

Vosniadou, 2004).  

Developmental taxonomies of multiplication have been proposed. The stages in Sherin and 

Fuson's (2005) trajectory were not based on proficiency at algorithms, but on strategy use: 

count all, additive calculation, count by, pattern based, learned products and hybrid strategies. 

Strategies for multiplication assessed in the Early Numeracy Interview included count all, 

skip count, recognising the array structure for multiplication, recalling multiplication and 

division facts, and using hybrid strategies (Department of Education & Training, 2001). 

Different types of multiplication problems elicited the use of different strategies (Kouba & 

Franklin, 1993). Some multiplication tasks were easier in automatic recall tests. Students were 

more successful doubling and squaring than calculating 9 x 8 in a study of Western Australian 

children from Grade 3 to Year 9 (Bana & Korbosky, 1995).  
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2.1.4 Visualisation. 

Visualisation encompasses the use of physical inscriptions as input or output in a 

mathematical problem, or the use of mental visual imagery during mathematical thinking.  

2.1.4.1 Visual and non-visual thinkers. 

Children and adults can be classified as visual or non-visual thinkers. Krutetskii (1976) 

described this difference with the terms geometric thinkers (visual) and analytic thinkers 

(non-visual). Geometric thinkers thought holistically, often in pictures or diagrams, while 

analytic thinkers were characterised as thinking more sequentially and often numerically (see 

Figure 2.3, column I). The term geometric thinkers was distinct from geometric reasoning. 

Any domain could be approached visually or non-visually. For example, Bishop (1983) 

argued that both algebra and geometry could be approached visually or non-visually. He 

developed the term visual processing to describe rotating objects in the mind's eye and 

mentally viewing an object from a different point of view (1983). I use Presmeg's (1986) term 

dynamic imagery to describe this phenomenon. Bishop was careful to distinguish between 

figural input, visual thinking, and figural output (1977, 1986). For example, a child with a 

preference for analytic thinking (non-visual) might be presented with a diagram as input or be 

asked to produce a map as output but use analytic thinking to solve the problem. A child with 

a preference for visual thinking, a visualizer (Presmeg, 2006a), might use mental imagery 

despite the input and output of a task being symbolic.  

Visual thinking could be prompted by tasks. For example, children were shown an image of 

18 dots in a six by three array and asked to show thirds, sixths, and twelfths (Lamon, 2002). 

The prompt, do it without counting them all one by one, was designed to elicit a spatial 

restructuring strategy. To make thirds, a child might mentally restructure the array into three 

rows and choose one of those rows. The prompt was designed to dampen numerical thinking 

in which the child might draw on multiplication to remember that three times six was eighteen 

and look for a group of six. 

Visual restructuring could work with any large friendly number that was divided into an array 

structure, whereas working numerically with such numbers would be onerous. On the other 

hand, diagrams could hinder understanding. An array structure may have helped with thinking 

about 3/4 of 12 but not with visualising 3/4 of 15 (M. Clements, 1983).  
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Figure 2.3. Synthesis of terminology used in visualisation research.  
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2.1.4.2 Visual imagery and inscriptions. 

Visualisation described both mental/internal representations (thinking) and physical/external 

representations (input or output) (see Figure 2.3, see column II). Visual imagery (mental 

representations) included pattern, dynamic, concrete, memory, and kinaesthetic (Presmeg, 

2006a). I have classified these under figural, symbolic, and corporeal representations (see 

column VI). A fourth category (unknown) classifies pattern imagery. Visual imagery 

concerned the thinking part of a task. Inscriptions were defined by Roth and McGinn (1998) 

as written representations including both diagrams and symbolic notation but excluded mental 

representations (see column IV), and convey information in a visual form: maps, charts, 

diagrams, tables and graphs, lists, photographs, spreadsheets, equations and histograms (see 

column VII and VIII). Inscriptions, concrete materials and corporeal actions concerned the 

input or output of a task (see column III). 

2.1.4.3 Interpreting figural information and semiotic analysis. 

Both visual imagery and inscriptions have been mediated by culturally specific 

understandings (see Figure 2.3, see column V). Bishop identified the role of interpreting 

figural information (semiotic considerations) of culturally specific mathematical diagrams by 

demonstrating that the dotted lines in the two dimensional images of a cube used in western 

countries was not a natural representation of a three dimensional object because it was not 

recognised by students in Papua New Guinea, despite their excellent visualisation skills in 

other tasks (Bishop, 1979). The interpretation of geometric diagrams required an 

understanding that was not cross cultural. Interpreting figural information "involves 

understanding the visual representations and spatial vocabulary used in geometric work, 

graphs, charts, and diagrams of all types" (Bishop, 1983, p.184). The description of mediated 

understandings for figural inscriptions (IFI in column V) signals the role that semiotic 

analysis had for all the interpretations of inscriptions, for interpretations of visual imagery, as 

well as for interpretations of corporeal actions (see column V). For example, in western 

cultures the holding up of one hand with fingers spread indicated five, but the holding up of 

one hand with fingers touching indicated stop.  

Mathematical diagrams conveyed meaning through agreed semiotic conventions as to how 

they were to be decoded (Presmeg, 2006b). Diezman claimed that children should be 

"diagram literate" (2005, p. 286). Diagrams relied on conventions to depict both the 

components of the situation being represented and their organisation. Conventions had to be 
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learned and understood before the diagrams could be understood and successfully used 

(Pantziara, Gagatsis, & Pitta-Pantazi, 2004). Some students were confused by symbolic 

notation: a fraction was "read" vertically, while written words in English were read left to 

right (Hunting, Pitkethy, & Pepper, 1990). Students in a multi-level Grade 3/4/5 did not 

necessarily interpret pre-partitioned physical models as connected to part-whole 

representations (Wenrick, 2003). These students interpreted concrete materials differently to 

inscriptions. Interpreting the dotted lines as representing the edges that cannot be seen in the 

two dimensional representation of the three dimensional Wattanawa Block (see Figure 2.4) 

was required before either spatial reasoning or geometrical reasoning were employed to solve 

the task (M. Clements, 1983). Diagrams had their own grammar and vocabulary that had to be 

interpreted.  

 

Figure 2.4. The Wattanawa Block task: dotted lines represent unseen edges. 

2.1.4.4 Inscriptions. 

I have classified the examples of inscriptions provided by Roth and McGinn (1998) into   

symbolic inscriptions and figural inscriptions (see column VI). Symbolic inscriptions include 

mathematical notation. Figural inscriptions are subdivided into images, graphic organisers, 

and diagrams (see column VII). Images include photos and pictures (see column VIII). 

Graphic organisers use spatial layout to indicate hierarchies or links, and include lists, charts, 

and tables. Diagrams are further categorised as representations of a context, and geometric 

figures. The role of a diagram in a task could be identification (e.g., labelling a circumference 

of a circle), comparison (e.g., analogue and digital clocks next to each other), showing a stage 

in a chain of events, or sequencing, (e.g., a sporting race showing ordinal finish), or a 

combination of the three types (Kidman, 2002). Geometric diagrams could be scale diagrams 

such as array tasks (see e.g., Figure 2.2) or not-to-scale diagrams such as the Perimeter of an 

L Shape task (see Figure 2.1). Contextual diagrams included children's detailed drawings of 
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word problems. Younger children added detail to their mathematical drawings such as faces 

on human figures because they were still representing a concrete, not abstract image (Kamii & 

Housman, 2000). Later, stick figures or even marks could stand in for objects. I separate 

graphic organisers from diagrams, in contrast to Diezman and English (2001) whose 

definition of a diagram would include visual organisers: "A diagram is a visual representation 

that displays information in a spatial layout" (p. 77). I classify both as types of figural 

inscriptions and include images as well.  

Diagrams of fractions were intended to help students develop visual imagery of fraction 

contexts. M. Clements (1981, 1983) noted the use of length and area diagrams in fraction 

instruction. In a study in which two classrooms were compared, one using traditional 

(symbolic) fraction instruction and the other using paper models of fractions, the results 

showed no significant difference between the overall achievement of the two groups 

(Marriott, 1978). However, students who had been instructed using the paper cut outs were 

closer to the real answer when they made errors than the students taught with symbolic 

inscriptions. In contrast, research on problem solving showed that "the efficient use of a 

diagram did not imply the successful solution of a problem and reversely the successful 

solution of a problem did not imply the efficient use of the accompanied diagram" (Pantziara 

et al., 2004). Diagrams as input in fraction tasks were helpful in one study. In contrast, in 

another study, diagrams as input or output in problem solving tasks were not always 

associated with success. Although it was unconventional to have unhelpful information in a 

diagram, some tasks from the Rational Number Project deliberately included perceptual 

distracters to test children's understanding of fractions (see e.g., Behr, Lesh, Post, & Silver, 

1983; Behr & Post, 1981; Behr, Post, and Lesh, 1981). 

Another use of diagrams has been in geometric proofs, but as the focus on explanations in the 

present study did not use geometric proofs, that research literature has not been included in 

this chapter.  

2.1.4.5 Visual imagery. 

Visual imagery is mental or internal representations (see Figure 2.3, column IV). I have 

classified visual imagery into figural, symbolic and corporeal representations (see column 

VI). Presmeg had elaborated five visualisation strategies: pattern, memory, kinaesthetic, 

dynamic, and concrete (1986) (see column VII). Pattern imagery was of pure relationships 

stripped of concrete details; memory imagery was of mathematical formulas and algorithms; 
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and kinaesthetic imagery was of physical movement such as walking with fingers on each end 

of a vector (mentally) (Presmeg, 1986; 2006a). I have classified memory imagery as 

symbolic, and kinaesthetic imagery as corporeal. Presmeg's concrete imagery was a picture in 

the mind and dynamic imagery involved an object moved or transformed in the mind's eye. 

These last two visual strategies have been categorised here by me as figural. The terms 

dynamic imagery (Presmeg, 1986; 2006a), visual processing (Bishop, 1983), and spatial 

ability (D. Clements & Battista, 1992; M. Clements, 1983) all referred to the same type of 

visual imagery that enabled the movement of objects in the mind's eye. There were three types 

of visual imagery (see column VIII) recognised in the mathematics education literature (D. 

Clements & Battista, 1992; M. Clements, 1983; Gorgorio, 1998) and in cognitive psychology 

literature (Hegarty & Waller, 2004):  

• rotating the object while the mind looks on,  

• changing the point of view, for example imagining the mind's eye moving around to 

the back of the object, and  

• deformation of an object, analogous to the stretching or squashing of dynamic 

geometry objects using computer software (see e.g., Holzl, 1996).  

The researchers in the Early Numeracy Research Project (Clarke, et al., 2002; Department of 

Education & Training, 2001) used the term dynamic visualisation to refer to the deformation 

of an object. In contrast, I have used the term dynamic imagery, as Presmeg did (2006a), to 

indicate all three types of movement in the mind's eye.  

Longitudinal research into the use of visual imagery in fraction learning showed that pattern 

imagery was associated with conceptual understanding of fractions, and pictorial imagery was 

associated with a limited part-whole understanding (deWindt-King & Goldin, 2001).  

Visualisation has become the focus for the investigation of both visual imagery and 

inscriptions in many domains, such as algebra, fractions, and geometry. Visualisation was 

first recognised as a separate topic at the Psychology of Mathematics Education Annual 

Conference in 1991. Bishop (1983) and Presmeg's (1985, 1986) work had preceded this. 

Spatial ability (dynamic imagery) had been a concern of cognitive psychology until the 1980s 

when mathematics educators began to study it (M. Clements, 1983). In geometry, spatial 

ability (dynamic imagery) had been categorised as a skill (D. Clements & Battista, 1992), but 

later spatial reasoning (visualisation) was described as underlying most geometric thought 

(Battista, 2007). 
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Researchers have made a distinction between dynamic imagery and geometrical thinking 

strategies. For example, in the Wattanawa Block task (see Figure 2.4) the student had to 

decide where corner 2 was on the second diagram. A spatial ability (dynamic imagery) 

strategy could be employed involving complicated rotations in the mind's eye. A non-visual 

geometric solution (it's always opposite corner A) was possible (M. Clements, 1983). If 

spatial tasks, similar to the Wattanawa Block task, could be correctly solved using geometric 

reasoning and not spatial ability (dynamic imagery), as indicated by M. Clements (1983), then 

cognitive psychologists using such tasks to assess spatial ability would have unidentified false 

positives: students who gave correct answers but had not used dynamic imagery. Bishop 

(1983) had identified the possibility of false negatives in his examples illustrating interpreting 

figural information (semiotics): students may give an incorrect answer because they cannot 

decode the conventions of the diagram, not because they have poor visual processing 

(dynamic imagery).  

2.1.5 Fractions. 

In Victorian primary schools children can encounter fractions when: 

• the measurement of an object results in a count with a partial unit left over,  

• the remainder from a division is renamed,  

• an object or number is stretched or shrunk proportionally,  

• ratio comparisons are made in probability contexts (e.g. you are more likely to pick a 

red marble if four out of five are red than if seven out of ten are red),  

• decimals are used to extend the place value system to tenths and hundredths, and  

• shaded parts of area diagrams are named as fractions. 

I use the term fraction in the present study because I defer to the common usage in Victorian 

primary schools. "Fraction" signals early rational number understandings and the use of the a/b 

notation. Thompson and Saldanha (2003) suggested that an understanding of the system of 

rational numbers was beyond primary students and that fractions were a better focus of 

research and curriculum design. Decimals are not the focus of the present study and so little 

research has been included in this literature review about misconceptions specific to decimal 

notation and diagrams.  

Whole numbers are the first numbers children encounter and support discrete counting 

strategies. Baroody and Coslick (1998) pointed out that there was no "next" number when 

counting by fractions as there was when counting with whole numbers. Fractions are dense, as 
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Sophian and Wood (1997) elaborated "no matter how close one fraction is to another, there 

are always other fractions between them; therefore, they do not form a single fixed 

progression, as the counting numbers do" (p. 309). The continuous aspect of rational numbers 

meant that operating with fractions was not the same as operating with whole numbers.  

In an effort to make children's introduction to rational numbers easier, some teachers have 

limited fraction instruction to the part of a whole model (Lamon, 2007). Ball (1993) 

commented that children "probably would have had limited experience, consisting primarily 

of shading pre-divided regions" in their early fraction learning (p. 169). Kieren (1988) noted 

that "part-whole models of fractions conveniently help produce fractional language" but that 

this tends "to orient the student to a static double count image" (p. 177). This fractional 

language produces a definition that limits the teaching that has accompanied the part-whole 

model of fractions: there are four parts and you take three of them (for three quarters). This 

definition makes improper fractions almost nonsensical: there are four parts and you take 

seven of them (seven quarters). The limited nature of definitions linked to procedures has 

been noted and alternatives proposed: "If we have 7/3, the 3 tells the name or size of the parts 

(thirds) and the 7 tells us that we have 7 of those thirds (or 21/3)" (Clarke, Roche, & Mitchell, 

2008, p. 375).  

In some classrooms the use of the part-whole model was limited to a whole pre-divided into 

equal parts with students drilled in a procedure: count the shaded pieces (write this as the top 

number) and then count all the pieces (and write this as the bottom number) (Carrahar, 1996; 

Gould, 2005; Kieren, 1993; Ni & Zhou, 2005). Although counting without attending to the 

size of the pieces gives a correct answer when the diagram is divided into equal parts, if the 

same procedure is applied to diagrams with non-equal parts an incorrect answer results (the 

double count misconception). Some children articulated this confusion by asking "do you 

mean in size...or in amount?" (Post, Wachsmuth, Lesh, & Behr, 1985, p. 34). Using non-

equal-parts diagrams has distinguished between students with the double count misconception 

and students who can mentally or physically repartition the diagram into equal parts. 

Identifying the different contexts of rational numbers, Kieren (1976) proposed seven 

interpretations that included both conceptual understanding (decimal, equivalence, ratio, 

operator, quotient, measures) and procedural understanding (fraction algorithms). He refined 

this to a five part model (1980) which described only sub-constructs that formed a conceptual 

understanding of rational number: part-whole, measure, quotient, operator, and ratio. Kieren, 

a Canadian, worked closely with the American researchers from the Rational Number Project 
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who used an adaption of the five part model to frame their first teaching experiment which 

took place in 1980 (Behr et al., 1983; Behr et al., 1981). This adaption was used in the design 

of the instructional materials and placed partitioning and part-whole before, and leading to, all 

the four other sub-constructs. Later articles from the Rational Number Project researchers 

named six interpretations of fractions: part-whole, measure, ratio, operator, quotient, and 

decimals (Behr & Post, 1992; Behr et al., 1984). Both Kieren and the Rational Number 

Project researchers used a concept of part-whole that was broad and not meant to be 

interpreted as the static double count practice of some instructional models. The depth of this 

part-whole understanding was visible in later work by Behr, Harel, Post and Lesh (1992). 

This conceptual understanding of part-whole was the first concept in the Rational Number 

Project's instructional sequence (Cramer et al., 1997) but they cautioned that careful 

assessment was required to ascertain whether the students' part-whole knowledge was robust, 

and to intervene if the double count misconception emerged (Cramer, et al., 1997; Lesh, Post, 

& Behr, 1988). This approach to countering the double count misconception was to include a 

broad range of part-whole contexts in instruction, and this was supported by other researchers 

(Baturo, 2004; Clarke, Roche, & Mitchell, 2007; Gould, 2005; Herscovics, 1996; Keijzer & 

Terwell, 2002; Moseley, 2005; Nabors, 2003).  

Kieren's (1988) response to the double count misconception was to reframe the part-whole 

constructs within the other constructs of his 1980 model. Kieren's four-three-four model 

(1988) was not in opposition to his earlier five part model (1980), and the model used in the 

Rational Number Project research (Behr et al., 1983), but more of a refinement. In this 

adaptation (1988) the four sub-constructs of measure, quotient, operator and ratio remained, 

but were underpinned by three concepts, partitioning, equivalence and unit-forming (see 

Figure 2.5). These sub-constructs and constructs could be approached on four levels: 

ethnomathematic, intuitive, technical-symbolic and axiomatic deductive. I have called this 

model the four-three-four model to indicate these three different aspects of Kieren's model: 

four sub-constructs, three underpinning concepts, four levels of response. Kieren reiterated 

this model in later writing (1992, 1993, 1995). For Kieren, the measure and quotient sub-

constructs provided conceptually richer ways of explaining the non-procedural part-whole 

examples used by the researchers in the Rational Number Project (1993, p. 57). Kieren (1995) 

encouraged the actions of partitioning as a way to develop the concept that underpinned this 

non-procedural part-whole understanding. 
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Figure 2.5. Kieren's model of rational number knowing (1993). 

Kieren's four-three-four model (1988, 1992, 1993, 1995) was a framework of ideal rational 

number knowing. The four sub-constructs measure, quotient, operator, ratio, and three 

underpinning concepts, partitioning, equivalence, and unit-forming have been introduced 

above, and will be elaborated in later sections of this chapter. The model represented 

increasing conceptual complexity by vertical layers of constructs and a "mature rational 

number knower" would be able to engage with the whole range of constructs (Kieren, 1988). 

The constructs and concepts that combined to form a coordinated understanding of fractions 

had a hierarchical nature (see Figure 2.5): percepts (p-level), constructs (c-level), proto-

mathematical knowledge (partitioning, quantitative equivalence, unit-forming), sub-constructs 

(measure, quotient, operator, ratio) and more formal multiplicative thinking and structural 

knowledge of rational numbers (Kieren, 1993). The lines connecting constructs represented 

the generative nature of understanding. Concepts at the lower level supported concepts at 

higher levels (1988). These lines represented where the knowledge might take you next. For 

example quantitative equivalence could be drawn upon by all four sub-constructs. Similarly, 

horizontal integration at every level was part of the idealised understanding. The model was 

not one pathway through the constructs but described different levels of constructs and 

different sub-constructs within each level.  
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2.1.5.1 Measure. 

The measure sub-construct described the measurement context that generated rational 

numbers: "the notion of fractional numbers arises whenever one measures something. If the 

unit does not fit evenly within the object to be measured a whole number of times, how does 

one give a number which is the measure? Rational numbers answer this question" (Kieren, 

1995, p. 37). A non-whole number count left partial units and these could be quantified in 

different ways (see section 2.1.2.3): fractions were one strategy. 

The number line had been Kieren's example of the measure sub-construct in previous work 

(1976, 1980) but the number line was not the only example of the measure sub-construct. The 

measure sub-construct of fractions included linear and regional (area) measurement contexts 

because an area diagram could be thought of as a comparison to a unit, not just a part-whole 

model (Kieren, 1992). The measure sub-construct with its representations of continuous 

attributes, also provided "experiences with order" (Kieren, 1993, p. 59). Lamon (1999) had 

three key understandings for the measure sub-construct: being able to use a given unit interval 

to measure any distance from the origin; being able to find any number of fractions between 

two fractions; and being comfortable with partitions other than halving (1999). The examples 

of mathematical contexts used in the present study to illustrate the measure sub-construct are 

number lines, the relative size of fractions, and measurement contexts such as area diagrams. 

2.1.5.1.1 Number lines. 

Research on number lines in a fraction context concentrated on the distinction between 

making partitions and reading pre-marked partitions, and proper and improper fractions on 

number lines labelled 0 to 1, and 0 to greater than 1 (Bright, Behr, Post, & Wachsmuth, 1988; 

Ni, 2000; Novillis-Larson, 1980). Facility with number lines involved one of Lamon's (1999) 

key concepts of the measure sub-construct of fractions: being able to use a given unit interval 

to measure any distance from the origin. 

Decimal number lines are common in Australia and New Zealand where the metric system is 

used for measuring. In the first year of a large numeracy project, 50.2% of Year 7 New 

Zealand students were successful at identifying 6.8 (or six and eight tenths) on a number line 

(see Figure 2.6) (Vince Wright, personal communication, January 23, 2008),  
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Figure 2.6. New Zealand assessment interview decimal number line. 

Children have been confused between the representation of a whole and the length of the 

whole number line on number lines that were greater than 1. For example, they found half of a 

number line with some pre-marked partitions rather than where the number half would go on 

a number line marked with more than one whole (Kieren, 1993).  

When reading pre-marked partitions on number lines successful students attended to the parts, 

rather than the vertical lines used to create the equal parts (Bright et al., 1988; Pearn & 

Stephens, 2007). Counting lines not spaces was a misconception in which the students 

counted the mark at 0 as one and hence read 3/4 as 4/5. However, strategy use on rational-

number number lines and other measurement scales using similar fractions was not consistent 

Drake (2007). 

A misconception became evident when children, asked to draw their own number lines, used 

a ratio representation. For example, some children drew a number line from 0 to 6 and 

labelled 4 as 2/3 (Clarke et al., 2007). It was possible to use a number line to find 2/3 of 6, but 
2/3 on a number line should be two thirds of the way between 0 and 1. The conceptual link 

between measurement and the measure sub-construct was explicitly made by Kieren (1995) 

and had informed his earlier work (1976, 1980, 1988, 1992, 1993). The similarity between the 

counting lines not spaces misconception in length broken ruler tasks and number line tasks 

suggested a conceptual link between measurement and the measure sub-construct of fractions. 

The double count misconception highlighted that children were not attending to the area 

attribute that represented the fractional meaning.  

2.1.5.1.2 The relative size of fractions. 

The relative size of fractions has included fraction pair comparisons and was called order in 

order and equivalence studies. The relative size of fractions was part of another of Lamon's 

key understanding for the measure sub-construct: being able to find any number of fractions 

between two fractions (1999). Strategies for comparing the relative size of fractions included:  

• correct part-whole understandings,  

• the use of common denominators and benchmarking, and 

• whole number dominance misconceptions. 
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These strategies were described by the Rational Number Project researchers after interviews 

with Grade 4 and 5 children during a teaching experiment and were reported as strategies 

concerning either fractions with the same numerators, the same denominators or different 

numerators and denominators (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984). 

Fraction pair comparisons have been made by children using some simple correct strategies. 

Noting the same denominators and then comparing numerators worked for fractions with the 

same denominators. For example, 7/8 was larger than 3/8 because the denominators were the 

same and 7 was larger than 3 (Clarke et al., 2007). Attending to the numerators only, in this 

case, was termed whole number consistent by the Rational Number Project researchers. 

Although this strategy gave correct answers with same denominator pairs it could lead to 

misconceptions when other types of fractions were used (Behr et al., 1984).  

Another correct strategy was to compare denominators if the numerators were the same. The 

most common examples of this were unit fractions such as 1/3 and 1/4. In these cases students 

could correctly claim that the bigger the denominator the smaller the fraction (Behr et al., 

1984; Post & Cramer, 1987; Post et al., 1985). This strategy could also translate successfully 

to fractions with the same numerators such as 2/5 and 2/3 where "two fifths is less than two 

thirds because there are two pieces in each, but the pieces in two fifths are smaller, so a 

smaller amount of the unit is covered for two fifths" (Post et al., 1985, p. 20). Using this 

strategy for non-unit fractions was not always straightforward for Australian Grade 6 children, 

with 37.2% correctly identifying 4/5 as larger than 4/7 and offering a correct explanation. 

However, a further 21.4% who chose the correct answer (4/5) did so using the misconception 

of gap thinking (Clarke et al., 2007).  

Residual thinking was a mathematically correct strategy useful for comparing fractions that 

were both one away from the whole: 5/6 was one sixth away from the whole and 7/8 was one 

eighth away from the whole; as one eighth was smaller, 7/8 was closer to the whole (Clarke et 

al., 2007). This strategy had been previously identified by the Rational Number Project 

researchers (Cramer, Post, & DelMas, 2002; Post et al., 1986; Post & Cramer, 1987) and 

attributed to the use of fraction kit materials. 

Two other correct mathematical strategies have been described in the research literature. The 

transitive strategy or reference point strategy (Behr et al., 1984; Post et al., 1986; Post & 

Cramer, 1987) was called benchmarking in Australia (Clarke & Roche, 2009). For example, 
5/8 was larger than 3/7 because 3/7 was less than a half and 5/8 was more than a half. Using half 
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as a benchmark was a strategy that children used when they had an understanding of the 

related value of different fractions without being dependent on an algorithm to find a common 

denominator.  This could apply both to fractions represented in numerical notation (Sowder, 

1988) and regional area representations (Keijzer & Terwell, 2001). The other correct strategy 

used was common denominators which required equivalence knowledge and was called the 

application of ratios (Behr et al., 1984).  

The term whole number dominance was coined by the researchers in The Rational Number 

Project to describe strategies that they believed were inappropriate generalisations about 

whole numbers used in fraction comparisons by students. Four of these whole number 

dominance misconceptions are described below. 

Some children incorrectly believed that a larger denominator indicated a larger fraction. For 

example, 1/3 was less than 1/4 because 3 is less than 4 (Behr et al., 1984). This whole number 

dominance misconception was also reported in other Rational Number Project articles (Behr, 

Post, & Wachsmuth, 1986; Post et al., 1986; Post & Cramer, 1987; Post et al., 1985). 

Non-equivalent fractions were considered to be equal if the numerical difference between the 

numerator and denominator was one. For example, 3/4 was equal to 2/3 because the difference 

between 3 and 4 was 1 and the difference between 2 and 3 was 1 (Post & Cramer, 1987).  

Some children chose the fraction with both numerator and denominator larger numbers than 

the other fraction. For example, 3/5 is less than 6/10 because "3 is less than 6, and 5 is less than 

10" (Behr et al., 1984). 

Students who used the incorrect addition strategy added the same number to the numerator 

and denominator to make an equivalent fraction, for example 3/4 equals 7/8 because you can 

add 4 to the numerator and 4 to the denominator of 3/ 4 to get to 7/8 (Behr et al., 1984). This 

misconception was reported as a whole number dominance misconception in other Rational 

number Project articles (Post et al., 1986; Post & Cramer, 1987). 

The larger denominator indicating larger fraction misconception was observed in Australia 

(Clarke et al., 2007), and in Greece (Stafylidou & Vosniadou, 2004). Ni and Zhou (2005) also 

noted this misconception in their review of whole number bias in fraction understanding. In 

the present study I refer to this misconception as the bigger denominator indicates bigger 

fraction misconception. 
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The numerical difference strategy was known as the gap thinking misconception in Australia. 

Two fractions, both with a "gap" of one were the same. Gap thinking also encompassed 

choosing the fraction with the smaller gap between numerator and denominator. Pearn and 

Stephens (2004) used the term gap thinking to describe a Year 8 student's (incorrect) 

comparison of 3/5 and 5/8 where 3/5 was larger because "there is less of a gap between the three 

and the five (in the first fraction)" than there is between the "five and the eight (in the second 

fraction)" (p. 434). Pearn and Stephens (2004) observed comparing-to-a-whole thinking in 

which the students claimed that 2/3 was bigger than 3/5, because 3/5 "is two numbers away from 

being a whole" while 2/3 "is one number away from being a whole" (p. 434). This was a 

correct answer but with a mathematically incorrect reason. Clarke, Roche, and Mitchell 

(2007, see also Clarke & Roche, 2009) combined Pearn and Stephens (2004) gap thinking and 

comparing-to-a-whole thinking in their definition of gap thinking. Gap thinking was evident 

in many of the responses to their fraction pair questions: 35.6% of the incorrect answers 

comparing 3/4 and 7/9 demonstrated gap thinking. Nearly 30% of all students said that 5/6 and 
7/8 were equivalent (Clarke & Roche, 2009). In the present study, I use the term gap thinking 

to describe these related strategies. 

The third whole number dominance strategy described above was called higher or larger 

numbers by Clarke et al. (2007). Pearn and Stephens (2004) observed this strategy: 3/5 is 

larger than 2/3 because the three is larger than the two (numerators) and the five is larger than 

the three (denominators). They viewed this as a variant of gap thinking. In the present study I 

use the term higher or larger numbers to describe this strategy.  

2.1.5.1.3 Non-equal-parts area diagrams. 

If area diagrams were thought of only as part-whole, then the measure construct in that 

representation was diminished. Kieren described how the part-whole concept (as used by the 

Rational Number Project researchers) integrated with the other sub-constructs:  
their part-whole sub-construct is subsumed under the quotient and measure sub-constructs as 

the dynamic comparison of a quantity to a dividable unit that allows for the generation of 

rational numbers as extensive quantities. The part-whole notion also relates to the operator 

sub-construct as the selected unit that forms the basis for operators as composite functions 

(see Dienes, 1971). It plays a similar role in the considerations of ratio numbers (e.g. 

mixtures)  (Kieren, 1993, p. 57).  

Lamon (2007) agreed with Kieren that "part-whole is not a separate construct, but really a 

case of the measure subconstruct (p. 659). By using the terminology of part-whole as a sub-
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construct, researchers, teachers and students have been ignoring the part-whole aspect of area 

and length diagrams in the measure sub-construct. 

Non-equal-parts fraction-area-diagrams have enabled researchers to observe whether children 

are counting or measuring by whether the child demonstrated the double count misconception 

or could name non-equal parts on an area diagram. The double count misconception became 

apparent in this context if the denominator in a child's response was the number of parts 

(Armstrong & Novillis-Larson, 1995; Saxe et al., 2005). In a study of 384 Grade 4, 5, and 6 

students 25% identified the shaded eighth on a rectangle as one fifth (see Figure 2.7 left) 

(Saxe et al., 2005). In a doctoral study of 20 Grade 6 students, only two correctly identified 

part c of the circle as one sixth (see Figure 2.7 middle), while five wrote one fifth (Stewart, 

2005). Using the pie task adapted from the same source (Cramer et al., 1997), Clarke et al. 

(2007) reported on 323 interviews with Grade 6 students in which 42.7% gave the correct 

answer of one sixth for the smaller piece, Part A (see Figure 2.7 right), with 13.6% answering 

one fifth. These three studies illustrated that correctly identifying parts in non-equal area 

models was difficult for some children, and the double count misconception (answers of one 

fifth) appeared evident in up to a quarter of the students' responses. Being comfortable with 

partitions other than halving, Lamon's (1999) first key concept of the measure sub-construct 

of fractions, was evident in students' successful answers of 1/6 to the Fraction Pie task. 

   

Figure 2.7 Non-equal-parts tasks.  

Some answers of one fifth were not the double count misconception but rather an attempt to 

describe the smaller piece in relation to the quarter (Mitchell, 2005). The answer of one fifth 

as a part that was nearly a quarter used a mathematically correct approach, although the 

execution of the strategy was not sufficiently accurate.  
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2.1.5.1.4 Non-congruent parts area diagrams. 

Research has indicated that some children find it difficult to think of conservation of area and 

fractions at the same time. When modelling equivalence using shapes partitioned in different 

ways children were asked to trust the evidence of their eyes. However, when a shape looked 

bigger despite having the same area as another, children were asked to override their visual 

perceptions (Fosnot & Dolk, 2002; Herscovics, 1996). For example, in a study on the use of 

area models in fraction learning, simple conservation tasks were offered to children (Walta, 

1973). Two rectangle halves were cut from a square piece of paper, and two triangular halves 

cut from another, then when a triangular half and a rectangular half were put together 70% of 

the high achievers (in fraction performance) and 33% of the low achievers demonstrated an 

understanding of conservation by saying that the area was still the same as the original square. 

Kamii and Clark (1995) used Piagetian terminology to describe the confusion caused by non-

congruent equal parts: "for example, half of a rectangle can be either rectangular or triangular. 

Although the triangular half may look bigger than the rectangular half from a figurative point 

of view, our operative knowledge enables us to deduce that two halves have the same area" 

(p. 369). Non-congruent parts of area models were difficult representations for children to use 

in the measure sub-construct.  

2.1.5.2 Quotient. 

The quotient sub-construct described a context in which sharing between two separate 

measure spaces took place. For example, three pizzas shared between five people generated 

shares of three fifths: 3 ÷ 5 = 3/5. Similar tasks appeared in the research literature (Behr, Post, 

Harel, & Lesh, 1993; Kieren, 1988; Lamon, 1999; Clarke et al., 2007).  

The Dutch curriculum introduced fractions with a sharing context and elaborated several 

strategies that children use in solving such problems (see e.g., Keijzer & Terwell, 2001; 

Streefland, 1993). French division was the term used to describe cutting each pizza into 

enough pieces for everyone; each of the three pizzas would be divided into five parts and a 

piece from each pizza dealt out to each person, resulting in three one fifth shares. In this 

curriculum, the double count misconception became an incomplete understanding of the 

sharing context that every child encountered if they made unequal parts and was resolved 

because the contextual imperative to make fair shares was compelling.  
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Repeated halving was used as an intuitive strategy: cut every pizza in half and deal out all the 

pieces and see if that works, if not, divide every pizza into quarters and deal out all the pieces, 

repeat with eighths if quarters left a remainder (Pothier & Sawada, 1983). If children then 

subdivided the remainder their explanations sounded like "engineering reports" (Kieren, 

1988). Children had trouble keeping track of the unit when doing non-equal partitioning 

(dividing each piece into half and then the leftover half into five) sometimes calling the result 

"a half and a fifth" instead of a half and a tenth or six tenths or three fifths (Lamon, 1999). 

Just less than a third (30.3%) of Grade 6 students could solve the pizzas shared between five 

people problem (Clarke et al., 2007). Very few of them used the fractions as division concept 

(Clarke, 2006) that three shared between five is three over five or three fifths. 

Research on pre-school children's understandings of fractions has often focused on the ability 

to make fair shares (Hunting & Sharpley, 1988; Pearn, 1996; Pepper & Hunting, 1998; 

Pothier & Sawada, 1983; Sophian et al., 1997). 

Other researchers found that the quotient construct produced greater conceptual understanding 

when used for early fraction learning than a traditional part-whole approach (Empson, 1999; 

Mamede, Nunes, & Bryant, 2005, Ni & Zhou, 2005). By introducing sharing contexts first 

and part-whole contexts second, the double count misconception was pre-empted. 

2.1.5.3 Operator. 

The operator sub-construct of fractions described, among other things, size transformations 

(Kieren, 1995). Two and a half times as large, or three quarters the size of, were size 

transformations that used fraction modifiers. This context had also been called "fraction 

composition" in the radical constructivist tradition (Izsak, 2008). Izsak (2008) analysed Behr, 

Harel, Post, and Lesh's duplicator and partition reducer, and stretcher and shrinker 

operations (1991), and recast them as a partitive model and a quotitative model respectively. 

For example, taking three quarters of something involved dividing by four and multiplying by 

three, or multiplying by three and dividing by four. 

Simple operator tasks were relatively easy for Grade 6 students with 97.2% able to mentally 

calculate half of six (Clarke et al., 2007). Despite the use of pen and paper, only 17.6% were 

able to work out one third of a half (Clarke et al., 2007). Similar tasks were categorised as 

multiplicative thinking such as using a diagram to solve one third of a quarter (Kamii & 

Clark, 1995). Area models were often used as models for fraction multiplication. 
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2.1.5.4 Ratio. 

The ratio sub-construct was often found in the context of mixtures or probabilities (Kieren, 

1995). Lamon (1999) described ratios as used to convey a comparison of two quantities that 

may not be able to be represented as a single number. Kieren's refiguring of the part-whole 

concept meant that traditional discrete part-whole models (of arrays of dots for example) 

could be thought of as ratio understandings (Kieren, 1992). Instead of two thirds as two out of 

three dots, it could be thought of as two for every three dots.  

Using re-unitising or spatial restructuring this definition linked ratio and equivalence 

understandings because 8/12 could be seen as two for every three. Ratio understanding was 

linked closely to proportional reasoning (Lamon, 1993; Lesh et al., 1988). One method for 

assessing children's ratio understanding was a proportional thinking task in which three 

snakes of different lengths ate proportionally different amounts (Kamii & Clark, 1995). For 

example the second snake ate twice as much as the first, while the third snake ate three times 

as much as the first snake. By changing the amounts given to different snakes, the child's ratio 

and proportional conceptual understanding was elicited: if the first snake had one pellet, what 

would the others have; if the second snake had four pellets, what would the others have? This 

was originally a Piagetian task and it recurred in the research literature (Hart, 1981; Lamon, 

1993; Resnick & Singer, 1993). Unsuccessful strategies included additive approaches: if the 

second snake ate four pellets, the first snake ate three because last time it ate one less. 

Although these tasks used whole numbers, they were assessing the ratio sub-construct of 

fractions. 

2.1.5.5 Partitioning. 

Kieren's description of partitioning was the folding and drawing actions required of the 

children when making equal parts (1995). Stages were elaborated for learning to partition 

including repeated halving and using the radius rather than the diameter of a circle to generate 

thirds and fifths (Pothier & Sawada, 1983). Repeated halving in paper folding activities were 

examples of splitting; an exponential rather than repeated addition/subtraction process 

(Confrey, 1994). The partitioning approach emphasised multiplicative understandings 

(Siemon, 2003) rather than just a static part-whole double count procedure. For example, to 

make forty-eighths, children in Kieren's study described folding a third and then a half, and 

half, and a half, and a half (1995). School experiences of part-whole double counting had not 
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been as useful as partitioning in developing these multiplicative understandings (Kieren, 

1995). 

2.1.5.6 Equivalence. 

The construct of equivalence had a specified place in Kieren's four-three-four model (1988, 

1992, 1993, 1995). Kieren cautioned that drawing on equivalence as an internalised strategy 

in other tasks was not apparent in half the age cohort until age 12, and full common 

denominator reasoning occurred later (1992). Callingham and Watson, (2004) reported that 

equivalence understanding emerged slowly with students' recognition of: 

• half of an even whole number,  

• the use of equivalent fractions for a half, and   

• tasks where "equivalence appears to become an important idea" such as 1/2 + 4/8   

At Grade 6, 64.4% could identify 2/4 and 4/8 as the same in a fraction pair comparison task 

(Clarke et al., 2007). Equivalence understanding could be either procedural or conceptual 

(Wong & Evans, 2007. Equivalence knowledge could not be assumed by the end of primary 

school. 

Ways of introducing equivalence included generating equivalent fractions and recognising the 

same fraction in different measure representations (Wong & Evans, 2007). Usually such 

diagrams could be spatially manipulated using dynamic imagery so that pieces could be 

rearranged to make the same area as the comparison fraction. The use of area diagrams to 

model equivalence depended on conservation. This was especially true if parts were compared 

that were non-congruent. For example children were asked to compare three fourths cut 

horizontally across a rectangle, with eighths cut vertically across the rectangle (Clark & 

Kamii, 1996). In this problem 32% of the Grade 5 children could equate three quarters with 

six eighths. In these cases quite sophisticated restructuring would be needed to superimpose 

the shapes on top of each other. This enabled the researchers to assess if operational thought 

was used because such thinking was based on relationships that weren't observable. 

Equivalent fractions were called commensurate fractions in the work of  Steffe (Izsak, 2008). 

Kieren's model for-grounded the intuitive knowledge of equivalence in which the 

understandings were not separate from the contexts offered in the classroom. Partitioning 

supported intuitive equivalence understanding because it could provide examples of absolute 

equality; one half could be subdivided into two quarters, so two quarters was equivalent to a 

half (Kieren, 1992). Understandings of equality could be observed in transitive reasoning, for 
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example 9/6 and 10/4 were both one and a half. Traditional part-whole instruction had been 

used to model these two multiplicative aspects of equivalence. In these contexts, equivalence 

was "as many as" (Kieren, 1992, p. 350).  

However, there was also an additive aspect to equivalence that traditional part-whole 

instruction ignored: a/b +  c/d = e/f + g/h. In this context, equivalence was "as much as" (Kieren, 

1992, p. 350). For example, 3/4 +  1/2 = 4/4 + 1/4  

Equivalence was present in other models of fraction understanding, for example in the work 

of the Rational Number Project, but Kieren's four-three-four model made a place for both its 

additive and multiplicative characteristics. In some other frameworks, the numerical aspect of 

equivalence understanding had been positioned as early ratio understanding or bundled as 

order and equivalence (Behr et al., 1984). Equivalence was modelled with area diagrams 

within a part-whole introduction to fractions (Cramer et al. 1997). 

2.1.5.7 Unit-forming. 

The combining space described by Kieren (1995) included classroom activities with concrete 

materials that were used to show fractions as "additively combinable amounts" (p. 32).  The 

concept of unit-forming had first been referred to as forming dividable units (Kieren, 1988). 

Unit-forming described "the kind of combining and reconfiguring mechanisms envisioned in 

the work of Behr et al" (Kieren, 1992, p. 116) and formed part of the broader part-whole 

conceptual understanding promoted by the Rational Number Project. 

Unit-forming described the intuitive additive nature of fractions.  Just as eight could be made 

of seven and one, or six and two, or five and three, so too fractions could be made from the 

sum of other fractional amounts (Kieren, 1995). The distinction between partitioning and unit-

forming was that the addends were equal parts in partitioning but could be non-equal parts in 

unit-forming activities (1995). Unit-forming was not a new concept, it was a renaming and 

reframing of the additive nature of fractions. The addition of fractions did not use a counting 

on process but a put together process (Kieren, 1992). Algorithmic addition of fractions 

represented this additive process in symbolic form. 

Kieren (1995) called the instructional aspect of unit-forming the combining space. An 

example of the unit-forming construct was making fractional amounts out of other fractional 

parts using a paper fraction kit. For example, primary (elementary) school children used the 

fraction kit to respond to the task: tell me five things you know about three fourths. 
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Explorations included adding one fourth, three eighths, and two sixteenths together to cover 

three fourths (Pirie & Kieren, 1994b); or recognising an additive equivalence in the "as much 

as" relation, 1/2 + 1/8 + 2/16 = 3/4 (Kieren, 1999). Students were challenged, in the context of the 

fraction kit, to find a missing fraction that was bigger than one fourth and smaller than three 

fourths (Pirie & Kieren, 1994a). Students were offered the open ended problem: "here are four 

rectangular pizzas cut in halves, quarters, sixths, and twelfths. Choose some pieces from at 

least three of these pizzas such that their "sum" is one pizza" (Kieren, 1993). Another unit 

forming classroom activity, Fraction Flags, emerged from work with fraction kits (Kieren, 

Davis, & Mason, 1996). The children made flags using fraction pieces on the coloured 

background of a half piece. They then added the parts to discover how much of the flag was 

covered by other colours (coloured fraction kit pieces). These activities explored addition by 

asking 3/4  = ?, rather than 1/4 + 1/2 = ? In this unit forming context, the equals sign meant as 

much as rather than is equal to as a ratio. 

The additive thinking used in unit forming activities was correct mathematical thinking. This 

correct additive thinking, thinking of fractions as made of other fractions, which was termed 

unit forming by Kieren (1988, 1992, 1993, 1995), had been categorised as part of part-whole 

in the Rational Number Project research (Behr, Harel, Post, & Lesh, 1992; Behr & Post, 

1992). In other fraction tasks described in the research literature, the term "additive" had been 

used to describe incorrect mathematical thinking. In particular, this other incorrect additive 

thinking was associated with early attempts at proportion and with equivalence tasks in which 

children incorrectly used an additive relation rather than a multiplicative relation (see e. g. 

Behr, Lesh, Post, & Silver, 1983; Cramer et al., 1993; Post et al., 1986; Post & Cramer, 1987; 

Post, Cramer, Behr, Lesh, & Harel, 1993). 

Partitioning, equivalence and unit forming "could build from and relate back to one's 

everyday experience" (Kieren, 1988, p. 170). The unit-forming concept was drawn upon in 

quotient contexts. For example, when sharing three pizzas between five people, students 

divided all three pizzas into halves and then divided the leftover half into five pieces. Each 

person received a half and a fifth of a half. This had been noted in earlier research and 

categorised as a subset of partitioning in which "the additive nature of partitioning is 

observed" (Kieren, Nelson, & Smith, 1985). I believe that this subset of partitioning (in 1985) 

became unit-forming (by 1988). 

The review of the literature of length and area measurement, multiplication, visualisation, and 

fractions has revealed many correct strategies and incorrect misconceptions that children use 
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when attempting mathematical tasks. This has led to the development of the first research 

question: 

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

2.1.5.8 Conceptual links between fractions and measurement. 

In her literature review setting the research agenda for the next decade, Lamon (2007) noted 

the conceptual link between measurement and fraction understanding: "given the importance 

of measurement ideas to understanding not only rational numbers, but all of mathematics, a 

microanalysis of the development of measurement could provide another long-term research 

agenda with broad impact" (p. 661).  

A conceptual link between measurement concepts and fraction concepts has been identified in 

the research literature on measurement. Researchers elaborated the conceptual links between 

the two domains: the "distinguishing feature of measuring is that it is concerned with 

quantities which are continuous; this requires an extension of the natural numbers into the 

rational numbers, and arguably eventually the real numbers" (Brown et al., 1995, p. 159). The 

use of area models in fraction instruction depended on an understanding of the measurement 

concept of area (Wilson & Osbourne, 1992). Measurement concepts were not just linked to 

the measure sub-construct of fractions, but also to ratios (Brown et al., 1995; Joram, Gabriele, 

Bertheau, Gelman, & Subrahmanyam, 2005). The (ratio) relationship between units remained 

the same: if seven toy cars were five wooden blocks long then 14 toy cars had to be ten 

wooden blocks long. Space, measurement and number were interrelated claimed Barrett, D. 

Clements, Klanderman, Pennisi, and Polake (2006). A lack of transfer across mathematical 

domains was of concern to some researchers (Brown et al., 1995; Lehrer, 2003).  

Some researchers claimed that number developed out of measurement contexts (Davydov & 

Tsvetkovich, 1991; Dickson, Brown, & Gibson, 1984; Dougherty & Venenciano, 2007; Joram 

et al., 2005). Others claimed that fractions lay at an intersection between measurement and 

number: "Measurement with units is particularly interesting developmentally because it is at 

the interface between counting, on the one hand, and knowledge about rational numbers on 

the other" (Sophian, 2002).  Further, units and iteration in fraction understandings were 

explored in a parallel way to measurement (Sophian & Wood, 1997). The measure sub-

construct of fractions "shows the significant tie between the study of fractional numbers and 

geometry and space" (Kieren, 1993, p. 59). Piaget's explanations of the concept of fractions 
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was explicitly linked to length and area diagrams and non-congruent parts (Piaget et al., 

1960). 

Performance on measurement tasks has shown that the achievement gap widens with age. 

Although Grade 1 children had differing success on length tasks, the gap appeared to widen 

by Grade 5, resulting in almost no change in performance between the lowest performing 

children in Grade 1 and Grade 5 (Bragg & Outhred, 2000). In a British study, the high 

performing Grade 2 students were outperforming the weaker Grade 8 at mass and length tasks 

(Brown et al., 1995). This achievement gap in measurement understandings might have 

implications for the ability of children to make conceptual links to other mathematical 

domains. 

The importance of the conceptual link between fraction and measurement concepts resulted in 

the development of the second research question: 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

2.1.5.9 Four levels of response in Kieren's model. 

Each of the four sub-constructs could elicit different levels of understanding: 

ethnomathematical, intuitive, technical-symbolic, and axiomatic-deductive. The four sub-

constructs (measure, quotient, operator and ratio) were not sequential and independent 

(Kieren, 1993). These four levels can be mapped onto the eight levels of the Pirie and Kieren 

model of dynamical learning: primitive knowing, image making, image having, property 

noticing, formalising, observing, structuring, and inventising (Pirie & Kieren, 1994a, 1994b). 

As sharing was one of the earliest ways of experiencing fractions, the quotient sub-construct 

had ethnomathematic understandings that the child could draw upon when responding to 

questions in this context. For example sharing situations using two measure spaces such as 

five pizzas shared between three people  could provoke an ethnomathematic response in 

primary school children  such  as  "each gets a bite and Mom puts the rest in the fridge" 

(Kieren, 1988, p. 172). The ethnomathematic response was also evident in non-exhaustive 

sharing in research on early fraction knowledge (see e.g., Pothier & Sawada, 1983). 

Ethnomathematic understandings were percepts, represented by the p-level on Kieren's 

diagram (see Figure 2.5). The measure, operator and ratio sub-constructs had fewer 
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ethnomathematic contexts that were familiar to children (Kieren, 1993). I have mapped the 

ethnomathematic level onto the primitive doing level of the Pirie Kieren model (Kieren, 1993; 

Pirie & Kieren, 1994a, 1994b). In this first level of learning a child might partition or share in 

an appropriate context. 

Intuitive approaches were planned mathematical activity, firmly located in a context 

developed from schooled or taught knowledge (Kieren, 1988). Explanations illustrating 

intuitive knowledge in sharing contexts included repeated halving and dealing out of pieces 

(Kieren, 1993). The Dutch curriculum introduced fractions with sharing activities, Kieren 

noted (1993), and the intuitive understandings that this developed were useful in developing 

children's overall understanding of fractions. Symbols could be used to record intuitive 

understandings, but in that context they were linked to a context in the child's mind. I have 

mapped Kieren's intuitive knowledge (1993) onto the image making and image having  levels 

of the Pirie Kieren model (Kieren, 1993; Pirie & Kieren, 1994a, 1994b). In these two levels, a 

child might record sharing actions "in a way that is very closely tied to results" (Kieren, 1993, 

p. 73). 

The Rational Number Project used the term intuitive to mean "qualitative knowledge about 

rational number and proportional situations" (Behr et al., 1992, p. 299). Other researchers 

used the word intuitive to describe the reasoning pre-school children had developed from 

concrete experiences before school activities (see e. g., Sophian et al., 1997). In this thesis, I 

use intuitive in Kieren's sense, meaning reasoning linked to school activities. 

Technical-symbolic understanding manifested itself in standard language, notations and 

algorithms (Kieren, 1988). Two examples of this in the quotient sub-construct were using 

common denominators to compare the amount per person in two different sharing situations 

(Kieren, 1993), or using a fractions as division understanding, that three shared between five 

was 3 ÷ 5 or 3/5. Children using technical-symbolic understanding knew the result simply by 

working with symbols. Clarke (2006) described a technical-symbolic response in another 

quotient context, the Chocolate Game, where chocolate bars were shared between people.  In 

the measure sub-construct, the number line was a technical-symbolic representation (Kieren, 

1992). I have mapped the technical-symbolic level (Kieren, 1993) onto the three levels 

property noticing, formalising, and observing in the Pirie Kieren model (Kieren, 1993; Pirie 

& Kieren, 1994a, 1994b). Kieren (1993, p. 73). They distinguished the thinking between the 

levels with an example of using the denominator to reason about the size of a fraction: 

• Image having: "as n gets bigger, the pieces 1/n get smaller." 
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• Property noticing: "I can make a smaller fraction by making the denominator bigger", 

• Observing: "There is no least positive fractional number", 

The image having thinking was tied to a context, while the property noticing and observing 

levels were characterised by not being tied to a particular context. 

A combined-level response incorporated both intuitive and technical-symbolic understandings 

and was described by Kieren as an engineering report (1988). In this example, eight pizzas 

were shared between five people and the leftover was not ignored. A child reported that each 

person received 1 + 1/2 + 1/5 (meaning a fifth of the leftover half). This explanation combined 

intuitive and technical-symbolic understandings.  

Axiomatic-deductive knowledge was "derived through logically situating a statement in an 

axiomatic structure" (Kieren, 1993). I have mapped the axiomatic-deductive level (Kieren, 

1993) onto the two levels, structuring and inventing in the Pirie Kieren model (Kieren, 1993; 

Pirie & Kieren, 1994a, 1994b). Kieren (1993, p. 73) offered the example of the addition of 

fractions as the "logical consequence of field properties and the nature of formal 

equivalence." This level of knowledge would not be routinely observed in primary school 

classrooms. 

2.1.5.10 The use of Kieren's four-three-four model in the research literature. 

Kieren has been cited extensively in the research on fractions. However, it was the five-part 

model used by the Rational Number Project researchers that was used to frame much of the 

later research, not his revised four-three-four model. There were historical reasons for this. 

The 1980s was the Rational Number Project's decade. They used the five part model to frame 

their data collection in the early 80s and published extensively over that decade. These 

researchers wrote the review of the fraction domain in the 1992 Handbook of research on 

mathematics teaching and learning (Behr et al., 1992). Kieren's four-three-four model had 

only been proposed in 1988, while in contrast the Rational Number Project had generated 

much data from classrooms framed in the five-part model. The researchers kept the five part 

model because it had been important to the research of the previous decade and had "stood the 

test of time" (Behr et al., 1992, p. 298). Kieren's later elaborations of the four-three-four 

model were still to come (1992, 1993, 1995). Publications by other researchers cited the 

Rational Number Project papers and so the five-part model was entrenched.  



48 
 
It would appear that researchers as well as teachers were unwilling to reframe the concept of 

part-whole. Clark, Berenson, and Cavey (2003) referred to Kieren's four-three-four model but 

then added the part-whole sub-construct from the Rational Number Project research, ending 

up with Kieren's earlier five part model. Charalambouss and Pitta-Pantazi (2006) investigated 

quantitatively whether the five sub-constructs were separate or hierarchical concepts (the 

incorrect dating of Kieren's models in their literature review did not affect their results) and 

did not use Kieren's later four-three-four model (1988). 

Some researchers in the Dutch tradition (Streefland, 1991, 1993) or from a multiplicative 

framework (Confrey, 1994) did not use Kieren's model. Steffe's model for early understanding 

of fraction composition was based on iteratation (Olive & Steffe, 2002; Steffe, 2003). In this 

model, a child made a conjecture about the size/name of the fraction and then iterated the part 

until the whole had been filled or subdivided exhaustively. A double count misconception 

would generate perturbation (cognitive conflict) because it would not iterate the right number 

of times into the whole. For example, if a fraction bar was divided into three pieces, a half and 

two quarters, the conjecture that each piece was a third would be challenged by the 

unsuccessful iteration; a fourth would iterate four times while the half would iterate twice but 

neither would iterate three times to make the whole (Norton & Wilkins, 2009). 

With the four of the sub-constructs in Kieren's original five-part model (1980) in common 

with his four-three-four model (1999, 1992, 1993, 1995), research that was within these 

categories, such as investigations into children's understanding of number lines (see e.g., 

Pearn & Stephens, 2007), investigations into pre-service teachers understanding of the 

operator concept (Behr, Khoury, Harel, Post, & Lesh, 1997), or research comparing students' 

performance across tasks from different sub-constructs (Lamon, 2007; Moseley, 2005) 

remained unaffected by the distinctions between the old and the new model. 

Other than Kieren's elaborations of his four-three-four model, there were few investigations of 

the model and its use as criteria for categorising tasks and analysing children's strategies. 

Millsaps (2005) used the four-three-four model for her investigation of teacher knowledge 

and classroom practice but she explained unit-forming as "the symbolic representation a/b, b 

not 0, is a number comprised if the unit 1/b counted a times" (p. 24). She linked this to 

Steffe's unit iteration scheme. However, I believe that the concept that she described would 

not be unit-forming, but rather one aspect of Kieren's concept of partitioning. This lack of 

further research using Kieren's four-three-four model, despite its apparent suitability for 

describing fraction understanding, has led to my third research question: 
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• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

2.1.6 Research methods used in measurement and fraction research. 

Mathematics education emerged as a field distinct from cognitive psychology and 

mathematics in the 1970s. This coincided with the influence of Piaget on instructional 

models, particularly a belief that children had always been constructing their own meanings of 

school mathematics. The Rational Number Project researchers, influenced by Piaget, used 

teaching experiments in the early 1980s to focus on two key areas: what would a 

constructivist curriculum look like, and what strategies did children use on such tasks? Their 

approach was top down; a new curriculum was needed for teaching in a constructivist 

environment. They implemented that curriculum, and so their research used a teaching 

experiment methodology. The early 1980s were a key moment when conceptual 

understanding rather than procedural understanding, supported by theoretical models (Kieren, 

1976; Skemp, 1976), began to drive the classroom research agenda (Behr et al., 1981). The 

original Rational Number Project teaching experiment was an intervention and, using one-to-

one interviews, enabled the researchers to "collect" the explanations children gave, which 

revealed the strategies they used for fraction tasks (see e.g. Behr, Wachsmuth, Post, & Lesh, 

1984). Pen and paper testing was used to establish performance norms (Lesh et al., 1983). 

This was less effective at capturing thinking but could be conducted on a larger scale than 

interviewing. Only much later did the Rational Number Project team conduct a Treatment 

A/Treatment B experiment to demonstrate that their curriculum was superior to traditional 

teaching models (Cramer & Post, 1995; Cramer et al., 2002).  

The 1990s and 2000s saw the flowering of interest in observing learning and the interaction of 

students and teachers in classrooms. For example, one-to-one interviewing gave insights into 

children's explanations and strategies (Clarke et al., 2007) but could not capture learning. 

Such research required research conducted in classrooms (Lesh & Kelly, 2000). The outcome 

of a curriculum intervention was not compared to a control group, instead classroom norms 

and sociomathematical norms were described (Cobb & Yackel, 1996).  

Constructivist teaching experiments reported individual children's learning trajectories (see 

e.g., Steffe, 2003). Hypothetical Learning Trajectories were developed, mapping out the 

developmental scope of domains (see e.g. Battista, 2006, 2007). Curriculum trajectories were 

elaborated (see e.g. Outhred et al., 2003). Large scale pen and paper testing added a layer of 
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evidence to such trajectories and Rasch analysis identified key tasks and concepts (see e.g., 

Callingham & Watson, 2004). Longitudinal studies provided evidence for progression 

through stages (see e.g., Steinle & Stacey, 2004). 

Ideal models of understanding in a domain were proposed with global rather than linear links 

in conceptual understanding (see e.g. Kieren, 1995; Lehrer, 2003).  

There were cognitive psychology investigations into children's thinking continuing alongside 

mathematics education research. Many used clinical interviews and collected data in an 

experimental format, investigating the effects of variables such as age or gender (see e.g., 

Sophian et al., 1997).  

Large scale pen and paper testing of students in state, national, and international cohorts 

continued. The National Assessment of Educational Progress in the United States highlighted 

children's problems with fractions (see e.g., Stewart, 2005) and broken ruler tasks (see e.g., 

Kamii & Clark, 1997). The Third International Mathematics and Science Survey revealed, for 

example, Australian Grade 4 students' difficulty with the inverse relationship between the unit 

of measure and the count (National Center for Educational Statistics, 2007).  

The measurement of teachers' pedagogical content knowledge was used to provide detail to 

others' observations of teacher effectiveness. The content of lessons was observed (see e.g., 

Outhred & McPhail, 2000). Teachers' questioning and instructional style was observed in 

classrooms (see e.g., Gearhart & Saxe, 2004). Interviews with teachers were used to ascertain 

their knowledge of concepts (see e.g., Outhred & McPhail, 2000), and Post, Harel, Behr, and 

Lesh (1988) gave a pen and paper ratio and rates test to Grade 4 to 6 teachers using items 

from the National Assessment of Educational Progress. Pen and paper tests were used to 

assess pre-service teachers' knowledge of fractions (see e.g., Cramer & Lesh, 1988).  

There was a tension in these methods between generalisability and credibility. Large scale 

testing provided generalisable results but was conducted using pen and paper tests which were 

less effective at determining student thinking. Smaller studies could provide credibility if they 

were conducted meticulously and produced insightful analysis, but the results were not 

generalisable. Design experiments provided credibility by observing learning as it took place 

in classrooms but were not positioned as efficient at isolating variables unlike the approaches 

of cognitive psychology. Clinical interviews could provide insight into children's explanations 

but could not describe learning. Learning trajectories were often based on performance of 
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students at different grade levels, but only longitudinal studies or constructivist teaching 

experiments could confirm that individual children moved through the levels of 

understanding. It was not that methodologies were right or wrong, but that they could be used 

strategically to build up a multifaceted understanding of mathematics education in the fields 

of length and area measurement, visualisation, and fractions. 

2.2 Research Questions 

The research questions which have developed out of this review of the literature reflect my 

interest in the theoretical underpinnings of the fraction domain, and an interest in children's 

explanations when thinking about mathematical constructs: 

•  What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

2.3 The practical significance of the present study 

These three research questions can be linked to very broad scholarly concerns in the 

mathematics education field: if we embrace constructivist learning then we are faced with the 

complexity of the role of the teacher in responding to the variety of correct and incorrect 

strategies that a class of children bring to every task.  

The elaboration of strategies (correct strategies and misconceptions) is part of developing the 

ability of members of the teaching profession to embrace constructivist learning contexts. 

This has practical significance. The focus for system improvement in Victoria is on the 

quality of individual teachers in classrooms. Many regional offices of the Department of 

Education and Early Childhood Development employ maths and literacy coaches to support 

school improvement in their areas. There are also regional professional development 

initiatives delivered in partnership with University researchers. The elaboration of strategies 

and misconceptions of Australian primary school children on measurement and fraction tasks 

could be immediately utilised in these departmental projects designed to support teachers in 

constructivist classrooms. 
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If we believe there to be a theoretical conceptual link between fractions and measurement, 

then uncovering this association in children's performance raises issues for the design of 

curriculum. The practical significance of the second research question regarding curriculum 

(measurement and fractions) will initially be at a school level because the Australian National 

Curriculum has recently been written and is about to be trialled in schools around the country. 

However, in Victoria, individual schools are responsible for the classroom level curriculum 

and individual teachers, who have a large degree of autonomy, are responsible for the links 

they help their students make between fractions and measurement. It is unusual to teach from 

one textbook in primary schools, and neither school in which I taught had textbooks on the 

book list for students to purchase (except a handwriting practice booklet). There are broad 

curriculum outcome statements to which teachers are accountable, but the activities, the order, 

and the pedagogical style are decided at an individual or school based level. Hence teachers 

could begin helping students make links between fraction and measurement contexts 

immediately. 

Using one-to-one task-based interviews is a normal classroom pedagogical tool, as described 

in the background to the study, but they need to be supported by a sound connection to a 

theoretical framework. This enables teachers to use the detailed information that they generate 

to inform their practice. Investigating the explanatory power of Kieren's four-three-four model 

contributes to this larger picture of making one-to-one task-based interviews a usable 

pedagogical strategy and could have practical application to the development of teaching 

resources, the training of pre-service teachers, and the professional development of teachers. 

The Department of Education and Early Childhood Development recommends a research-

based (Kieren's five-part model) one-to-one task-based interview as formative assessment for 

Grade 5 and 6 students (2009b). If the four-three-four model has explanatory power at the 

primary school level then its use as a clear domain level theory that makes sense of the variety 

of tasks and students' responses would have practical significance for classroom teachers and 

the development of further resources supporting this fraction interview.  
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Chapter 3: Methodology and Methods 

This Methodology and Methods chapter describes what was done in this investigation and 

why it was done. The method of a one-to-one task-based interview was used in order to 

provide data to investigate the three research questions that had come out of the review of the 

literature: 

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

3.1 Methodology 

The present study had the three goals of research as identified by Neuman (2003): 

explanatory, descriptive, and exploratory. Descriptive research has been used to make a 

highly detailed and accurate picture of the object or subject or process chosen for observation. 

Investigating students' strategies is descriptive research. Exploratory research has been used to 

determine the feasibility of conducting further research. The investigation into associations 

between fraction understanding and measurement understanding is an exploratory study. 

Explanatory research has been used to confirm or refute the occurrence of phenomena 

predicted by a theoretical model. Investigating the explanatory power of Kieren's four-three-

four model of rational number knowing (1988, 1992, 1993, 1995) for describing students' 

understanding of fractions in the upper primary school is explanatory research.  

3.1.1. Interpretivism. 

It is an assumption of the present study that it is possible to discover new phenomena or 

reclassify existing interpretations of mathematical behaviour. The research questions were 

framed by such an assumption: that a link between fractions and measurement might be 

found, or that a misconception might be discovered or reinterpreted. Mathematics education 

researchers had termed this ontological innovation (diSessa & Cobb, 2004).  
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Interpretive research has often been called qualitative research (Neuman, 2003). Observable 

behaviours cannot be understood without understanding the social rules that mediate that 

behaviour. For example, "The raising of my hand could be a signal for the revolution to take 

place, a gesture of welcome, or the seeking of attention. It all depends on what was intended" 

(Pring, 2005, p. 96). Theories that fell under the umbrella of interpretivism could be "a basis 

for considering how what is unknown might be organised" (Silverman, 2000, p. 78). In 

mathematics education research, Thompson (1982) has illustrated this legitimate field of 

investigation in one research question: "what is the problem that this student is solving, given 

that I have attempted to communicate to him the problem in my mind". This overarching 

interpretive theoretical perspective framed the investigations of the present study. 

 Three streams of interpretivism have been identified: hermeneutics, phenomenology, and 

symbolic interactionalism. Hermeneutics uses close reading of a text to "discover meaning 

embedded within text" (Neuman, 2003, p. 76). Phenomenology endeavours to present the 

subjects' own understanding of their actions in the social context in which such actions were 

made. For Patton (2002) the foundational question of symbolic interactionism was: "What 

common set of symbols and understandings has emerged to give meaning to people's 

interactions?" (p. 112).  

Symbolic interactionsism enables me to report the students' explanations, interpret their 

strategies and overlay this with an interpretation determined by Kieren's four-three-four 

model. The students themselves did not frame their understanding of fractions in terms of 

Kieren's model. Transferability, credibility, confirmability and dependability (Denzin & 

Lincoln, 2008), authenticity (Neuman, 2003), usefulness (Silverman, 2000), and credibility, 

rigor, and integrity in analysis (Patton, 2002) have been identified as the truth claims made in 

qualitative research. Qualitative research could use descriptive statistics, for example, 

frequencies of success or frequencies of correlations. Conclusions are drawn from the 

qualitative research data in the present study but claims for causality are not made. 

The conceptual framework that I, as a researcher, have brought to the present study has 

mediated my observations and analysis of the data. My undergraduate training was in 

ethnographic history. I later obtained a Diploma of Education and taught a combined Prep/1/2 

class, Grade 1/2 classes and Grade 5/6 classes in State Government schools in Melbourne, 

Australia. I completed a Masters degree by coursework in Early Numeracy at the Australian 

Catholic University in my fourth and fifth years of teaching while working full time as a 

primary teacher. This move into the new discipline and "fieldwork" of Education built on my 
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previous training as an historian. I hope that my ethnographic historian's ear will enable me to 

listen, through their explanations, to the students' understandings of the tasks. 

3.1.1.1 Theories of learning. 

A constructivist theory of learning underpinned Kieren's description of fraction understanding 

stratified into ethnomathematic, intuitive, technical-symbolic, and axiomatic-deductive 

engagement.  It was "congruent with reflective abstraction" (Kieren, 1992, p. 349), dynamic 

and nonlinear  (Kieren 1993; Pirie & Kieren, 1994b).  When faced with more difficult 

concepts, students folded back to earlier understandings (Pirie & Kieren, 1994a; 1994b). The 

recursive nature of understanding maintained access to all these levels rather than discarding 

them as more sophisticated understandings were developed.  

All constructivist theories of the learning of mathematics had a constructionist (non-positivist) 

epistemology, but they had different emphases on the processes of learning. The 

constructivism theories are theories of learning rather than of teaching. In their critique of 

constructivism, Lesh, Doerr, Camona, and Hjalmarson (2003) described the pedagogical 

implications of constructivism. Knowledge was actively constructed by the student and not 

simply passively received from the teacher. Constructivists looked at constructs and 

trajectories. Changes in concepts came about when the learner had to resolve conflicts, and 

students' reasoning was sought after the problem had been solved.  

Social constructivists and radical constructivists positioned their investigations differently 

(Cobb, Stephen, McClain, & Gravemeijer, 2011). The focus of the present study is 

mathematical interpretations and reasoning (see Table 3.1). While not a study of classroom 

interaction, the present study has been influenced by the underlying beliefs of social 

constructivism. The term classroom norms described explicit and implicit expectations of 

teacher/student interaction. For example, Cobb and Yackel (1996) described Grade 2 students 

who were expected to explain their own strategies rather than guess what the teacher wanted 

them to say in classroom discussions. Sociomathematical norms codified the classroom 

practices of explanations. For example, "what counts as a different mathematical solution, a 

sophisticated mathematical solution, an efficient mathematical solution, and an acceptable 

mathematical explanation" (Cobb & Yackel, 1996, p. 178). These normative standards for 

argumentation could apply to other mathematical activities such as reasoning with tools and 

inscriptions (Cobb, 2002). 
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Table 3.1 

Corresponding Terms Between Social Constructivism and Radical Constructivism (Cobb et 

al., 2011) 

Social Perspective 
(Social Constructivism) 

Psychological Perspective 
(Radical Constructivism) 

classroom social norms beliefs about own role, others' roles, and the general nature of 
mathematical activity in school 

sociomathematical norms mathematical beliefs and values 

classroom mathematical 
practices 

mathematical interpretations and reasoning 

 

For both social constructivists and radical constructivists, misconceptions were not 

nonsensical: they were understandings generalised inappropriately from one context to 

another. They were characterised in constructivist theories as "faulty extensions of productive 

prior knowledge" (Smith, diSessa, & Roschelle, 1993, p. 152). They had a basis in correct 

mathematical thinking but had been generalised inappropriately. Learning was concerned with 

"learning to use what you already know in either wider or more restricted contexts" (p. 136). 

The strength of misconceptions and their resistance to teaching lay in both this rootedness in 

being successful in a particular context and also because "Some misconceptions are powerful 

enough to influence what students actually perceive" (p. 162). For the descriptive 

investigation in the present study, this theorising of misconceptions was more useful than, for 

example, the cognitive task analysis approach from psychology (see e.g. Crandall, 2006).  

Ernest described an example of the conventions in mathematics that young children 

encounter: "3 divided by 4 (3/4) is at first an impossible task. Later it is not only a possible 

task, but 3/4 names the answer to it, i.e., becomes a new kind of semiotic object, a fractional 

numeral" (2006, p. 76). Fraction notation has its own semiotic conventions that link symbols 

to rational number sub-constructs. For social constructivists, mathematics is a culturally 

transmitted (or emerging), internally consistent, highly resilient discourse that describes 

pattern, order, magnitude, space and relationships.  

For Piaget, knowledge was actively built: assimilation was not bringing material from the 

environment into the organism but treating new material as an instance of something known 

(Von Glasersfeld, 1995). For example, Piaget, Inhelder and Szeminska (1960) described 

children's responses to a conservation of area task where two identical rectangles were 

rotated. Child A's response was not generalisable: he said that they were the same because he 
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compared them. Child B, on the other hand said that they were the same because he "regards 

the new shape as simply the outcome of a transformation rather than a new area to be 

compared with the original" (p. 285). The new situation was recognised as an example of 

something already known. Children can assimilate ideas but not realise that these ideas 

contradict their schema. Von Glasersfeld offered the analogy of a card punch machine that 

sorts cards with three specific holes punched from the rest. However, cards with extra holes 

punched are included too, as long as the three key holes are punched; just as the organism 

"remains unaware or disregards whatever does not fit into the conceptual structure it 

possesses" (1995). The most common cause of accommodation was linguistic iteration, 

particularly teaching: children needed to hear something that contradicted their schema 

several time before it was noticed that it could not be assimilated.  

If the child could not assimilate the new material there would be perturbation and the 

formation of a new scheme as accommodation occurred (Von Glasersfeld, 1995). Reflective 

abstraction is a branch of constructivism, grounded in Piaget's later work and describes not 

perturbation, but reflection, as the key mechanism in resolving cognitive conflict. Reflective 

abstraction had been used to describe fraction learning (Simon, Tzur, Heinz, & Kinzel, 2004).  

For adherents to a reflective abstraction interpretation of learning, other constructivist theory 

generated a learning paradox because  "a child who has no conception of multiplication will 

not perceive multiplicative relationships in any situation, including those considered by the 

teacher to transparently display multiplication (e.g. an array)" (Simon et al., 2004, p. 310). 

Children had "no access to a mathematics that is independent of their ways of knowing" (p. 

306). Being shown something to contradict a misconception assumed that the child could see 

the mathematical metaphor in the new materials. Perturbation might produce accommodation, 

but how could perturbation be generated if children could not see what they did not know?  

In Simon, Tzur, Heinz, and Kinzel's research a child was shown two identical square pieces of 

paper and told they were cookies (2004).  One cookie was then cut in half vertically and the 

other diagonally. The child was then offered the choice of either of the two identical vertical 

halves, followed by the choice of either of the two diagonal halves, lastly followed by the 

choice between a vertical half or a diagonal half.  One child opted for the half cut on the 

diagonal over the half cut vertically because "it is bigger" (p. 315). In order for the child to 

move on from the conception that the cutting made two distinct subsections, not two equal 

halves, the researchers argued, a pedagogical intervention needed to take place in which the 

child reflected on his or her understanding. Reflective abstraction occurred when the child 
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reviewed the sequences of actions and results and looked for patterns. Activities involving 

partitioning and iteration were proposed by the researchers as suitable activities to prompt 

reflective abstraction, in order for the child to develop a stronger understanding of the cookie 

problem posed above (Simon et al., 2004).  

One outcome of radical constructivist research was descriptions of the learning process of 

moving from one stage to the next (the how) and also the sequence of constructs that defined 

those stages (the what). Hypothetical learning trajectories were one of the descriptions of 

construct development. They described, not a child's individual constructions of mathematical 

ideas, but key conceptual ideas that children understood about a mathematical domain (Simon 

& Tzur, 2004). They were hypothetical because they could not predict actual children's 

learning pathways (Simon, 1995). Hypothetical learning trajectories elaborated the fine detail 

of concept development in a mathematical domain, but in contrast to Piaget, they were not 

linked to age (Steffe & Weigel, 1996). The teaching component of hypothetical learning 

trajectories was also important: the learning goal, the learning activities, and the thinking and 

learning in which the students might engage were all parts of a hypothetical learning 

trajectory (D. Clements & Sarama, 2004).  Steffe (2004) reported a case study of an actual 

learning trajectory of two children and their teacher, engaged in learning experiences related 

to equivalent fractions, because he believed that real learning trajectories needed to be 

documented as part of the research into hypothetical learning trajectories.  

Kieren's model for fraction understanding (1995) and Lehrer's key concepts of measurement 

(2003) were not hypothetical learning trajectories. In the present study I was not seeking to 

test or devise a hypothetical learning trajectory. I was interested in children's explanations and 

how they co-ordinated their understandings. To support this interpretive approach, I chose to 

use one-to-one task based interviews as the method of investigation. 

3.1.2 Advantages and disadvantages of task-based interviews. 

There were three main questions to answer in order to justify the use of a one-to-one task-

based interview in the present study:   

• why interviews and not classroom observations?  

• why task-based? 

• why one-to-one?  
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There were several research methods that could have been used to collect data to answer some 

of the research questions, but the one-to-one task-based interview could be used to investigate 

all three questions and was a practical method for a single researcher.  

Why were interviews used and not classroom observations?  

The main criticism of the use of interviews in educational research was the "white room 

effect" (diSessa, 2007). The white room effect caused people to behave in ways that they 

normally would not, because they were in an unfamiliar environment. As an interpretive 

device, interviews had the disadvantage of generating knowledge about individuals in a 

limited context (diSessa, 2007). On the other hand, Ginsberg argued (1997) this non-

classroom environment could prompt children to attempt to think differently about tasks 

because, unlike classroom questioning, they were asked questions that they were not always 

expected to be able to answer immediately. In other research, the interview format itself has 

been normalised as part of classroom practice, for example in cognitively guided instruction 

(see e.g., Fennema, Franke, Carpenter, & Carey 1993) or in the teaching experiments of the 

Rational Number Project (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984). The use of the 

Early Numeracy Interview was suggested but not mandated in 2001 (Department of 

Education & Training, 2001). One-to-one interviews in Victorian schools have been a useful 

pedagogical practice (McDonough, B. Clarke, & Clarke, 2002; Clarke, Mitchell, & Roche, 

2005), not just a research tool. For students, interviews have been a familiar, but not frequent, 

way of interacting with a teacher. Although students' behaviour and even thinking might be 

different in an interview, because one-to-one task-based interviews were part of school 

learning they did not have the same white room effect as clinical interviews in other settings.  

Interviews have been a useful method for assessing the viability of a theoretical model 

(Clement, 2000). They could provide empirical support for predictions based on a theory. In 

investigating the plausibility of Kieren's four-three-four model, the framework had to have 

explanatory power when used with real students' explanations. Interviews usually generated 

data that could sustain interpretive analysis (Clement, 2000). The present study might be 

considered a pilot study for a later instructional design research project.  

Why were the interviews task-based?  

Task-based interviews gave researchers an opportunity to gather rich data on children's 

descriptions of their mathematical strategies (diSessa, 2007). For example, there has been 
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greater emphasis in using mental computation to "uncover children's thinking rather than 

covering it up or generally ignoring it", not merely to test speed and accuracy (Sparrow & 

McIntosh, 2004, p. 155). In contrast, Lesh and Kelly argued (2000), teaching experiments 

provided better access to individual students' learning.  

The students engaged with an interviewer and with the task thus enabling a topic to be 

explored in depth (Goldin, 2000). A prompt for an explanation could be given by the 

interviewer and this could generate further data. Ginsberg (1997) suggested four interviewer 

strategies to elicit further information to investigate whether the child was giving the right 

answer for the wrong reason or giving incorrect answers but had greater understanding than 

was indicated by the answer: rephrase the question, modify the task, probe, or offer a counter 

suggestion. These interviewer techniques could be considered a "repair" in conversational 

analysis terms (Wooffitt, 2005).  

For appropriate task selection it is important to have criteria (Ginsberg, 1997). In the present 

study several key aspects of Kieren's four-three-four model (1988, 1992, 1993, 1995) 

provided the criteria. A research based categorisation of measurement tasks based on Lehrer's 

key concepts for measurement (2003) was also used. The uniformity of data collection in 

interviews was a strength of the method. The children's responses to mathematical tasks could 

be coded (Clement, 2000). The data can then be used to calculate the frequencies of success 

or the frequencies of particular strategies The use of mathematical tasks in the interview 

protocol enabled investigations into children's explanations and strategies.  

Why were the interviews one-to-one?  

The one-to-one task-based interview was able to detect whether a student gave the right 

answer for the wrong reason (M. Clements, 1980; M. Clements & Ellerton, 2005) or the 

wrong answer despite full or partial understanding (M. Clements & Ellerton, 1995). Both 

students' explanations and their answers were evaluated. Self-correction was possible in one-

to-one interviews for two reasons. Firstly, in explaining the answer, a student could correct a 

careless mistake (M. Clements, 1982). Secondly, the child had time to think without being 

influenced by other students' answers. Interviews guaranteed wait time (Ginsberg, 1997), or 

"free problem solving" (Goldin, 2000), if the researcher desired it. In a one-to-one interview 

the student did not need to adjust their explanation for the understanding of another student. 

There were certain assumptions that the student could make about the extent of the teacher's 
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understanding of the task: the student had to explain their own thinking, but did not have to 

check whether the teacher "knew the maths".  

The explanations that the child offered were always in the context of a student talking to a 

teacher because the interview format was similar to other assessment interviews conducted in 

Victorian primary schools. I was introduced to the students as a teacher, and so in order to 

keep the idea that the students positioned me as a teacher in their responses, I have referred to 

them as students rather than children in my reporting of results. 

In an interview, the interviewee transferred some authority to the interviewer, particularly in 

regard to task choice (diSessa, 2007). Therefore, it was not possible to gain insights into 

aspects of children's thinking that the researcher had not chosen to investigate because the 

student was unlikely to volunteer this information: it was tacitly agreed that the interviewer 

was defining the field of inquiry.  

The interviewing of individuals "sensitised" researchers to new observations, although it 

could take several individual's responses before researchers recognised something they had 

not been seeking in the explanations (Clement, 2000). Similarly to Thompson (1982), 

Ginsberg (1997) suggested that "a useful approach to interpreting a "wrong" answer is to 

discover the question to which the child's answer is correct" (p. 12). The individual nature of 

the interview had advantages for identifying undocumented mathematical strategies. 

Thus one-to-one task-based interviews were chosen as the method for the present study for 

several reasons. This method enabled tasks, chosen using a research based criteria, to be 

offered to many students. The data could be analysed for the specific strategies that students 

used, for correlations between fractions and measurement understandings, and for the 

explanatory power of Kieren's model of fraction knowledge. Interviews enabled the gathering 

of data on children's explanations in a context that was familiar, albeit not necessarily 

common, for the students.  

3.2 Method: one-to-one task-based interview 

A one-to one task-based interview was developed assessing length and area measurement, 

multiplication, and fraction understanding. There were also tasks to assess students' use of 

dynamic imagery. The interview had 65 tasks and took up to three hours (over several 



62 
 
sessions) to complete. 88 Grade 6 students were interviewed and their answers and 

explanations recorded on a record sheet, audio taped, and more than half were videotaped.  

In this section I describe 

• the participants and their schools, 

• the interview used in the present study, and  

• how the interview was conducted, and the protocols for the collection and coding of 

data. 

3.2.1 The Present study. 

This section describes the students, their schools and the local context in specific detail. 

However, details have been withheld if they would be identifying. Four government Prep to 

Grade 6 primary schools in Melbourne, Victoria, Australia were chosen for the study. They 

were given the pseudonyms Casuarina Primary School, Wallaby Flat Primary School, Lone 

Pine Primary School, and Four Hills Primary School. Fourteen Grade 6 students from 

Casuarina Primary School and Wallaby Flat Primary School were interviewed for the pilot 

study in Term 4, 2007 and 88 Grade 6 students from Wallaby Flat Primary School, Lone Pine 

Primary School, and Four Hills Primary School were interviewed for the main study (the 

present study) in Term 1 and 2, 2008 (see Table 3.2). Two Grade 5 students from Casuarina 

Primary School were also interviewed using the main study interview protocol in 2008 in 

order to assess whether the tasks would be appropriate for a range of students from the 

beginning of Grade 5 to the end of Grade 6. 
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Table 3.2 

Profile of Participants and Schools for the Main Data Collection 2008 

 Schools 

 Wallaby Flat PS Lone Pine PS Four Hills PS 

Number of participants 17 22 49 

Gender breakdown  
 

7 girls  
10 boys 

9 girls  
13 boys 

27 girls  
22 boys 

School size 200-300 200-300 Over 600 

Data collection (2008) Feb 11 to  
March 7  

March 4 to 
April 21  

April 22 to 
June 24 

Grade structure 5/6 5/6 6 

Class groups sampled 2 3 5 

Socio economic profile 2009 mid-high high low-mid 

Proportion of students with  
English as a second language 

mid mid high 

% return rate of consent forms 60-70% 60-70% 35-45% 
 

The four schools (including the pilot schools) were in the Northern Metropolitan Region of 

Melbourne, Australia. All students who returned consent forms for the pilot study and the 

present study were interviewed. In 2008 there were five different socio-economic levels used 

to categorise government primary schools in Victoria: low, low-mid, mid, mid-high, high 

(Department of Education and Early Childhood Development, 2009c) and three schools with 

different socio-economic levels were chosen for the present study. Between 40% and 65% of 

the students in Grade 6 in each school were interviewed. The students came from 10 different 

class groupings, each with their own classroom teacher. Wallaby Flat Primary School and 

Lone Pine Primary School had composite Grade 5/6 classes while Four Hills Primary School 

had straight Grade 6 classes.  

The school year in Australia runs from late January to December, and in Victoria is broken up 

into four terms. In Victoria, the first year of school is called Prep and students begin in 

January if they have turned five or will do so by April 30 in this first year of schooling. Grade 

6 students in Victoria turn 11 by April 30, so are aged 11-12 years old. Students spend Prep 

and Grade 1 to 6 in the primary school and 7-12 in the secondary school. In the present study 

the Grade 6 students were in classes of around 25 students which would be considered a 

normal size. In February 2008 there were 44,134 Grade 6 students in Government schools in 
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Victoria (Department of Education and Early Childhood Development, 2008). Further 

summary statistics are available in Appendix C. 

Government schools in Victoria are funded by the State Government and use the curriculum 

documents developed by the Department of Education and Early Childhood Development. 

Australia uses the metric system and students' length measurement activities using formal 

units would be with millimetres, centimetres and metres. Many scales referred to in everyday 

life use decimal notation. For example, temperature is measured in degrees Celsius and mass 

in kilograms. 

The state government department responsible for government schools in Victoria has had 

several name changes in the past fifteen years:  

• Department of Education & Training (1995-2006),  

• Department of Education (2007), and  

• Department of Education and Early Childhood Development (2008-2011).  

The Victorian Curriculum and Assessment Authority is a separate but related State 

Government body.  

3.2.2 The instrument. 

A pilot interview was conducted with 14 Grade 6 students (Term 4). It was used to 

• identify any confusing wording in the tasks 

• confirm the order of tasks in some length and area categories  

• check timing 

• confirm that the interview was suitable for Grade 5 and 6 students. 

No child was correct on every task and no child was incorrect on every task. 

The interview used in the present study was then further developed and refined from the pilot 

interview protocol. This was then used with 88 Grade 6 students in Terms 1 and 2 of the 

school year. This section of the chapter describes how the interview was conducted and 

identifies the nature of the data and how they were recorded. The interview tasks (questions, 

task cards, referencing) are included in full in Appendix A.  

 Tasks were chosen to assess the students' understandings of length and area measurement, 

dynamic imagery, multiplication, the equivalence concept of fractions, and the measure, 

quotient, operator, and ratio sub-constructs of fractions. As the measure sub-construct and 

equivalence concepts were the particular focus of the present study, more tasks were used to 
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assess these aspects of fraction understanding than the other sub-constructs. The concepts of 

partitioning and unit-forming were not directly assessed in the interview, but tasks were 

chosen that might reveal whether students drew on partitioning, equivalence and/or unit-

forming in the measure and quotient sub-construct contexts. Kieren's four-three-four model of 

fraction knowledge (1988, 1992, 1993, 1995) and Lehrer's key concepts for measurement 

(2003) were the domain level theories that informed the criteria for task selection.  

3.2.2.1 Multiplication. 

The multiplication and division section of the interview was offered to the students first. The 

tasks were taken from the number section of the Early Numeracy Interview multiplication and 

division section (Department of Education & Training, 2001). The Tennis Balls task was the 

first task in the interview used in the present study. This task was not difficult and was used to 

settle the student into the interview and establish the classroom norms of the interviewer 

listening to a response, asking how the student worked out their answer and not directing the 

student's thinking through prompts or teaching. I did not follow the same protocol as the Early 

Numeracy Interview which was to continue as long as the student answered correctly. Instead, 

I offered all of the tasks after the Tennis Balls task, to each student in the present study.  

The multiplication and division tasks had been used extensively in another research project 

with Grade Prep to 2 students (Clarke et al. 2002), and later with the some of the same cohort 

in Grade 3 and 572 of them in Grade 4 (Clarke, 2005). The interview questions were also used 

successfully with the 323 of the cohort in Grade 6 in a follow up project. The tasks had been 

suggested as a formative assessment tool for use in Victorian Primary Schools (Department of 

Education & Training, 2001).  

3.2.2.2 Fractions. 

Kieren's four-three-four model for an ideal fraction knowledge described constructs and also 

levels of engagement with those constructs (1988, 1992, 1993, 1995). It was chosen as the 

model of fraction knowledge that positioned the data collection and analysis of data in the 

present study because it  

• elaborated the measure sub-construct as more than proficiency with number lines,  

• could theorise an association between measurement understanding and fraction 

understanding,  

• pedagogically made a space for equivalence, partitioning and unit-forming,  
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• further delineated the ethnomathematic, intuitive, and technical-symbolic levels of 

understanding of the sub-constructs, 

• attempted to counteract the double count misconception by a reframing solution rather 

than a word of caution, and 

• was a model that assumed many pathways to fraction understanding rather than one 

hypothetical learning trajectory. 

Tasks were selected to assess the concept of equivalence, and the sub-constructs measure, 

quotient, operator and ratio. Continuous (length and area), discrete and symbolic contexts 

were represented.  

3.2.2.2.1 Equivalence. 

The concept of equivalence was assessed using area and length diagrams, concrete materials, 

and symbolic representations in tasks similar to others in the research literature (see e.g. 

Baturo, 2004; National Center for Educational Statistics, 2007). Equivalence tasks were 

specifically designed to assess the students' recognition of 1/4, 1/6 and 2/3 in length and area 

diagrams (see Figure 3.1). Equivalence was raised as a possibility in the Fraction Pair task by 

the wording of the question asked by the interviewer, "please point to the larger fraction or 

tell me if they're the same". The addition of the words or tell me if they're the same was an 

adaption made to this task for the present study in order to cue the students into considering 

equivalence. 

Equivalence: 
• Continuous 

o Length 
 Fraction Sort (Q. 19t) 

o Area 
 Fraction Sort (Q. 19c, n, r, s, v, w) 
 Crossroads (Q. 28) 

• Discrete 
o Fraction Sort (Q. 19i, j, k) 
o Golden Beans (Q. 21b, d) 

• Symbolic 
o Fraction Pairs (Q. 22b), and after data collection: Q. 22f 
o After data collection Q. 26c 

Figure 3.1. Classification of tasks for the equivalence concept of fractions.  
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3.2.2.2.2 Measure. 

In the research literature the measure sub-construct of fractions was assessed using:  

• number lines (Kieren, 1992, Lamon, 1999, Ni, 2000),  

• area diagrams (Kieren, 1992),  

• length contexts of measuring (Kieren, 1992, Lamon, 1999), and  

• the comparison of the relative size of fractions (Kieren, 1993; Lamon, 1999, Ni, 

2000).  

Kieren had suggested that some aspects of the part-whole character of fractions could be 

reframed in the measure sub-construct (1993). Non-equal-parts area diagrams had been 

categorised as part-whole in the research literature (see e.g., (Clarke et al., 2007; Heinz, 

Kinzel, Simon, & Tzur, 2000) but were used in the present study to assess one aspect of the 

measure sub-construct. Number lines, and length and area diagrams, and symbolic 

inscriptions of fraction size comparisons were used to assess the measure sub-construct of 

fractions, with tasks adapted from the research literature (see Figure 3.2). Discrete inscriptions 

were not used for the measure sub-construct tasks because they have been categorised by 

Kieren (1992) as ratio tasks drawing on the partitioning concept. Both length and area 

diagrams were used.  

Measure 
• Continuous 

o Length 
 Number lines (Q. 16) 
 Tightrope Walker (Q. 15) 
 Density (Q. 25) 
 Puff Machine. (Q. 23) 

o Area 
 Fraction Sort (Q. 19a, b, e, g, h, l, m, o, p, q, u,) 
 Fraction Pie (Q. 14) 
 Fold Me a Quarter (Q. 13) 

• Discrete  
o (not used in measure construct, discrete "part-whole" can be thought of as early 

ratio) 
• Symbolic 

o Fraction Pairs (Q. 22) 

Figure 3.2. Classification of tasks for the measure sub-construct of fractions. 
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The number line questions had been designed to assess whether students could both make 

partitions and read partitions. Two contexts were also used; number lines labelled 0 to 1, and 

number lines that were labelled greater than 1 (see Table 3.3). 

Table 3.3 

The Selection of Number Line Tasks to Represent Research-based Criteria 

 Number lines 0 to 1 Number lines 0 to >1 

Make partitions 16a Proper fractions: 16c, Improper fractions:16b

Read partitions 16e, 16f (non-equal-parts) Improper Fractions: 16d, 16g, 16h 
 

One example of a deliberate choice about diagram construction in the measure sub-construct 

was the Fraction Pie Task (Q. 14). In the literature, the sixth to be identified was on the left 

hand side of the image (Cramer et al., 1997; Clarke et al., 2007; Mitchell, 2005) (see Figure 

3.3, left). In the present study I reversed the image so that the more difficult fraction part to 

identify was at the intuitive zero-point; rotating clockwise from 12 o'clock (see Figure 3.3, 

right). This was to give students the best chance of identifying the fraction part. In addition, I 

altered the labelling of Parts A and B on the diagram so that they corresponded to Parts A and 

B of the task. 

  

Figure 3.3. Fraction Pie task diagram used in the research literature (left) and the diagram 

used in the present study (right). 

3.2.2.2.3 Quotient. 

The quotient sub-construct was assessed using a sharing situation similar to sharing tasks in 

the research literature using pizzas and people (Clarke et al., 2007; Kieren, 1988, 1993; 

Lamon,1999) or people and tables (Streefland, 1991). Length and area representations were 

used, but pizzas were not chosen as the context because of the concern that children had 
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preconceived ideas about the number of pieces into which they could be divided (see Figure 

3.4). 

Quotient sub-quotient 
• Continuous 

o Length  
 Sharing Custard Tarts and Liquorice (Q. 20a, d; liquorice tasks) 

o Area 
 Sharing Custard Tarts and Liquorice (Q. 20b, c; custard tart tasks) 

• Discrete  
o (not used, except for whole number division with no remainder. For example 

in multiplication and division section) 

Figure 3.4. Classification of tasks for the quotient sub-construct of fractions. 

3.2.2.2.4 Operator. 

Three types of tasks assessing the operator sub-construct had been noted in the research 

literature: 

• an area context using concrete materials (pattern blocks) 

• the nominal context, "of" questions, such as two thirds of nine (see e.g., Clarke et al., 

2007), and 

• fraction multiplication (see e.g., Behr et al., 1997). 

these three aspects of the sub-construct were assessed (see Figure 3.5). 

Operator sub-construct 
• Continuous  

o Pattern Blocks (Q. 17) 
o If area model used in Simple Operators (Q. 18d and e) when pen and paper 

permitted) 
o after data analysis, Fraction Pie (Q. 14b) 

• Nominal 
o Simple Operators (Q. 18a, b, c) 

• Symbolic 
o Fraction Algorithms (Q. 26e) 

Figure 3.5. Classification of tasks for the operator sub-construct of fractions. 

3.2.2.2.5 Ratio. 

The ratio sub-construct was assessed using a classic Piagetian task, calculating the food 

needed for fish of different lengths, (Piaget, cited in Resnick & Singer, 1993). This task had 
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been replicated in the literature with slightly different representations (Hart, 1981; Clark & 

Kamii, 1996). In the present study, the context was four bookworms who ate different 

numbers of books according to their length (see Figure 3.6). In Kieren's reframing of the part-

whole concept into the four sub-constructs, discrete "part-whole" diagrams and contexts could 

be thought of as early ratio understandings, and the discrete category of ratio tasks included 

some questions that could be thought of as traditional discrete part-whole diagrams. 

Ratio 
• Continuous 

o Length 
 Bookworms (Q. 12) 

o Area  
 No task offered 

• Discrete 
o Fraction Sort (Q. 19f, x) 
o Golden Beans (Q. 21a, c) 
o Show Me Thirds (Q. 27) 

Figure 3.6. Classification of tasks for the ratio sub-construct of fractions. 

3.2.2.3 Measurement. 

There were three criteria for measurement tasks: 

• the four concepts, attribute, additivity, units and proportionality;  

• a differentiation between conceptual tasks and tools and procedures tasks; and 

• the two contexts of length and area.  

The four concepts attribute, additivity, units, and proportionality were based on Lehrer's 

(2003) key concepts but my synthesis also included conceptual elaborations by Outhred and 

Mitchelmore (2000), Barrett and D. Clements, (2003), D. Clements (1999), Battista, D. 

Clements, Arnoff, Battista, and Borrow (1998), Bragg and Outhred (2000; 2004), and Pettito 

(1990) (see sections 2.1.2.1 (the concept of attribute), 2.1.2.2 (the concept of additivity), 

2.1.2.3 (the concept of units), and 2.1.2.4 (the concept of proportionality). Length and area 

were the most common contexts used in fraction tasks. Volume and angle, the other spatial 

measures, were not included in the assessment of measurement concepts, nor were non-spatial 

measures.  

The abbreviations used to identify these categories begin with a distinction between 

conceptual (C) and tools and procedures (TP) tasks. The next section of the abbreviation 
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indicates the relevant key concept, for example attribute (AT), additivity (AD), unit (UN), or 

proportionality (PR). The last section of the abbreviation indicates whether the task or tasks 

used length (L) or area (A) diagrams. For example, the tools and procedures (TP) task for the 

key concept of units (UN) using an area (A) context was TPUNA. 

The terminology "conceptual tasks" and 'tools and procedures" that is used in the present 

study is based on the distinctions made by Skemp (1976) and Kieren (1976) and is 

comparable to the definitions of conceptual and procedural understanding (Heibert & 

Carpenter, 1992). The same interview was offered to all students in the present study, but 

because of the use of entry-level tasks in some of the measurement categories, there were 

seven instances in the interview protocol where different follow up tasks could be offered; a 

harder or easier task. There were conceptual tasks assessing the four concepts of measurement 

in both length and area contexts (see Figure 3.7).  
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Attribute 

• Length (CATL) 
o Similar shapes (Q. 36g)  

• Area (CATA) 
o Similar shapes (Q. 36h)  

Additivity (CADL) 
• Length 

o Straightening wires (Q. 43) 
o Freddo (Q. 41) entry-level task 
o Footy Card  (Q. 42) 

• Area (CADA) 
o If Fold Me a Quarter Incorrect, Square To Triangle Sequence (Q. 34) offered 
o Missing oval (Q. 35, the count only) if not already correct count  on Staircase 

Array (Q. 62, pen and paper after Q. 12) 
o Area Calculation, Half Rectangle (Q. 33) entry-level task 
o Area Calculation, Triangle (Q. 53)  

Unit 
• Length (CUNL) 

o Using Paper Clips to Measure (Q. 40a) 
o Keyboard (Q. 39) entry-level task 
o Swimming pool (Q. 65) 

• Area (CUNA) 
o Cuisenaire Array (Q. 48) 
o Array With Leftovers (Q. 46) entry-level task 
o Packing boxes (Q. 47) 

Proportionality 
• Length (CPRL) 

o Using Paper Clips to Measure (Q. 40b) 
o Steps (Q. 44) entry-level task 
o Choosing Rulers(Q. 45) 

• Area (CPRA) 
o Draw Your Own Array (Q. 38b) 
o Four Triangles (Q. 37) 

Figure 3.7. Classification of the conceptual tasks of the concepts of measurement. 

The pilot study had been used to ascertain whether the entry-level task protocol would give 

valid results. The students were asked all three CADL tasks in the pilot study; the 

Straightening Wires task, the Freddo task; and the Footy Card task. There was a range of 

performance by the students on the three tasks: two students scored 0, four students scored 1, 

four students scored 2, and four students scored 3. All of the students' results followed the 

entry-level sequence: no student was incorrect on a task lower than the highest one at which 
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they were successful. As the entry-level sequence was validated by the pilot study in which 

students were asked all three questions, it was decided in the present study that students 

would be asked two questions (entry-level task and more difficult task or entry-level task and 

easier task) with the assumption, validated in the pilot study, that a student unsuccessful at the 

Freddo task would also be unsuccessful at the Footy Card task. 

The pilot study had been used to verify the entry-level protocol of the CADA sequence: 

successful count on the Staircase task (Q. 62) or Missing Oval task (Q. 35); Area Calculation, 

Half Rectangle (Q. 33); and Area Calculation, Triangle (Q. 53). Thirteen Grade 6 students 

were asked all four of these questions, and there was a range of correct and incorrect 

responses. All of the students' correct and incorrect responses followed the entry-level 

sequence: no student was incorrect on a task lower than the highest one at which they were 

successful. Note that students could be correct on the count for either the Staircase task or the 

Missing Oval task as these tasks counted together as the easier task. It was decided in the 

present study that students would be asked an entry-level task with the assumption, validated 

in the pilot study, that a student unsuccessful at the Area Calculation, Rectangle (Q. 33) 

would also be unsuccessful at the Area Calculation, Triangle task (Q. 53). 

There were tools and procedures tasks assessing the four concepts of measurement in both 

length and area contexts (see Figure 3.8). 
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Attribute 

• Length (TPATL) 
o Blocks of Ice (Q. 54a) 

• Area (TPATA) 
o Blocks of Ice (Q. 54b) 

Additivity 
• Length (TPADL) 

o Measure DVD with Ruler (Q. 32)  
o Streamer (Q. 31a) 

• Area (TPADA) 
o Area  Calculation, Rectangle (Q. 63) 

Units 
• Length (TPUNL) 

o Dragonfly (Q. 64) 
• Area (TPUNA) 

o Staircase Array (Q. 62), Area Calculation, Rectangle, (Q. 63), and if needed, 
Missing Oval (Q. 35). 

Proportionality 
• Length (TPPRL) 

o Streamer (Q. 31b) 
• Area (TPPRA) 

o Draw Your Own Array task (Q. 38a) 

Figure 3.8. Classification of the tools and procedures tasks of the concepts of measurement. 

Both the Streamer task and the Measure a DVD task were offered to all students but one in 

the pilot study, but a larger margin for error (0.5 cm) was allowed when measuring 19 cm. 

With this larger margin for error, the pilot data supported the interview protocol of offering 

the Measure a DVD task only to students who were unsuccessful at measuring the streamer. 

However, because a student could measure from the edge of the ruler and not 0 and obtain a 

measure of 18.5 cm, a more accurate answer was needed to distinguish this inaccurate 

measuring from a correct measurement and so a smaller margin for error was used in the main 

data collection interviews. 

3.2.2.4 Visualisation. 

Some tasks could be attempted using dynamic imagery. The research literature had indicated 

that a student's ability to use dynamic imagery, in particular rotating objects in the mind's eye 

was difficult to assess (M. Clements, 1983). To distinguish between dynamic visualisation 

and geometric reasoning on spatial tasks, the children were asked for their explanations of 
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how they worked out their answer. Five tasks were adapted from the research literature on 

dynamic imagery/spatial ability/visual processing (see e.g., M. Clements, 1983) and from 

respected assessment protocols (see e.g., Australian Council for Educational Research, 1978; 

Department of Education & Training, 2001; National Center for Educational Statistics, 2007). 

The dynamic imagery involved mentally rotating diagrams or illustrations in the student's 

mind's eye, but not mentally reorienting the student's mental point of view. 

Other geometrical tasks were also included to explore two other areas; the relationship 

between the number of cuts and the number of pieces, and location using array coordinates. 

The geometry taught in the primary curriculum was not sufficiently developed to afford a 

comparison study between fractions and geometric reasoning. Thus the geometric tasks were 

not a major component of the present study.  

3.2.3. Interview protocols. 

The length of the interview could be up to three hours. Tasks were completed over several 

sessions, and no child was interviewed in one sitting for more than an hour. The breaks in the 

interview differed for each child, determined by external forces (classroom timetables) and 

how quickly they progressed through the questions. Most interviews took two and a half 

hours and were spread over three sessions; this meant that most interviews carried over into 

the next day. 

The interview began with the gaining of informal consent that the students were still happy to 

participate in the interview (see section 3.3.4 for formal consent protocols).  
Are you happy to do some maths with me today? 

I am interested in how you think when you are doing maths. I have a whole lot of tasks to do with 

you here. I won't tell you whether you get an answer right or wrong. But I will probably always 

say, and how did you work that out? You can tell me what you were thinking while you were 

working out the problem. Or, sometimes you just know an answer, so then you can explain how 

you know that you are right. If you change your mind about an answer while you are explaining it, 

that's fine, you just tell me your new answer. 

Some of the questions might be easy. Some might be hard. Some of the things you might not have 

been taught yet, so just do your best. (Interview Protocol, see Appendix A) 

It did not take long to establish the relationship with the students that I required for the one-

to-one task-based interview because most students in the study had some familiarity with the 

Early Numeracy Interview (Department of Education & Training, 2001). Some had done this 

either in their first year of school, in later years of primary school, or as part of a mathematics 
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support program. Thus the context of a teacher listening to students' understandings, rather 

than guiding them to a teacher determined strategy and answer, was established. The 

multiplication and division tasks were used to begin the interview so that this relationship was 

established by the time fraction and measurement tasks were offered. The Tennis Balls task 

was relatively easy and so the students could become familiar with thinking about verbalising 

an explanation without being overly concerned about the calculations.  

I conducted all the interviews at the students' schools and I was introduced to them as a 

teacher. In the students' minds, I might at any time stop listening without comment on their 

strategies and start teaching, and they were alert to the possibility that these classroom norms 

might change. For this reason I deliberately did no teaching during the interview and provided 

no feedback on whether they were correct or incorrect. Most answers were followed up with 

"and how did you work that out" in the same tone whether their answer had been correct or 

incorrect. On some occasions, I did not record the strike (correct) or dash (incorrect) on the 

answer square on the record sheet if I thought that it would indicate success or otherwise to 

the students. There would be enough information from the strategy recorded and, if need be, 

the video or audio files, to determine the correctness of the answer during data entry if it had 

not been recorded on the record sheet. To the students, I was a teacher and so, to remind 

myself and the reader that the explanations that the students gave were always to a teacher, I 

have referred to them in the present study as students.  

Prompts had to be strictly monitored in order to maintain the classroom norm of the student 

offering their own explanation for tasks, not what they thought the teacher wanted to hear. 

However, this was balanced by a need to gather as much information as possible because 

having record sheets or video or audio footage was only as good as the information that was 

sought and recorded. A confirmatory question could be used in interviews (diSessa, 2007), 

but this was used rarely in the present study because it tended to undermine the relationship 

between the interviewer and the student. However, neutral probing was sometimes necessary 

to distinguish between different strategies.  

3.2.3.1 Recording of data.  

The data collected for interpretation in the present study included students' answers, 

explanations, and inscriptions in response to mathematical tasks and questions. All interviews 

were audio-taped and some were video-taped, with parental consent. The interviews were 

audio-taped on a digital recording device and the files downloaded to an external hard drive 



77 
 
using Olympus software. More than half of the interviews were also videotaped using a 

digital video recorder with an internal hard disk and files were downloaded to an external hard 

drive using Windows Media Player software.  

Researchers recommended recording as much as possible of the interviews for later analysis 

(Clement, 2000; Ginsberg, 1997; Goldin, 2000, Patton, 2002). During the interview, notes 

were made on a record sheet. As I am right handed, students were seated to my left. A box 

was included for each part of each task to record success (correct answer and correct 

explanation) or failure (correct answer with incorrect explanation, incorrect answer with 

correct mathematical thinking, incorrect answer with incorrect mathematical thinking) using 

the criteria of M. Clements and Ellerton (2005).  

In order to minimise the time needed for written recording, common strategies were included 

as dot points on the record sheet so that they could be circled quickly. Four methods were 

employed to choose strategies to include as dot points:  

• piloting the interview,  

• a literature review of children's mathematical approaches to tasks,  

• adaptation of record sheets from previous fraction and multiplication and division 

interviews (Department of Education & Training, 2001; Clarke et al., 2007), and  

• revision of the record sheet after the first five to ten interviews to include strategies 

that were emerging from the present study.  

For example, dot points were used on the record sheet for the Fraction Pairs task (Q. 22) (see 

Figure 3.9) to enable the faster recording of common correct strategies (benchmarking, 

common denominators, and residual thinking) or incorrect strategies (higher or larger 

numbers, and gap thinking). Every task also had space to include detail of explanations that 

did not fit the dot points. 

 g 5/6 and 7/8 or same 
benchmarks to ½ 
converts to common denominator 
other (satisfactory) 
residual thinking  
higher or larger numbers 
gap thinking  
other (unsatisfactory) 

Imagery task 
C   P  Mf   K    D 
explanation 
C   P  Mf   K    D 

Figure 3.9. Example of record sheet, Fraction Pair task (Q. 22g). 
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Some tasks required extensive note taking, such as the Fraction Sort task (Q. 19) (see Figure 

3.10). There was space on the record sheet to record different kinds of visual imagery. 

Presmeg's categorisations of visualisation were used: concrete pictorial imagery, pattern 

imagery, memory images of formulae, kinaesthetic imagery, and dynamic imagery (1986). All 

the data on the record sheets was supported by audio, and sometimes video, recordings. 

 

Figure 3.10. Scan of recording for part of Fraction Sort task (Q. 19). 

3.3 Analysis of Data 

Qualitative research distinguished "what is observed from what is inferred, and this is 

especially important when what is observed is already complex and qualitative" (Goldin, 

2000). I have presented this thesis in a traditional format: Introduction, Literature Review, 

Methodology and methods, Results, Discussion and implications, and Conclusion. This 

format clearly delineated between the selection and presentation of results and the further 

analysis of the discussion, implications and conclusions based on those results. The 

theoretical perspective outlined in the first part of this chapter, together with a research-based 

criteria for task selection stemming from the literature review, were realised in the interview 

protocol. Initial interpretive analysis follows in the Results chapter and further interpretive 

analysis continues in the Discussion and Implications chapter: the misconceptions and correct 

strategies offered by the students are described and investigated and linked back to the 

research literature; correlations between performance on measurement tasks and performance 
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on fraction tasks are investigated; and the explanatory power of Kieren's four-three-four 

model is evaluated. The conclusions of the present study are then related back to the 

significance of the study as described in the Introduction.  

3.3.1 Coding protocols. 

The coding of data was a three stage process. This reflected the interpretive nature of the 

examination of the data. Neuman (2003) recommended three passes at coding. Firstly, the use 

of open coding enabled themes to emerge. Secondly, axial coding divided existing codes into 

subcategories, or combined specific codes to make broader categories. Finally, selective 

coding was used to re-examine tasks of interest. In the present study, the first pass at coding 

included piloting the interview, developing a record sheet, recording the interviews, and 

assigning a code to every response and collating that in a Microsoft Word Excel spreadsheet. 

The second pass at coding included choosing categories to record in an SPSS database, and 

refining categories for use in double coding of the data. The third pass at coding included the 

transcription of the students' explanations, from audio or video tapes, in key tasks, and the 

refinement of some interpretive categories during analysis. In broad terms these three passes 

at coding were chronological. However, there were checks for accuracy implemented 

throughout the process. 

Each afternoon after interviewing in a school, I returned to the University and downloaded the 

video files and, using the record sheet, entered the basic coding of correct/incorrect for each 

question into an Excel spreadsheet. To be coded as correct, a student had to have a correct 

answer and have given a mathematically correct explanation. This process enabled me to 

quickly ascertain if I had inadvertently missed offering a task to a student and I could then do 

so the next day if needed. Audio files were downloaded regularly but not every day.  

After data collection was complete, I used the information on individual record sheets to 

assign a code to every type of explanation, even if only one child had used that strategy, and 

recorded the codes and a description of the strategies in the Excel spreadsheet. This was an 

open coding process which used strategies identified in the literature but was open to the 

identification of new strategies. There was no category of other. Voice recognition software 

(Microsoft Word 2003) was used for much of the data entry and errors were corrected 

immediately. The detailed coding was completed task by task not student by student, enabling 

me to be open to new strategies as suggested by Goldin (2000). The database included the 

actual answer, any self correcting, any prompts, the reasoning given for the answer, and a 
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code for the type of inscription they created if appropriate. Some questions required specific 

information such as whether the child marked the streamer with their finger, a pen or another 

object. Missing data of strategies on the record sheet was obtained from the video footage or 

audio files. 

This detailed coding also enabled a check of my original data entry of correct/incorrect 

coding. After I had entered the codes for a question, I would print out the spreadsheet for that 

task and manually check that the code, 1 correct or 2 incorrect, matched the answer given by 

the student and the code for reasoning (which started with a 1 if it was mathematically correct 

and a 2 if it was mathematically not correct).  

I made notes on the task in a separate document, noting the frequency of success, any 

interesting responses, the specifics of the interview protocol such as prompting, and suggested 

comparisons with other tasks. 

After the completion of this first pass at coding, I double checked the data entry. This entailed 

examining each individual record sheet again, assigning a code from the list I had prepared 

for each task and then checking that this was what had been entered in the Excel spreadsheet.  

Schools then received aggregate data on their students' performance. Only one parent did not 

give permission for feedback to be given to their child's school. A summary report was 

compiled of some of the tasks with frequencies of success and frequencies of selected 

strategies. 

The second pass at coding included assigning scores to some of the: 

• constructs (e.g., multiplication, equivalence, measurement categories),   

• tasks (e.g., Number Line, Fraction Pairs), and 

• strategies (e.g., gap thinking).  

In order to use factor analysis on the data (the validity of this is discussed in section 3.3.2 

below, and the results of this in section 5.4.2.1), the responses had to be ranked with more 

than two levels (correct/incorrect). Secondly, to facilitate the calculation of correlations, 

measurement categories were given a score using a rubric: where three tasks were used to 

investigate a concept, a score of 0 indicated unsuccessful attempts at both the entry-level and 

easier task, a score of 1 indicated success at the easier task after an incorrect response to the 

entry-level task, a score of 2 indicated success at the entry-level task but not the harder task, 
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and a score of 3 indicated success at both the entry-level and harder task. These ordinal scales 

were transferred into an SPSS database. 

Coding descriptors had been included in the Excel spreadsheet but coding decisions were 

recorded in a hard copy "coding book" because some questions had margins for error, or 

coding rubrics. Changes to rubrics were noted in the coding book and then any required 

changes were made to the database of tasks and to any "scores" if appropriate in both the 

Excel spreadsheet and the SPSS database. In the final write up stage, the databases were 

checked for synchronisation by hand (by an engineer with a PhD in robotics) to ensure that 

frequencies and correlations were accurate. 

The third pass at coding included refinement of some interpretive categories during analysis, 

choosing specific categories for double coding, and the transcription of the students' 

explanations in key tasks. Parts of this phase occurred during data collection and throughout 

the analysis phase. For example, preliminary results of 29 students' responses to the 

multiplication, division, number lines and CADL (conceptual understanding of the 

measurement concept of additivity in a length context) tasks were coded more exhaustively 

during the data collection phase while preparing a conference paper (Mitchell & Horne, 

2008).  

3.3.1.1 Double coding of data. 

Six tasks, or parts of tasks, were double coded by six different second coders. The results of 

the double coding are reviewed in the Results chapter as the results of the six tasks are 

reported. Double coding could be related to whether the students were correct or incorrect, 

and/or of their strategy use. The texts examined could include their inscriptions, video footage 

of their response to tasks, and/or transcripts of their explanations. A summary of the interview 

questions that were double coded in the present study is presented in Table 3.4. 
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Table 3.4 

Double Coding of Students' Responses in the Present Study 

Task and Coder Aspect of Task Sample Section 

Draw Your 
Own Array 
R 

TPPRA 
Size of units 

all inscriptions (88) 5.2.4.4 

Number Lines  
S 

Q. 16a:  all inscriptions (88) 5.4.1 

Fraction Sort 
M 

Equivalence: 
correct/incorrect 

10 students (video) 5.4.2.1 

Algorithm 
J 

1/3 + 1/2 
Did correct answers use 
equivalence? 

all inscriptions (88) 5.4.2.1 

Fraction Sort  
M 

Equivalence strategy 10 students (video) 5.4.2.2 

Fraction Pairs 
A 

Correct/incorrect 56 students (video) 5.4.3.1 

Fraction Pairs 
A 

Gap Thinking Strategy All instances identified by either 
coder (video or audio transcripts) 

5.4.3.1.2

Fraction Pairs 
A 

Whole Number Strategies 
 

All instances identified by either 
coder (video plus audio transcripts) 

5.4.3.1.3

Fraction Pie 
L 

Correct/incorrect 58 students (video plus transcripts) 5.4.3.2.1

Fraction Pie 
L 

Answers of  
1/3, 1/5, 2/5, 1/7, 2/7 

All answers of 1/3, 1/5, 2/5, 1/7, 2/7 
(video or audio transcripts –  
1 missing) 

5.4.3.2.2 
 

Fraction Sort 
M 

Partitioning: 
correct/incorrect 

10 students (video) 5.4.3.3 

Fraction Sort 
M 

Partitioning: 
strategies 

10 students (video) 5.4.3.3 

3.3.2 Descriptive statistics and correlations. 

This section describes the descriptive statistics that were used to make inferences about the 

data: frequencies of success, Kendall's Tau b correlation coefficient and factor analysis. 

Quantification should not be confused with quantitative research. The present study made use 

of frequencies and correlations but was a qualitative study. Quantification was not ruled out in 

non-positivist research (Bouma & Ling, 2004; Crotty, 1998). The use of statistical tests for 

correlation did not make this a quantitative study, because their use was to indicate possible 
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patterns in the data, rather than provide proof of a causative relationship. The results of tests 

for correlations were not the end of the analysis, they were the beginning. They indicated 

where deep qualitative analysis was required.  

Dimensional sampling (Cohen, Manion, & Morrison, 2007) created samples with at least one 

respondent for each identified factor of interest: Government schools were chosen from three 

different socio-economic levels and Grade 6 boys and girls were interviewed from each 

school. The sample in the present study was not representative. Neither the frequency of 

success, the frequency of particular strategies, nor a correlation could be generalised to the 

wider population. However, some tasks were chosen from the literature that had been used on 

large samples in order to ascertain whether the results of the present study were outliers or 

within the general range of representative testing. 

One descriptive statistic calculated in the present study was frequency of success. As there 

were 88 students in the study, the frequency of success was presented as a percentage. 

Percentages enabled comparison between samples of different sizes, and also made it easier 

for the reader to judge the magnitude of differences across tasks in the same study. Frequency 

of a particular strategy out of several correct answers and explanations, or conversely 

frequency of a particular misconception, were also reported using percentages. 

The variables in the study were coded using ranked or ordinal data. Responses in the present 

study were coded in three main ways: 

• as correct or incorrect,  

• as a score where all students were offered all the tasks in a category, or  

• as a score when a entry-level task determined whether an easier or more difficult task 

was offered.  

Coding students in the SPSS database used the numbers 1 for success and 0 for non-success  

and this produced a rank (this classification was not categorical (nominal) because a score of 

1 was clearly better than a score of 0). In the case of only two ranks, there were many students 

with tied ranks. For some categories of tasks, a score was generated based on frequency of 

success on a group of tasks. For example, several multiplication tasks were offered and four 

of them were used to create a score from 0 to 4 (each question correct added one to the 

student's score). This score ranked the students; a score of 4 being higher than a score of 3. 

Even if many tasks generated a category, such as equivalence understanding with possible 

scores of 0 to 13, there were still many tied ranks in the sample of 88 students. The entry-level 
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structure of task sequences in some measurement categories produced scores of 0 to 3 and 

generated many tied ranks. All three of these scoring systems produced ordinal data. 

The second research question was concerned with examining the correlation of students' 

performance on measurement tasks and their performance on fraction tasks. Calculating a 

correlation provided one way of quantifying whether a linear association existed between two 

variables (tasks or concepts). The appropriateness of a test of association depended on 

whether the data required parametric statistics (interval or ratio data) or non-parametric 

statistics (ordinal or nominal data). The data in the present study was ordinal, had many tied 

ranks, and did not meet the assumptions of normal distribution. The correlations were a 

bivariate analysis (comparing two variables). Kendall's Tau was the correlation coefficient 

appropriate for analysing the significance and effect size of associations in the data because it 

was designed for non-parametric data with many tied ranks and did not assume normality. It 

also needed relatively small sample sizes.  

Chi-squared tests were suitable for non-parametric data but were more appropriate for 

nominal data. Odds ratios would be useful for controlling for further variables, such as gender 

or school, but the data were not robust enough for this test to be used because the sample was 

not large enough. Pearson's correlation was the test for association most commonly used in 

the research literature but was not used in the present study because the assumptions for 

parametric testing were not met: the sample could not be assumed to have a normal 

distribution and the variables used were not interval or ratio measures. Spearman's Rho was 

the test for association analogous to Pearson's r but used on non-parametric ranked data 

(Tilley, 1993). However Spearman's Rho was not used because of the presence of many tied 

ranks.  

Correlations were used to help answer questions about data. Vaske, (2002) identified three 

questions that researchers should ask of associations: 

• did this pattern of results happen by chance?  

• if the effect was real, how large was it? and  

• did this have practical importance?  

The significance of the result answered the first questions. A significance level of p < .05 was 

used suggesting that the observed pattern of results could come about by chance only five 

percent of the time. If the observed pattern in the data did in fact occur by chance then a Type 

I error had occurred and the researcher had claimed that a relationship existed when in fact it 
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did not (Neuman, 2003).  This would be a false positive. A lower p value indicated that there 

was less chance, for example a one percent chance (p < .01), that the pattern of results 

occurred by chance. A lower p value had no bearing on the effect size (Vaske, 2002).  

If a statistical test suggested that there was no relationship when in fact there was, then a Type 

II error had occurred. This was a false negative. In general researchers in the social sciences 

accepted an 80% chance of finding an effect if indeed there was one, and the 20% risk of a 

Type II error occurring (Field, 2009).  Intuitively, the more participants there are, the more 

likely an effect can be seen. The statistical power was a measure of a Type II error occurring 

and a statistical power of .8 (20% probability of a false negative) was the common standard in 

social sciences research, but was calculated differently for each statistical test type (Bonett & 

Wright 2000). Field (2009) calculated minimum sample sizes using Pearson's correlation 

coefficient (r) to detect a  

• small effect (r = .1), 783 participants,   

• medium effect (r = .3), 85 participants, and 

• large effect (r = .5), 28 participants. 

This assumes a statistical power of .8 using a p value of < .05 in a one-tailed test. Two-tailed 

tests would require a larger sample size for the same statistical power. However, a false 

negative, reporting a non-correlation between fractions and measurement when in fact there 

was one, would be a conservative result. Interviews were conducted with 88 students in the 

present study, hence the present study had the statistical power to detect large effect sizes.  

If there were a significant linear association (p < .05), the effect size was of interest and was 

represented by the correlation coefficient which lay between -1 and +1. In the present study, 

Kendall's Tau was calculated using SPSS version 17 software. The commonly agreed 

standards for describing effect sizes were based on Pearson's r. Effect sizes were often 

categorised as  small (.1), medium (.3), and large (.5) (Field, 2009). Vaske's terminology 

(2002) of minimal, typical and substantial effect, which correspond to small, medium and 

large effect have been used in the present study. Typical highlighted that such associations 

were common in the behavioural sciences and substantial reflected the fact that educated 

readers would agree that there was an association just by looking at the data without doing 

inferential statistics (Vaske, 2002). Looking at data graphically before running a statistical 

analysis was suggested by Field (2009). Contingency tables were used to present data visually 

from two variables. Kendall's Tau used a different metric to Pearson's r (Strahan 1982) so a .3 

effect size in one was not the same as a .3 effect size in the other. It was possible to use tables 
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(Gilpin 1993; Strahan 1982) to relate a value of Kendall's Tau to Pearson's r to compare effect 

sizes. Kendall's Tau values of minimal, (.07), typical (.20) and substantial (.34) effect sizes 

had the same common variance as the Pearson's r categories of small (.1), medium (.3), and 

large (.5) (see Table 3.5). This terminology of minimal, typical and substantial effect size was 

used when reporting results in the present study. 

Table 3.5 

Magnitude of Kendall's Tau Correlation Coefficient and Sample Sizes to Detect Differing 

Effect Sizes of Associations Between Variables Using Gilpin's Tables (1993) 

 Effect Size 

 Minimal 
relationship 

Typical 
relationship 

Substantial 
relationship 

Very 
Substantial 

Pearson's r .10 .30 .50 .9 

Covariance: r2 1% 9% 25% 81% 

Kendall's tau .07 .20 .34 .72 

Sample size for a power of 0.8 783 85 28  
Sample size: power of .8, p < .05, one-tailed test, from Field (2009). 

A correlation co-efficient could reveal if an association was positive or negative. A positive 

correlation indicated that as one variable increased so did the other, for example as the scores 

on one category increased, so did scores in another. A negative correlation indicated that as 

one value increased, the other decreased, for example as one score increased, one 

misconception decreased. Using two-tailed tests effectively split the 5% margin for error 

(Type I error) into a 2.5% margin for error at the positive end and a 2.5% margin for error at 

the negative end of the distribution. This enabled the detection of positive and negative 

correlations and I used two tailed tests because I could not assume that all performance would 

be positively linked. 

The co-variance between two variables was a common indicator of the magnitude of the 

effect size (Strahan, 1982). When using Spearman's Rho this was done by squaring the co-

efficient, for example a correlation coefficient of .50 accounted for .25 or 25% of the variance 

between the two variables. It was noted that squaring a coefficient lost its negative direction, 

if it were present (Walker, 2003). However, the square of Kendall's Tau was even more 

different from the square of Spearman's Rho because the two unsquared coefficients used a 

different metric (Strahan, 1982). By converting between Kendall's tau and Pearson's r (see 
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Table 3.5), the covariance of the two variables could be matched to values of Kendall's tau 

(Gilpin, 1993). 

An association between two variables does not imply causality and that was taken into 

account when interpreting any association. A third variable or lurking variable may have been 

responsible for the association, or there may be no causal link. However, while correlation 

does not imply causality it remains a possibility. Positivist research, as opposed to interpretive 

research, sought to reveal and explain causality. Correlation on its own was not enough 

evidence to prove causality. As Miller (2004) elaborated, consistency of association, strength 

of association, temporal relationships, and a mechanism were necessary to posit a causal 

relationship. Quantification of these factors in a representative sample was often part of 

supporting the truth claims of this type of research. In the present study, descriptive statistics 

(correlations) were used to aid an interpretive analysis. 

It was a mistake, Vaske cautioned (2002), to think that significant meant of practical 

importance. The practical significance of a relationship required a value judgement by the 

researcher and the readers. For example, if it were shown that there was a stronger correlation 

(larger effect size) between performance on fractions tasks and performance on conceptual 

measurement tasks as opposed to tools and procedures measurement tasks, that result would 

have practical importance because using broken ruler tasks as well as assessing whether a 

student can use a ruler accurately was not an onerous change to instruction. On the other 

hand, if there were a significant association between a specific numeracy program and a 

minor improvement in test scores, then the result would be significant but not of practical 

importance to the wider teaching profession would be  

Factor analysis was used to explore the data. This suggested further qualitative investigation 

of the correlation between several variables. Factor analysis was used to discover which 

variables appeared to show similar performance, possibly suggesting similar underlying 

constructs. In order to use factor analysis, the students' responses were coded with greater 

detail than just correct or incorrect. Responses were rated, in layperson's terms, as: 

• correct with a correct explanation,  

• just a slip up,  

• right strategy but not fully executed,  

• some relevant mathematical thinking but an incorrect answer, and  

• incorrect mathematical thinking.  
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The factor analysis itself was not used to justify the inclusion of tasks in specific categories, 

for example the construct of equivalence. Rather, further interpretive analysis justified the 

inclusion of a task within a category or score. 

The test for association using Kendall's Tau only reveals linear correlations, so some data was 

graphed to see if there were any non-linear correlations substantial enough to be observed 

without statistical tests. 

3.3.3 Validity. 

The section on validity contains three parts:  

• Construct validity, face validity, content validity  

• Reliability 

• Authenticity 

3.3.3.1 Construct validity, face validity, content validity. 

Internal validity is an evaluation of the effectiveness of the research design for detecting cause 

and effect (Neuman, 2003) and so is not applicable in the present study. 

Construct validity is a measure of whether the instrument actually measures what was 

intended. The mathematical constructs investigated in the present study were fractions, 

measurement, multiplication and division, and dynamic imagery. I used a theoretical model 

for task selection, as recommended by Goldin (2000) so that my preconceptions were explicit 

and not implicit. A distinction was made between relational and instrumental thinking 

(Skemp, 1976), or conceptual and procedural understanding (Hiebert & Carpenter, 1992). In 

the present study, this is referred to as conceptual understanding and a knowledge of tools and 

procedures. I chose, where possible, tasks from the research literature that had been subjected 

to peer review. The acknowledgments of sources in the description of the instrument (section 

3.2.2) and in the interview protocol in Appendix A make clear this aspect of construct 

validity. 

Only the presented task was subject to experimental control not the interpreted task Goldin 

cautioned (2000). The literature had revealed that "spatial" tasks could be solved correctly by 

students using either dynamic visualisation or geometric reasoning: the task itself was not 

inherently a dynamic visualisation task or a geometric task (M. Clements, 1983). Although 

tasks were chosen to assess different categories of knowledge of fractions or measurement, 
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there would be no guarantee that students would use the relevant constructs in their solutions. 

An examination of the students' explanations would help to determine if the task had in fact 

assessed the desired construct. A student's explanation only revealed their preferred strategy 

(Presmeg, 1985). If a child used geometric thinking on a spatial task (successfully or 

unsuccessfully), that did not mean that he or she could not use dynamic thinking: all it 

indicated was that that geometric thinking was the first strategy tried on this particular task. 

These constraints were noted in the analysis of data. 

Face validity is less precise than construct validity: at face value, do the tasks appear to assess 

the constructs that they were chosen to assess, and what practical measures were taken to 

determine this. One measure of face validity was peer acceptance that the tasks tested the 

construct as categorised by the researcher (Neuman, 2003). During the development of the 

instrument, tasks were shown to other mathematics education researchers and their 

suggestions incorporated into the final interview protocol. For example, a conservation of area 

task was changed from being diagram-based to being hands-on with the children cutting and 

moving the paper themselves (Jill Cheeseman, personal communication). The tasks were also 

shown to a practising primary teacher to confirm that students would have some entry point 

into the concepts. The interview was piloted so that I, as the researcher, could assess its face 

validity. After data collection, peer-reviewed conference papers and book chapters (Mitchell 

& Horne, 2008, 2009, 2010, 2011) also provided an opportunity for other researchers to 

comment on the validity of the tasks and my interpretations of them.  

Language use was another factor that was taken into account in developing the tasks. Previous 

research had identified that everyday language and mathematical language could be confused 

by children, such as the word "bigger" (Mitchell, 2005). The imprecision of everyday 

language and the importance of context may contribute to this. For example, "size" did not 

automatically map to "area". "Length" could be distance travelled or distance from the starting 

point. "Longer" could be a measurement of length or a comparison of endpoints. The phrasing 

of the questions was carefully considered, and many of the tasks in the final data collection 

were used in a pilot study to ensure that the language was not interfering with the 

understanding of the task. 

Content validity concerns whether the task criteria covers all of the various aspects of a 

construct (Neuman, 2003). Two aspects of content validity are discussed here: coverage of a 

mathematical domain and difficulty of the questions.  
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In the domain of fractions, the focus of the present study was on the measure sub-construct 

and the concept of equivalence and so several questions were developed to cover different 

aspects of these concepts. For example, the research literature had identified that for number 

line questions, there was a difference in presenting number lines from 0 to 1 and from 0 to 

greater than 1. There was also a difference, proposed in the literature, between reading 

partitions and making partitions. Thus, eight number line tasks were developed (or adapted or 

replicated) to cover these different aspects of number line knowledge (see Table 3.3).  

I had ethics approval for an interview of not more than three hours in total, so not every aspect 

of fractions and measurement could be assessed. The fraction sub-constructs of operator and 

ratio were not the main focus of the present study, and only one task was used to assess them. 

This was not enough to give a full picture of students' performance on these sub-constructs 

but time constraints prevented further questions being offered. As a consequence, correlations 

between these sub-constructs and measurement concepts have limited content validity.  

The research literature had identified that the students who lagged behind grade level 

performance could be significantly behind (Brown et al., 1995). Hence questions were 

included at different levels of difficulty to assess students' understandings of a concept. In 

order to save time, some measurement concepts had an entry-level task that was offered to 

every child: a harder task was only offered to those correct at the entry-level task and an 

easier task to those who were unsuccessful on the entry-level task. This protocol was 

confirmed in piloting of the interview where all three tasks were offered and no student was 

successful on the harder task if he or she had not been successful at the entry-level task.  

A range of performance was anticipated for equivalence concepts and tasks were included to 

assess this spectrum. Questions included equivalences to one half, other unit fractions (one 

quarter and one sixth), and non-unit fractions (two thirds). Later data analysis also identified 

another more difficult category of equivalence questions in which equivalence was used to 

benchmark or make common denominators.  

3.3.3.2 Credibility and reliability. 

Patton (2002) synthesised "rigorous methods for doing fieldwork", "integrity in analysis", "the 

credibility of the researcher", and "philosophical belief in the value of qualitative inquiry" (p. 

552-553) as key concepts that underpinned the credibility of qualitative research. Good data 

can be interpreted badly, diSessa had cautioned (2007). 
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Interviewers make inferences based on what they can observe (Goldin, 2000). It was 

important to maximise the students' engagement through external representations such as 

materials, their own inscriptions, and explanations (Goldin, 2000) because that was what 

would be observable. I included the instructions to retell the thinking or to justify an answer 

because children do one of three things when they are given a mental calculation – know the 

answer immediately, decide immediately that they cannot do it, or adopt a strategy, successful 

or not, for arriving at an answer (McIntosh, De Nardi, & Swan, 1994). An explanation could 

be a justification for an answer (Lesh et al., 1983), so I did not assume that an explanation was 

automatically a window into a student's thinking. 

The preamble to the interview in the present study also made clear that I was interested in the 

student's thinking, as suggested by Ginsberg (1997), and would not be trying to direct that 

thinking. Goldin (2000) cautioned that interviews do not give the interviewer access to the 

participants' thinking, reasoning, cognitive processes, internal representations, meanings, 

knowledge structures, schemata, affective or emotional states, and the like. Goldin (2000) 

suggested two types of prompting in interviews: neutral questions, such as "why do you think 

so?", and heuristic suggestions, such as "do you see a pattern in the cards?" (p. 125), but only 

the first type of neutral prompt was used in the present study. 

Trustworthiness was based on triangulation of the data. In the present study, the students 

completed an extensive interview but their responses were not triangulated using different 

instruments. However, quotations of explanations are presented so that readers can make their 

own judgments about the validity of the interpretations, as suggested by Clement (2000). The 

double coding and transcripts were used in reporting the data to support the present study's 

claim for authenticity (Neuman, 2003). By choosing more than one school it was possible to 

demonstrate that if a misconception were present in children from different schools, it was not 

due to the idiosyncratic teaching of individual teachers, but possibly caused by developmental 

factors or the state curriculum.  

The use of a theoretical model to guide task selection and analysis was used to support the 

present study's claims for trustworthiness, credibility, transferability, and confirmability as 

described by Denzin and Lincoln (2008).  

The use of an interview script as suggested by (Goldin, 2000), improved reliability of the 

instrument by framing the questions in the same way and offering questions in the same order. 

The advantage of having the same interviewer (me) was that it was easier to deliver the 
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interview in the same way. The disadvantage was that the data collection took five months, so 

a Grade 6 student in the study might be a Grade 6 student at the beginning of Term 1 

(February) or the end of Term 2 (June). However, the topic of fractions had not been taught to 

the students before interviewing took place.  

The interview protocol remained the same as suggested by Clement (2000). The study 

involved children, so it was not possible to eliminate the variables of illness, a "bad day", or 

nervousness. A one-to-one task-based interview was one assessment on one day and so may 

not be able to produce identical results for the same student on a different occasion. The re-

test reliability (Bouma & Ling, 2004) of a one-to-one task-based interview could not be 100% 

because previous exposure to a task might affect a child's subsequent performance, unlike 

measuring another variable such as height which is unaffected by multiple recordings.  

Patton (2002) emphasised practice and experience with interviewing as important contributors 

to well conducted interviews. I had used the number domains of the Early Numeracy 

Interview (Department of Education & Training, 2001) with Grade 1 and 2 students and also 

with Grade 5 and 6 students in my capacity as a practising classroom teacher. I had developed 

a fractions interview for a Masters project and interviewed primary school children (Mitchell 

& Clarke, 2004). I had also interviewed Grade 6 students using the Early Numeracy Interview 

as a research assistant for a larger project (see e.g.,Clarke et al., 2007). Familiarity with 

conducting, recording and coding one-to-one task-based interviews contributed to the 

reliability of the data collection in the present study.  

One measure of reliability was whether another researcher would code the data in the same 

way as the investigator (Bouma & Ling, 2004). Verification was important (Pring, 2005) and 

concerned that which could be observed. For example in the present study whether a student 

gave an answer of three and three quarters to the Keyboard task (Q. 39) can be verified by the 

use of audio or video data. The coding of explanations into categories could not be verified as 

it involved a layer of interpretation. Instead the credibility, rigour and integrity (Patton, 2002) 

could be increased by the process of double coding of the data by another researcher. Clement 

noted (2000) reliability measures were of observations, not of theories. The interpretation of 

the explanatory power of Kieren's model could not be double coded, but it could be subject to 

academic critique. 
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3.3.4 Ethics. 

Three principles guided the scholarly research and writing in the present study: protecting the 

rights and welfare of the participants, ensuring the accuracy of scientific knowledge, and 

protecting intellectual property rights (American Psychological Association, 2010). The 

present study was approved by the Human Research Ethics Committee of the Australian 

Catholic University (V20050679) and by the Department of Education & Training (now 

known as the Department of Education and Early Childhood Development) (SOS003302). 

The letters granting approval to undertake the research and the letters to participants and 

consent forms are included in Appendix B. 

3.3.4.1 Protecting the rights and welfare of the participants.  

The present study was conducted within the guidelines of the Human Research Ethics 

Committee of the Australian Catholic University and the guidelines of the Department of 

Education and Early Childhood Development for conducting research in schools. The rights 

and welfare of the participants were broken down in three categories: consent, confidentiality 

and respect. 

Informed consent was gained from the participants in the present study. The participants were 

under the age of 18 and were students in state government primary schools. Permission to 

approach principals of state government primary schools was obtained from the Research 

Branch of the Education Policy and Research Division in the Office for Policy, Research and 

Innovation of the Department of Education and Early Childhood Development, Victoria. As 

requested, a courtesy letter was sent to the Regional Director of the schools chosen to be in 

the study. Four principals were approached and permission requested to conduct the research 

in their schools and to send information letters home to parents. Written consent was obtained 

from all four principals. Information letters were sent home with the students in the senior 

grades and these included consent forms for parents or guardians to sign and consent forms 

for the children to sign. In addition, I asked every student at the beginning of the interview 

itself, "Are you happy to do some maths with me today?" The participants had the right to 

discontinue their participation at any time and this simple verbal check combined with their 

signed consent form confirmed that they themselves were happy to participate. No child 

refused to do the interview, but if they had, I would have discontinued the interview despite 

their parents' written permission to conduct it. The parents and students consented to  
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• one-to-one task-based interviews, including a pen and paper test (total 3 hours), 

• the interview being audio-taped, 

• the interview being video-taped if written permission was included (a box ticked), 

• the video footage being used in professional development and conferences, including 

on the internet, 

• the data obtained being written up in my PhD and in conference papers and articles 

• feedback on the child's performance being given to the school if written permission 

was included (a box ticked). 

More than half of the participants gave permission for the interview to be video-taped. Only 

one parent refused permission for feedback to be given to the school. This option for feedback 

to the school was added after the initial piloting of the interview when it was discovered that 

confidentiality prevented me from commenting to the teachers about the students' 

performance, and this necessitated an amendment to the ethics application. Consent was given 

by the students and their parents or guardians to take part in the research and for this to be 

written up and shared in research publications, teacher professional development activities 

and feedback to the school.  

Confidentiality of the students' identities was maintained. It was made clear in the information 

letter that teachers and other students would be aware that the participants were taking part in 

the research because it involved being withdrawn from the classroom. However, in the use of 

the data, confidentiality was maintained. The children's names were written on the record 

sheets of the interview and could be heard on the audio or video recordings but these data 

were kept in a locked cabinet at the University and were not accessible to others. Written 

reports on the data (this PhD, conference papers etc.) used pseudonyms if the students were 

quoted and only anglo-celtic names were chosen because ethnically appropriate names may 

have identified the students or the school. The gender of the student was identified in the 

name or pronoun used. In the present study, information about the schools was broad rather 

than specific so that they were not identified. A code rather than a name was used to identify 

each student in electronic databases (Excel and SPSS). Some of the tasks were double coded 

by other researchers and they agreed to maintain confidentiality if they heard a child's name 

on the video. A report was prepared for each school on some of the tasks and aggregated data 

of only that school's students were made available to them (excluding the one child whose 

parents had refused permission for feedback to the school). In these ways the confidentiality 

of the students' responses to the interview tasks was maintained.  
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Respect for the participants was an underlying consideration of the interview protocol of the 

present study. I was the only interviewer and the parents were informed that I was registered 

as a teacher with the Victorian Institute of Teaching and had a current criminal records check. 

My experience as a teacher of children at this level enabled me to develop a rapport with the 

students. I was appreciative of the consideration shown to me by the teachers and principals 

as I withdrew students from classes. In designing the interview, I tried to have some 

interesting materials to work with throughout the assessment, as suggested by Ginsberg 

(1997), and the students enjoyed using a doll, golden beans and figurines. In a preamble to the 

interview I informed the students that they would not be told if their answers were wrong or 

right but would probably always be asked "and how did you work that out?" This set up 

"classroom norms" in which I listened to their answers but they did not have to guess what I 

might prefer them to think. This established a powerful pedagogical relationship based on my 

respect for their explanations, and prevented a "why" question triggering doubt in the students 

as to the correctness of their answers, as cautioned by Patton (2002). Respect for the students 

was demonstrated through both the design and conduct of the interview. 

One task (Q. 41) used a graphic of a Freddo Frog (an Australian chocolate confectionary 

made by Cadbury Pty. Ltd.). Data collection was completed in 2008. In 2010, Kraft Foods 

then acquired Cadbury. However in 2009, Kraft Foods Limited became signatories to the 

Australian Food and Grocery Council's Responsible Marketing to Children Initiative. Freddo 

Frogs did not meet the "sensible solutions" criteria because they did not contain ingredients at 

a nutritionally meaningful level. Kraft therefore, stopped marketing them to children under 12 

years old. Thus, it would now be inappropriate for me to use that graphic with primary school 

students.  

3.3.4.2 Ensuring the accuracy of scientific knowledge. 

The present study was written with a commitment to the accuracy of the research findings 

presented within it. This was demonstrated in the analysis of data, the presentation of data, 

and the administration of the data. In publications stemming from this project, previous 

papers on the same data were cited (e.g. conference papers) so that the reader was clear about 

which data were being reanalysed as recommended in the APA 6th style guide (American 

Psychological Association, 2010). Some tasks were excluded from the results because the 

children were confused by the way the question was asked or were unfamiliar with the 

materials, not because the results were unexpected. A detailed reporting of all results was not 

possible within the word limits of the thesis, but it is hoped that some tasks not reported in 
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depth here will be reported in subsequent journal articles. Unexpected results were included – 

a finding is a finding whether it confirms a prediction or contradicts it. The interview protocol 

is included in Appendix A so that other researchers could 

• examine the detail of the tasks to ascertain whether they would categorise the tasks in 

the same way as I did in my task selection criteria 

• examine the detail of the tasks to assess my interpretations of the students' 

explanations 

• compare the results of the present study to other studies  

• replicate the study  

The Results chapter is detailed, including quotations of students' explanations, so that other 

researchers could evaluate my interpretations. Data will be retained for at least five years after 

publication. 

 3.3.4.2.1 Conflict of interest. 

I was an employee of the Department of Education and Early Childhood Development and a 

student at the Australian Catholic University. The Early Numeracy Interview was developed 

by a team of researchers including some of my supervisors at the Australian Catholic 

University and is available on the Department of Education and Early Childhood 

Development website (Clarke et al., 2002; Department of Education & Training, 2001). The 

Fractions online interview and associated classroom activities book was developed by 

researchers, including one of my supervisors, at the Australian Catholic University and is 

available on the Department of Education and Early Childhood Development website 

(Department of Education and Early Childhood Development, 2009a, 2009b). I received 

payment for some work on the online Fractions Interview. I do not believe that my 

participation in (nor the participation of my supervisors in) the research listed above 

constitutes a conflict of interest in the present study. 

3.3.4.3 Protecting intellectual property rights. 

Research findings and analysis by other researchers is referenced in the text. Some tasks have 

been used or adapted from other sources and acknowledgement appears in the text. I have 

obtained permission for the use of unpublished one-to-one interview tasks developed by 

fellow researchers, and acknowledged their authorship in the text. The graphics used in the 

tasks were commissioned and paid for by me. 
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Permission to reproduce the image of a Freddo Frog in this thesis was given by Kraft Foods 

(see Appendix B).  

Permission to report frequencies of state and national item responses to specific questions on 

the Achievement Improvement Monitor (AIM) and National Assessment Program: Literacy 

and Numeracy (NAPLAN) tests from the NAPLAN Data Service was given by The Victorian 

Curriculum and Assessment Authority (external request ID 472) 

3.4 Limitations 

The present study interpreted students' understanding. It did not investigate learning, nor did it 

investigate teaching. Students' explanations have been interpreted without commenting on the 

specifics of the teaching that they had received, nor the learning they had engaged in, in their 

particular classroom and schools.  

The research design of the present study was interpretive research. I have tried to describe 

faithfully the strategies that students' were using in their explanations but I have interpreted 

them within a framework and terminology that the students might not use. The present study 

did not seek to present the students' explanations from a phenomenological standpoint. I 

categorised responses and grouped variations, but the students did not participate in this 

process.  

An interview could not capture change over time. The variety of students' explanations have 

sometimes been interpreted as indicating pathways. Some strategies of students who are less 

successful might be compared to the performance of more successful students, as if these 

represented stages that all children will pass/have passed through. Only a longitudinal study 

could provide evidence of a pattern of learning.   

Although the present study set out to produce original analysis, it did not set out to develop 

new domain level theory. Theory-generating research was used to generate domain specific 

theories: for example design experiments in education (Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003) or grounded theory (Strauss & Corbin, 1998). The associations between 

measurement categories and fraction performance rely on the construct validity of the tasks 

chosen to assess them. If the tasks do not assess the construct that they have been chosen to 

represent, then associations are invalid. 
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It was never going to be possible in this thesis to examine in depth the responses to every 

task. All tasks were coded for frequency of success and every strategy evident from the 

students' explanations was also coded. There was a substantial time investment in preparing 

task results for presentation: transcribing explanations, reviewing original coding criteria, 

analysing related performance in other tasks, refining categories for double coding, explaining 

the coding criteria, locating start times on video and audio data, and discussing strategies post 

double coding. There were other results that could have been analysed in depth but because of 

the word limit of this thesis not all of them are presented here. 

Summary of Methodology 

In this chapter, I began with the research questions generated by an examination of the 

research literature in the previous chapter, and described a methodology (interpretivism) and a 

research method (one-to-one task-based interview) that could investigate these questions. A 

one-to-one task-based interview was developed for data collection with research-based 

criteria for task selection. The interview protocols were described, and the coding protocol 

was elaborated and the proposed analysis outlined. The sample of students from whom data 

was collected was described. Issues of validity were addressed and the ethical considerations 

of the present study were described. The limitations of the present study were outlined to 

conclude the discussion of methodology and methods. 
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Chapter 4: Results 

The structure of the Results chapter is based on concepts. This chapter is divided into five 

sections: 

• describing the baseline and upper limits of the students' performance as a group, 

• measurement tasks results,  

• visualisation tasks results,  

• multiplication tasks results, and  

• fraction tasks results.  

I examine the frequency of success of particular tasks, the strategies offered by students, and 

correlations between some fraction tasks and the measurement concepts. 

In the Discussion and Implications chapter which follows after this Results chapter the results 

are discussed in a thematic order: strategies (misconceptions and correct strategies) evident in 

children's explanations, correlations between fraction and measurement concepts, and the 

fractions concepts of Kieren's four-three-four model evident in children's explanations. 

Draft findings of some of the results of tasks in the present study have been reported in other 

places (see e.g., Mitchell & Horne, 2008, 2009, 2010, 2011). Some of these preliminary 

findings have been cited in further research (see e.g., Cunningham, 2009; Chinnappan & 

Pandian, 2009; Petit, Laird, & Marsden, 2010)  

The interview protocol is presented in Appendix A. The diagrams (task cards) presented in 

this Results chapter are often much smaller than the actual task card used during the 

interview. 

4.1 Students' Baseline and Ceiling Performance  

The baseline performance of the students' in the present study is specified by describing the 

tasks which had 100% frequency of success. The upper limit of the students' performance is 

specified by describing the tasks that had 0% frequency of success.  

There were five questions to which every student in the present study gave a correct answer 

with a mathematically correct explanation (see Figure 4.1). These five questions provided a 

description of the baseline performance of the specific sample of students in the present study. 



100 
 
All students correctly identified as one quarter the one shaded part in a circle divided into four 

equal parts (Q. 19g); all correctly identified as two thirds the two shaded parts in a rectangle 

divided into three equal parts (Q. 19p); all correctly used a letter and number code to identify 

a square on a grid overlaying a treasure map (Q. 50); all could describe a length in a three 

dimensional context of a picture of a block of ice (Q. 54a), either formally as "the length" or 

informally, for example, "how high" or "how wide"; and all successfully mentally calculated 

the total number of balls in four packets of three tennis balls when shown one packet (Q. 1). 

Success on these tasks demonstrated that all students had a basic understanding of unit and 

non-unit fractions; of an array structure; of the attribute of length as a straight line; and of 

repeated addition (or possibly, multiplication).  

 

Q. 19g 

 

Q. 19p 

 

Q. 50 

 

Q. 54 Q. 1 

Figure 4.1. Task cards or materials used in tasks with 100% frequency of success. 

There were several tasks that showed where the first brittleness in the students' knowledge 

began to appear (see Figure 4.2). These were the tasks where all but one or two students 

answered correctly with mathematically correct explanations. For example, all but two 

students could correctly identify as one sixth the one shaded part in a circle divided into six 

equal parts (Q. 19a); all but two students could identify as one quarter the one shaded piece of 
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a square divided into four equal triangle pieces (Q. 19h); all but one student could identify as 

two thirds the two shaded pieces of a circle divided into three equal sized pieces (Q. 19q); all 

but one student could state that half of six was three (Q. 18a). While all the students had some 

basic understanding of unit and non-unit fractions, this knowledge did not extend to all the 

standard inscriptions for every student.  

 

Q. 19a 

 

Q. 19h 

 

Q. 19q 

Figure 4.2 Diagrams used in tasks with a 97-99% frequency of success (Q. 18a was verbal). 

There was also a ceiling on the students' performance. One task proved too difficult for all of 

the students and none answered successfully. This question was an equivalence card in the 

Fraction Sort task (Q. 19r) (see Figure 4.3) where the students had to mentally re-partition the 

shape into six ninths before being able to give a mathematically correct explanation for why 

the card should be placed in the two thirds pile. Two students successfully mentally re-

partitioned the triangle into nine smaller triangles and saw that two horizontal rows of these 

would be six out of nine parts, but neither of them realised that two thirds was another name 

for that. The other students, who placed this card in the two thirds pile and gave the reason 

that there were two parts shaded, were not coded as correct on this question as they neither 

demonstrated an understanding of the geometric complexity of the task, nor had used 

equivalent fraction reasoning.  

  

Figure 4.3 Triangular 2/3, Q. 19r (left) and mental re-partitioning required (right). 
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There were three schools used in this study, all of them performed above the base line 

measures described above. The performance of the three schools differed with respect to each 

other, and this is not unexpected given that they represented three different socio-economic 

groups of students. However, differences between the schools were not the focus of this study 

and results are presented as aggregate percentages. 

4.2 Length and Area Measurement Results 

The measurement tasks are reported by key concept category: attribute, additivity, unit, and 

proportionality. Conceptual tasks using length and area diagrams, and tools and procedures 

tasks using length and area diagrams were investigated (see section 3.2.2.3).  

4.2.1 Attribute. 

The frequency of success on the conceptual and tools and procedures tasks assessing the 

identification of the attribute of length and area is presented in Table 4.1. A score of 0 

indicates an incorrect response or a right answer for the wrong reason, while a score of 1 

indicates a correct answer with a mathematically correct explanation.  

Table 4.1 

Attribute: Frequency of Success  

Concept Task type Context Score Frequency 
of success 

Tasks used to rank success at 
the concept 

Attribute Conceptual Length 0 
1 

62.5% 
37.5% 

 
Q. 36g Similar Shapes 

Attribute Conceptual Area 0 
1 

33% 
67% 

 
Q. 36h Similar Shapes 

Attribute Tools and 
Procedures 

Length 0 
1 

0% 
100% 

 
Q. 54 Blocks of Ice (length) 

Attribute Tools and 
Procedures 

Area 0 
1 

67% 
33% 

 
Q. 54 Blocks of Ice (area) 

4.2.1.1 CATL: conceptual tasks, attribute concept, length context. 

Four pairs of shapes (see Figure 4.4) were used for the Similar Shapes task (Q. 36). Students 

were asked to compare the shapes' perimeters and the shapes' areas. The first three pairs, 

squares, circles and non-similar rectangles, were not included in the score for the attribute 

concept. The perimeter comparisons were made successfully by 96.6%, 92%, and 45% 
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respectively. The area comparisons were made successfully by 96.6%, 97.7%, and 71.6%, 

respectively. The perimeter and area comparisons of the shaded shapes were 37.5% and 67% 

respectively. However, only 4.5% of the students were successful on all eight questions. 

 

 

 

 

 

Q. 36a Area comparison 

Q. 36b Perimeter comparison 

Q. 36c Area comparison 

 Q. 36d Perimeter comparison

Q. 36e Area comparison 

Q. 36f Perimeter comparison

  

Q. 36g Area comparison  

Q. 36h Perimeter comparison 

Q. 36g and Q. 36h visualisation 

Figure 4.4. Diagrams used for Similar Shapes task (Q. 36), and the geometric visualisation 

explained by some students to show that both shaded parts were half. 

The length context of this attribute category (CATL) was assessed using only the perimeter 

comparison of the shaded pair of similar shapes (Q. 36g) and 37.5% of the students correctly 

explained that the triangle half of a rectangle had a bigger perimeter than a rectangle half (see 

Table 4.1).  

The most common incorrect response was that the perimeters were the same because the 

shaded parts were both half and 45.5% of the students offered an explanation with the word 

half or halves in it. For example, Sylvie explained that the perimeters were the same because 

the shapes were "halved in different ways" (see Table 4.2). A further 8% of the students 

similarly concluded that the perimeters were the same by geometrically breaking and 

rearranging the two areas using visualisation to show that they were the "same" (see Figure 

4.4). And one other student (1%) offered a similar geometric reason but with less 
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sophisticated language. In the perimeter question (Q. 36g) over half of the students linked 

perimeter to area in the non-congruent halves in the Similar Shapes task.   

Table 4.2  

Explanations for the Perimeter Comparison in Q. 36g 

Strategy Explanation from transcript 

The perimeter of the 
triangle is longer 
 

Cameron: Probably this one [points to triangle] 
Interviewer: Why's that? 
Cameron: Because this line here [hypotenuse] is probably 
about like two of these [traces vertical line of rectangle] of 
these sides; the height. And these two [two sides of triangle] 
should be longer than them two together as well [points to two 
horizontal lines of rectangle]. 
Claire: This one's longer [points to triangle] than that one 
[points to rectangle] 
Interviewer: And how do you know? 
Claire: Because it goes up most of the shape, and this one only 
goes across half of it. 

The perimeters are the same  
(fractional area reasoning) 

Sylvie: They're the same. 
Interviewer: How do you know? 
Sylvie: Because they're both the same like shape and equal like 
shape, but they're halved in different ways 

 

4.2.1.2 CATA: conceptual tasks, attribute concept, area context. 

The task assessing the area context of the conceptual aspect of the concept of attribute was the 

comparison of the areas of non-congruent halves. One mathematically correct explanation of 

why the areas of the shaded parts had the same area used the fraction reasoning that the 

shaded parts were both halves. Cameron (see Table 4.3) used fraction reasoning to conclude 

that the shaded shapes were "both halves" but also noted that the triangle looked bigger. 

Cameron's explanation also revealed that dynamic reasoning could be used to justify fraction 

reasoning. Claire and Sylvie attended to the actions of halving and explained that both shapes 

had been "coloured in half" or "cut in half" (see Table 4.3). The words half or halves were 

used in a fractional reasoning strategy by two thirds of the 67% of students who were correct 

on Q. 36h. The other correct students used dynamic imagery (see Figure 4.4) or global size 

comparisons.  
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Table 4.3 

Explanations for the Area Comparison in Q. 36h  

Strategy Explanation from transcript 

the areas are the same   
(both halves) 

Cameron: Yeah they're the same. Because they're both halves 
but at the same time this might look bigger [points to triangle] 
but it's actually, they're both halves, and if you got some pieces 
of the square [points to rectangle] and put them all on to that 
[points to triangle], on this triangle, then yeah it's the same. 
And this would be the same. 
 
Sylvie: They're the same. 
Interviewer: How do you know? 
Sylvie: Because um they are like the same size and the same of 
it is cut in half  
 
Claire: They're the same 
Interviewer: And why's that? 
Claire: Because the pieces of paper are the same  
Interviewer: Hmmm, and? 
Claire: And they're both coloured in half. 

 

Only 22.7% of students were correct on both Q. 36g and Q. 36h. A quarter of the students 

who correctly used the fraction explanation (halves) in the area comparison had successfully 

explained why the perimeter of the shaded triangle half was bigger in the previous question 

(see for example, Cameron's explanation in Table 4.2).  

Of the 77.3% of students who had offered the correct answer to the area comparison (Q. 36h)  

• 20 of them explained that the areas were the same and had explained that the 

perimeter of the triangle was longer in the previous question, 

• 39 of them reasoned that the areas were the same but had stated that the 

perimeters were the same in the previous question, but were coded correct on 

the area question,  

• 8 of them specified that the magnitude of the area (the same) was due to the 

perimeter and were coded incorrect, and 

• 1 was coded incorrect on the area comparison despite offering the correct 

answer because her explanation was not mathematically correct. 
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More than two thirds (39 out of 59) of the 67% of students who were coded as correct at the 

area comparison used correct fraction or geometric visualisation reasoning but had 

unsuccessfully employed this reasoning for the previous perimeter comparison question (see 

for example, Sylvie's explanations in Table 4.2 and 4.3).  

Some students argued in their explanation of the area comparison that the areas of the two 

shaded parts were the same because the perimeters were the same (which they were not). 

They were coded as incorrect because they offered a correct answer but with a mathematically 

incorrect reason. For example, Bella explained "Because they're just the same, the same 

length and width. And like if the perimeter is the same, the area would be the same too". The 

9.1% of students who specified that the areas were the same because the perimeters were the 

same were included in the 33% who were coded incorrect on this part of the task. One further 

student gave the correct answer with a mathematically incorrect explanation and was also 

included in the 33% who were coded incorrect on this part of the task. 

In comparing the areas in Q. 36h, 11.4% chose the triangle as the larger area (incorrectly) 

because the perimeter was larger. Some of the 37.5% of students who had identified that the 

perimeter of the shaded triangle was larger than the shaded square then used this intuitively to 

conclude, incorrectly, that one area was larger than the other.  

The misconception that perimeters indicate area was also evident in the non-similar rectangle 

pair in the Similar Shapes task (Q. 36e, see Figure 4.4, and not included in the CATA 

category). After carefully using geometric reasoning to establish that the perimeters in the 

non-similar rectangles were the same, Bella's response to the area comparison was to explain 

that "they would probably be the same", ignoring the geometric reasoning that would have 

suggested that she could put the tall rectangle inside the fat rectangle with minimal 

restructuring and relying instead on the premise that perimeter and area were always related, 

adding that "Because if the perimeter would be the same, the area would be the same too" .  

4.2.1.3 TPATL: tools and procedures tasks, attribute concept, length context. 

The Blocks of Ice diagram (see Figure 4.5) was used for both the length and area tools and 

procedures questions assessing the key concept of attribute. In a three dimensional context 

100% of the students correctly identified an example of the attribute of length on the diagram 

of the Blocks of Ice (see Table 4.1). The actual word length was volunteered by 38.6% of the 

students. As this was an open question, some also volunteered the more informal, but correct 
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words; the width or how wide, the depth or how deep, the height or how high, or how long as 

well. A further 31.8% volunteered one or more of these less formal terms but not the formal 

word length. And 29.5% did not verbally volunteer any of these terms describing the attribute 

of length, but when prompted to show a length could successfully indicate on the diagram the 

dimensions of a length measurement.  

 

 

Figure 4.5. Diagram used in Blocks of Ice task, Q. 54. 

4.2.1.4 TPATA: tools and procedures task, attribute concept, area context. 

A two dimensional image of a three dimensional context (the Blocks of Ice) was used to 

assess students' knowledge of the attribute of area (see Figure 4.5). Area in a three 

dimensional context proved more confusing than length for the students with 33% of the 

students either volunteering or being prompted for the area and successfully describing what 

that would be in the three dimensional context (see Table 4.1). The most common error was to 

describe what's inside and indicate the volume of a block; 52.3% of the students did this. This 

error occurred in all three schools. This error had a higher frequency than the correct answer 

and explanation. On the other hand, every student who used the word face successfully 

described an area on the block.  

In responding to the Blocks of Ice task (Q. 54) many children struggled to volunteer any 

attributes other than length. The open nature of this question enabled students to suggest any 

attributes that could be measured about the blocks and 14.8% suggested mass, 2.3% suggested 

temperature, 1.1% suggested hardness, 1.1% suggested opacity, and 1.1% suggested angle. 

However they did not always use these formal attribute terms. There were no suggestions to 

measure the attribute of time, but the blocks of ice context may have been more suggestive of 

mass and temperature than time.  
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4.2.2 Additivity.  

The frequency of the students with each score on conceptual and tools and procedures 

questions, in both length and area contexts, assessing the key measurement concept of 

additivity are shown in Table 4.4. The entry-level protocol was used for three of the 

categories. All students were offered the entry-level task and the percentages in brackets 

beside some of the tasks used to rank success at the concept show the frequency of success of 

the entry-level task. If unsuccessful the students were offered the easier task, or if correct they 

were offered the harder task. In the tools and procedures length category, only two tasks were 

used: an entry-level task and an easier task.  

Table 4.4 

Additivity: Frequency of Success 

Concept Task type Context Score Score 
frequency 

Tasks used to rank success at the 
concept 

Additivity Conceptual Length 0 
1 
2 
3 

11.4% 
31.8% 
19.3% 
37.5% 

None of three below correct 
Q. 43 Straightening wires 
Q. 41 Freddo (56.8%) 
Q. 42 Footy Card 

Additivity Conceptual Area 0 
1 
 
 
2 
 
3 

5.7% 
51.1% 

 
 

22.7% 
 

20.5% 

None of the three below correct 
Correct count on Q. 62 Staircase 
Array or Q. 35 Missing Oval, if 
needed (94.3%) 
Q. 33 Area Calculation, Half 
Rectangle (43.2%) 
Q. 53 Area Calculation, Triangle 

Additivity Tools and 
Procedures 

Length 0 
1 
2 

22.7% 
19.3% 
58% 

Neither of the two below correct 
Q. 32 Measure DVD with a ruler 
Q. 31a Streamer (58%) 

Additivity Tools and 
Procedures 

Area 0 
1 

42% 
58% 

 
Q. 63  Area Calculation, Rectangle 

 

4.2.2.1 CADL: conceptual tasks, additivity concept, length context. 

To assess a conceptual understanding of additivity in a length context, (CADL), the Freddo 

task (Q. 41) was offered to all students (see Figure 4.6). If they could successfully say how 

long the Freddo Frog was, students were offered the Footy Card task (Q. 42), or if 

unsuccessful the Straightening Wires task (Q. 43) was offered instead (see Figure 4.6). This 
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entry-level task protocol that enabled students' performance to be ranked for the CADL 

category had been validated in the pilot study. If unsuccessful at the entry-level Freddo task 

and the Straightening Wires task where students had to explain which bent wire was longer, a 

student was assigned a score of 0. If unsuccessful at the entry-level Freddo task but successful 

at the Straightening Wires task, a student was assigned a score of 1. If successful at the entry-

level Freddo task but not the Footy Card task, a student was assigned a score of 2. Students 

who were successful at both the entry-level Freddo task and the Footy Card task were 

assigned a score of 3. The response frequencies in Table 4.4 show how many students 

achieved each score. So while 19.3% of students achieved a score of 2 in the CADL category 

and all of them correctly answered the Freddo task, the frequency of success on the Freddo 

task itself was 56.8% because the other 37.5% who were correct on the Footy Card task had 

also correctly answered the Freddo task. 

 
 

Q. 41 Q. 42 

 

Q. 43 

Figure 4.6. Diagrams used in tasks assessing a conceptual understanding of additivity in a 

length context. 

In the present study, there were several different strategies employed by students who were 

successful at the Freddo task which all attempted because it was the entry-level task. 
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Numerical reasoning with the numbers three and eight was used by 20% of the students. The 

next most common approach in the present study was to imagine the three as a zero or a one 

and then to count from there and 14.8% of the students did that successfully. A similar 

number of students, 11.4%, counted the hash marks successfully, and a further group of 

students, 10.2%, counted spaces successfully.  

The misconception of counting lines not spaces, incorrectly starting the counting sequence at 

the zero point and calling it one, was evident in the data. In the response to the Freddo task, 

29.5% of the students demonstrated this strategy. Only students who had answered the Freddo 

task successfully were offered the Footy Card task and a third of them then demonstrated the 

counting lines not spaces misconception in the more difficult task. So overall, 48.9% of the 

students demonstrated this misconception, when the task was difficult enough.  

4.2.2.2 CADA: conceptual tasks, additivity concept, area context. 

To assess a conceptual understanding of additivity in an area context, CADA, the Area 

Calculation, Half Rectangle task (Q. 33) (see Figure 4.7) was offered to all students as a 

entry-level task. The students had to work out the area of the non-shaded part of the rectangle 

and explain their reasoning. The entry-level sequence had been validated in the pilot study. 

Students who were successful at this task were offered the Area Calculation, Triangle task (Q. 

53) in which they had to identify the area of the shape and explain their reasoning. Students 

who were successful on both these tasks were assigned a score of 3. Students who were 

successful on the entry-level task, Area Calculation, Half Rectangle, but not the Area 

Calculation, Triangle were assigned a score of 2. There were two tasks that were used to 

define a baseline level of performance at the CADA category; the Staircase Array (Q. 62) and 

the Missing Oval task (Q. 35). In both tasks, students had to determine the area of the 

rectangles. They were not required to offer correct units to be correct in this category because 

that aspect of the task was used to assess the units category. Students who were unsuccessful 

at the entry-level task but could offer a correct count for one (or both) of the array tasks (Q. 

62 or Q. 35) were assigned a score of 1. Students who were unsuccessful at the entry-level 

task, Area Calculation, Half Rectangle and were unable to offer a correct count of the area on 

both the Staircase Array task and the Missing Oval task were assigned a score of 0.  
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Q. 62 Q. 35 Q. 33 Q. 53 

Figure 4.7. Diagrams used in tasks assessing a conceptual understanding of additivity in an 

area context. 

The 20.5% of students with a score of 3 (see Table 4.4) who were successful at calculating the 

area of the triangle (Q. 53) all offered a fraction-based explanation, such as it's half of twelve, 

while none of them used the half base by height formula. A further 22.7% of students were 

successful at the entry-level task, Area Calculation, Half Rectangle (Q.33) but not the harder 

task. Hence 43.2% of the students had been able to calculate the area of half a four by three 

cm rectangle. Some successful students used fraction reasoning. Some students attempted to 

calculate the algorithm 4 x 11/2 but were unsuccessful. Just over half the students were 

successful on only the array tasks, and were unable to calculate the area of a half rectangle. A 

further 5.7% of students did not offer a correct count to the Staircase Array task (Q. 62) or if 

needed, the Missing Oval task (Q. 35). Errors with the count of the area on the Staircase array 

task came from all three schools.  

4.2.2.3 TPADL: tools and procedures tasks, additivity concept, length context. 

The entry-level task assessing the students' tools and procedures understanding of the concept 

of additivity in a length context was the Streamer task (Q. 31). Students iterated a 30cm ruler 

to measure a 93cm streamer and were assigned a score of 2 if they gave an answer between 92 

and 94cm. There was no harder task and so a score of 3 was not possible. The less difficult 

task was the Measure a DVD task (Q. 32) and this was offered to students who were 

unsuccessful at the Streamer task. If the students were successful at measuring a 19cm DVD 

case with a 30 cm ruler (18.8 – 19.2 cm) they were assigned a score of 1, and if unsuccessful 

assigned a score of 0. A high degree of accuracy was required with an error of 1.1% allowed 

for both tasks. 
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The students demonstrated some difficulty with measuring the streamer and 58% of them 

were able to measure with the required degree of accuracy. Assuming that the students who 

measured the streamer successfully could also measure a 19cm DVD case, 77.3% of the 

students could use a ruler to measure.  

4.2.2.4 TPADA: tools and procedures tasks, additivity concept, area context. 

One task was used to assess students' tools and procedures knowledge of additivity in an area 

context. This was the pen and paper Area Calculation, Rectangle task (see Figure 4.8, or see 

Q. 63, before Q. 12 in Appendix A) in which students were asked, what is the area of this 

shape? Similarly to the CADA category, the students only had to give the correct count for the 

area of the 4 cm by 3 cm rectangle in this additivity category, but give the correct units, cm2, 

to be successful in the units category aspect of the task. The correct count of units, 12, was 

given by 55.7% of the students (see Table 4.4). The most common incorrect answer was 14, 

possibly indicating the addition of the four lengths. 

 

Figure 4.8. Area Calculation, Rectangle task. 

The calculation of the area of a rectangle may be a prerequisite task for the calculation of the 

area of a half rectangle. The contingency table (see Table 4.5) shows that 33 of the students 

were correct on both of these tasks (area of a rectangle and area of a half rectangle). Of those 

who were only correct on one of the tasks 15.8% (3 out of 19) of them correctly calculated the 

area of the half rectangle and 84.2% (16 out of 19) of them could calculate the area of the 

rectangle (see Table 4.5). This suggests that the students were less likely to be able to 

calculate the area of a half rectangle before being able to calculate the area of a rectangle. 
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Table 4.5 

Two Way Table of Association Between the Calculation of the Area of a Rectangle (Q. 63)  

and Area of a Half Rectangle (Q. 33) 

 Area ½ rectangle correct Area ½ rectangle incorrect

Area calculation rectangle correct 33 16 

Area calculation rectangle incorrect 3 36 
  

4.2.3 Units. 

The percentage of the students with each score on conceptual and tools and procedures 

questions, in both length and area contexts, assessing the key measurement concept of units is 

presented in Table 4.6. The percentages in brackets beside some of the tasks used to rank 

success at the concept show the frequency of success of the entry-level tasks as these were the 

only tasks offered to all students. Three of the categories in the units tasks had questions that 

dealt with units and leftovers: CUNL, CUNA, and TPUNL. And the fourth category assessed 

students' knowledge of the correct standard units used with area measures: TPUNA.  
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Table 4.6 

Units: Frequency of Success 

Concept Task type Context Score Score 
Frequency 

Tasks used to rank success at the 
concept 

Units Conceptual Length 0 
 
1 
 
2 

12.5% 
 

33% 
 

54.5% 

Neither of the two tasks below 
correct 
Q. 40a Using paperclips to 
measure 
Q. 39 Keyboard (54.5%) 

Units Conceptual Area 0 
1 

87.5% 
12.5% 

 
Q. 46 Array with leftovers 
(12.5%) 

Units Tools and 
Procedures 

Length 0 
1 

15.9% 
84.1% 

 
Q. 64 Dragonfly (84.1%) 

Units Tools and 
Procedures 

Area 0 
 
1 
 
2 

52.3%% 
 

10.2% 
 

37.5%% 

Offers incorrect units (one or 
more times) 
Offers informal units and/or no 
units only 
Offers cm2 and no incorrect units 
for Staircase task (Q. 62) and  
Area of Rectangle (Q. 63) and, if 
needed Missing Oval (Q. 35). 

 

4.2.3.1 CUNL: conceptual tasks, units concept, length context. 

All students were offered both the Keyboard task (Q. 39) (see Figure 4.9) and the Swimming 

Pool task (Q. 65) (see Appendix A, before Q. 12). However, the Swimming Pool task was a 

pen and paper task and the students had difficulty understanding the question and therefore it 

has not been included in the results. Students who were successful on the Keyboard task were 

assigned a score of 2 (a score of 3 was not possible for this category). If unsuccessful on the 

entry-level Keyboard task, the students were offered the Using Paperclips to Measure task (Q 

40a). The Keyboard task required a quantified description of the leftover part (and three 

quarters), while the Using Paperclips to Measure task only required a qualitative description 

of the leftover part (and a bit). Students successful on the Using Paperclips to Measure  task 

were assigned a score of 1 and if unsuccessful they were assigned a score of 0.  
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task card visualisation  

Figure 4.9. Task card (left) used for the Keyboard task (Q. 39), and mental visualisation 

(right). 

The keyboard was exactly three and three quarter pencils long, but the students were allowed 

a margin for error in their estimation, as they could not draw on the task card. On this task 

54.5% of students were successful (see Table 4.6). Correct answers (as long as they were 

accompanied by mathematically correct explanations) included:  

• three and two thirds,  

• three point seven,  

• three and three quarters (or three and six eighths or three point seven five),  

• three and four fifths (or three point eight),  

• three and five sixths, and  

• three and seven eighths.  

The margin of error allowed was 3.75 +/- 0.125. Three and five eighths would have been an 

acceptable answer but was not offered by any student. Answers that fell outside of this margin 

on the lower estimate included: three and a bit, three and a half (or three and five tenths or 

three and three sixths) and three and just over a half. Answers that fell outside the margin on 

the upper estimate included: three and nine tenths (or three point nine) and three and four 

quarters (or three and three thirds).  

Some students successfully used the excess part of the pencil as a sub-unit and iterated it back 

along the partial unit of the pencil that was measuring the keyboard (see Figure 4.9 right), 

counting three of these parts in the leftover part. Four ways of iterating the excess part were 

demonstrated:   

• using a pincer grip to iterate the lengths,  

• using the width of a finger as an informal unit  

• making imaginary hash marks the width of the excess part, and  

• comparing the excess part by eye to the whole pencil.  
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All these processes happened from right to left. The iterated unit was the excess part beyond 

the edge of the keyboard so its size was fixed and it was mapped back onto the rest of the 

pencil from right to left. This was demonstrated mainly with gestures and is evident on the 

video recordings of some interviews. Freya articulated this strategy, "Um, three pencils and. 

Three pencils and three quarters I think. Because this pencil [far right] doesn't exactly go 

against the keyboard, and I'm guessing if that much [touches part beyond keyboard] was all 

over this, it would be four [iterates three more times from right to left of last pencil] so three 

pencils and three quarters." Claire also used the left over part, explaining her answer of 3.75, 

"Because it's basically a quarter of a pencil too long". 

Other students worked from left to right, proposing a sub-unit and estimating with that. This 

may explain some of the variety of fractional answers. Noah explained how he got his answer 

of 3.8, "Well, well obviously there's three pencils. There's four pencils there but the fourth one 

is a little too long. So I thought that I'd just divide it into tenths, I'd use tenths and eight, point 

eight would be about there."  

Other students used splitting (Confrey, 1994) and worked from the middle of the last pencil to 

halve and halve again. 

Some students elected to use a ruler to help them with this task. Some students successfully 

compared the length of the pencil and the length of the leftover part. For example, Jack 

explained, "well I measured the end pencil and it was three and a half, and the end of the 

keyboard was two and a half. So three pencils [traces them with his finger] and it was going to 

be around three quarters of a pencil." Chris used repeated addition for his ratio of two "point 

fives" less than seven "point fives" (2.5 cm and 3.5 cm), and renamed this five sevenths in his 

answer of three and five sevenths. These students were essentially working left to right. 

However, for some students, using the ruler led them to giving incorrect answers in combined 

units, pencils and centimetres such as George's response, "Is it three pencils and two 

centimetres and five millimetres?" 

Some students were more holistic in their visualising. For example Lachlan explained how he 

got his answer of three and three quarter pencils, "Just by eye. I reckon it could be different, 

but." 
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Students who were unsuccessful at the Keyboard task were offered a hands-on measuring 

context with leftovers and different sized units, measuring a DVD case with paperclips, and 

12.5% of the students were unsuccessful at both tasks (see Table 4.6).  

4.2.3.2 CUNA: conceptual tasks, units concept, area context. 

The area context of the units conceptual tasks was assessed by the Array with Leftovers task 

(Q. 46). There were sixteen whole units and four partial units in the array (see Figure 4.10). 

Students were given some wooden blocks which were 2 cm by 2 cm exactly the same size as 

the squares on the array, but there were not enough to cover the whole of array, and asked to 

find the area of the shape. The task had been used in the pilot study and had a frequency of 

success of 41.7%. This had indicated that it would be a good entry-level task. However the 

frequency of success was much lower in the present study, 12.5% (see Table 4.6) and this had 

the domino effect that very few students were offered the harder task, Packing Boxes (Q. 47). 

For this reason the Packing Boxes task has been excluded from the results reported here. 

Unfortunately, the materials in the (expected to be) easier task, the Cuisenaire Array, (Q. 48), 

proved unfamiliar for some students and this made the task harder than it was designed to be. 

For this reason the results of the Cuisenaire Array task have also been excluded from the 

results reported here.  Students who were correct on the Array with Leftovers task were 

assigned a score of 1 and those unsuccessful were assigned a score of 0.  

  

Figure 4.10. Array with Leftovers task (squares and wooden blocks were 2 cm square). 

 The Array with Leftovers (Q. 46) and the Keyboard task (Q. 39) used the same leftover: the 

length task had three quarters of a pencil leftover and the area array task had four three quarter 

squares left over. The same margin for error for describing the leftover piece was allowed in 

the area task; that is correct answers could be between 5/8 and 7/8 (0.75 +/- 0.125). 19 and 191/5 

were the correct answers offered by the students. They had identified the partial squares as 
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three quarters or four fifths. There was less variation in the description of the leftover part 

than in the Keyboard task. The students who were correct came from all three schools.  

The two stage difficulty of the area task was illustrated by the further 11.4% of students who 

correctly identified the leftover parts as three quarters of a square, but made errors in 

combining the four leftover amounts. This response was present in all three schools. In 

addition, one student described the partial square unit as two thirds but miscalculated the 

addition of the four leftover parts. The students explained two different ways of adding the 

leftover parts. Some children successfully numerically added the leftovers, while others 

successfully used dynamic imagery to move parts of parts in an effort to make wholes with 

the leftover pieces. Two children successfully used dynamic rearrangement without 

quantifying the leftover part itself; they made wholes and counted those.  

4.2.3.3 TPUNL: tools and procedures tasks, units concepts, length context. 

The Dragonfly task (Q. 64) was the tools and procedures length task assessing the key 

concept of units (see Figure 4.11). The students had to use mixed decimal units, centimetres 

and millimetres, to describe the leftover, and 84% of them were successful at this task (see 

Table 4.6). As this was a pen and paper task, the strategies that the students used to arrive at 

their answers were not elucidated. 

 

Figure 4.11. The Dragonfly task. 

4.2.3.4 TPUNA: tools and procedures tasks, units concept, area context. 

The tools and procedures area tasks assessed whether or not students volunteered the formal 

units cm2 when calculating an area of a rectangle. Two initial pen and paper opportunities 

were provided: the Staircase Array (Q. 62) and the Area Calculation, Rectangle (Q. 63) (see 
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Figure 4.7 and Figure 4.8). For the TPUNA category, a successful count was not needed, just 

the choice of unit. The Staircase Array task and the Area Calculation, Rectangle task were 

both pen and paper tasks, hence there was no opportunity to prompt for units if none were 

offered. There were two reasons that a student may have needed a third opportunity to 

volunteer units: either no units had been offered in the first two tasks or only informal units 

had been offered. The third task, the Missing Oval task (Q. 35) (see Figure 4.7) was offered in 

the interview, where a prompt for units could be made. If a student offered an informal unit, 

for example, twenty four squares, they were not prompted for a formal unit.  

Students were assigned a score based on their volunteering of formal units and whether they 

offered incorrect formal units (see Table 4.6): 

• score of 2 (37.5%): student volunteered correct formal units, cm2, without 

volunteering incorrect formal units (cm) in either the other one or two tasks, 

• score of 1 (10.2%): student volunteered correct informal units and/or no units, but no 

incorrect formal units (cm), on the three tasks, or 

• score of 0 (52.3%): student volunteered incorrect formal units (cm) on any of the two 

(or three) tasks  

Most of the correct responses were written as cm2 but one example of "2cm" after the number 

for the count was also accepted because it indicated centimetres square even if it was not 

written conventionally. Verbal descriptions accepted were centimetres squared and square 

centimetres.   

Two of the tasks were on a pen and paper test so students' explanations were not elucidated. 

In the third task I prompted if the student did not offer any units, but I did not ask them to 

explain why they decided to offer the chosen unit. There is  no data of students' explanations 

about their use of formal, informal or incorrect units. 

The two way table for TPADA and TPUNA shows that many of children could do the 

calculation for area, (three times four) before they could also attribute correct units (see Table 

4.7). More students calculated the area of the rectangle but also offered incorrect units (cm) 

on one or more of the tasks (19 students) than offered only correct formal units (cm2) but 

could not calculate the area of the rectangle (6 students). 



120 
 
Table 4.7 

Two Way Table of Association Between TPADA and TPUNA 

 TPUNA Score 

 2 (correct cm2) 1 (informal units) 0 (incorrect cm) 

Area calculation correct 27 5 19 

Area calculation incorrect 6 4 27 
 

4.2.4 Proportionality. 

The frequencies of success on the variations of the proportionality concept are reported in 

Table 4.8. Only one task each was used to assess the other three categories. 

Table 4.8  

Proportionality: Frequency of Success 

Concept Task type Context Rank Response 
Frequency

Tasks used to rank success at 
the concept 

Proportionality Conceptual 
 

Length 0 
1 
2 
3 

1.1% 
18.2% 
33.0% 
47.7% 

None of the below correct 
Q. 40b Paper clips  
Q. 44 Steps (80.7%) 
Q. 45 Choosing Rulers 

Proportionality Conceptual Area 0 
1 

0% 
100% 

 
Q. 38b Array units 

Proportionality Tools and 
Procedures 

Length 0 
1 

20.5% 
79.5% 

 
Q. 31b Streamer (diff to 1m) 

Proportionality Tools and 
Procedures 

Area 0 
1 

10.2% 
89.8% 

 
Q. 38a Draw your own array  

 

4.2.4.1 CPRL: conceptual tasks, proportionality concept, length context. 

An entry-level task was offered for CPRL category: the Steps task (Q. 44). If students were 

successful at the Steps task they were offered the more difficult Choosing Rulers task (Q. 45). 

Students successful on both these tasks were assigned a score of 3. If successful on the entry-

level Steps task but not the Choosing Rulers task they were assigned a score of 2. If 

unsuccessful on the entry-level task, they were asked Part B of the Paperclips task (Q. 40b). If 

successful on Part B of the paperclips task they were assigned a score of 1. If unsuccessful on 

both the entry-level task and Part B the Paperclips task, the assigned score was 0.  
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In the Steps task, students had to identify who would take a longer pace across a room (see 

Figure 4.12). By comparing the number of paces taken by four children presented in a table 

80.7% of students successfully chose Tim because he took less steps (see Table 4.8). 

Name Number of steps 

Jack 10 

Emily 8 

Max 9 

Tim 7 

Figure 4.12. Steps task (Q. 44). 

In the Choosing Rulers task, the students had to choose a ruler to measure a pie but some of 

the rulers had uneven markings (see Figure 4.13). Just under half of the students (see Table 

4.8) chose the equal interval ruler and used it consistently, or chose a non-equal-interval ruler 

but explained that they were imagining moving the spacings to make them equal. This second 

explanation was not common, but because the length of the pie being measured was close to 

60 units, some students used a ruler that had sixty in the correct place between 0 and 100, 

explaining that the sixty was in the correct place even though the other numbers weren't.  

 

                                   

Figure 4.13. Choosing Rulers (Q. 45): pie image with one of the rulers. 

In Part B of the Paperclips task (Q. 40b), students were shown two sizes of paperclips and 

asked, would you need more, or less, or the same number of (large) paperclips to measure the 

DVD than with small paperclips. The answer did not have to be quantified and one student 

was unsuccessful (see Table 4.8).  
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4.2.4.2 CPRA: conceptual tasks, proportionality concept, area context. 

The task used to assess the area context of the concept of proportionality was Part B of the 

Draw Your Own Array task (Q. 38b). The students were asked to consider another rectangle 

the same size as the one they had restructured in Part A of the Draw Your Own Array task (Q. 

38a, see section 4.2.4..4) and decide if they would need more or less or the same number of 

the new units than those used in Part A (see Figure 4.14). Only students who had been 

incorrect on the area comparison of the shaded shapes (Q. 36h), assessing the attribute 

concept, were offered Part B of the Draw Your Own Array task. It was assumed that if they 

could identify that non-congruent halves were the same, that they would be able to identify 

that fewer units of a larger size would be needed to measure an area. All students offered Part 

B of the Draw Your Own Array task answered correctly (see Table 4.8). This task was 

analogous to the easier task in the length context, Part B of the Paperclips task (Q. 40b) and 

the direction of change but not a quantified response was required. I had included the Four 

Triangles task (Q. 47) in the data collection interview as the harder CPRA task, but listening 

to the students' explanations of their answers to this task, I realised that it was an additivity 

task, not a proportionality task and so have not reported the results here. As the frequency of 

success on the TPPRA category was 100% and no other tasks were found to be suitable (or 

developed) for this category, it is not possible to calculate correlations using the category 

CPRA. 

  

Figure 4.14. Draw Your own Array task Q. 38b. 

4.2.4.3 TPPRL: tools and procedures tasks, proportionality concept, length context. 

Part B of the Streamer task (Q. 31b) was used to assess students' understanding of converting 

between centimetres and metres. The accuracy of their answer was based on the difference to 
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one metre from their measure (whether this was within the range for success at TPADL or 

not), and 79.5% were successful (see Table 4.8). If a student had offered a length with a 

fraction part for Part A of the Streamer task (e.g. 921/2 cm) the second part of the part of the 

question was rephrased so that he or she did not have to calculate the difference between a 

fractional answer and 100 cm (e.g., what is the difference between 92 cm and 1 m). 

4.2.4.4 TPPRA: tools and procedures tasks, proportionality concepts, area context. 

Students had to restructure a rectangle into an array in Part A of the Draw Your Own Array 

task (Q. 38a) (see Figure 4.14 left) to calculate the area. The unit (a 2 cm by 2 cm square) was 

printed on the paper and could not be moved onto the rectangle. Students had access to a ruler 

but did not have to use it. In order to be coded as correct, students had to meet three criteria: 

a) an answer of 30 squares or 120 cm2 had to stated, b) the rectangle had to be subdivided into 

30 units, or have the units marked on a length and width, and c) the units had to have 

dimensions between 1.5 and 2.5 cm. If only one unit was too small or too big, the student was 

still coded as correct. However, if a row or column was outside the 1.5 cm to 2.5 cm 

dimensions, the student was coded as incorrect even if there were 30 units. These criteria were 

double coded by a mathematics research assistant using the students' drawings from the 

interview and 89.8% of the students created an acceptable array or indicated the array with 

unit marks on a length and width (see Table 4.8).  

Every student drew an array or indicated an array with marks on a length and a width but nine 

students did not draw an array with regularly sized units. Of these nine students, seven had a 

TPUNA score of 0 and had volunteered cm instead of cm2 as units for an area calculation, one 

had a TPUNA score of 1 and had offered informal units only, while one student had a 

TPUNA score of 2 and used formal units correctly. 

Some students had used the counting lines not spaces misconception in the Freddo task (Q. 

41) or the Footy task (Q. 42) indicating some confusion over the first mark on the scale 

indicating the beginning of one unit but not the end of another. All students used one line to 

indicate the edge of adjacent units in their restructuring of the array in Part A of the Draw 

Your Own Array task. However, of the nine students who were unsuccessful drawing the 

array, most demonstrated misconceptions about the zero-point. Two demonstrated the 

counting lines not spaces misconception and a further two used dynamic imagery to realign 

the edge of the Freddo to the mark of 1 on the ruler on the Freddo task. All four of these 

students demonstrated a misconception about the zero-point and gave the answer of six (one 
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too many). Another student could not use the broken ruler to measure and gave an answer of 

zero. Three of the nine students used the counting lines not spaces misconception on the 

Footy Card task (having been successful on the Freddo task). One of the nine students who 

could not draw the array accurately enough was successful on both the Freddo and Footy Card 

tasks.  

4.3 Visualisation 

Dynamic imagery and geometric reasoning were two strategies used to solve the visualisation 

tasks. The Flag task (Q. 56) used a real flag to model blowing in different directions, and the 

task card had four options for a flag blowing in the opposite direction to the target flag (see 

Figure 4.15). Alex gestured with her hand, flipping from the back to the palm, to indicate that 

she had used dynamic imagery, while adding "I imagined it blowing the other way". Students' 

geometric reasoning attended to the position of the shapes, for example that the square should 

be closest to the pole. Using either strategy, 90.9% of the students successfully chose the first 

flag. 

 
 

Figure 4.15. Flags task. 

The Design task (Q. 59) required students to locate which of four smaller sections did not 

appear in the whole (see Figure 4.16). Students' geometric reasoning used a single identifying 

feature of the four fragments. For example, Nicky explained why he had chosen the correct 

piece (bottom right) saying, "Because, um, for this, there's no square that's by itself".  The use 

of dynamic imagery involved mentally picking up each fragment as a whole and rotating it 

over the design to find where it superimposed over an identical part. It is possible that Alex 

was using dynamic imagery: "Because I looked at all of those [points to other 3] and they 

were all in, in it. And this one wasn't [points to bottom right]". She answered enthusiastically, 

"Yeah, yeah" when a further confirmatory question was asked, "were you sort of picking this 
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shape up in your head and doing this [rotates fingers]". Using either strategy, 72.7% of the 

students successful chose the bottom right fragment. 

 

Figure 4.16. Design task. 

The Cubes task (Q. 58) was modeled using a diagram and concrete materials (see Figure 

4.17). The students were asked to make the target arrangement out of 2 cm wooden cubes.  A 

premade model of the task card using more cubes was then shown to the student, who could 

then look at either the task card or the model to decide which one of the four options was the 

same arrangement of cubes. Nicky appeared to use dynamic imagery, explaining "Because it's 

just been turned upside down". He agreed, "yeah" when asked a confirmatory question, "did 

you move that around in your head."  It was not possible to determine whether Alex used 

dynamic imagery or geometric reasoning in her explanation: "Ah, 'cause, 'cause I was looking 

around seeing, because I was like, because this one has two going that way and that way, and 

there's one like this one [compares her choice to top model] and that one's only got one on top 

like this one, and that's only got one there, and it's exactly the same". Alex agreed to a 

confirmatory question: "Ok so did you, were you just looking for, you know, so it's got one on 

top and then I need to look for the other bits?". But she also agreed to a confirmatory question 

proposing dynamic imagery: "Or were you imagining this in your head and imaging it picked 

up and moved around?". It is possible that Alex was using a mixture of the two strategies, but 

it is also possible that she was agreeing with the interviewer, and her final response, "Kind of 
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both, yeah both" could be read either way. Using either strategy, 71.6% of the students 

successfully chose the first option.  

 

Figure 4.17. Cubes task. 

The Puzzle task (Q. 57) required the students to choose shapes to fit together to make a square 

(see Figure 4.18) and then physically arrange them (see Appendix A, Q. 57) and 40.9% of 

students were successful.  

 

Figure 4.18. Puzzle task (Q. 57) pieces. 

The Wattanawa Block task (Q. 60) could be solved using sophisticated dynamic imagery, or 

simple geometry if the student attended to that feature of the task (see Figure 4.19 left. Note: 

there is one dashed line that should be solid on the diagram with the corners labelled, but this 

was the diagram shown to the students). A model of the diagram made of wooden blocks was 

used in the question (see Fig. 4.19 right). Students were shown the first block model. This was 

then placed on the left and the other waved in the air indicating a rotation before it was placed 
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on the right in the configuration that matched the rotation in the diagram. I then pointed to 

"corner 2" and asked what colour it would be. This adaptation was easier than the diagram as 

only eight corners were coloured. 

 
 

Figure 4.19. Wattanawa Block task. 

Jack, who was successful on all the visualisation tasks appeared to use dynamic imagery, 

explaining "Well I pretended to flip the shape around til I got the orange and the yellow 

facing me and the blue down under there, and I looked to see what was in that corner." Alex 

appeared to use dynamic imagery but was unable to offer the correct answer, perhaps because 

she could not coordinate the two stage rotation, explaining "'Cause I, because in my head I 

flipped it, so that like it was the exact same as that. And then I thought that was there, and 

then I saw the green and the brown and the white one there."  

Geometric reasoning concentrated on the edge between the blue and the unknown corner, and 

Nicky explained "'cause the blue is in line with the, is in line with the brown. Those two are in 

line [touches blue and brown corners on model 1] and those two are in line [touches blue and 

corner 2 model 2]".  

However, it was difficult to determine whether some students' explanations indicated dynamic 

imagery or geometric reasoning. For example, Noah may have self corrected part way though 

his attempt, explaining "Well I turned this one around in my head [indicates model 1] and I 

noticed that one was there [points to brown corner on model 1] and I just realised if that's 

there, if that block was that block, so this would be there [brown corner to corner 2]". Lily's 

explanation was satisfactory and, while it suggested geometric reasoning, it may have been a 

justification of dynamic imagery: "On this side [model 2] on the same corner as this on the 

bottom there's blue." After a non-specific probing question, "Mmm", Lily elaborated, "So I 

looked, I checked for blue and it had this one". Using either strategy, 39.8% of the students 

were successful on this task. 
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The frequency of success on each of the five visualisation tasks is reported in Table 4.9. The 

tasks fell into three broad groupings:  

• Group A - the Flags task (90.9% correct) 

• Group B - the Design and the Cubes tasks (71.6-72.7% correct), and 

• Group C – the Puzzle and the Wattanawa Block tasks (39.8-40.9% correct. 

Table 4.9 

Visualisation: Frequency of Success 

 Flags (Q. 56)   Design (Q. 59)   Cubes (Q. 58)   Puzzle (Q. 57) Wattanawa (Q. 60)

Success 90.9% 72.7% 71.6% 40.9% 39.8% 

 

Two students did not get any of the visualisation tasks correct and 17% were successful on all 

five tasks. Students were given a score based on number of tasks correct (0 to 5). To be 

classified as following the trajectory Group A, Group B and Group C tasks 

• students with a score of 1 was successful on the Group A task (Flags), 

• students with a score of 2 were successful on the Group A task and one of the Group B 

tasks (Design or Cubes), 

• students with a score of 3 were successful on the Group A task and both of the Group 

B tasks, and 

• students with a score of 4 were successful on the Group A task, both Group B tasks, 

and one of the Group C tasks (Puzzle or Wattanawa Block). 

Just under three quarters of the students with a score of 1 to 4 (52 out of 71) were successful 

in the order Group A, Group B, Group C (students with a score of 0 or 5 by definition 

followed this trajectory). However, due to difficulties distinguishing dynamic imagery from 

geometric reasoning, the visualisation score is not a dynamic imagery score.  

The Puzzle task had a similar frequency of success to the Wattanawa Block task at around 

40%. However, as the two way table shows (see Table 4.10) while 70.5% of the students were 

either successful on both tasks or unsuccessful on both tasks, the remaining 29.5% were split 

evenly in the order of difficulty of the task. So although the two tasks were superficially 

equally hard, performance on one did not necessarily predict performance on another.  
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Table 4.10  

Two Way Table of Association Between The Puzzle task and the Wattanawa Blocks task 

 Wattanawa Blocks task correct Wattanawa Blocks task incorrect

Puzzle task correct 23 13 

Puzzle task incorrect 13 39 

4.4 Multiplication Results 

Three tasks were used to generate a Multiplication score from 0 to 4 reflecting the students' 

success on four possible questions:  

• Multiplication Tables (Q. 6, of which all eight had to be correct),  

• 23x4 (Q. 10), 

• Missing Number (Q. 11a, in which students were asked to think of a number that 

when multiplied by 54 would end in a 2, and 

• Missing Number (Q. 11b), in which children were asked could any other number be 

multiplied by 54 and end in a 2. 

If a correct answer was not offered in Part A of the Missing Number task (Q. 11a) then Part B 

(Q. 11b) was not offered (and assumed incorrect). These two parts were coded separately and 

were treated as two items in respect of the Multiplication score because this enabled the top 

60% of the students to be split again into a top 20% of the group (see Table 4.11). Some 

children were assigned a Multiplication score of 0 because the Tennis Balls task (Q. 1), a task 

with 100% frequency of success, was not included in the score. The range of scores in all 

three schools was 0 to 4, with 4 indicating success on the four selected tasks. The division 

tasks were not reported here as there was not a division task difficult enough to split the top 

half of the students into smaller segments.  

Table 4.11 

Percentage of Students With Each Multiplication Score  

 Multiplication Score 

 0 1 2 3 4 

Percentage of students at each score 8% 13.6% 18.2% 39.8% 20.5% 
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4.5 Fraction Results 

This section presents the frequency of success on some fraction tasks; an elaboration of some 

of the students' explanations to six fraction tasks; and correlations between fraction and 

measurement categories. The results of the fraction tasks are reported under the categories 

equivalence, measure, quotient, operator and ratio. The main focus of the present study was 

the measure sub-construct and equivalence understandings. The tasks classified as the 

measure sub-construct context reported in this chapter are: 

• number lines (the Number Lines task (Q. 16),  

• the relative size of fractions (the Fraction Pairs task (Q. 22), and  

• area diagrams (the Fraction Pie task (Q. 14), the Fraction Sort task (Q19), and Fold 

Me a Quarter task (Q. 13)).    

Kieren's four-three-four model of fraction understanding (1988, 1992, 1993, 1995) proposed 

that the concepts of partitioning, equivalence, and unit-forming could be drawn upon in 

measure sub-construct and quotient sub-construct contexts (see Figure 2.5). My interpretation 

of the tasks selected to represent the measure and quotient sub-construct includes a 

description of the concepts of partitioning, equivalence and unit-forming evident in the 

students' explanations.  

4.5.1 Equivalence.  

In the criteria for task selection, three tasks had questions that were used to assess equivalence 

knowledge in the interview criteria. These three tasks were the Fraction Sort task (Q. 19), the 

Golden Beans task (Q. 21), and the Fraction Pairs task (Q. 22). Two equivalence questions 

were included in the Golden Beans task (Q. 21). Equivalence was also assessed by the 

fraction pair comparison 2/4 and 4/8, (Q. 22b). Analysis of other fraction tasks determined that 

two further questions also assessed equivalence understanding: the fraction pair 3/7 and 5/8 (Q. 

22f), and the fraction addition algorithm 1/3 + 1/2 (Q. 26c). 

4.5.1.1 Fraction Sort task. 

Eight cards from the 24 in the Fraction Sort Task (see Figure 4.20) were designed to include: 

• area and discrete models for 2/12 = 1/6  (Q. 19c and d), 

• different orientations of discrete models for 3/12 = 1/4 (Q. 19i and j) 

• different discrete models for 1/4; 2/8 (Q. 19k) and 3/12 (Q. 19i and j) 

• an area and a length model for 2/3 (Q. 19s and t), and  

• an area model that required complex geometric re-structuring 6/9 = 2/3 (Q. 19r). 
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(Q. 19c) 38.6%  (Q. 19d ) 40.9% (Q. 19i) 45.5% (Q. 19j) 47.7%  

 

  

(Q. 19k) 47.7% (Q. 19s) 33% (Q. 19t) 26.1% (Q. 19r) 0% 

Figure 4.20. Task cards used for assessing equivalence in the Fraction Sort task (Q. 19) and 

frequencies of success. 

Ten students' explanations for their sorting of the above eight Fraction Sort cards were double 

coded by a mathematics education lecturer, using video footage of the students completing the 

task. The double coder agreed with all correct/incorrect coding of the eight cards.  

The Fraction Sort task (Q. 19) consisted of 24 individual cards, each with one fraction 

diagram, which the students had to sort into four piles: one quarter, one sixth, two thirds, and 

other. There were inscriptions of area, length and discrete contexts. The students held the 

cards and could orient them any way they chose. They could also place one to the back of the 

pile if they wanted to come back to it later. The cards were shuffled, but in general, one of the 

two cards depicting one quarter as one of four equal areas was placed on top as the first card 

for the student to consider. The cards were not presented in the same order for each student 

because the order could be changed by the student as they worked through the pile, and 

indeed some students did do this. The sorting piles were indicated by cards with a symbolic 

inscription 1/4, 1/6 , 2/3 and other, but the interviewer also read this to the student as one 

quarter, one sixth, two thirds, and "if it's not any of those, it's other".  

The double coding of the Fraction Sort task (Q. 19) by a mathematics education lecturer also 

included coding students' explanations. The categories used were fewer than the exhaustive 

coding I had used to describe every variation of response in my initial coding. After 

discussion, the following seven categories were used successfully to clarify whether students 
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had an understanding of the concept of equivalence and whether renaming a fraction was even 

considered. On the eight equivalence cards (see Figure 4.20) the students either: 

• successfully identified the equivalence; 

• stated the answer, for example, it's other (successfully or unsuccessfully); 

• named the two quantities in the diagram, for example, three twelfths, but did not 

recognise that as one quarter; 

• named one of the quantities, usually the denominator and rejected all the fraction 

possibilities because of this, for example, sorting the diagram of 2/8 into the other pile 

because 1/4, 1/6 , and 2/3 didn't have an eight; 

• miscounted one of the quantities and therefore was unable to simplify to an equivalent 

fraction from the incorrect starting fraction. This miscounting affected up to 6.8% of 

students and was more common on the diagrams with 12 parts than on diagrams with 

six or eight parts; 

• demonstrated semiotic confusion about the conventions of the diagram and therefore 

did not state the correct initial fraction value, and was unable to simplify it to one of 

the three fraction possibilities. For example, some students, counted the lines not 

spaces in the length diagram and called four sixths, five sevenths, which made the 

recognition of two thirds as equivalent to four sixths impossible in that particular 

question; 

• gave an explanation that was not one of the above. 

In the present study, the first two categories were coded as correct if the correct pile was 

chosen. Explanations three and four were categorised as not showing awareness of the 

concept of equivalence. 

Correct explanations of the placement of the equivalent fractions in the 1/4, 1/6 and 2/3 piles of 

the Fraction Sort task included numerical explanations and spatial re-structuring explanations. 

The equivalences to a quarter had the highest frequencies of success (see Figure 4.20):  

• 47.7% of the students correctly explained why the discrete 2/8 (Q. 19k) was a quarter,  

• 47.7% of the students correctly explained why the discrete 3/12 (Q. 19j) was a quarter, 

and  

• 45.5% of the students correctly explained why the discrete 3/12 (Q. 19i) was a quarter. 

For example, Rohan explained that "This one, with eight dots and it's got circled two, would 

be one quarter" (Q. 19k); that "This is one quarter 'cause it is circled three and there's twelve 

dots" (Q. 19j); and that "That one's one quarter as well, because it's got the dots, three out of 

twelve circled" (Q. 19i). 
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The equivalences to a sixth had a lower frequency of success (see Figure 4.20): 

• 40.9% of the students correctly explained why the discrete 2/12 (Q. 19d) was a sixth, 

and 

• 38.6% of the students correctly explained why the circle 2/12 (Q. 19c) was a sixth. 

For example, Daniel explained that "two four six eight ten twelve, two out of twelve, would 

be one sixth" (Q. 19d) and Rohan explained that "And this one will go under one sixth 'cause 

it's cut up into twelve and it's got two shaded" (Q. 19c). 

The equivalences to two thirds had a lower frequency of success than the unit fractions (see 

Figure 4.20): 

• 33% of the students correctly explained why the circle 4/6 (Q. 19s) was two thirds, and 

• 26.1% of the students correctly explained why the length 4/6 (Q. 19t) was two thirds. 

For example, Rohan explained that "this one will go under two thirds because it's four sixths 

and then it's equivalence to two thirds" (Q. 19s) and that "And this is two thirds 'cause it's four 

sixths and if you halve it it will be two thirds" (Q. 19t). 

There was evidence in Jade's explanation, of spatial re-structuring of the 12 dots as four 

columns (see Figure 4.21) leading to the circled three dots being described as "One quarter, 

because there's one part circled and three parts that aren't circled". 

 

Figure 4.21. Three of twelve dots or one of four columns: numerical and spatial equivalence.  

The Fraction Sort task required the students to volunteer equivalence because the word 

equivalence was not used in the task explanation, nor specifically hinted at; they had to reject 

an equivalent fraction to be incorrect. An example of a student's explanation illustrating this 

was Jess who placed the circle 2/12, (Q. 19c) in other and explained, "Ah, I put that there 

[other] because um there was twelve there and there was two shaded; and I didn't think that 

was one sixth or two thirds or one quarter." Although not asked to consider equivalent 

fractions, Jess rejected one sixth as a possible other name for two twelfths. 
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Some students had the information needed to be able to see an equivalent relationship but did 

not appear to be looking for it. These students named both parts (numerator and denominator) 

but placed the card in other, like Jess above. It was as though students using this strategy did 

not think about fractions as having many names; equivalence was not "on their radar". 

Children from all three schools demonstrated this behaviour. The percentage of students who 

named both parts on each equivalence question in the Fraction Sort task is reported in Table 

4.12. The frequency of correct explanations on the Fraction Sort cards equivalent to 1/4 and 1/6 

cards was about 40-50%, and a further 35-40% stating the two quantities correctly but failed 

to connect that to the appropriate equivalent sorting pile. 

Table 4.12 

Counting behaviour in explanations of equivalence Fraction Sort cards 

 Fraction Sort cards  

 Q.19i Q.19j Q.19k Q.19c Q.19d Q.19s Q.19t Q.19r

 3/12 3/12 2/8 2/12 2/12 4/6 4/6 4/6
 

Success (%) 45.5 47.7 47.7 38.6 40.9 33 26.1 0 

Both N and D identified 
(equivalence not recognised) 

39.8 36.4 36.4 37.5 40.9 52.3 50 2.3 

Only one of N or D 
verbalised  

2.3 4.5 5.7 12.5 9.1 9.1 4.5 - 

Miscount of N or D 3.4 4.5 1.1 6.8 2.3 1.1 0 - 

Semiotic confusion 0 0 0 0 0 0 9.1 - 

other type of error 10.2 6.8 8 4.5 6.8 3.4 8 97.7 

4.5.1.2 Golden Beans task. 

The Golden Beans task used real lima beans, white on one side and spray painted gold on the 

other, as a discrete context for sixths. The students rolled the beans and named what they had 

rolled, and then were asked for an equivalent fraction in Part B of the task. In the second part 

of the task (Q. 21c and d) after the students' roll of their six beans, I added three more beans 

so that there were six of one colour (white or gold) and three of the other colour showing. The 

students were then asked to name the fraction of the gold or white beans (whichever was six 

out of nine). They were then asked for another name for that, or equivalent fraction if a further 

prompt was needed. 
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Exactly half the students were successful on Part B, renaming the fraction they had rolled 

with the six beans. In Part D, 47.7% were successful at offering an equivalent fraction for the 

six out of nine beans "rolled".  

There were two students who misnamed their original roll of three gold and three white beans 

as three thirds and six thirds respectively, but then were able to rename the fraction as a half. 

These students were not coded as successful on the equivalence criteria because they could 

not offer two names for the same fraction, despite appearing to simplify in Part B. 

Simplifying or doubling were the only strategies used to generate an equivalent fraction by 

the successful students.  

Two out of the eleven students who rolled 5/6 incorrectly offered 2/3 as an equivalent fraction. 

This may have been generated using the faulty mathematical reasoning that 2/3 is equivalent to 
5/6 because the numerators were both one number away from the denominators.  

The incorrect responses to renaming a fraction in the Golden Beans task (Q. 21) included: 

• only being able to restate the quantities, for example three out of six for three sixths,  

• gap thinking like behaviour as described above, for example 2/3 for 5/6, 

• using the same numbers but restating an equivalence as a possible decimal, for 

example three and six hundredths for three sixths, 

• flipping the numerals, for example six thirds for three sixths, 

• Decimal-like renaming, for example three point nine for three ninths, and  

• Other incorrect responses.  

4.5.1.3 Fraction Pairs task. 

The fraction pair comparison 2/4 and 4/8, (Q. 22b) drew on equivalence understanding. Most of 

the students who offered the correct answer that the fractions were the same explained using 

the words double or half, but few specified whether this was (correct) additive or 

multiplicative thinking. Jack described the process of looking at the difference between the 

numerator and the denominator, explaining "they're both half. Of the bottom number". Julia's 

use of the word half in her explanation could have been additive (correctly) or multiplicative: 

"'cause um four is half of eight and two is half of four, so they're both half of what the whole 

is." The word "half" was used as both an object and an operator in Penny's explanation, "Well 

two quarters is a half and then four eighths is half of eight so that would also be a half" and 

may have indicated a common denominators approach. Five children explicitly used correct 
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additive thinking in their explanations of why 2/4 and 4/8 were the same. This was 

demonstrated in their use of the word "plus" in their explanations of the doubling of the 

numerator or halving of the denominator (see Table 4.13). 

Table 4.13 

Explanations using the word "plus" in correct responses to the fraction pair 2/4 and 4/8 

Strategy Explanation from transcript 

Correct additive thinking Emma: Well 'cause, you just, they're all, they're halved, so they 
would be the same. So there's four plus four is eight and two 
plus two is four. 
 
Patrick: they're both the same, because two plus two will equal 
four, and four – they're both half numbers 
Jordan: 'cause two plus two is four and four plus four is eight, 
which means they're like half. 
 
Hannah: 'cause if you do two plus two is four and four plus 
four is eight. So they are pretty much times two. 
 
Maxine: Because two plus two is four and four plus four is 
eight 

 

Some explanations using the words "simplify", "twice" or "times" showed evidence of 

multiplicative thinking. Three students used the word "simplify" in their correct explanations. 

For example, Nicky said "'cause two quarters and four eighths; if you simplify four eighths 

you make it go down to two quarters, you simplify that again it would be one half". Jai 

explained that the fractions were the same "because they're both equal because this is times by 

two to get that, and this is times by two, so it's both equal." Aiden's explanation was "because 

two goes into four twice and four goes into eight twice." Along with Hannah (see Table 4.13) 

these were the only three students to use the words "times" or "twice". However, Hannah's 

explanation combined correct additive thinking with the use of the word "plus" and possible 

multiplicative thinking with the use of the words "times two". 

The most frequent unsuccessful explanation was larger or higher numbers and this strategy 

accounted for just over a third of the incorrect responses.  

No student was successful in comparing the fraction pair 3/7 and 5/8 (Q. 22f) without either 

using common denominators or benchmarking to a half. Lily used benchmarking to explain 
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that 5/8 was larger: "Because half of eight is four and means that's gone more, that's more than 

a half. And that one's three point five. And to go over a half, that has to be four." Two 

students used common denominators to calculate that 35/56 was larger than 24/56. For example, 

Tom explained that 5/8 was larger "Because I made these denominators the same by times-ing 

this by eight and this by seven, and that makes these fifty-six. And then I times-ed this by 

eight as well and this is twenty-four over fifty-six. And I times-ed this by seven and this is 

thirty-five over fifty-six". 

In the initial design of the interview, there were 11 questions assessing equivalence 

understanding. However, after the interviews were completed, factor analysis on all the 

fraction tasks, revealed that a further two questions appeared to be associated with other tasks 

assessing fraction equivalence understanding. Although the interview data did not meet the 

assumptions for regressive analyses, a factor analysis was applied to the coded data as a rough 

tool to suggest where further interpretive analysis might prove useful. Tasks that had a 

frequency of success below 10% and above 90% were excluded because they would not 

provide useful correlations. The questions used in the factor analysis included: 

• one multiplication question (Q. 11b),  

• one division task (Q. 7),  

• nearly all individual fraction questions, 

• the measurement categories (e.g. CUNA), and  

• all visualisation tasks. 

As a factor analysis required more than a yes/no ranking, the explanations to the tasks were 

generally ranked into five categories: 

• correct answer with a correct explanation,  

• just a small slip up,  

• right strategy but not executed properly,  

• some relevant mathematical thinking, and 

• incorrect mathematical approach. 

These rankings did not provide the interval measure needed for factor analysis. After 

generating a 24 factor solution, I looked at the tasks that had clustered together and tried to 

suggest a common understanding, or context that might explain their association.  

The factor analysis suggested two extra tasks that might be considered equivalence tasks. 

Detailed examination of the explanations and strategies of the students confirmed that the 
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fraction pair 3/7 and 5/8 (Q. 22f) and the algorithm 1/3 + 1/2 (Q. 26c) were only successfully 

completed using equivalence knowledge. 

By reviewing the notes taken at the time on the record sheets, and analysing the strategies 

used by successful students using video footage and transcripts of some student's 

explanations, it was determined that no student was successful comparing the relative sizes of 

the fractions 3/7 and 5/8 (Q. 22f) who did not use equivalence understanding to do so. 

Benchmarking to a half required equivalence comparisons, as did the use of common 

denominators. This fraction pair was therefore added to the list of tasks used to assess 

equivalence understanding. No student was successful on the fraction pair size comparison 3/4 

and 7/9 who had not also been successful at the pair 3/7 and 5/8 and the inclusion of the former 

question may have further stratified the performance of the more successful students. 

However, I decided that this level of graduation of performance was not necessary and so did 

not include the fraction pair 3/4 and 7/9 in the questions that made up the Equivalence score. 

4.5.1.4 Fraction Algorithms: Addition. 

The addition algorithm 1/3 + 1/2 (Q. 26c) proved difficult for the students with 14.8% 

successful. The students' inscriptions which had been filed with their interview record sheets 

were double coded by a mathematics education lecturer. Students were not asked to explain 

their answers, but seven of the successful students used some form of common denominators, 

making equivalent fractions and left evidence of this in their written working out. One further 

student had notes on her record sheet indicating a verbal commentary of a common 

denominator approach. Five students left no evidence of their strategy as an inscription. 

However, both coders agreed these students would have used some form of equivalence 

knowledge in mentally working out their answer, as non-equivalence methods (for example, 

using wooden fraction models, or drawings) could be excluded. This interpretive analysis was 

prompted by the appearance of the addition algorithm question clustering with other 

equivalence tasks in a factor analysis of the data (see section 3..5.1.3 above for more detail). 

4.5.1.5 Frequency of success on equivalence tasks. 

The 13 questions from four fraction tasks categorised as equivalence questions spanned a 

range of difficulty (see Table 4.14). The easiest equivalence task in the present study was 

recognising halves in symbolic inscriptions (Q. 22b) and 72.7% of the students were 

successful. Part B of the Golden Beans task required an equivalent fraction to something out 
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of six depending on the students' roll. However, some students rolled three sixths which may 

have been easier than other rolls. Nine questions, many of Fraction Sort cards, had 

frequencies of success ranging from 47.7% to 26.1% The next most difficult tasks were the 

questions that required equivalence as one step in multi-step reasoning, such as benchmarking 

or common denominators (Q. 22f and Q. 26c). The most difficult task (Q. 19r) required both 

geometric re-structuring and numerical equivalence and proved too difficult for all the 

students  

Table 4.14  

Frequency of Success on Thirteen Equivalence Tasks 

Equivalence task Frequency of success Fraction 

22b fraction pair 2/4  4/8 72.7% 2/4  = 4/8 = (1/2) 

21b golden beans to x/6 50% Sixths equivalent 

19k discrete 2/8 as 1/4 47.7% 2/8 = 1/4 

19j discrete 3/12 as 1/4 47.7% 3/12 = 1/4 

21d golden beans 3/9 = 1/3 47.7% 3/9 = 1/3 

19i discrete 3/12 as 1/4 45.5% 3/12 = 1/4 

19d discrete 2/12 as 1/6  40.9% 2/12 = 1/6 

19c circle 2/12 equiv to 1/6   38.6% 2/12 = 1/6 

19s circle 4/6 as 2/3 33% 4/6 = 2/3 

19t length 2/3 (no zero point) 26.1% 4/6 = 2/3 

26c algorithm 1/3 + 1/2 15.9% Common denominators: sixths 

22f fraction pair 3/7  5/8 13.6% Benchmark to 1/2 

19r triangle 6/9 as 2/3 0% 6/9 = 2/3 
 

The students' performance on the 13 equivalence questions was spread between a score of 0 

(poorest performance) to 12 (highest actual performance).  A score of 0, 1 or 2, was achieved 

by 37.4% of the students and 13.7% scored 10, 11 or 12 (see Table 4.15). As no students 

correctly re-partitioned the Fraction Sort triangle into 6/9 and renamed this as 2/3, no students 

achieved an Equivalence score of 13. There were students with scores of 0 and scores of 12 in 

all three schools. 
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Table 4.15 

Spread of Equivalence Questions Correct 

 Equivalence Score 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

score frequency 
(%) 

17 15.9 4.5 9.1 2.3 3.4 10.2 11.3 5.7 6.8 2.3 5.7 5.7 0 

4.5.1.6 Equivalence pathways. 

Frequencies of success (see Table 4.14) suggest a trajectory, but they do not prove that the 

same students were correct on the difficult tasks, or that the same students were incorrect on 

the easier tasks. To describe a general pathway of development requires looking at individual 

students' performances. This showed that there was a broad pathway of increasing levels of 

achievement: 

• Level 1, equivalences to 1/2: the fraction pair 2/4 and 4/8 (Q. 22b), and the initial roll of 

the Golden Beans task (Q. 21b); 

• Level 2, the equivalence 1/3 = 3/9 in the Golden Beans task (Q. 21d); and equivalences 

to 1/4, 1/6 and 2/3  in the Fraction Sort task (Q. 19c, Q. 19d, Q. 19i, Q. 19j, Q. 19k, Q. 

19s, Q. 19t, (not Q. 19r)); 

• Level 3, both of the benchmarking fraction pair 3/7 and 5/8 (Q. 22f) and the addition 

algorithm 1/3 + 1/2 (Q. 26c), and 

• Level 4, the 2/3
 equivalence to 6/9 in the triangle fraction sort card (Q. 19r). 

Level 2 had the most questions and the students' performance can be further classified by the 

number correct (one to four, and five to eight), but not by success on particular tasks. There 

was also a group of students whose performance spanned the overlap between Level 2 and 

Level 3: one or both of the questions for Level 3 correct but not all questions in Level 1 and 2 

questions. There were also students who had an Equivalence score of 0 (see Table 4.15). 

Seven Equivalence Bands of performance are described below.  
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The students in Band A had an Equivalence score of 0 and were not successful on any of the 
13 equivalence questions (see Figure 4.22). None of these students by definition and in actual 
fact were successful at any questions in higher bands. 
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x denotes incorrect response, c denotes correct response 

Figure 4.22. Students' performance on Equivalence tasks: Band A 
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Students in Band B had an Equivalence score of 1. Except for Jess, they were successful 

either at renaming the fraction rolled in the Golden Beans task or at explaining that 2/4 and 4/8 

were the same (see Figure 4.23). The four students who successfully offered an equivalent 

fraction in Part B of the Golden Beans task had rolled a half (three gold and three white 

beans). All the students in Band B (except for Jess) were not successful on any of the tasks in 

Level 3 and above, which included Part D of the Golden Beans and the Fraction Sort cards; 

the fraction algorithm and the other fraction pair 3/7 and 5/8. Jess had rolled four out of six with 

the Golden Beans and so was not given the opportunity to name an equivalent fraction to a 

half in this question which would have classified her as Band C. 
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Figure 4.23. Students' performance on Equivalence tasks: Band B 
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Students in Band C were all of those with an Equivalence score of 2 to 5 and half of those 

with an Equivalence score of 6 (see Figure 4.24). They were successful on four or less of the 

tasks in Level 2 (Part D of the Golden Beans task and the Fraction Sort cards excluding Q. 

19r) and at either/both of the tasks in Level 1. None of them were successful on either of the 

tasks at Level 3. 

   Equivalence Band C 

   

C
ad

el
 

H
an

na
h 

K
it 

A
nn

ab
el

le
 

Pa
tri

ck
 

K
el

ly
 

M
ia

 

B
ra

d 

R
ub

y 

La
ra

 

C
hl

oe
 

D
av

id
 

M
eg

 

A
id

en
 

K
at

e 

M
at

th
ew

 

Ju
lia

 

R
eb

ec
ca

 

C
la

ire
 

B
el

la
 

D
ec

la
n 

A
de

le
 

 Score 3 3 3 2 2 2 3 4 5 5 2 3 3 3 3 4 5 6 6 6 6 6 

   

Le
ve

l 1
 

Q. 22b x c c c c c c c c c x c c c c c c c c c c c 

Q. 21b x x x x x x x x x x c c c c c c c c c c c c 

     

 Q. 21d x x x c c x x x x c x c c c c x x c c x c x 

Le
ve

l 2
 

Q. 19k x x x x x x x c x c x x x x x x c x c x c c 

Q. 19j c x c x x x x c c c c x x x x x c x c c c x 

Q. 19i c x c x x x c c c c x x x x x x c x x x c x 

Q. 19d x c x x x x c x c x x x x x x x x c x c x c 

Q. 19c x c x x x x x x x x x x x x x c x c c c x c 

Q. 19s x x x x x c x x c x x x x x x c x c x c x c 

Q. 19t c x x x x x x x x x x x x x x x x x x x x x 

     

Le
ve

l 3
 

Q. 26c x x x x x x x x x x x x x x x x x x x x x x 

Q. 22f x x x x x x x x x x x x x x x x x x x x x x 
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x denotes incorrect response, c denotes correct response 

Figure 4.24. Students' performance on Equivalence tasks: Band C 
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Students in Band D had an Equivalence score of 6 to 10, but were not all the students with 

these scores. Students in Band D were successful at five to eight of the questions at Level 2 

and either/both of the questions at Level 1 (see Figure 4.25). These students were 

consolidating their understanding of equivalence tasks presented in length and area diagrams, 

but were not successful on either of the tasks in Level 3. Some of the students who were 

unsuccessful at Part B of the Golden Beans task (Q. 21b) may have rolled 5/6 which made the 

task harder than for those who rolled a half. 
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Figure 4.25. Students' performance on Equivalence tasks:  Band D 
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Students in Band E included all the rest of those with Equivalence scores of 7 to 10 and all of 

them with an Equivalence score of 11. They successfully calculated the fraction algorithm (Q. 

26c) and/or successfully compared the fraction pair 3/7 and 5/8 (Q. 22f), but were not 

successful on every question at Level 1 and Level 2 (see Figure 4.26). Both the questions at 

Level 3 required the use of equivalence knowledge, such as benchmarking or using common 

denominators, to complete another strategy.  
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Figure 4.26. Students' performance on Equivalence tasks: Band E. 
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All the students in Band F had an Equivalence score of 12. They were correct on all of the 

equivalence questions in Levels 1, 2 and 3 (see Figure 4.27). No students could be categorised 

as being in Band G as no students were successful at the Level 4 task of the triangle 

equivalence (Q. 19r) in the Fraction Sort task.  
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x denotes incorrect response, c denotes correct response 

 Figure 4.27. Students' performance on Equivalence tasks: Band F. 

The spread of performance across these descriptive Bands demonstrated (see Table 4.16) that 

the students in the present study could be classified into five roughly equal sized groups. 

These were Band A, Band B, Band C, Band D, and Band E and F combined. Students with an 

Equivalence score of 0 to 5 appeared to follow a similar trajectory: not successful at 

equivalence tasks, can recognise or make equivalences to a half, and begins to recognise 

equivalences to 1/4, 1/6, or 2/3. Students with an Equivalence score of 6 could be found in either 
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Band C or D. The was no specific Fraction Sort question in Level 2 at which every student in 

Band D was successful. These students were consolidating equivalences to 1/4, 1/6, or 2/3.  

A conceptual leap in equivalence understanding was represented by entry into Band E. 

Students in this Band began using equivalence knowledge in other strategies such as 

benchmarking or the use of common denominators. Jordan in Band E with an Equivalence 

score of 7 represented the earliest transition into this stage of the trajectory. Students in Band 

E were not necessarily correct on every task in Level 2. Students in Band F had consolidated 

the equivalence knowledge up to this point. However, they did not demonstrate sophisticated 

spatial restructuring and equivalence on the triangle Fraction Sort card (Q. 19r). 

Table 4.16 

Equivalence Bands: Seven Broad Groupings of Performance on Equivalence Questions 

Band Question type Frequency Equivalence 
score 

A None correct 17% 0 

B Equivalences to 1/2 15.9% 1 

C Length and area diagrams, discrete objects (1-4 correct) 15.9% 2-6 

D Length and area diagrams, discrete objects (5-8 correct) 23.8% 6-10 

E Benchmarking and/or common denominators 12.5% 7-11 

F Consistency in Levels 1-3 5.7% 12 

G Sophisticated spatial restructuring and equivalence 0% 13 
 

4.5.1.7 Correlations between Equivalence score and measurement categories. 

Equivalence scores rather than Equivalence Bands were chosen for the calculation of 

correlations with other categories because in similar calculations for other categories, scores 

were used. There were correlations between students' Equivalence scores and their 

performance in measurement categories (see Table 4.17). There was a substantial association 

between the students' Equivalence score and the conceptual tasks in the additivity concept 

(both length and area contexts). There was a substantial association between the students' 

Equivalence score and tasks assessing the units concept (the conceptual tasks in a length 

context and the tools and procedures tasks in an area context). These substantial associations 

were to the broken ruler tasks, calculating the area of half rectangles, the Keyboard task, and 



148 
 
offering cm2 as the units for area calculations. The only categories that did not have a 

relationship with the students' Equivalence scores were the area and perimeter comparisons of 

the shaded halves in the Similar Shapes task (CATL (Q. 36g) and CATA (Q. 36h)). TPATL 

and CPRA were not calculated. The students' Multiplication score had a substantial 

association with their Equivalence score. 

Table 4.17  

Correlations Between Equivalence Score and Measurement Concepts 

 Correlation 

 Minimal  τ  > .07 Typical  τ > .20 Substantial  τ  > .34 

Attribute TPATA  
τ = .195, p = .034

  

Additivity TPADL 
τ = .172, p = .050

 
TPADA τ = .273, p = .003

CADL τ = .377, p < .000 
CADA τ = .370, p < .000 

Unit   CUNA τ = .315, p = .001 
TPUNL τ = .215, p = .019 

CUNL τ = .486, p < .000 
TPUNA τ = .414, p < .000

Proportionality  CPRL τ = .240, p = .006 
TPRL τ = .245, p = .008 
TPPRA τ = .245, p = .008 

 

Multiplication    MULT τ = .428, < .000 
 

All of the unit concept categories showed a correlation with Equivalence score. The CUNL 

category (CUNL) had the strongest effect size of all the reported associations, equating to a 

common variance of 47%.  One task used to assess the CUNL category was the Keyboard 

task (Q. 39). Of the fifteen students who had an Equivalence score of 0, one gave the correct 

answer of three and three quarters to the Keyboard task (Q. 39). The incorrect descriptions of 

the length of the keyboard included many answers with four as the whole number instead of 

three: four and an inch, four and a half (two students), four and a quarter, four and two 

quarters, three and four quarters, three and two halves, three and a half, three and just over a 

half, three and a sixth, twelve centimetres, three and two and a half centimetres, and three 

point nine (imprecise estimation, two students). Of the fourteen students who had an 

Equivalence score of 1, four gave the correct answer of three and three quarters, three and two 

thirds (two students), and three point seven to the Keyboard task (Q. 39). The incorrect 

descriptions of the length of the keyboard also included answers with four as the whole 
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number: four and three quarters, four and a half, four and a bit, three and three sixths, three 

and five tenths, three and a third, three and a quarter, ten pencils, three quarters (missing 

whole number), and three and nine tenths (imprecise estimation). There were 12 answers with 

four as the whole number in the Keyboard task and eight of them were offered by students 

with Equivalence scores of 0 or 1. 

The students' Equivalence score had a substantial association with offering standard units for 

area (TPUNA). The Equivalence Bands offer another way of examining the association 

between equivalence understanding and TPUNA. Around 70% of students in Equivalence 

Bands A, B and C had a TPUNA score of 0 and had offered cm incorrectly as a unit for an 

area calculation (see Table 4.18). The students in Bands D and E were more likely to offer the 

correct units of cm2 in area calculations. However, the percentage who had a TPUNA score of 

0 was very similar in both Bands (30% and 36%). The successful use of formal units was 

demonstrated by 100% of the students in Equivalence Band F.  

Table 4.18 

Volunteering cm2 and Equivalence Band 

 TPUNA score

 0 1 2 

Band A: Equivalence Score 0 11 2 2 

Band B:  Equivalence Score 1 10 2 2 

Band C: Equivalence Score 2-6 15 2 5 

Band D: Equivalence Score 6-10 6 4 10 

Band E: Equivalence Score 7-11 4 0 7 

Band F: Equivalence Score 12 0 0 5 

4.5.2 The measure sub-construct. 

4.5.2.1 Number lines. 

The number line task consisted of eight questions that were devised and selected in order to 

assess both students' ability to read and partition number lines, from 0 to 1 and from 0 to 

greater than 1. The results of students' explanations of three questions in particular are 

reported in more depth:  

• Q. 16a, draw a number line and mark 2/3 on it,  

• Q16d reading 3 3/4, and  

• Q. 16e reading 5/6.  
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Frequencies of success on all eight questions and Number Line scores are reported. 

4.5.2.1.1 Draw a number line and mark two thirds on it. 

For the first number line question students were asked to draw a number line and put two 

thirds on it. As the number lines were drawn by the students, they were not of uniform length. 

Drawing two thirds by eye was acceptable, although some students elected to use a ruler to 

help them draw the number line and mark two thirds. I decided it reasonable that a mark up to 

but not including 3/4 would be an acceptable representation of two thirds, given that the task 

could be completed without aids such as a ruler, the upper and lower limits were determined 

by what would be a reasonable margin for error by eye – when it should look wrong. Using 

similar reasoning for the lower band resulted in the successful range being 58% and 74% of 

distance between 0 and 1. The categorisations of the number line inscriptions were 

• Successful positioning of 2/3 (between 58% and 74% of the distance between 0 and 1) 

• Ratio misconception: 2/3 marked at a correct ratio of 2/3, e.g. 6 out of 9 

• Unsuccessful positioning of 2/3 because of the placement of 1; but 2/3 positioned 

between  58% and 74% of the distance along the line 

• other   

All the inscriptions made by the students in drawing their number line (Q. 16a) were double 

coded by an independent coder with a science PhD. The coder measured the marks on the 

number lines to check four categorisations and this double coding did not require teacher 

judgement. The students' inscriptions were then discussed and agreement reached about 

categorisation of the students' drawn responses. Some of the students' explanations for their 

drawings were transcribed from video and audio recordings and used for more detailed 

strategy descriptions.  

The frequency of success on this question was 33%. There were two main correct strategies 

demonstrated by students in drawing a number line and marking 2/3 on it. Some students drew 

the number line by hand and iterated an imagined third (see Figure 4.28). Daniel iterated with 

a pincer grip several times until he was sure that his thirds were equal. Other students used a 

ruler and coordinated the ratio understanding and the conventions of a number line, for 

example, Alec explained "well I did nine centimetres and you can divide that by three and 

each third is three centimetres, so I just went up to the six which is the second third and I put 

the mark there". 
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Daniel Alec 

 Figure 4.28. Number lines with 2/3 correctly placed. 

One misconception was to use a ratio understanding but not coordinate this with the 

conventions of the number line. For example, a number line nine units long might be used to 

calculate 2/3 of 9 but the point 2/3 cannot be at the same point on the number line as 6. Rohan 

demonstrated successful ratio knowledge, but not an understanding of the conventions of a 

number line in his explanation, "I made it so that I could have nine numbers and so it would 

equally divide up into three parts in the end. Or we could have had three numbers and that 

would have made it a bit easier" (see Figure 4.29). Seth used the ratio 8 out of 12 but included 

the measurement units of centimetres on his drawing. His explanation indicated that he 

understood ratios and had included a measurement context, "Um I did a twelve centimetre 

long line and two thirds of that is eight centimetres", but his mark was not 2/3 of the distance 

between 0 and 1. 

  

Cameron Seth 

 
 

Rohan Ruby 

Figure 4.29 Examples of ratio misconceptions for placing 2/3 on a number line.  

Cameron also called on a ratio understanding for 2/3 but circled two parts on his number line, 

(see Figure 4.29) indicating correct partitioning, explaining "To begin with twenty four is an 

even number and eight, sixteen, twenty four; which is like eight times three and there's three 
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parts to it so from zero you jump from eight and then sixteen and that's two, thirds". There 

were several different ratios used by the students: 2 of 3, 6 of 9, 6.75 out of 10, 8 of 12, and 

16 of 24.  

One category of inscriptions in which 2/3 was two thirds of the way along the line but 1 was 

placed incorrectly included the ratio misconception. Ruby placed her 2/3 at the fourth mark out 

of six (see Figure 4.29) but it was not apparent that this was a ratio understanding until after 

she had been prompted to mark 1, because she had not labelled two scales as Rohan had done. 

Ruby's explanation confirmed this ratio interpretation, "Well, I kind of made it the same as the 

tight rope. And I put two there and two there and two there cause if you have six it would 

make thirds." If we include Ruby in the frequency of ratio understandings the frequency of 

ratio strategies was 14.8%. Of this group, five of the thirteen students also used a ratio 

approach to Q. 16c, placing their mark for 1/4 on a number line labelled 0, 1 and 2, at  1/2, 

which was a quarter of two. But the majority of ratio users in Q. 16a did not use the same 

strategy in Q. 16c.  

There were two other types of inscriptions in which 2/3 was two thirds of the way along the 

line but 1 was placed incorrectly. For some students, 1 seemed to clearly indicate 1/3 (see 

Figure 4.30). The misplaced 1 meant that these students were coded as incorrect. If they had 

written one third rather than one, they would have then been prompted to mark 1. When four 

students had done this, I suspected a misunderstanding of the question and for the other 

students asked, where would one whole go, rather than where would one go. For this reason, I 

have not reported the frequency of this misconception. 

 

Figure 4.30. Two thirds on a number line with 1 at one third. 

The other category of misplaced 1s was "other", in which the 1 was too close to 0 to make a 

ratio with the 2/3 as marked. However, as the 1 was added by eye later, some of these 

inscriptions may have been using ratio understandings but further probing was required (and 

wasn't carried out) to confirm this strategy. In this last category, as in the first two of 
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misplaced 1s, the 2/3 was two thirds of the way along the line but the 1 was not in the correct 

place for a number line interpretation. 

Some of the students' inscriptions looked like incorrect ratios but the accompanying 

explanation could be interpreted as a double counting misconception. Adele explained her 

number line below (see Figure 4.31), "Um, two thirds is like um, like um, three parts, yeah 

and um, so like, there are two parts shaded in, so I went to two". This type of inscription was 

not included in the frequency of the ratio misconception above, and 6.8% of students drew 

number lines like this without a 0. These students' responses to the Fraction Pie task and two 

non-equal parts Fraction Sort cards, showed a range of responses from double counting to 

success on three of the questions with an answer of other for the fourth non-equal-parts 

diagram. A double counting misconception could not be tracked across these number line 

inscriptions and area diagrams.  

 
 

Adele Julia 

Figure 4.31.  Possible double count inscription, and three-past-two inscription. 

Another misconception was 2/3 as three-past-two or 2.3. Julia explained her drawing (see 

Figure 4.31) "Because there's two, there's three and there would be something between, and I 

did ten little ones, and that would be the third." Other similar drawings did not break the space 

between two and three into ten parts, but kept the semantic pattern, two and then three. The 

frequency of this semantic approach was 9.1%, and a further 4.5% indicated the whole 

segment between 2 and 3. I classify these responses as whole number misconceptions. 

The use of a ratio misconception demonstrated that the students had some fractional 

understanding. For example, they knew that two thirds of nine was six, or that two thirds of 

twenty four was sixteen. Of the 29 students who correctly draw a number line and marked two 

thirds on it, 79.3% (17 out of 29) of them had a CADL score of 2 and had correctly used the 

broken ruler to measure the length of the Freddo (See Table 4.19). Of the students who were 

unsuccessful on the number line task, those who had used the ratio misconception and those 
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who had used partitioning inappropriately had similar (to the successful number line students) 

success on the Freddo task: 69.2% (9 out of 13) and 70% (7 out of 10) respectively. Students 

who were unsuccessful on the number line task for other reasons were markedly less 

successful on the broken ruler task: with 30.5% (11 out of 36) successful on the Freddo task. 

The frequency of success on the harder broken ruler task, the Footy Card task, was similar for 

the students who were successful on the number line task or who had used the ratio 

misconception: 58% (17 out of 29) and 53% (7 out of 13) respectively. However, this 

performance was not duplicated by students who had used partitioning inappropriately. Only 

10% (1 out of 10) of the students who used partitioning (incorrectly) on the number line task 

were successful on the Footy Card task (CADL score of 3), which was lower than the 

performance by the students who had other unsuccessful strategies on the number line task 

(22% (8 out of 36) were successful on the Footy Card task). 

Table 4.19 

Number Line Strategies (Q. 16a) and CADL score  

 Correct Incorrect 

 Correct 
(33%) 

Ratio 
(14.8%)

Partitioning 
(11.4%) 

Other incorrect  
(40.9%) 

CADL score 0 or 1 6 4 3 25 

CADL score 2 6 2 6 3 

CADL score 3 17 7 1 8 
 

4.5.2.1.2 Reading 33/4 on a number line. 

The number line Q. 16d required students to read 33/4 on a number line partitioned into 

quarters (see Figure 4.32). Successful students were able to coordinate whole numbers and 

fraction numbers. For example, Emily explained "I started at the three, 'cause that's the closest 

number behind the arrow. I counted how many lines were along, so after the three, the three 

was zero, so one two three four, which means it was quarters. And then I counted how many 

along from the three again, how many of the four quarters there was. And ended up three and 

three quarters." 



155 
 

 

Figure 4.32. Number line diagram Q. 16d, reading 3 3/4. 

Some students demonstrated the misconception that fraction number lines are decimal number 

lines and read the marks as tenths. One illustration of this was the counting of the marks after 

3 as point one, point two, point three as demonstrated in Sylvie's explanation "'Cause there's 

three [points to 3] and then if you get one two three, three  [points to lines]. So it's three of 

these, so point three". Eight students (from two of the schools) used this incorrect strategy. 

There were two other variations of this assuming decimal number lines misconception. One 

student correctly identified 3.5 on the number line and then counted the next mark (with the 

arrow) as 3.6. Some students gave the answer of 3.9 but it was difficult to ascertain whether 

they were estimating, such as Jai's explanation, "Um, because four was there so three point 

nine" or whether they were assuming that the hash mark before a whole number was point 

nine. Tamika appeared to be assuming that a number line could be counted in tenths but was 

not convinced, explaining, "I said three point nine but that doesn’t make sense." 

 Some students did attempt to estimate the length using decimals. This was not an example of 

the assuming decimal number lines misconception but was a mathematically correct strategy. 

However, they were coded incorrect if they did not answer three point seven five. For 

example, Amelia answered "Um three point, [pause] um three point eight or something." 

When prompted by the interviewer "And how did you work that out?" she replied, "Well if 

that's three, it's not quite four yet, because it's before. Take that as a half and just then a bit 

more than half." This just imprecise estimate was not an example of the decimal 

misconception, as Sylvie's was because Amelia did not assume the marks on the number line 

were automatically tenths. 

The keyboard in the Keyboard task (Q. 39) was three and three quarter pencils long. In both 

the number line question (16d) and the Keyboard task, the students had to identify 3 3/4 and 

explain their answers appropriately. Of the eight students who used an inappropriate decimal 

strategy for the number line showing 3 3/4 (Q. 11d), five of them answered correctly on the 

Keyboard task: four said three and three quarters and one said three and two thirds. None of 

the remaining three offered decimal answers for the length of the Keyboard. Decimal answers 
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for the Keyboard task were decimal estimations, but on the 3 3/4 number line some decimal 

responses indicated a misconception that all hash marks were tenths.  

Some students omitted the whole number in their answer to the 3 3/4 number line giving the 

answer three quarters. Of these eight students, six of them answered three and three quarters 

successfully on the Keyboard task. One student offered three quarters as an answer for both 

tasks. 

4.5.2.1.3 Reading 5/6 on a number line. 

The number line Q. 16e required students to read 5/6 on a number line partitioned into six 

equal parts (see Figure 4.33). Some successful students counted spaces, for example, in 

explaining his answer of 5/6, Nicky said "I counted up how many spaces it's divided into, and 

it's pointing to." Other successful students counted lines, as Sarah explained, "Well there's six 

lines this time and it's the fifth one of six." Using either strategy, 27.2% of the students 

successfully identified the mark as 5/6 on this number line. 

Figure 4.33. Number Line diagram Q. 16e, reading 5/6. 

One misconception observed in the students' explanations to this question, also observed in 

the previous question (Q. 11d), was reading the marks as tenths as if the number line were a 

decimal number line. There were two variations of this. Some students read left to right as 

Jess did as she explained her answer of point five, "'Cause it's not up to one yet. And I thought 

one, two, three, four, five [points with finger]. And I did zero point five." Other students read 

right to left, and used fractional language for the decimal as Will did, explaining his answer of 

nine tenths, "If that's a whole, ten tenths, that's one less". The frequency of this inappropriate 

decimal reading of number lines was 17%. This misconception would be undetectable on the 

one decimal number line, Q. 16g, used in the present study.   

This reading of the marks on number lines as if they were tenths was not the same as 

estimating using tenths which Rebecca tried. She ignored the six marks that were there and 

mentally partitioning the line into different sized parts. Rebecca explained her estimation, 

"Um I split the line into ten and the arrow's pointing where the eight is." Her estimation was 
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very close to 0.8333, the decimal equivalent to 5/6, but she was still coded as incorrect. 

Rebecca's strategy was mathematically correct, but she was not accurate enough to be coded 

correct on this particular question because there were six spaces clearly marked. Jess and Will 

quoted in the previous paragraph, on the other hand, were using a mathematically incorrect 

strategy.   

The misconception of counting lines not spaces was observed in the students' responses in all 

three schools. For example in explaining her answer of 6/7, Claire said, "Because that's six and 

there's seven marks." Students with this misconception started counting "one" at the mark at 

0. The frequency of this misconception in the present study was 10.2%.  

The counting lines not spaces was an error also demonstrated on the Freddo task (Q. 41) (see 

section 4.2.2.1) and a third (3 out of 9) of the students who used this misconception in the 

number line task repeated the misconception on the Freddo task. In contrast another third (3 

out of 9) were successful on the Footy Card task (Q. 42), and the final third were incorrect on 

the Freddo task for other reasons. Overall, 46.6% of all the students did not use the counting 

lines not spaces misconception on any of the three tasks: the number line (Q. 16e), the Freddo 

task (Q. 41) or the Footy Card task (Q. 42). However, 37.5% (9 out of 24) of the students who 

had counted the marks correctly on this number line then counted lines not spaces 

unsuccessfully in one or other of the broken ruler tasks (the Freddo task or the Footy Card 

task). The use of the misconception in one context did not predict its use in another context. 

4.5.2.1.4 Frequency of success on number line questions. 

The frequency of success on the eight number line tasks varied from 27.2% for Q. 16e 

discussed above, to 71.6% for Q. 16b iterating a half to place 11/2 on a number line (see Table 

4.20). The question for Q. 16c was to mark where one quarter would go on this number line. 
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Table 4.20 

Frequency of Success on Number Line Tasks 

Question Diagram success 

16b 
 

marking one and a half 

71.6% 

16c 
 

marking a quarter 

55.7% 

16f 
 

55.7% 

16g 
 

52.3% 

16d 
 

38.6% 

16a Students drew their own number line and marked 2/3 33% 

16h 
 

31.8% 

16e 
 

27.2% 

 

A Number Line score was calculated for each student, being the number of questions correct 

out of eight (see Table 4.21). These scores illustrated the range of performance level in the 

group, and all three schools had students with scores of 0 and 8. The most common score was 

3 with just over a quarter of the students achieving that level of success. 

Table 4.21 

Spread of Number Line Questions Correct 

 Score 

 0 1 2 3 4 5 6 7 8 

Success  6.8%  11.4%  13.6%  28.4%  10.2%  8%  2.3%  6.8%  12.5% 

 

There were 45 different pathways through the eight number line questions; a pathway being 

the pattern of correct and incorrect responses. One of those pathways was all incorrect and 

another pathway was all correct and 17 students had either of those patterns of success, see 

Table 4.22. Excluding those two possibilities, there were 43 different patterns of success for 



159 
 
the 71 students with a Number Line score of 2 to 7. Despite the frequency of success 

suggesting that there was a pathway through the number line tasks, Q. 16b for example 

having a greater frequency of success than Q. 16g, the students' performance indicated that 

there were many different paths towards a coordinated understanding of fractions on number 

lines. These results do not support the idea that there was a pathway through number line 

questions based on making partitions being more difficult than reading partitions, nor based 

on number lines labelled 0 to 1 being easier than number lines that are greater than 1. 

Table 4.22 

Permutations of Correct and Incorrect Response to the Number Line Questions: Pathways 

 Score 

 0 1 2 3 4 5 6 7 8 

Number of students 6 10 12 25 9 7 2 6 11 

Different pathways 1 5 6 14 7 5 2 4 1 
 

4.5.2.1.5 Associations between number line questions and measurement concepts. 

The Number Line score was used to calculate correlations between performance on the 

measure sub-construct of fractions and measurement concepts. Using Kendall's Tau, there 

was no significant association between students' Number Line scores and the tasks assessing 

the key concept of attribute (see Table 4.23). There were substantial associations with the 

conceptual tasks, both length and area contexts, of the key concept of additivity. These broken 

ruler tasks and area calculations showed a stronger effect size than the tools and procedures 

category. There was also substantial associations between the students' Number Line scores 

and the key concept of units in the conceptual length tasks (e.g., measuring the Keyboard), 

and also the tools and procedures tasks assessing this concept. The concept of proportionality 

had typical associations with the students' Number Line score. The students' Multiplication 

score had a substantial association with their performance on the number line tasks. 
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Table 4.23 

Correlations Between Number Line Score and Measurement Concepts 

 Correlation 

 Minimal  τ  > .07 Typical  τ > .20 Substantial  τ  > .34 

Attribute    

Additivity  TPADA τ = .324, p = .001 CADL τ = .384, p < .000 
CADA τ = .363, p < .000 

Unit   CUNA τ = .307, p = .001 
 

CUNL τ = .408, p < .000 
TPUNL τ = .354, p < .000 
TPUNA τ = .348, p < .000

Proportionality  CPRL τ = .229, p = .010 
TPPRA τ = .223, p = .017 
TPPRL τ = .210, p = .025 

 

Multiplication    MULT τ = .364, p < .000 
 

4.5.2.2 The relative size of fractions: the Fraction Pair task.  

The Fraction Pairs task (Q. 22) was used to assess the students' understanding of the relative 

size of fractions.  

All fifty-six video records of the students completing the Fraction Pairs task were double 

coded by another mathematics education researcher who had coded fraction pairs before in 

another research project. To be correct a student had to give the correct answer with a 

mathematically correct explanation. There were 15 instances out of 448 where this second 

coder disagreed with my categorisation of the student being correct or incorrect. Half of the 

coding discrepancies resulted from a difference in my criteria for gap thinking in the fraction 

pair 3/8 and 7/8 (Q. 22a) from other research projects. Other coding discrepancies were 

resolved by discussion of a transcript of the students' explanations by the two coders. 

However, it was agreed that in the fraction pair 4/5 and 4/7, some explanations did not provide 

enough detail to confirm whether a correct or incorrect strategy was used, and for this reason I 

had decided not to report the frequency of success of that particular fraction pair. 

4.5.2.2.1 Successful strategies. 

In the fraction pair 3/8 and 7/8 (Q. 22a), the same denominator and compare numerators 

strategy was observed. It was the most common correct explanation when comparing 3/8 and 
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7/8, and was illustrated by Lily's explanation, "Because there's the same denominator and 

seven's larger."  

A description more closely linked to the visualisation of area models common in classroom 

activities, can be seen in Zannah's explanation for the same fraction pair comparison; 3/8 and 
7/8. After reaching for paper and being told she had to "do it in your head", Zannah chose 7/8 

as the larger fraction and explained: "Because this one is covering more of the shape. Because 

three eighths is only covering three sections and this one's covering seven sections." This 

explanation drew on comparisons. 

The complement to one strategy was additive thinking which was appropriate for fractions 

between zero and one with the same denominator. This was demonstrated by Sylvie's 

explanation "Because of the eight [points to the denominators], that one [points to 7/8] needs 

one more to get to the whole. And that one [points to 3/8] needs five more." The same 

complement to one strategy was used by Kate in her explanation, "Because there's only more 

piece to make a whole for seven eighths. And for three eighths you'd need another, you'd need 

another um five, more pieces." Michael illustrated the role of the denominator in the 

complement to one strategy as the number that represented the whole: "This one's larger 

[points to 7/8] because it's closer to the [undecipherable] the denominator whatever it's 

called". In other research projects (see e.g. Clarke & Roche, 2009), these three explanations 

would have been classified as gap thinking (using the difference between the numerator and 

the denominator). However, in the present study, on this particular pair, they were classified 

as correct mathematical reasoning. The term complement-to-one was used by Pearn and 

Stephens (2004) to describe gap thinking, a mathematically incorrect explanation. But I am 

using the term in this pair to illustrate that it is a correct strategy when used with appropriate 

fraction pairs, although it cannot not be generalised successfully. The thinking in Sylvie's, 

Kate's and Michael's explanations used additive word patterns. 

There were some explanations that may have been a mixture of two strategies or that would 

need further probing to determine which of the two strategies the student was using. For 

example, Ebony chose 7/8 as the larger fraction and explained, "Well this is near the beginning 

[points to 3/8]. And this is near the end [points to 7/8]. Just one from the end." She may have 

been visualising a length or circle diagram, which would have an end. On the other hand, she 

may have been thinking of the number 8 (the denominator) as being the end. 



162 
 
The successful strategies for comparing the fractions 2/4 and 4/8 (Q. 22b) have been reported 

above with respect to the use of equivalence (see section 4.5.1.3).  

The fraction pair 1/2 and 5/8 (Q. 22c) was successfully compared using benchmarking. For 

example, Ruby explained "Um, I think that's bigger [points to 5/8]. Because that's half [points 

to ½] and five is bigger than one half, of eight". The fractions were also compared drawing on 

the concept of unit-forming. In this approach 5/8 was thought of as being composed of two 

unequal sized pieces; 1/2 plus another piece. Rose illustrated this in her explanation, "Because 

this [5/8] is like three quarters out of eight and this is only half; and so it's one quarter extra." 

Rose had an Equivalence score of 1 so I do not believe that she meant that 5/8 was nearly 6/8 or 
3/4.  She was using quarters to indicate pieces.  

The fraction pair 2/4 and 4/2 (Q. 22d) was successfully compared using equivalence 

understanding; 2/4 was a half and 4/2 was two. Tom attempted to rename 4/2 as a mixed 

number, "this is a whole and a half – no two wholes". In other words, 4/2 was a whole plus 

another piece (in this case, another whole) and bigger than the other fraction which was less 

than a whole. Some students used benchmarking to one rather than a half by identifying 4/2 as 

an improper fraction. For example, Kate explained "Because the four is bigger than two and 

it's an improper fraction". 

The successful strategy comparing denominators when numerators are the same was 

observed in the comparison of the fraction pair 4/5 and 4/7 (Q. 22e). This was illustrated in the 

explanation of why Sarah chose 4/5 as larger, "Because the top numbers are both four, but 

there's seven and five on the bottom; and seven means that the pieces are littler. So four of 

them wouldn't equal four of the fifths."  

The successful use of benchmarking or common denominators in the comparison of 3/7 and 5/8 

(Q. 22f) has been reported above (see section 4.5.1.3). 

The residual strategy was observed in the size comparison of 5/6 and 7/8 (Q. 22g). Sarah 

provided an example of this residual reasoning: "because if I imagine a pie cut into sixths and 

you do five of them. And I imagine a pie cut into eight and there's seven of them; that's a little 

more."  When prompted, "How do you know?" she elaborated, "Because eighths are smaller, 

and like seven of them would be closer to a whole than five sixths."  
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Common denominators was a strategy used successfully in the comparison of the fraction pair 
3/4 and 7/9 (Q. 22h). This was illustrated in Lily's explanation of how she decided that 7/9 was 

larger: "I tried to get thirty six [waves finger across both denominators]. And I times that by 

nine [points to 3], and that by four [points to 7]."  

One student used an operator sub-construct approach in the fraction pair 3/4 and 7/9 (Q. 22h) 

which could be rephrased as whether seven was more or less than three quarters of nine. One 

student, Seth, did this successfully, reasoning "'cause that one was three quarters [points to 3/4] 

and this one [points to 7/9] was just a little over three quarters because a quarter of nine, 

because a quarter of nine would be one point- no, like two point three. Yeah, umm, two point; 

two point two five. And three, two point two fives would be- is six point seven five." 

Summarising Seth's explanation: 1/4 of 9 was 2.25 (using partitioning); 3/4 was equivalent to 
6.75/9 (drawing on equivalence); seven was 6.75 and another bit (drawing on unit-forming). So 
7/9 was larger than 3/4.  

The frequency of success on seven of the pairs is reported in Table 4.24. For 78.4% of the 

students the order asked was also the sequential order of difficulty.  

Table 4.24 

Frequency of Success on Fraction Pair Task 

 Pair 

 3/8  7/8 2/4   4/8 1/2  5/8 2/4   4/2
4/5   4/7 3/7  5/8 5/6   7/8 3/4  7/9 

Success 90.9% 72.7% 54.5% 39.8% not reported 13.6% 12.5% 6.8% 
 

A fraction pairs score was calculated as the number correct out of seven (Q. 22e being 

excluded). There was a spread of performance, with about 25% of the students scoring 0 or 1, 

about 60% scoring 2, 3 or 4, and about 15% scoring 5 or above (see Table 4.25). Around 85% 

of the students were successful on four pairs or less.  

Table 4.25 

Percentage of Students with each Fraction Pairs Score from 0 to 7  

 Score 

 0 1 2 3 4 5 6 7 

Frequency 4.5% 22.7% 15.9% 20.5% 22.7% 4.5% 2.3% 6.8% 
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4.5.2.2.2 Misconceptions: gap thinking and whole number strategies. 

Three main misconceptions are reported; gap thinking, higher or larger numbers, and bigger 

denominator indicates bigger fraction thinking. The double coding revealed that a highly 

detailed list of strategies was unwieldy. However, there was broad consensus between the two 

coders about the general types of strategies used and their frequency. All explanations which 

were identified as gap thinking by either coder were transcribed from video or audio files and 

analysed, along with some non-examples. A third coder, who was a mathematics education 

lecturer, looked at these transcripts and triple coded them and any discrepancies were resolved 

through discussion.  

The most instructive place to discover all the variations of gap thinking explanations was in 

the students' responses to the fraction pair 5/6 and 7/8 (Q. 22g). This was because the gap 

answer was distinctive: "they're the same". The students were shown the fraction pair 5/6 and 
7/8 on a card and instructed, "please point to the larger fraction or tell me if they are the same". 

Both a gap answer and a gap explanation were needed as evidence of gap thinking. Gap 

thinking was observed in students from all three schools on this fraction pair. Meg used the 

complement to one strategy, "one more to become a whole" (see Table 4.26). Tony used the 

same strategy, explaining "Because one up on the five sixes is a whole. And one up on the 

seven eights is a whole." With this fraction pair, a complement to one strategy was not 

mathematically correct. 
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Table 4.26 

Variations of Gap Thinking in Explanations of why 5/6 and 7/8 are Considered the Same 

gap thinking variation transcript of students' explanation 

complement-to-one Meg: They're the same because five sixths has got one more to 
become a whole. And seven eighths it also has one more to 
become a whole. 

complement to one Jade: They're the same. 
Interviewer: And how did you work that out? 
Jade: Because five out of six is one piece left and seven out of 
eight is one piece left. 

numerical comparison of 
numerator and 
denominator 
 

Claire: They're the same. 
Interviewer: How do you know? 
Claire: Because there's both, because the top numbers are both one 
less than the bottom numbers. 

equivalence string:  
2/3, 3/4, 9/10 

Hannah: They're the same. 
Interviewer: And how did you decide? 
Hannah: 'Cause they're both two thirds, that's another way to say 
them. 'Cause seven plus one is eight and five plus one is six. 

fractional language 
(sixth, eighth) indicating 
complement to one 

George: They're the same. 
Interviewer: And how did you decide? 
George: Because they're like. Five sixths there's one more. There's 
one more sixth to make a whole. And it's one more eighth. 

counting and shading Courtney: They're the same. 
Interviewer: And how did you decide? 
Courtney: Because they both need one more to be coloured in. 

 

Jade used the gap as a "bit" strategy, and described "one piece left". Brad used the same 

strategy but with the word "spaces", "Because you've got. They're the same way. Um how 

much spaces to go." 

Claire showed attention to the numerical difference between numerators and denominators, 

"the top numbers are both one less than the bottom numbers".  Patrick's explanation used the 

word "plus" to compare the difference between numerator and denominator, "Because one 

plus five equals six and one plus seven equals eight [points to 5/6 and 7/8]".  

Hannah offered one of the string of equivalences that was offered by the students in the 

present study 5/6 is 7/8 or 2/3 or 3/4 or 9/10, "they're both two thirds". No one child offered all of 

these equivalences in one answer, but it would appear from their specific responses that any 
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fraction one less than the whole was equivalent to any other fraction one less than the whole. 

Hannah also used the word "plus" in a numerical comparison of the difference between 

numerator and denominator in a further explanation of her equivalence approach. The 

equivalence of fractions one less than the whole could explain Jordan's explanation of why 5/6 

and 7/8 was the same, "Three quarters is almost the whole".  

The fraction pair 5/6 or 7/8 also revealed that the use of the fractional language of sixths and 

eighths did not automatically rule out gap thinking. If the students who used this fractional 

language used "sixth" to indicate a part with a size and an "eighth" to indicate a part of 

another size, then they could not have concluded that 5/6 and 7/8 were the same. A "sixth" had 

the same status as a "piece" in these gap thinking explanations. This was illustrated in 

George's explanation of why the fractions were the same, "Five sixths there's one more. 

There's one more sixth to make a whole. And it's one more eighth." Explanations that used 

fractional language and did take into account the size of the pieces could be correct residual 

thinking or incorrectly executed residual thinking or incorrectly executed reasoning about the 

number and size of the parts. 

Courtney used a counting and shading explanation, "they both need one more to be coloured 

in".   

Gap thinking was used by 50% of students for the fraction pair, 5/6 and 7/8. An answer of "the 

same" was almost exclusively due to gap thinking. Only one student, Freya, claimed the 

fractions 5/6 and 7/8 were "the same", but was not using gap thinking. Instead she used a faulty 

residual explanation. When gap thinking was present, this fraction pair, with its distinctive 

gap answer, enabled the full range of gap thinking explanations to be elaborated. With these 

six variations of gap thinking identified, other fraction pairs can be examined.  

 

In the fraction pair 2/4 and 4/8 in which both fractions were equivalent and hence the correct 

answer was "the same", 73% of the students were successful. Although some of the incorrect 

answers were 2/4, the fraction with the smaller gap, none of the explanations indicated gap 

thinking. Of the just over a quarter of students who were incorrect on this task, most errors 

were whole number based. For example, Ricky used the higher or larger numbers 

misconception, explaining that 4/8 was larger: "That one, because there's a bigger number on 

the bottom and a bigger number on the top."  Jonno used the whole number misconception 

that the bigger denominator indicates the bigger fraction, explaining that "because there's four 

over eight and eight's the larger number at the bottom."  
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The improper fraction 4/2 in the fraction pair 2/4 and 4/2 (Q. 22d), caused confusion for some 

students. For example, Patrick chose 2/4 as the larger fraction, explaining "Well, I knew that if 

you add two more it will equal four, so the closest number. I still [points to 4/2], I don't know 

this one still." The gap between the fraction was the same, and some students offered the 

explanation that there was the same numbers in both. For example Simon explained that the 

fractions were the same "'cause they're. On this one the two's at the top and the other one the 

two's at the bottom and they've both got the four. On the other one the four's at the bottom and 

the other one's the top." This explanation was specific to improper fractions, and was similar 

to other strategies where students flipped the improper fraction, making a proper fraction. 

Further probing would be needed to rule out gap thinking. However, none of the 13 children 

who offered the same numbers in both explanation used a linguistic structure similar to any of 

the gap thinking examples for the fraction pair 5/6 and 7/8 where the difference was also the 

same. There was no complement-to-one (with or without fractional language), no numerical 

difference as addition or subtraction, no third equivalent fraction, and no colouring in 

analogies. I have concluded that no gap thinking was evident in Q. 22c, the fraction pair 2/4 

and 4/2. 

It was uncommon, but possible, for some students to use gap thinking linguistic structures, 

particularly the numerical difference between numerator and denominator but choose the 

larger gap. Only four students did this and it was most noticeable in the fraction pair 3/8 and 
7/8 (Q. 22a) because it caused the student to pick the smaller fraction. 

The rest of the pairs divide into two groups, those in which gap thinking would give the 

wrong answer, and those in which the student would get the right answer for the wrong 

reason. I will start with the former, as they are slightly easier to "hear" and code. In some 

fraction pairs the gap thinking answer resulted in an incorrect answer with incorrect 

mathematical thinking. Both a gap answer and a gap explanation were needed as evidence of 

gap thinking.  

It was in fraction pair 3/7 and 5/8 (Q. 22f) that the fine distinctions between the gap thinking 

strategy and not convincing enough size comparisons become apparent. The close 

examination of gap thinking would not be complete without examples of the boundaries 

between gap thinking, possible gap thinking, and other correct or incorrect strategies that 

could be mistaken for gap thinking. In Table 4.27, I provide examples of these distinctions 

between strategies from the transcripts of students' explanations of the size comparison of 3/7 

and 5/8. In the example of gap thinking, Lara used fractional language, "sevenths" and 
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"eighths". However, further probing revealed that, like some of the fractional language 

examples in comparing 5/6 and 7/8, this fractional language did not indicate an understanding 

of parts of different size. Another example of gap thinking (not in Table 4.27) was Patrick's 

explanation that 5/8 was the larger fraction "Because um three and five is eight [points to 5/8] 

but three and four is seven [points to 3/7] so three is less than." 

Table 4.27 

Fraction Pair 3/7 and 5/8 and Distinctions Between Gap Thinking, Possible Gap Thinking, and 

Non Gap Thinking 

Strategy Explanation from transcript 

gap thinking Lara: [pointing to 5/8] 
I: And how did you decide? 
Lara: Because three sevenths isn't that close compared to five eighths. 
I: How do you know? 
Lara: Because [mumbled]. Because if you were going three to seven it 
would be four. And five to eight would be three. 

not gap thinking 
(insufficient 
explanation of 
number and size of 
parts) 

Nicky: That would be the smaller [points to 3/7] 
I: Ok, and how did you decide?  
Nicky: 'Cause it's that, is four eighths [points to 5/8], no that is three 
eighths off. That is four sevenths off [points to 3/7].  One seventh is 
smaller. No, that would be smaller [points to 5/8] 
I: OK 
Nicky: No that would be, wait, which one are we doing, bigger or 
smaller? 
I: The larger number. 
Nicky: Yeah. That one will be bigger [points to 5/8], because that's only 
three eighths off and one eighth is smaller than one seventh. So that's 
only four sevenths off [points to 3/7], that's five eighths off [points to 
5/8]. No, that's three eighths off so that would be bigger but, no smaller. 
That would be bigger [points to 3/7]. 

possible gap 
thinking 

James: That is [points to 5/8] 
I: Which one, sorry? 
James: That one 
I: And how did you decide? 
James: [undecipherable] because that's three sevenths, it's not bigger 
than that. and that's [points to 5/8] 3 more to one whole 
I: And tell me about the 3/7 then. 
James: It's not near one whole, and that's [points to 5/8] bigger 

 

The middle example in Table 4.27 is an illustration of an explanation that was not sufficiently 

detailed enough to be coded as correct. Nicky used fractional language and tried to grapple 
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with the size of the pieces and the number of the pieces. He almost used residual thinking to 

compare three eighths and more than three sevenths as the amount away from the whole, but 

was coded as incorrect because he chose the smaller fraction in the end.  

James' explanation was an example of a new category devised in the present study – possible 

gap thinking. Some mathematically correct strategies "sounded" like gap thinking. Careful 

listening was required to distinguish between the strategies, even with the benefits of video 

footage and transcripts. James may have had the right answer for the right reason; 

benchmarking, where 3/7 was less than a half and "not near one whole". Or James may have 

been explaining gap thinking, describing 5/8 as having three more to go to get to one whole. A 

possible gap thinking coding indicated that there was not enough evidence to classify the 

strategy as gap thinking, but there was certainly a strong suspicion that it could be.  

Gap thinking was observed in the fraction pair 4/5 and 4/7 (Q. 22e).  Gap thinking would 

produce the correct answer, but with an unsatisfactory explanation, for all fraction pairs 

between zero and one with the same numerator. For example, Lara used the complement-to-

one version of gap thinking, "'Cause it's only one away from being a whole" (see Table 4.28). 

She got the right answer, 4/5, for the wrong reason. But it was further probing that confirmed 

that her reasoning was gap thinking, "And this is three away from being a whole". 
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Table 4.28 

Fraction Pair 4/5 and 4/7 and Distinctions Between Gap Thinking, Possible Gap Thinking, and 

Benchmarking 

Strategy Explanation from transcript 

Gap thinking Lara: This one [points to 4/5] 
I: And how did you decide? 
Lara: 'Cause it's only one away from being a whole.  
I: Mmm? 
Lara: And this is three away from being a whole 

Not gap thinking: 
correctly 
benchmarking  
to 1/2 and to 1 

Chris: [points to 4/5] 
I: How did you decide? 
Chris: Well, five, ff; four fifths is almost a whole 
I: Mmm? 
Chris: And four sevenths is um, a bit higher than half 

Not gap thinking: 
correctly 
benchmarking  
to 1/2 and to 1 

Adam: This one. [points to 4/5] 
I: And how did you decide? 
Adam: Um four is closer to five. 
I: Can you tell me a bit more about that? 
Adam: Um. Four. The four and the seven, there's more less, like, um 
close to a half, but this one's like almost a whole. 

Possible gap 
thinking 

Meg: Four fifths are the same, I mean are the larger, 'cause four is closer 
to five and four isn't really close to seven. 

 

Chris and Adam's explanations, on the other hand initially sounded like a complement-to-one 

gap thinking, but their further explanations demonstrated that they were benchmarking to just 

over a half and nearly a whole. They were coded as correct, providing a correct answer and 

using the mathematically correct strategy of benchmarking. The fraction pair 4/5 and 4/7 also 

lent itself to benchmarking because 4/5 was close to one and 4/7 was just over a half. It was 

difficult to hear the difference between an alternative correct strategy (benchmarking) and a 

mathematically incorrect strategy (gap thinking).   

Meg's explanation demonstrated that further probing was sometimes needed to confirm the 

use of gap thinking. In this case, that was not carried out and so she was coded as possible gap 

thinking. Meg could have been using a complement-to-one variety of gap thinking, "four is 

closer to five". However, Meg may have been benchmarking, "four is closer to five". The 

examples of Chris, Adam and Meg illustrate how coding this fraction pair proved difficult. 
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The gap thinking answer in the fraction pair 3/4 and 7/9 (Q. 22h) was 3/4 and sometimes a 

student's explanation made this clear, for example Brad said "because it's less pieces, it's less 

numbers to get from three to four than seven to nine." However, many answers of 3/4 were not 

based on gap thinking because an explanation grappling with the size of the denominators and 

the number of pieces could easily conclude (incorrectly) that 3/4 was the larger fraction 

because for students who were reasoning qualitatively, the difference between the fractions 

(1/36) was very small. 

This question was the last of eight fraction pair questions and if the student gave the 

explanation, "like the other ones" and their previous reasoning had been gap thinking, I 

assumed gap thinking to be the reasoning during the interview. However, a transcript of such 

an explanation did not provide evidence of gap thinking, and so I have coded these 

explanations as possible gap thinking. It would have been better to prompt the student for 

further explanation during the interview. This affected 8% of the explanations to this pair 3/4 

and 7/9.  However, some students clearly offered gap thinking explanations. For example, 

Patrick explained that 3/4 had the smaller gap, "Well this one I just had to add one more [3/4] 

and this one you just add two." 

The gap thinking answer for the fraction pair 1/2 and 5/8 was 1/2 because it had the smaller gap. 

In this pair the gap thinking strategy produced the wrong answer with incorrect mathematical 

thinking. For example, Brad chose 1/2 as the larger fraction because "It takes. There's less to 

get from one to two than from five to the eight." 

Some fraction pairs were more difficult than others to compare (see Table 4.29). But not 

every pair elicited gap thinking. The highest proportion of gap thinking occurred on the pair 
5/6 or 7/8 where half of the students demonstrating this strategy.  
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Table 4.29 

Frequency of Success on Fraction Pair Questions and the Incidence of Incorrect Strategies 

 Fraction Pair 

 3/8  7/8 2/4   4/8 1/2  5/8 2/4   4/2 4/5 4/7 3/7  5/8 5/6   7/8 3/4  7/9 

Success 90.9% 72.7% 54.5% 39.8% NR 13.6% 12.5% 6.8% 

Gap Thinking 2.3% 0% 6.8% 0% NR 21.6% 50% 23.9% 

Possible Gap 0% 0% 0% 0% 11.4% 3.4% 0% 8% 

Whole Number 0 15.9% 15.9% 3.4% NR 23.9% 18.2% 18.2% 

Other (incorrect) 6.8% 11.4% 22.8% 56.8% NR 37.5% 19.3% 43.1% 
Whole Number: higher or larger numbers, or bigger denominator indicates bigger fraction strategies  

NR: not reported 

 

Individual students demonstrated gap thinking on none, some, or many of the fraction pairs 

(see Table 4.30). A score for gap thinking was calculated by how many fraction pair questions 

(excluding Q. 22e) elicited a gap thinking explanation. Possible gap thinking was excluded 

from this score, as was the correct complement-to-one strategy in the fraction pair 3/8 and 7/8. 

Fewer than half the students did not use a gap thinking explanation on any of the seven 

fraction pairs. Just over fifth offered a gap thinking explanation once, and a further fifth used 

gap thinking two or three times. Fewer than 10% of the students repeatedly used gap thinking 

four or five times. Overall, 52.3% of the students demonstrated gap thinking one or more 

times during the seven fraction pair questions reported. Choosing the larger gap was 

uncommon and only four students did this. 

Table 4.30 

Intensity of Gap Thinking Usage 

 Gap Thinking score 

 0 1 2 3 4 5 

Frequency 47.7% 22.7% 14.8% 6.8% 6.8% 1.1% 
Excludes results from Q. 22e 

In the present study, I examined gap thinking separately from two whole number thinking 

strategies: the higher or larger numbers, and the bigger denominator indicates bigger fraction 

misconceptions. Rebecca compared 5/6 and 7/8 by choosing the fraction with the larger 

denominator, "Eight is a larger number than six". This was an example of the bigger 

denominator indicates bigger fraction strategy. Jasmine compared the same fraction pair by 
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choosing the fraction that had the larger denominator and larger numerator, "Um, I did five is 

higher than three, and eight is higher than seven." This was an example of higher or larger 

numbers. Both students gave the right answer but for wrong reasons. 

All explanations which were identified by either coder as higher or larger numbers, or, bigger 

denominator indicates bigger fraction were transcribed. The two coders conferred and the 

coding was agreed upon. However, Q. 22e was excluded from the results reported here 

because it had been omitted for gap thinking frequencies. 

Whole number strategies had been identified by the researchers in the Rational Number 

Project and elaborated by recent research (see section 2.1.5.1.2) and included the 

misconceptions higher or larger numbers, bigger denominator indicates bigger fraction 

thinking, gap thinking, and the addition strategy (adding the same number to the numerator 

and denominator). However, the presentation of these misconceptions was not uniform (see 

Figure 4.34). The presentation of the higher or larger numbers and the bigger denominator 

indicates bigger fraction misconceptions was more prevalent in the students who had low 

Fraction Pair scores, whereas gap thinking was less prevalent in students with low Fraction 

Pair scores. Each student is represented by a line or a space on the x-axis, which is numbered 

1 to 88. The students have been ordered by increasing Fraction Pairs score; those with a score 

of 0 are numbered 0 to 4 and are closest to the y-axis and those with a score of 7 are 

numbered 83 to 88 and are furthest away from the y-axis (see Table 4.31). The students have 

the same position (and number) in both graphs. The height of the line represents how many 

explanations (out of seven) by an individual student used the strategies. If these strategies 

were not used by the student, then there is no vertical line. The top graph shows the intensity 

(how many explanations) of the misconceptions of higher or larger numbers and/or the bigger 

denominator indicates bigger fraction. The bottom graph shows the intensity of gap thinking.  
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Table 4.31 

Ordering of Students' with each Fraction Pairs Score from 0 to 7  

 Score 

 0 1 2 3 4 5 6 7 

frequency 4 20 14 18 20 4 2 6 

number 
on graph 

1-4 5-24 25-38 39-56 57-76 77-80 81-82 83-88 

 

 

 

Figure 4.34. Higher or larger numbers and bigger denominator is bigger fraction (top), and 

gap thinking (bottom) in low to high Fraction Pair score order. 
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There were just over a quarter of students with a Fraction Pair score of 0 or 1, and they are 

represented by numbers 1 to 24 on both graphs. The graph of the incidence of higher or larger 

numbers and/or bigger denominator indicates bigger fraction thinking shows a high frequency 

(15 out of 24 students) and a high intensity (many explanations per student) of these whole 

number thinking strategies in the 24 students who had no success or only one correct fraction 

pair. The students with a Fraction Pair score of 0 or 1 accounted for all the instances of these 

strategies being used four, five or six times on the seven fraction pairs. Only four students 

used higher or larger numbers, or bigger denominator indicates bigger fraction thinking, had a 

Fraction Pair score of 2 or higher. Two of the students with a Fraction Pair score of 3 and two 

of the students with a Fraction Pair score of 4 used the two misconceptions. 

On the other hand, only six of these same 24 students with a Fraction Pair score of 0 or 1 

demonstrated gap thinking. Gap thinking lingered for students with a Fraction Pairs score 2 to 

4, (numbered 25 to 76) and there was a range of intensity (number of explanations per 

student), from no use of gap thinking to four gap thinking explanations, in these middle 

performers. One student with a Fraction Pair score of 5 gave a gap thinking explanation, but 

gap thinking was not used by students with Fraction Pair scores of 6 or 7. Gap thinking 

presented differently to the other two whole number strategies. 

The difference in presentation of the three misconceptions, higher or larger numbers and/or 

bigger denominator indicates bigger fraction, and gap thinking also occurs with respect to the 

students' Equivalence scores. A third of the students had an Equivalence score of 0 or 1 so it 

was possible to describe the incidence of these misconceptions in students with a range of 

performance on equivalence tasks. The frequency and intensity of the occurrence of the 

misconceptions higher or larger numbers and/or bigger denominator indicates bigger fraction 

is represented in the top graph in the figure below (see Figure 4.35).  The students are in a 

different order to the graphs above which were ordered by Fraction Pair score (see Figure 

4.34) because in both the graphs below they have been ordered by increasing success at 

equivalence questions. The students have the same position on the x-axis in both the top and 

bottom graphs (see Table 4.32). Students with an Equivalence score of 0 are numbers 1 to 15 

along the x-axis in both graphs. There were no students with an Equivalence score of 13, so 

the five students with an Equivalence score of 12 are numbers 84 to 88 on the x-axis on both 

graphs. In the both graphs below, the intensity (number of explanations) of the 

misconceptions is represented by the height of the vertical line. If an individual did not use of 

the strategies then there is no vertical line from their position on the x-axis.  
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Table 4.32 

Ordering of Students' with each Equivalence Score from 0 to 13  

 Equivalence Score 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency 15 14 4 8 2 3 9 10 5 6 2 5 5 0 

Number on 
graph 

1-
15 

16-
29 

30-
33 

34-
41 

42-
43 

44-
46 

47-
55 

56-
65 

66-
70 

71-
76 

77-
78 

79-
83 

84-
88 

 

 

 

 

Figure 4.35. Use of higher and larger numbers and/or bigger denominator indicates bigger 

fraction misconceptions (above) and gap thinking (below) in low to high Equivalence score 

order.  
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The incidence of the higher or larger numbers and/or bigger denominator indicates bigger 

fraction misconceptions was most prevalent in the students who had success on three or less 

equivalence questions, represented by students numbered 1 to 41. Only three students used 

these strategies out of the students who had Equivalence scores of 4 to 12.  

Gap thinking, on the other hand, presented differently to the other two whole number 

misconceptions. Two students used gap thinking who had an Equivalence score of 0. One of 

these students, Shelby, while getting none of the questions correct that contributed to the 

Equivalence score, did correctly identify 5/8 as larger than 1/2 in the Fraction Pair task (unlike 

all of the other 14 students who also had an Equivalence score 0). Her awareness of 

equivalence was just beginning. The other student, Cath, chose the bigger gap in the fraction 

pair 3/8 and 7/8 which was an unusual presentation for gap thinking. Both of these students 

gave one gap thinking explanation out of seven explanations. The other 13 students with an 

Equivalence score of 0 were giving many incorrect explanations for fraction pair comparisons 

but none of these strategies were gap thinking.  

There was a higher frequency of gap thinking in the students with Equivalence scores 1 than 

of 0 and gap thinking was used by students with Equivalence scores up to 10. The highest 

intensity was in the students with Equivalence scores of 3 to 7.  

The number of students at each Equivalence score was not the same (see Table 4.14). The 

percentage of students using gap thinking at each Equivalence score (see Figure 4.36) 

revealed that gap thinking was not common for students with an Equivalence score of zero, 

emerged at the same time that equivalence knowledge emerged (Equivalence score of 1), 

increased in intensity (number of explanations used by individual students) as early 

equivalence knowledge developed, and then was resolved when students had an Equivalence 

score of 11 and 12. Of the four students who had success with exactly two of the equivalence 

questions, and so were not yet competent with all of the contexts for equivalence, all 

demonstrated gap thinking on at least one fraction pair. Gap thinking affected at least 50% of 

the students in each Equivalence score from 2 to 9. There were no instances of gap thinking 

by students who had an Equivalence score of 11 or 12. Intensities of 2 and 3 instances of gap 

thinking have been shaded the same colour, and intensities of 4 and 5 have been shaded the 

same colour. The higher intensity (four or five gap thinking explanations out of seven) 

occurred across a range of Equivalence scores, from 3 to 7. 
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Figure 4.36. Percentage of gap thinking students at each Equivalence score. 

A non-linear association between gap thinking and equivalence has been described above. 

Using Kendall's tau, the only linear correlation between students' Gap Thinking scores and 

measurement concepts was a negative typical association with CADL, the broken ruler tasks 

(τ = -.239, p = .009). The negative correlation indicated that as performance on broken ruler 

tasks increased, the intensity of gap thinking decreased, and vice versa. The only linear 

correlation between students' Gap Thinking scores and other fraction tasks was a negative 

typical association with the Fraction Pie Part B task (τ = -.214, p = .028) and this task is 

described in section 4.5.2.4. 

Students with an Equivalence score of 2 to 9 (48 students), gave a sub-sample to analyse for 

any linear correlations between gap thinking and other fraction and measurement tasks. The 

percentage of gap thinkers in this sub-sample was much higher than the overall rate, at 70.8%. 

Gap thinking in this sub-group (Equivalence score 2 to 9, with intensity was not factored in) 

had: 

• a negative substantial correlation with Part B of the Fraction Pie (τ = -.370, p = .011), 

• a negative substantial correlation with using a ruler to measure a streamer (TPADL, τ 

= -.344, p = .014), 

• a negative typical association with offering standard units for area measures, TPUNA, 

(τ = -.306, p = .029), and  

• a negative typical association with broken ruler tasks, CADL, (τ = -.288, p = .033). 
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There was no significant association between this gap thinking in this subgroup (with 

Equivalence scores of 2-9) and the students' Multiplication score.  

4.5.2.2.3 Association between Fraction Pair score and measurement concepts. 

There were substantial associations between the students' fraction pairs score and additivity 

measurement tasks in both length and area contexts: broken ruler tasks (CADL), calculating 

the area of half rectangles (CADA) and calculating the area of a rectangle (TPADA) (see 

Table 4.33). There was also a substantial association between the students' Fraction Pair score 

and conceptual units measurement tasks in both length and area contexts (measuring the 

Keyboard (CUNL), and calculating the area of an array with leftovers (CUNA) and offering 

standard units for area measurements (TPUNA)). There was also a substantial association 

between the students' Fraction Pair score and their Multiplication score. 

Table 4.33 

Correlations Between Fraction Pair Score and Measurement Concepts 

 Correlation 

 Minimal  Typical  τ > .20 Substantial  τ  > .34 

Attribute  TPATA τ = .253, p = .007  

Additivity  TPADL τ = .232, p = .010 
 

CADL τ = .342, p < .000 
CADA τ = .398, p < .000 
TPADA τ = .346, p < .000 

Unit   TPUNL τ = .277, p = .003 CUNL τ = .461, p < .000 
CUNA τ = .347, p < .000 
TPUNA τ = .400, p < .000 

Proportionality  CPRL τ = .254, p = .005 
TPRL τ = .234, p = .014 
TPPRA τ = .283, p = .003 

 

Multiplication    MULT τ = .430, p < .000 
 

The fraction pair 2/4 and 4/2 (Q. 22d) included an improper fraction. The Keyboard task (Q. 39) 

also included an improper fraction in the answer, three and three quarters. There were 71.6% 

of the students either correct on both tasks or incorrect on both tasks (see Table 4.34). Of the 

six students who correctly named 4/2 as the larger fraction, one gave an answer with four 

instead of three as the whole number in the Keyboard measurement task. There were 19 

students who correctly named the improper fraction in the Keyboard task as three and three 
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quarters (or other acceptable answer), but 14 of them gave answers to the fraction pair 

question that indicated their unfamiliarity with the symbolic inscription of improper fractions:  

• some students flipped the 4/2 to make 2/4, 

• some students said 4/2 was not a fraction, and  

• some students said there were the same numbers in both. 

Table 4.34 

Students Performance on the Fraction Pair 2/4 and 4/2 and the Keyboard Task 

 Fraction Pair 2/4 and 4/2 correct Fraction Pair 2/4 and 4/2 incorrect 

Keyboard task correct 29 19 

Keyboard task incorrect 6 34 

 

4.5.2.3 Non-congruent area diagrams: Fold Me a Quarter task. 

The Fold Me a Quarter task (Q. 13) was chosen to assess another aspect of the measure sub-

construct of fractions; the use of fraction understanding to quantify non-congruent parts of an 

area diagram. The student was asked to fold a kinder square piece of paper into quarters, and 

when they had done that, to fold another kinder square into quarters another way (see Figure 

4.37). I then used their pieces of paper to ask them to compare the area of one part 

(square/triangular/rectangle quarter) of the paper with one part on their other kinder square. 

After this area comparison, I showed them another kinder square that I had folded into 

quarters another way (I had all three foldings prepared and showed whichever they had not 

used) and asked them to compare the area of one of those parts with the parts on their folded 

kinder squares. This made three comparisons: square with triangle, square with rectangle, and 

rectangle with triangle. Students were given a score out of 3 according to the number of 

successful comparisons that they made. A score of 3 was achieved by 61.4% of the students, 

5.7% achieved a score of 2, and 33% achieved a score of 0 or 1. 
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Figure  4.37. Non-congruent quarters in Fold me a Quarter task. 

Successful explanations used fraction reasoning, dynamic imagery, or comparisons by eye.  

Claire used fraction reasoning when comparing the triangle and square parts that she had 

folded, saying, "No they're the same, because they are the same pieces of paper [touches both 

kinder squares] and.", and concluding after prompting, "And each piece of paper has the same 

amount um sized quarters." When shown a new kinder square folded into rectangle quarters 

she successfully explained that "Um that one's the same size, but it's just in a different shape." 

Sylvie also explained correctly for her own folding "Because they are same size of paper and I 

just folded them in quarters but different ways" and similarly when comparing my folded 

kinder square with her own "Because they are the same size of paper and both cut into four". 

The dynamic imagery strategy was similar to that used in the Similar Shapes task (Q. 36h) 

(see Figure 4.4), with students mentally breaking the triangle quarter and rearranging it to 

make the square.  

Incorrect explanations included noticing that the perimeter was longer on the triangle and 

concluding that that would indicate a bigger area. Some of the students who had a score of 0 

or 1 had explanations revealing this misconception. For example, Tyler explained that the 

triangle part was larger (I had used the word area in the question) "'Cause the outside is 

longer." Tyler identified that the perimeter of the triangle was longer (correctly), but 

extrapolated (incorrectly) that that also indicated a bigger area. Other incorrect answers were 

less clear, such as Alex's: "Because this, oh hang on. It's because it's a bit more wider [touches 

triangle] than this one [touches square]. Because this is all equal [points to square] edges, and 

not here [points to triangle]". He may have been using perimeter comparisons or area 

comparisons but it was difficult to tell from his explanation.  
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Despite the Fold Me a Quarter task and the Similar Shapes task (see Figure 4.4, Q. 36h) both 

assessing the comparison of non-congruent areas, there was not a significant association 

between them (using Kendall's tau). Of the 54 students (61.4%) who had scored 3 on the Fold 

Me a Quarter task (see Figure 4.38), 49 (43 and 6) also explained that the shaded shapes in the 

Similar Shapes task had the same area. However, six of the 49 who stated that the areas were 

the same (incorrectly) reasoned specifically that this was because the perimeters were the 

same. A further 32 did not articulate this same area equals same perimeter reasoning in the 

area comparison (Q. 36h) but they had identified incorrectly that the perimeters were the same 

during the perimeter comparison (Q. 36g). Of the 54 students who made three correct area 

comparisons in the Fold Me a Quarter task, 11 of them also correctly identified the shaded 

areas in the Similar Shapes task as the same (using fraction reasoning, dynamic imagery or 

global visual comparisons) and that the triangle had the larger perimeter. Hence overall, 

12.5% of the 88 students successfully compared all non-congruent areas in the Fold Me a 

Quarter task and the shaded shapes in the Similar Shapes task (Q. 36h), and successfully 

compared the perimeters in the shaded shapes (Q. 36g). These 11 students used dynamic 

imagery to rearrange the area or fraction reasoning on all three of the Fold Me a Quarter area 

comparisons.  
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Figure 4.38. Comparison of students' with Fold Me a Quarter score of 3 and performance on 

Similar Shapes shaded shapes questions. 

Five students made two correct comparisons in the Fold Me a Quarter task. Three of them 

explained that the areas of the shaded shapes were the same in the Similar Shapes task (Q. 

36h) and that the perimeter of the shaded triangle was longer (Q. 36g). 

There was a much higher frequency in the low performing group (Fold Me a Quarter score of 

0 or 1) (see Figure 4.39) of correctly identifying the shaded triangle as having the longer 

perimeter, than there was in the high performing group (Fold Me a Quarter score of 3). 

However, for five of the six students, this then led to the conclusion (incorrectly) that the 

shaded triangle also had the larger area.  
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Figure 4.39. Comparison of students' with Q. 13 Fold Me a Quarter score of 0 or 1 and 

performance on Similar Shapes shaded shapes questions (Q. 36g and h). 

Perimeter comparisons were more successful in the students with weaker area knowledge but 

increased skill at area comparisons appeared to disrupt perimeter knowledge rather than add 

to it. There was no probing about perimeters in the Fold Me a Quarter task, so the 

misconception that perimeter and area were always related was not revealed in this task. 

The Puzzle task (Q. 57) required geometric reasoning or dynamic visualisation to rearrange 

three shapes into a square. More students who made none or one successful area comparison 

in the Fold Me a Quarter task were unsuccessful at the Puzzle task than successful (see Table 

4.35). However, of the 54 students who gave three correct explanations for the area 

comparisons of the three non-congruent quarters in the Fold Me a Quarter task, 26 were 

successful on the Puzzle task and 28 were unsuccessful. 
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Table 4.35 

Comparison of performance on the Puzzle task and the Fold Me a Quarter task 

 Fold Me a Quarter non-congruent area comparisons 

 3 correct 2 correct 0 or 1 correct 

Puzzle correct 26 3 7 

Puzzle incorrect 28 2 22 
 

4.5.2.4 Non-equal-parts diagrams. 

Two tasks are reported in this section, the Fraction Pie task and three questions from the 

Fraction Sort task. 

4.5.2.4.1 The Fraction Pie task. 

The Fraction Pie task (Q. 14) was a non-equal-parts diagram and the student was asked what 

fraction of the circle was Part A and what fraction of the circle was Part B (see Figure 4.40). 

Initial double coding using transcripts and video footage of 58 of the 88 students completing 

the task was carried out by a practicing secondary mathematics teacher who also had a 

Masters by Research degree in mathematics education. An abbreviated coding protocol was 

used with 18 descriptors. These descriptors and the task were not familiar to the double coder. 

One error of my coding of correct/incorrect was picked up by the double coder in a student's 

self corrected response to Part A. Given that this was the only error in 116 answers, I am 

confident about using my coding of correct and incorrect answers. A second, detailed coding 

and double coding of all explanations for answers of one third, one fifth, two fifths, one 

seventh, and two sevenths using transcripts (including from audio files) was completed. Any 

discrepancies in coding were resolved through discussion. 

 

Figure 4.40. Fraction Pie task diagram.  
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The frequency of success on Part A of the Fraction Pie task, recognising one quarter, was 

70.5%. The correct answer to Part B was a sixth, and 27.3% of students in the present study 

were successful at both offering this answer and a mathematically correct explanation. All 

students who were successful on Part B had been successful on Part A.  

Some students appeared to recognise the shape of the quarter in Part A of the Fraction Pie task 

as a prototype. For example, Noah explained "'cause it's a circle and. I just know that because 

if I see a circle and I see that. I just know it's a quarter, I just do." Other students mentally 

broke the left hand side of the diagram into a half of a half and Alec described this as "well A 

and E take up half [touches A and E], and they have the same area, so you cut that in half and 

A's a quarter." Some students imagined the radius between A and E and mentally extended it 

across the right hand side. This explanation might also be a justification after recognising a 

prototype but there is no specific evidence of that in explanations such as Felix's: "'Cause if 

you did four quarters, it would be half and half [traces real diameter and imaginary diameter 

extending from radius between A and E]".  

Successful strategies in Part B included either imagining the left hand side divided 

symmetrically as a mirror image of the right hand side, or numerically calculating that three 

on one side would mean six altogether. For example, Jack explained "There's three of the 

same size on this side. So that means there would be able to fit, uh, three of the same shape on 

the other side. And that's six. And that would be one of them." No student expressed their 

strategy specifically in an operator context; one third of a half is one sixth.  

Mathematically correct strategies that were not executed correctly in Part B included 

comparing the size of Part B to a quarter (the size of Part A). This appeared to use either an 

operator approach or a unit-forming approach. However, no children were coded as correct 

using these approaches as they either gave an incorrect answer or could not explain their 

answer of one sixth with sufficient detail. In all, 23.1% of the students approached 

quantifying Part B by comparing it to Part A (a quarter).   

The operator approach was used by Matthew who used geometrical reasoning to state 

correctly that Part B was two thirds of a quarter, but was unable to name this as one sixth and 

so was coded as incorrect. Zak gave the answer of point seven, explaining "It would be. I 

don't really know how to say it. I think it would be, maybe zero point seven." When asked to 

explain he added, "That's a quarter [points to A] and if [lays pen across imagined diameter], 

that would be zero, under one [points to B], so." Zak appeared to be describing Part B as 0.7 
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of a quarter but may have lost track of the unit because he left his answer as point seven and 

was coded as incorrect. 

Other students may have been using a unit-forming approach, imagining Part B plus a small 

part equalled a quarter. The correct calculation would have been a sixth plus a twelfth equals 

a quarter and in this context, answers of one fifth, one seventh, one eighth, and one third 

(thought to be the unit fraction smaller than one quarter) were estimates of the part that was 

"nearly a quarter". Some students used faulty partitioning and thought that Part B was half a 

quarter. It is not clear from explanations such as Elsie's, that Part B was "Um, slightly smaller 

than a quarter", or Lara's, that Part B was "I don't know, it's a quarter of a quarter, yeah, three 

quarters of a quarter",  whether these were a unit forming (correct additive) or an operator 

(correct multiplicative) approach. 

Two students gave the correct answer of one sixth but their explanations were not sufficiently 

precise to be coded as correct. However, these two students were using a mathematically 

correct strategy, they compared the size of Part B to the quarter (Part A), but could not fully 

explain it: 

• Claire said "Because a quarter is four and half is two so that's half of a quarter, [half?] 

is going to be a sixth."  and 

• George said "Because half a quarter. I think it's half of a quarter so it might be a 

sixth." 

The frequency of the incorrect answer of one third on Part B was 12.5%. Eight of the 11 

explanations concentrated on the right hand side (three parts). Some did not mention the left 

hand side, but others explicitly said that there were parts of different sizes in the whole circle. 

For example, Emma explained her answer of a third "'Cause in this half they're in thirds. 

There's three things and it's one, there's one of them so that makes it one third." The other 

three answers of one third were accompanied by explanations that compared Part B to Part A 

(but the students thought incorrectly that 1/3 was smaller than 1/4.) 

The answer of one fifth could be due to the double count misconception because there were 

five parts. However, there were a variety of explanations that were offered for an answer of 

one fifth or two fifths. Four students used the unit forming or operator approach described 

above (and are represented by strategy 1 on Table 4.36). One other student did not 

demonstrate any double counting behaviour, but gave the answer of one fifth (Strategy 2). 

Alex tried to make equal parts by tracing imaginary lines on the fraction pie and then touching 
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five imaginary pieces clockwise around the circle. It was a geometrical and almost iterative 

approach, but unsuccessful. Strategies 1 and 2 were mathematically correct approaches but 

executed inaccurately. 

Table 4.36 

Different Explanations of an Answer of 1/5 in the Fraction Pie task 

 Strategy Frequency

1 Part B is 1/5 because it is almost a quarter (Part A); estimating using operator 
thinking or unit forming thinking.   

4

2 Part B is 1/5; iterating inaccurately.   1

3 Parts A and B are both a quarter and a fifth depending on whether it is area 
or number  that is relevant ("how much room"  or "how many pieces"). 

1

4 Part A and B are both fifths, but not equal fifths. 1

5 Part A is a quarter and Part B is a fifth, but not an equal fifth. 1

6 Part A is two fifths because there are five parts but A is twice as big as B; 
and Part B is one fifth because the piece is half the size of A. 

1

7 Part A is one fifth because there are five pieces, but Part B is two sevenths 
because there are two Bs in an A (seven parts).          

1

8 Part A is one fifth and Part B is two fifths because there are non equal parts. 1

9 Part A is a fifth because there are five pieces, but Part B is a third using 
operator thinking or unit forming thinking. 

1

10 Part A is one quarter and Part B is one fifth because there are five pieces.  2

11 Part A is one fifth as is Part B because there are five pieces. 8

12 Part A is one fifth and Part B is two fifths because A is already coloured; or 
because it is the second fifth. 

2

 

 The next nine students, Strategies 3-10, offered variations of double counting behaviour but 

indicated that the size difference between the pieces had been noticed. For example Ruby 

explained why Part B was a fifth but not an equal fifth "because there are five pieces in it. 

Um, it would be an equal fifth if they were a bit smaller and they were the same size, but 

they're not. Because those two are bigger than those three; so technically they're fifths, they're 

just not equal fifths." Shannon also offered a conditional double counting explanation for Part 

A "it is one quarter though because how much room it has. But still it's one fifth 'cause how 

many pieces there is." Students qualified their double counting behaviour by offering different 

answers for Part A and Part B. For example, Ebony argued that Part A is one fifth because 

"it's split up into fifths, but not equal" but Part B was two fifths. In Ebony's explanation, the 
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difference in size between Part A and Part B had been noticed and a different name offered 

for the second part. This was not always the case for a second answer of two fifths (see 

Strategy 12).  

Many successful students had imagined the entire right hand side of the fraction pie flipped 

back to make a left hand side, and could see this would make six equal parts. However, all the 

students who imagined the radii on the right hand side of the diagram extending back through 

A and B, made seven parts, (see the left hand side image of Figure 4.41). I believe that they 

thought that these parts were equal parts (not noticing that there would be four in one half and 

three in the other half). Other students visually estimated Part B to be half of Part A, and for 

some this was confirmed (mistakenly) by this same extending back of the radii from the right 

hand side, (see the right hand side image of Figure 4.41). For some of these students, Part A 

was two sevenths because it was made of two pieces of Part B which was one seventh  

because it was one out of seven (supposedly) equal parts. Sometimes this was overlaid with 

(conditional) double counting behaviour. For example, while Part A was one fifth  because 

there were five parts, Part B was two sevenths because there were seven parts imagined. For 

example, Cameron explained "if you've got two Bs or two Ds, if you add them up together 

then it should make one A. So it's two and the total of the other ones. One, two, three, four, 

five, six, seven." Trying to make equal parts was a mathematically correct partitioning 

strategy, but in these examples it was not executed successfully. 

  

Figure 4.41. Lines imagined by students attempting to make equal parts on the Fraction Pie 

task. 

The final two strategies, (11 and 12), were true double count behaviours with Mia explaining 

"In fractions, how many is coloured in goes on top, yeah. And then you count the squares of 

the whole thing and you put that underneath." Unconditional double counting on both Part A 

and Part B was used by 9.1% of the students and both parts were named one fifth. Two 

students gave different answers to Part A and Part B, naming Part B two fifths, but there was 
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no evidence in their explanation that they did this because they had noticed that the parts were 

unequal. Josh visualised double counting and so had already mentally coloured in Part A 

before mentally colouring in Part B, explaining his answer of two fifths as "I just did that one. 

And then that one would be coloured. So that's one, two." Tamika named Part B two fifths 

because it was the second fifth, explaining that she worked it out "The same as A, except that 

it's the second". 

An answer of one fifth for Part B was offered by 21.6% of the students (this excludes 

Strategies 7, 8, 9 and 12 because another answer was offered for Part B). Under half of these 

answers of one fifth were accompanied by unconditional double counting behaviour. While 

28.4% of students in the present study gave an answer of one fifth in Part A and/or Part B, 

five of the 24 were attempting to use mathematically sound strategies; nine of the 24 qualified 

their double counting explanations; and ten of the 24 used double counting without 

qualification in both Part A and Part B, explaining that both parts were one fifth because there 

were five pieces (or two fifths because it was the second fifth).  

4.5.2.4.2 The Fraction Sort task. 

The Fraction Sort task consisted of 24 cards (fraction diagrams) that the students had to sort 

into piles labelled 1/4, 1/6, 2/3 and other. Diagrams were used that assessed students' knowledge 

of unit (1/4 and 1/6) and non-unit (2/3) fractions in discrete, length, and equal parts and non-

equal-parts area diagrams. Some of these cards were used to assess students' knowledge of 

equivalence (see section 4.5.1.1). Seven of the cards used to assess students' understanding of 

area representations of unit and non-unit fractions (see Figure 4.42) were a circle divided into 

six equal parts (Q. 19a), a circle divided into quarters (Q. 19g), a square divided into quarters 

(Q. 19h), a circle divided into three equal parts with two shaded (Q. 19q), a rectangle divided 

into three parts with two shaded (Q. 19p), a rectangle divided into four unequal parts, one of 

which was a sixth (Q. 19b) and a triangle divided into three unequal parts (Q. 19r). The 

triangle area diagram was actually an equivalence task and while two students mentally 

restructured and named the shaded part six ninths, they put the card in other, instead of 2/3. 

However, it could also be used to explore students' understanding of non-equal-parts 

diagrams. One of the cards used to assess students' understanding of length representations of 

unit fractions was a line with a middle quarter shaded (Q. 19l). 
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(19a) 97.7% (19g) 100% (19h) 97.7% (19l) 81.8% 

 

(19q) 98.9% (19p) 100% (19b) 50% (19r) 0% 

Figure 4.42. Frequency of success on some Fraction Sort cards.  

Due to the size of the task, a sub-group of ten students' answers and explanations for all 24 

cards were double coded by a mathematics education lecturer. There were no disagreements 

over correctness of the students' responses. Using simplified coding descriptions, all 

discrepancies in coding were resolved through discussion.  

Students' correct strategies for Q. 19b, the non-equal-parts diagram of 1/6, included imagining 

an extra line to make equal parts (see Figure 4.43). The frequency of success on this card was 

50%, while 25% gave an incorrect answer but noted the unequal parts, and 25% gave an 

unconditional double count explanation. 

 
 

Figure 4.43. Students' imagined lines for the Fraction Sort cards. 
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While no students were able to see the equivalence of 6/9 as 2/3 (Q. 19r), two students were 

able to see that six out of nine equal parts were shaded after mentally restructuring the 

diagram (see Figure 4.43). Including these two students, and those who answered other, and 

those who answered two thirds but noted that the pieces were not the same, 37.5% of students 

noted that that the diagram did not have equal parts. However, 62.5% either stated the answer 

was 2/3 or gave an unconditional double count explanation.  

Double counting behaviour was observed in the rectangle sixth (Q. 19b) and the triangle (Q. 

19r) as well as the non-equal parts Fraction Pie task (Q. 14) (see Table 4.37). The Fraction Pie 

task had the lowest rate of double counting behaviour, but this was partly due to students 

being asked about both parts which drew their attention to the fact that the parts were different 

sizes. The highest rate of unconditional double counting behaviour was observed in the 

triangle 2/3. Overall, 69% of students demonstrated double counting (including Strategies 7, 8, 

9, 10, 11, and 12 in Table 4.36) in one or more of the four questions: Fraction Pie Part A, 

Fraction Pie Part B, Q. 19b, and/or Q. 19r. Increasing geometrical complexity of diagrams 

increased the rate of double counting, but 31% of students did not use this strategy in any of 

these four questions. This 31% was made up of students from all three schools in the study. 

Table 4.37 

Frequency of Unconditional Double Counting Explanations in the Fraction Pie Task and Two 

Non-Equal Part Fraction Sort Cards 

Fraction Pie (Q. 14) rectangle 1/6  (Q. 19b) Triangle 6/9 (Q. 19r) 

11.4% 25% 62.5% 
 

Clearly, mentally restructuring the triangle was the geometrically the most difficult for the 

students. The students found it easier to imagine the equal parts in the rectangle than they did 

in the circle (both sixths) as demonstrated by the higher frequency of success of Q. 19b (see 

Figure 4.3). All four students who partitioned the Fraction Pie into seven parts by extending 

the radii on the right hand side back through the left hand side (see Figure 4.41) correctly 

made equal parts on the non-equal parts rectangle (Q. 19b). It was easier to make six equal 

parts successfully in the rectangle (Q. 19b) than the circle (Q 14b). However, the fraction 1/6 

in a circular inscription, in itself, was not an impediment for 97.7% of the students who 

placed the equal parts sixth card (Q. 19a) correctly (see Figure 4.42). Similarly, all students 

correctly identified the quarter in Q. 19g, so for the 29.5% of the students who could not 
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identify the quarter in the Fraction Pie Part A, it was not the fraction 1/4 in a circular 

inscription, in itself, that was the problem. 

It was also observed that students did not necessarily offer the same explanation across the 

three tasks. In fact, Mia who is quoted above defining double counting behaviour (Strategy 12 

in Table 4.36), successfully restructured the rectangle to see one sixth. She was one example 

of students who used different explanations on different tasks and 71.6% of the students did 

this. Only four students (4.5%) demonstrated unconditional double counting on Part A and B 

of the Fraction Pie task, the rectangle 1/6, and the triangle 6/9. Another student gave the double 

count answer for each of the questions, but explained each times that the parts were not equal. 

Of the 22.7% of students who gave correct responses for Part A and Part B of the Fraction Pie 

and the rectangle one sixth, just less than a third of them resorted to double counting when 

confronted with the triangle (Q. 19r). Similarly, of the 29.5% of students who correctly 

explained that Part B of the Fraction Pie was a sixth, not all of them correctly restructured the 

rectangle (Q. 19b) to see a sixth, but none of them gave an unconditional double counting 

explanation. 

The students' who used double counting across the fraction sort tasks had similar sounding 

explanations for each question, indicating that they were not attending to the size of the parts 

of the diagrams. However, many students who were successful on non-equal-parts diagrams 

also had double count sounding phrases in their explanations for cards that were equal-parts 

diagrams (see Table 4.38). 
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Table 4.38 

Explanations for Fraction Sort Cards Illustrating the Double Count Phrasing 

Task Explanations 

19g 
circle 
one quarter 
equal parts 

Jess: I put that there because there's four and only one shaded in and that's 
a quarter. 
Jade: A quarter. 'Cause, um, there's one coloured in and [mumble] there are 
four 
 

19g 
circle 
one sixth 
equal parts 

Jess: [touches each segment with little finger as a count. Thinks. Then 
places in sixth pile] I put it there because there's six there and then there's 
one um shaded, and there's six. 
Jade: One sixth because there's six pieces and one's coloured 
 

19b 
rectangle 
sixth 
non-equal parts 

Jess: Yeah I put that there [quarter] because there's four shaded [sic] and 
one shaded and it's a quarter. 
Jade: One sixth, because if you put a line down there [indicates with 
finger] there would be six spaces; one coloured. 
 

19r  
triangle 
6/9 = 2/3 
non-equal parts 

Jess: That's kind of the same of all of those [indicates other cards in 2/3]. 
And that would be really weird if I did a different decision...  
Jade: Same as that one [points to rectangle 2/3 in two thirds pile]. Oh wait. 
Other because that space's smaller [touches shaded tip] 

4.5.2.4.3 Association between Part B of the Fraction Pie task and measurement 

concepts. 

There was a substantial association between students' performance on Part B of the Fraction 

Pie task and the conceptual tasks of the units concept in a length context (CUNL) (see Table 

4.39). The entry-level task for this category was the Keyboard task.  
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Table 4.39 

Correlations Between the Part B Of The Fraction Pie Task and Measurement Concepts 

 Correlation 

 Minimal  τ  > .07 Typical  τ > .20 Substantial  τ  > .34 

Attribute    

Additivity  CADL τ = .201, p = .043 
CADA τ = .269, p = .007 

 

Unit   CUNA τ = .231, p = .031 
TPUNA τ = .324, p = .002

CUNL τ = .413, p < .000
 

Proportionality  CPRL τ = .207, p = .042  

Multiplication   MULT τ = .334, p = .001  
 

The double count misconception in the Fraction Pie task (Part A and Part B) had two 

presentations: unconditional (both parts were one fifth because there are five pieces) and 

conditional (either including a coda such as "but not equal fifths", or indicating that the two 

parts had different fraction names) (see Table 4.36). Of the ten students who gave 

unconditional double count responses to the Fraction Pie task, three gave the correct answer 

of three and three quarters to the Keyboard task (Q. 39). One student offered the imprecise 

estimation three point nine. The other incorrect answers were four and a third, four and a half, 

three and a quarter, three and a bit, three and two halves, and twelve centimetres. Of the nine 

students who gave conditional double count explanations for the Fraction Pie task, five of 

them gave the correct answer to the keyboard. 

4.5.3 The quotient sub-construct. 

The Sharing Custard Tarts task (Q. 20) was designed to assess the students' understanding of 

the quotient sub-construct of fractions. Each of the four questions was presented with the task 

card and figurines (e.g. Q. 20a, see Figure 4.44) and the children could use pen and paper to 

work out their solutions. Some students drew lines from the people to their shares to keep 

track. There were successful strategies mostly at the intuitive level using partitioning and unit 

forming understandings and 22.7% of the students could successfully partition three strips of 

liquorice to share equally between five people and name the share as three fifths, or six tenths. 

A further 39.8% of the students could divide the liquorice so that every person had an equal 

share, either as fifths or a half and a tenth, but could not name the share successfully. 
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Figure 4.44. Sharing Liquorice, three pieces between five people (Q. 20a). 

In the area context (Q. 20b, see Figure 4.45), 26.1% of students could successfully make five 

equal shares and name it correctly, and a further 36.4% could make five equal shares, either as 

fifths or a half and a tenth, but were unsuccessful at naming this correctly. Harry found the 

partitioning difficult with a circular area diagram. He divided a circle into six parts and after 

puzzling over more drawings he thought aloud, "there's no way you can cut it up into five 

pieces".  Harry was able to articulate the need for partitioning into five parts but could not 

execute it and appeared unable to use an abstract conjecture, if it was cut into five pieces I 

would... In contrast, he had mentally partitioned the liquorice strip into five and marked the 

divisions with a sweep of the back of a pen. He had then drawn the partitioning on his own 

diagram adding the abstract explanation, "it's even"; indicating to the interviewer that for the 

purposes of sharing, the pieces were equal sized even if his drawn pieces were not quite even. 

 

 

Figure 4.45. Sharing Custard Tarts, three pieces between five people (Q. 20b). 

Two further questions were asked with similar task cards and figurines. An improper fraction 

answer (7/5 or 12/5) was generated by the problem of five people sharing seven custard tarts 

(Q. 20c) and 20.5% of the students could successfully share and name the share in this 

problem. A further 35.2% of the students could create or imagine equal shares but could not 

name one person's share successfully. An easier division, but still resulting in an improper 

fraction answer, was needed to calculate nine pieces of liquorice shared equally between four 

people (Q. 20d). Either repeated halving, or dividing into quarters led to the correct answer of 

21/4 and 61.4% of the students did this and named one person's share correctly, while a further 

13.6% could do the sharing but not name the share correctly. 
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One of the 88 students successfully offered a fraction as division explanation, three shared 

between five is three fifths, and only on one of the four questions. So as a test of the technical-

symbolic level of understanding of the quotient sub-construct, this understanding was used 

successfully on only 1 out of 352 occasions (0.003%).  

4.5.4 The operator sub-construct. 

The Simple Operators task (Q. 18) was used to assess the operator sub-construct. Three initial 

questions were solved mentally, but students were not asked to explain their answers. As 

reported in the description of the baseline performance of the group (see section 4.1 above), 

98.9% of the students said that three was half of six. However, only 39.8% could calculate 

that two and a half times six was 15. Incorrect answers included: thirteen, thirteen and a half, 

and eighteen. These answers indicated that the students could double six but were unsure 

about what to do with the half, despite having just been asked, half of six. Two thirds of nine 

was calculated mentally by 68.2% of the students. For the last two questions of this task the 

students could use pen and paper. The fraction problem a third of a half was successfully 

solved by 25% of the students. 

4.5.5 The ratio sub-construct. 

The Bookworms task (Q. 12) required the students to quantify the proportional change in 

books eaten, given different amounts for different bookworms (see Figure 4.46). The 

bookworms ate six times, three times, and twice as much (left to right) as the one on the far 

right. In the first question, one book was placed under the bookworm on the far right (Q. 12a) 

and 71.6% of the students successfully explained that the other bookworms would eat (right 

to left) two, three, and six books. Four books were placed under the bookworm second from 

the right (Q. 12b) and 51.1% of the students successfully explained that the bookworms 

would eat (right to left) two, four, six, and twelve books. Nine books were placed under the 

bookworm third from the right (Q. 12c) and 46.6% of the students successfully explained that 

the bookworms ate (right to left) three, six, nine, and eighteen books. Overall, 40.9% of the 

students were successful on all three questions. There were many different incorrect answers 

offered for the three scenarios presented, some additive rather than proportional, but only 

eight which did not have four amounts from smallest to largest (right to left) and six of those 

had a repeated value.  
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Figure 4.46. Fractions ratio sub-construct, Bookworms task Q. 12. 

4.5.6 Correlations between Equivalence score and other fraction sub-constructs. 

The students' Equivalence score (0-12) had substantial associations with their performance on 

other fraction concepts (see Table 4.40). The measure sub-construct was represented by the 

students' Number Line score (see section 4.5.2.1.4), the Fraction Pair score (see section 

4.5.2.2.1), and Part B of the Fraction Pie task (see section 4.5.2.4.1). Using Gilpin's 

conversion table (1983), there was a common variance of 51% (and a substantial association) 

between the students' Equivalence score and their Number Line score. However, there was no 

significant association (p = .167) between the students' Equivalence scores and Q. 16g, the 

decimal number line representing 6.8. It was not surprising that there was a substantial 

relationship between the students' Equivalence score and their fraction pairs score as there 

were two questions in common (Q. 22b and Q. 22f). However, there was no significant 

association (p = .096) between the students' Equivalence score and comparing the fraction 

pair 3/8 and 7/8 (Q. 22a). There was also a substantial association between the students' 

Equivalence scores and Part B of the Fraction Pie task. 
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Table 4.40 

Correlations between Equivalence score and other fraction concepts 

 Correlation 

 
Minimal 
τ  > .07 

Typical 
τ > .20 

Substantial 
τ  > .34 

Measure  (Q. 16) Number Line Score   τ = .510, p < .000

               (Q. 22) Fraction Pairs Score   τ = .674, p < .000

               (Q. 14) Fraction Pie Part B   τ = .418, p < .000

Quotient (Q. 20a) Liquorice 
                (Q. 20b) Custard Tarts 

 τ = .262, p = .002 
τ = .336, p < .000

 

Operator  (Q. 18b) 2 1/2 x  6    τ = .447, p < .000

Ratio  (Q. 12) Bookworms   τ = .390, p < .000
 

The operator sub-construct was represented, in these correlation calculatons, by just one 

question, what is two and a half times six? There was a substantial correlation between the 

students' Equivalence score and the operator sub-construct. There was a substantial 

association between the students' Equivalence score and the ratio sub-construct represented by 

the students' performance on the Bookworms task (Q. 12), although it had the weakest effect 

size of the substantial correlations presented here.  

Summary 

In the first section of this chapter I reported tasks with 100% frequency of success and 0% 

frequency of success to describe the base line and upper limits of the students' performance in 

the present study. In the second section of the chapter I presented the frequency of success on 

measurement concepts, and described students' strategies, evident in their explanations, to 

some of the tasks. In the third section of this chapter I reported on the frequency of success of 

the tasks designed to distinguish between geometric thinking and dynamic imagery, but was 

unable to provide frequencies of the use of each strategy. In the fourth section I reported the 

students' Multiplication score calculated from their performance on four of the multiplication 

questions included in the multiplication and division section of the interview. The last, and 

largest section of this Results chapter reported students' frequencies of success, pathways 

through tasks, and strategies evident in their explanations on the fraction concept of 

equivalence and the sub-constructs of measure, quotient, operator, and ratio. The associations 

between fraction concepts and measurement concepts were reported. 
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Quotations of students' explanations of successful strategies and misconceptions, transcribed 

from audio or video recordings, provided illustration and evidence of specific strategies. 

Examination of the data by six different double coders enabled me to report on frequencies of 

success and frequencies of specific strategy use with confidence.  

The Results chapter has been structured by tasks, categorised under constructs. The data can 

now be analysed in terms that interrogate the three research questions that developed out of 

the literature review. The following Discussion and Implications chapter draws together the 

threads of common understandings or observations across different tasks in order to elaborate 

on these three key questions. 
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Chapter 5: Discussion of results and 

implications of the present study 

This chapter has been structured by the research questions. These research questions emerged 

from a review of the literature as did the criteria for task selection for the one-to-one task-

based interview.   

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

I discuss the strategies children's explanations reveal, the association between performance on 

measurement tasks and performance on fraction tasks, and the explanatory power of Kieren's 

four-three-four model. The implications arising from the discussion of the findings have been 

presented with the discussion of each question.  

5.1 Research Question 1: students' strategies and explanations 

The first research question addressed is:  

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

Correct strategies and misconceptions were evident in the students' explanations. These 

included: 

• the perimeter indicates area misconception, and the same area indicates same 

perimeter misconception; 

• correct unit-forming and correct operator thinking (not successfully executed); 

• dynamic imagery and geometric reasoning; 

• the gap thinking misconception; and 

• correct benchmarking thinking (sounding like the gap thinking misconception). 
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The literature on misconceptions as a perfectly good rule misapplied was the starting point of 

the interpretation of the students' responses to interview tasks (see e.g. Cockburn, 2008; 

Ginsberg, 1997; Thompson, 1982). A misconception may be sometimes a partial 

understanding along a path to a more correct or a fuller understanding. All the strategies are 

discussed and connected to the research literature from the Literature Review chapter to both 

confirm or refine descriptions of correct strategies and misconceptions, and to note the 

prevalence of individual misconceptions.  

A straightforward understanding of answer and explanation based on work by M. Clements 

and Ellerton (1995; 2005) has been described in the Methodology and Methods chapter:  

• correct answer, correct reasoning 

• correct answer, incorrect reasoning 

• incorrect answer, mathematically correct/partially correct reasoning 

• incorrect answer, incorrect reasoning 

The analysis of strategies in this chapter shows that these categories could be used to describe 

the answers and explanations of students in the present study and further elaboration of these 

categories is illustrated by the students' explanations.   

Some research literature from the study of classroom interactions has been used in the 

interpretation of results and to frame the implications of the findings of the present study and 

includes: 

• sociomathematical norms: "what counts as a different mathematical solution, a 

sophisticated mathematical solution, an efficient mathematical solution, and an 

acceptable mathematical solution" (Cobb & Yackel, 1996);   

• teacher listening behaviours (Davis, 1997; Empson & Jacobs, 2008);  

• specialised content knowledge (Hill, Ball, & Shilling, 2008). 

5.1.1 The perimeter indicates area, and the same area indicates same perimeter 

misconceptions. 

The perimeter/area misconceptions were illustrated in the students' explanations of their 

reasoning in the Similar Shapes task (Q. 36g and h) and the Fold Me a Quarter task (Q. 13). 

There were instances in both the Fold Me a Quarter task and the shaded shapes pair of the 

Similar Shapes task (Q. 36h) of students using the magnitude of the perimeter of the shapes as 

a justification for their decision about the magnitude of the area of the shapes. In the Fold Me 

a Quarter task (see Section 4.5.2.3), students such as Tyler concluded that the triangle part 
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(one way he had folded into quarters) was larger than the square part (the other way that he 

had folded into quarters)  because "the outside's longer". This explanation was evidence of the 

perimeter indicates area misconception. The power of "topological intuitions" had been 

described by Piaget et al. (1960, p. 279) and noted in the intervening 50 years (see e.g. Barrett 

& D. Clements, 2003; Doig, Groves, & Fujii, 2011; Kidman, 2001).  

It seems perceptually counter-intuitive that a longer perimeter does not correspond to a larger 

area because in the case of similar shapes, the magnitude of the perimeter can in fact indicate 

the magnitude of the area. This was illustrated by the first two pairs of similar shapes in the 

present study (see Figure 4.4, Q. 36a and b, Q. 36b and c). Perimeter indicates area thinking 

was a mathematically correct strategy in these two pairs. One attribute (length) could be used 

to describe another (area). However, the magnitude of the perimeter did not indicate the 

magnitude of the area in the last two pairs of the Similar Shapes task (Q. 36e and f, Q. 36g 

and h). In the third pair of the Similar Shapes (Q. 36e and f), the perimeters of the non-similar 

rectangles were the same but the areas were different. And in the last pair, the perimeter of the 

shaded triangle was longer than the shaded rectangle but the areas of the shaded shapes were 

the same.  

Using perimeter indicates area thinking in the last two pairs of shapes was a perfectly good 

rule misapplied or "faulty extensions of productive prior knowledge" (Smith et al., 1993, p. 

152). In the wider field of mathematics education, the incorrect approaches of students on 

tasks were usually coherent and logical (Jenkins, 2010), and reasonable from the student's 

perspective (Cobb, 2011a). In the present study, seven students (8%) correctly explained that 

the perimeter of the shaded triangle was longer (Q. 36g) but incorrectly concluded that the 

shaded triangle had a larger area (Q. 36h). These students were inappropriately generalising, 

in the context of triangles and squares, that the magnitude of the perimeter of a shape was 

directly related to the magnitude of its area. The research on misconceptions suggested that 

students recognised patterns but generalised them to mathematical contexts where they were 

not appropriate (Cockburn, 2008). 

Students could generalize the premise that perimeter indicates area into other inappropriate 

contexts. For example, Bella used geometric reasoning, matching edges and parts of edges, to 

conclude that the perimeters of the tall rectangle and the fat rectangle were the same (see Q. 

36f, Figure 4.4). She then demonstrated the perimeter indicates area misconception when 

comparing the areas, explaining that "Because if the perimeter would be the same, the area 

would be the same too." The explanatory power of the misconception, which had been correct 
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in the previous two questions, was strong enough to prevent her from using a visual geometric 

check in the area comparison; dynamic imagery could be used to place the taller rectangle 

inside the fatter rectangle and the part that was too tall would not take up the other half of the 

fat rectangle. This particular instance of the perimeter indicates area misconception required 

the overriding of topological intuitions about area and shape. This phenomenon is supported 

by Smith, diSessa, and Roschelle's observation that "Some misconceptions are powerful 

enough to influence what students actually perceive" (1993, p. 162). 

The misconception same area indicates same perimeter was more prevalent in the shaded pair 

of shapes (Q. 36g and h) than the perimeter indicates area misconception. Thirty nine students 

(44.3%) explained (incorrectly) that the perimeters of the shaded shapes were the same (Q. 

36g) and used the word half or halves in their explanation, but an eighth of them (5 of 39) did 

not then describe the areas of the shaded shapes as the same (Q. 36h). All of the students who 

used dynamic reasoning (dynamic imagery or geometric reasoning about area) to explain that 

the perimeters of the shaded shapes were the same also described the areas as being the same 

in the following question. Students did not look at the perimeter to gauge the magnitude of the 

area, they used geometric and/or fraction reasoning about the area to make an incorrect 

deduction about the perimeter. The same area indicates same perimeter misconception was 

not confirmed by topological intuitions because the longer perimeter (the triangle) was not 

connected to the larger area. An explanation of why the perimeters were the same using the 

word half or halves or dynamic reasoning in conjunction with an explanation of why the two 

the areas were the same was offered by 47.7% of the students. It was possible to 

unsuccessfully use geometric reasoning about length or to unsuccessfully consider the length 

of the perimeters and decide that they were the same.  

The areas of the shaded shapes (Q. 36h) were identified as the same by 76.1% of students but 

not all explanations were mathematically correct. Some verbalised that the misconception that 

perimeter and area are related (explaining that the areas were the same because the perimeters 

were the same) and were coded incorrect. However, of the 67% coded as correct, two thirds of 

them (39 of these 59 students) had also explained incorrectly that the perimeters of the shaded 

shapes were the same in the previous question. Most (35 of 39) of the successful students 

used fraction reasoning and/or dynamic imagery or geometric reasoning in both explanations 

comparing the perimeters and the areas.  

Only 22% of all the students correctly explained why the areas of the shaded shapes were the 

same and why the perimeter of the shaded triangle was longer. For example, Cameron 
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explained that the perimeter of the triangle was longer in the first comparison (Q. 36g) and 

noted how compelling the perimeter was in suggesting the magnitude of the area (Q. 36h), 

explaining, "this might look bigger [points to triangle] but it's actually, they're both halves" 

(see Table 4.3). Only 4.5% of the students correctly compared the four perimeters and the 

four areas in the Similar Shapes task (Q. 36a, b, c, d, e, f, g, h). 

The same area indicates same perimeter misconception was detected in the Similar Shapes 

task because both area and perimeter questions were asked, but was not as obvious in the Fold 

Me a Quarter task (Q. 13) because no question about perimeter was asked. Of the 54 students 

who had correctly compared the area of three non-congruent quarters in the Fold Me a 

Quarter task (see Figure 4.38) 49 of them explained why the areas of the similar shapes were 

the same (Q. 36h). However, 6 of those 49 explained (incorrectly) that the areas were the 

same because the perimeters were the same, and 32 of the 49 had explained that the 

perimeters were the same in the previous question (Q. 36g). Only 11 of the 54 supposedly 

high performing students had a coordinated area and perimeter understanding.  

The word "area" was specifically used in both the Fold Me a Quarter task and the Similar 

Shapes task. Previous research (Mitchell, 2005), had highlighted that the word "bigger" could 

refer to either the attribute of length (perimeter) or area. Researchers advised that to 

understand an incorrect answer the researcher had to determine the question that the student 

was answering correctly (Ginsberg, 1997; Greer, 2009). The use of the word area in the 

interview question (does one have a bigger area than the other or are they the same, rather 

than which shape is bigger) was an attempt to distinguish between students who had 

misconceptions about attributes (length and area) and students who were interpreting the 

question differently to the intent of the questioner (as a question about "bigger" perimeter).  

Most students did not verbalise a systemic understanding of attributes of measure in the 

measurement tasks. Although all students identified a length dimension on the Blocks of Ice 

task (Q. 54), their conceptual knowledge of the attribute did not appear to coordinate: 

• that length can be a straight path, a bent or curved path, or a perimeter; 

• that the spatial measures are length, area, volume and angle (Lehrer, 2003); 

• that width, depth and height measure different dimensions but the same attribute 

(length); and 
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• that the perimeters of shapes can be used to compare shapes if the shapes are 

mathematically similar (e.g., two circles or two squares) but not if the shapes are non-

similar (e.g., non-similar rectangles or different shapes). 

5.1.1.1 Implications. 

Only 4.5% of the students correctly explained all eight perimeter and area comparisons in the 

similar shapes task (Q. 36 a, b, c, d, e, f, g, h), with 22% successful on both the perimeter and 

area comparisons of the shaded shapes (Q. 36g and h). This has implications for measurement 

instructional trajectories. Some researchers described knowledge of attributes as a first stage 

(see e.g. Outhred et al., 2003; Wilson & Rowland, 1993) with the suggestion that this stage 

was completed in early measurement learning. Other researchers cautioned that the attribute 

of length presented with increasing complexity (Barrett, et al., 2006). Frameworks of ideal 

knowledge, such as Lehrer's eight key concepts for measurement, enable the revisiting of 

measurement concepts such as attribute throughout primary school and into secondary school. 

The results of the present study (22% of Grade 6 students successfully compared perimeters 

and areas of non-congruent halves) suggest that the measurement concept of attribute needs 

revisiting in primary schools as increasingly complex contexts are introduced.  

The perimeter indicates area misconception appears to originate in correct mathematical 

thinking: the perimeter of similar shapes indicates the magnitude of the area. This intuitive 

topological consideration is then inappropriately generalised to a different context; non-

similar shapes. Piaget and others would argue that the perimeter indicates area misconception 

was linked to topological intuitions; the explanations of the students in the present study 

suggest that those topological intuitions become firmly connected to the logical deduction that 

area indicates perimeter. Students could "see" the perimeters of the non-congruent shaded 

halves as the same because of reasoning about the areas despite the fact that the perimeter of 

the triangle was longer. The perceptual information was discounted because of the importance 

of the inappropriately applied area reasoning. An implication of these findings for teachers is 

that intervening to try and resolve this misconception will be more complicated than a pre-

emptive simple example to prevent the generalisation to inappropriate contexts. Just 

separating the topological intuitions (consideration of the perimeter) from the consideration of 

area will not prevent the misconception. Smith et al. (1993) suggested learning was concerned 

with "learning to use what you already know in either wider or more restricted contexts" (p. 

136). The many contexts of perimeter and area comparisons and the meaning attached to 

words like "bigger" will need to be reflectively explored. 
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In the present study, the successful use of fraction reasoning when comparing non-congruent 

halves or quarters did not indicate that the same area indicates same perimeter misconception 

had been resolved. In fact, 44.7% of the students believed that area and perimeter were 

directly related in the shaded shapes (Q. 36g and h). Of the 54 high performing students (who 

had made three correct area comparisons of non-congruent quarters) only 11 were successful 

on both the area comparison and the perimeter comparison of the non-congruent shaded 

halves in the Similar Shapes task (Q. 36h and g). The use of fraction reasoning in area 

comparisons did not cure the dominance of topological perceptions (perimeter indicates area) 

nor its inductive reverse (same area indicates same perimeter) but obscured these 

misconceptions. The observation that fraction reasoning can mask these misconceptions rather 

than resolve them has implications for how teachers think about correct answers with correct 

explanations in constructivist classrooms: just because a student can use a more sophisticated 

strategy correctly does not mean that he or she has resolved earlier misconceptions. The focus 

of the similar shapes tasks was length and area knowledge. Fraction reasoning obscured a 

misconception in the measurement domain. 

5.1.2 Unit forming thinking and operator thinking. 

The use of operator thinking or unit-forming thinking was demonstrated in Part B of the 

Fraction Pie task (Q. 14b). None of the 26.1% of students who used the operator approach or 

unit-forming approach in Part B of the Fraction Pie task (Q. 14b) were able to provide both a 

correct answer and a sufficiently precise explanation, even though either of these approaches 

were mathematically correct. If the students had been able to execute their strategy they 

would have been successful. Their answers, one eighth, one seventh, one sixth, and one fifth 

were reasonable estimates of either two thirds of a quarter (operator thinking), or of Part B as 

a part that when added to a smaller amount would equal one quarter (unit-forming thinking). 

This was an example of a wrong answer but with full or partial mathematical understanding 

(see e.g., M.  Clements & Ellerton, 1995).  

The incorrect answers given by these students in the present study did not indicate that they 

had poor partitioning skills; they were attempting the more difficult interpretations  two thirds 

of a quarter is a sixth, or a sixth plus a twelfth equals a quarter. Thompson had described the 

research question "what is the problem that this student is solving, given that I have attempted 

to communicate to him the problem in my mind" (1982, p. 154)  as a legitimate field of 

investigation (for a constructivist as opposed to an environmentalist). This question is still 

relevant almost thirty years later and enabled me to interpret the students' incorrect answers 
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coupled with partially correct explanations. Only Matthew's operator thinking explanation 

was precise (two thirds of a quarter) but he was unable to calculate that two thirds of a quarter 

was a sixth. Zak's answer of zero point seven for Part B was obtained by placing his pen 

horizontally across the diameter to make four quarters and then explaining that Part B was 

"point seven". This indicated operator thinking but it was not clear whether he had maintained 

the unit correctly; there was not enough elaboration of his answer to determine whether he 

meant point seven of a quarter [not articulated] or whether Part A had become the whole and 

his answer was point seven (of one). Kelly used unit forming and explained that Part B was a 

fifth "because it's got a smaller area, it's not as big as a half or a quarter". However, in the 

other students' less precise explanations it was difficult to hear the difference between 

(correct) additive thinking and (correct) multiplicative thinking: half a quarter, three quarters 

of a quarter, just less than a quarter. Their answers were estimates: one eighth, one fifth, one 

sixth, one seventh. The explanations were ambiguous: did "just less than a quarter" indicate 

the result of operator thinking, or an addend in unit-forming thinking. This made it possible to 

categorise the students as using operator or unit forming thinking, but not which of those 

strategies they had used.  

One of the answers given by students who were using operator thinking or unit forming 

thinking was one fifth. The answer of one fifth, however, did not automatically signal the 

students' use of the incorrect double count misconception. I had noted this possibility in 

earlier research (Mitchell, 2005) and it was again confirmed in the present study in which four 

of 24 of the students who answered one fifth were not double counting, but instead were using 

either (correct but not fully executed) operator thinking or unit forming thinking. One fifth 

was offered as an answer by 27.3% of the students and this compares with 13.6% in a larger 

study by Clarke et al. (2007). 

The frequency of success on Part A (one quarter) was 70.5% and this compares to 83% in a 

larger study (Clarke at el., 2007) and 76.5% in a smaller study (Mitchell, 2005). The 

frequency of success on Part B (one sixth) in the present study was 27.3% and this compares 

to 42.7% in a larger study of Grade 6 students (Clarke et al., 2007), and 35.3% (Mitchell, 

2005) and 10% (Stewart, 2005) in smaller studies of Grade 6 students. These frequencies 

suggested that Grade 6 students in many different schools found this restructuring of non-

equal-parts diagrams difficult.  

All of the students in the present study successfully identified a quarter of a circle in an equal-

parts diagram (Q. 19g, see section 4.5.2.4.4) but only 70.5% identified the quarter in the Part 
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A of the Fraction Pie task. The non-equal parts aspect of the task appeared to be the difficulty, 

not the fraction or the circle diagram. All the students who were successful on Part B of the 

Fraction Pie had been successful on Part A. The restructuring needed for the sixths appeared 

more difficult than the restructuring for quarters. Although 42.7% of the students successfully 

explained why Part B was a sixth, 97.7% of all the students could explain why the one shaded 

part out six on an equal parts circle diagram was one sixth in (see Figure 4.42). This suggests 

that it was the non-equal parts context, not the fraction (one sixth) or circle diagram that was 

difficult for students. 

Researchers had reported that pre-service teachers focussed on the correctness of the answer 

(Jansen & Spitzer, 2009) and equated correct answers with mathematical understanding, and 

equated incorrect answers with carelessness or confusion (Crespo, 2000). Directive listening 

by teachers focussed on whether a child's answer matched an expected response (Empson & 

Jacob, 2008). The term directive listening corresponded to the term evaluative listening used 

by Davis (1997). Teachers who used this type of listening in classroom contexts were 

listening for something, not listening to the students (Even, 2005) and this could result in 

teachers overestimating what students knew (Empson & Jacobs, 2008) by assigning 

understanding to correct answers with vague explanations (Even, 2005). In the present study, 

two students gave the correct answer of one sixth with the explanation that Part B of the 

Fraction Pie was a quarter of a quarter; directive listening would have focussed on the correct 

answer and possibly attributed the explanation to vaguely explained partitioning, and missed 

the operator approach or unit-forming approach altogether.  

Observational listening (Empson & Jacobs, 2008), on the other hand, was a term used to 

describe teachers listening to students and trying to work out what the students were actually 

thinking. Davis had described this as interpretive listening (1997) and noted that it occurred in 

his case study of a teacher when she began to acknowledge the differences in individual 

children's responses to mathematical tasks. Empson and Jacobs (2008) specified one-to-one 

task-based interviews as contexts for the use of observational listening. In research on mental 

computation, the change in focus from speed and accuracy to verbalising strategies required 

this type of listening (Sparrow & McIntosh, 2004). Observational listening underpinned the 

methodology of the present study and enabled the discussion of the students' strategies and 

misconceptions. This made it possible to identify the (correct) operator thinking and unit 

forming thinking used by students despite their incorrect answers. This was further illustrated 

in the classification of the strategies that generated the answer of one fifth (see Table 4.36): 
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• (correct but not fully executed) operator or unit forming thinking (4 students), 

• (correct but not fully executed) physical iteration (1 student), 

• conditional double counting (9 students), and 

• the unconditional double count  misconception (10 students). 

Some of the students made the quantification of Part B of the Fraction Pie task difficult by 

their approach. For example, ignoring the radius between the quarters and using a mirror 

image of the right hand side to get six parts was the easiest approach and was an example of 

partitioning. Equivalence knowledge was used to double (additively or multiplicatively) three 

to get six parts. No student in the present study explained their reasoning as one third of a 

half, which was the easier of the two operator approaches. Two thirds of a quarter was the 

other operator approach, but the execution proved too difficult for the one student who 

quantified his operator thinking. Other students were attempting the same operator approach 

but were not precise in specifying the calculation; "nearly a quarter." The unit forming 

approach to Part B was simple in first principles, possible to estimate, but difficult to 

calculate, for example one six plus one twelfth was one quarter. Students' unsuccessful 

attempts at this task using either the operator approach or a unit-forming approach did not 

mean that they could not partition. Careful observational listening is needed to distinguish 

between an inability to partition or an inability to fully execute the more difficult unit forming 

or operator approaches to this task.  

Responsive listening (Empson & Jacobs, 2008) by teachers encompassed trying to understand 

individual student's approaches and responding to them individually and instantaneously, 

whilst keeping 25 children engaged and included, in the group dynamic of a single lesson. 

Davis had termed this hermeneutical listening (1997). Observational listening was possible 

and manageable in the one-to-one task-based interview used in the present study. All the 

different understandings were coded and classified and interpreted but I did not have to 

respond to the students' understandings in a classroom context.  

5.1.2.1 Implications. 

The comparison of the frequencies of success of the present study and the other empirical 

studies reported in the research literature suggest that the present study is not an outlier result. 

The original Fraction Pie diagram (Cramer et al., 1997) was used in the previous studies but a 

mirror image of the diagram was used in the present study. Although the results of the present 
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study cannot be generalised because a representative sample was not used, the findings of the 

present study have implications for Victorian students and teachers. 

The implications of these findings are for responsive listening by teachers. If a student offers 

an answer of one fifth to Part B of the Fraction Pie task in the classroom, the teacher will need 

to respond to the strategy that the student is using to effectively help the student towards a 

successful answer and strategy. If a student has used a unit forming approach and estimated 

that one addend is a fifth they will not be helped towards correctly executing this strategy if 

the teacher responds to them by talking about double counting (which also gives an answer of 

one fifth). If the teacher wants to encourage a student to consider several strategies, it might 

be more effective to explain how the student's preferred strategy can be executed correctly 

before the student can focus on an alternative strategy. For example, the teacher may wish to 

respond to Matthew by validating his operator thinking on a separate equal-parts diagram 

(dividing each quarter into thirds and demonstrating that two thirds of a quarter is a sixth), 

and only then asking him to either consider another student's approach to the task (e.g., 

partitioning) or to come up with another strategy himself that would generate an answer of a 

sixth. 

5.1.3 Dynamic imagery. 

The visualisation tasks were selected to determine students' preference for dynamic imagery 

or geometric reasoning. The research literature described a difference between dynamic 

imagery and geometric thinking using the terminology visual processing/spatial ability for 

dynamic imagery (Bishop, 1983; M. Clements, 1983). It was possible to distinguish between 

dynamic imagery and geometric reasoning in some of the students' responses to the 

Wattanawa Block task but it was not possible to do this with all the students' explanations. 

For some students, the lack of a vocabulary to talk about dynamic imagery and geometric 

reasoning, made it impossible for the interviewer to differentiate between the two strategies 

on some of the visualisation tasks. The students may not have been aware that there were 

several different strategies for attempting visualisation tasks, and so they did not make the 

distinctions clear in their explanations. The authors of literature on interview methodology 

had cautioned that children's responses to tasks gave researchers only their explanations not 

their thinking (Ginsberg, 1997) and this was echoed by authors interested in mathematics 

education and linguistics (Barwell, 2009). This distinction between thinking and explanation 

was evident in the interpretation of the students' responses because determining the strategy 

was difficult. 
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The students' responses to clarifying questions in the interview demonstrated the impact that 

their perception of directive and observational listening had upon their participation in a one-

to-one task-based interview. The use of confirmatory questions that were intended to reflect 

back to the student their own reasoning were often unsuccessful and appeared to prompt the 

student to agree with the interviewer. Alex demonstrated this in her ready agreement to both a 

dynamic imagery rephrasing of her strategy and a geometric rephrasing of her strategy. Alex 

deferred to me as the interviewer signalling that she no longer believed me to be engaged in 

observational listening. Her second-guessing of which strategy she thought I wanted to hear 

suggested that she had positioned me as being engaged in directive listening.  

Previous research had identified that querying an answer signalled to a child that the answer 

was incorrect (Ginsberg, 1997). Barwell (2003) had elaborated that the linguistic structure of 

a question determined that what was said in response was by definition an answer. Students 

were sensitised to interpret a query as a suggestion that they should offer another answer. The 

query operated as a repair, a positioning of the students' response as inconclusive and needing 

elaboration or as inappropriate and needing reframing (Woofitt, 2005). In the interview used 

in the present study, students quickly accepted that every answer was followed by a query 

about strategy, and that this was not a repair because they were told this at the beginning of 

the interview: "I won't tell you whether you get an answer right or wrong. But I will probably 

always say, and how did you work that out?" as this was stated before the tasks were offered. 

However, the visualisation tasks illustrated that confirmatory questions could be interpreted as 

a repair by students who then responded to observational listening as if it were evaluative 

listening.  

5.1.3.1 Implications. 

It was not possible in the interview format to determine what visualisation strategy the 

students used. In order to assess students' visualisation skills it may be necessary for future 

research projects to include a preparatory classroom based intervention in which students 

investigate different strategies for tasks and establish a shared vocabulary to discuss these 

strategies (which may impact positively on their visualisation skills). The knowledge of 

geometric reasoning, dynamic imagery, fraction reasoning and the intersections between them 

may also enable students to offer clearer explanations to fraction tasks that use diagrams.  
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5.1.4 The gap thinking misconception. 

The gap thinking misconception was evident in the Fraction Pairs task (Q. 22) and emerged at 

the same time as equivalence knowledge emerged. There was a lower frequency of success on 

the fraction pairs in the present study than in another Victorian research project (Clarke & 

Roche, 2009; Clarke et al., 2007; 2011; Clarke, Roche, Mitchell, & Sukanic, 2006), but the 

order of difficulty (by frequency of success) was the same. In the fraction pair, 5/6 and 7/8, in 

the present study, gap thinking was used by 50% of the students, which was greater than the 

29.4% who gave the answer of "the same" in the larger study (Clarke & Roche, 2009). Gould 

(2011) reported that 8% of Year 7 and 8 students in another study argued that a residual pair 

of fractions were the same. In the fraction pair 3/7 and 5/8, in the present study, gap thinking 

was used by 21.6% of the students which was similar to the 21.2% reported by Clarke and 

Roche (2009). Clarke and Roche (2009) reported that 4.3% of students were correct on all 

eight pairs which was similar to the 6.8% of students who had a Fraction Pair score of 7 (Q. 

22e was excluded from frequencies of success). 

In order to describe how gap thinking is a perfectly good rule misapplied, I will elaborate on 

several contexts where additive thinking is correct when comparing fraction pairs. Sylvie 

explained that 7/8 was larger than 3/8: "Because of the eight, eight [points to the two 

denominators]. That one [points to 7/8] needs one more to get a whole and that one [points to 

3/8] needs five more." This additive word pattern, to get to a whole, was used correctly in this 

comparison. A variation of this was Patrick's explanation for the same fraction pair, "This 

one's larger [points to 7/8] because it's closer to the [d(undecipherable)], the denominator, 

whatever it's called." Kate's explanation correctly used additive thinking, "Because there's 

only one more piece to make a whole for seven eighths. And for three eighths you'd need 

another, you'd need another um five, more pieces". Fraction pairs between 0 and 1 with same 

denominator were a context in which additive thinking was appropriate when making 

comparisons of the size of fractions.  

Of the 20.4% of the students in the present study who used doubling or halving explanations 

for the fraction pair 2/4 and 4/8 it was difficult to distinguish whether some were demonstrating 

a ratio understanding or whether they were using correct additive thinking in this context of a 

half. Some students clearly used multiplicative language. For example, Nicky used the term 

"simplify" indicating a ratio understanding when explaining "if you simplify four eighths you 

make it go down to two quarters, you simplify that again it would be one half." Jai used 

multiplicative language, "this is times by two to get that, and this is times by two, so it's both 
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equal". Some students used additive language. For example, Emma explained that "four plus 

four is eight and two plus two is four." Some students used both additive and multiplicative 

language. For example Hannah explained "'cause if you do two plus two is four, and four plus 

four is eight. So they are pretty much times two." However, some students explanations of 

doubling or halving did not clearly indicate whether their thinking was additive or 

multiplicative (both of which would be correct). For example, Julia said "four is half of eight 

and two is half of four, so they're both half of what the whole is" but it was not clear whether 

this was proportional or additive halving. In the context of equivalences to a half, additive 

thinking would be a strategy that would give a correct answer and be mathematically 

appropriate. 

Gap thinking used incorrect additive explanations (see Table 4.26). For example, gap thinking 

in the fraction pair 5/6 and 7/8 could sound like "one more to become a whole" or "one piece 

left"  (complement-to-one thinking); "because the top numbers are both one less than the 

bottom numbers" (numerical comparison of numerator and denominator); "Cause they're both 

two thirds...seven plus one is eight and five plus one is six" (equivalence string); "there's one 

more sixth to make a whole. And it's one more eighth" (fractional language as complement-

to-one); and "they both need one more to be coloured in (counting and shading). This residual 

context for gap thinking, where both fractions are one away from the whole, was the first to 

appear and the last to be resolved in the present study. 

Gap thinking explanations from other fraction pairs illustrated additional variations of 

additive language: Tony explained (incorrectly) why 5/8 was larger than 3/7, "Because you 

count up from that, six seven eight [points to 5 of 5/8] and it's a whole. And you have to count 

up, that's six seven eight, that's three. And this one is four five six seven and that's four". Brad 

explained (incorrectly) why 1/2 was larger than 5/8, "It takes. There's less to get from one to 

two than from five to the eight". Gap thinking used additive language. 

Although gap thinking had several variations, it involved calculating the difference between 

numerator and denominator rather than using proportional reasoning to rename or create a 

new fraction. It was possible that gap thinking was a perfectly good strategy misapplied. 

Additive thinking could be used correctly to compare the size of fractions with the same 

denominator between 0 and 1. Additive thinking also could be used to correctly recognise 

equivalences to 1/2: numerator plus numerator equals denominator. 
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The use of the word plus in the explanation of the equivalence to a half of 2/4 and 4/8 by four 

students illustrated the extent of the additive language. Hannah had early equivalence 

knowledge (an Equivalence score of 3). She used gap thinking for five of the seven fraction 

pair questions although she picked the fraction with the larger gap which was an unusual 

presentation, although this strategy was observed in Cramer and Wyberg (2009) and used the 

word "plus" in four of those explanations and "one number to add to" in the other. Patrick 

used the word "plus" in his correct explanation of why 2/4 and 4/8 were both "half numbers", 

but used various addition words in his three gap thinking explanations: "three and five is 

eight" (Q. 22f), "one plus five equals six" (Q. 22g), and "this one I just had to add one more" 

(Q. 22h). He, like Hannah was a very early equivalence learner with an Equivalence score of 

2. On the other hand, Jordan had an Equivalence score of 7 and was in Equivalence Band E, 

and had explained that "two plus two is four and four plus four is eight" to correctly identify 

that 2/4 and 4/8 were "like half". His only gap thinking error was on the fraction pair 5/6 and 7/8 

where he used an equivalence-string explanation: "'Cause five over six is nearly the same and 

seven over eight is nearly the same and it's like three quarters." Emma also had an 

Equivalence score of 7 and was in Equivalence Band D, but did not offer any gap thinking 

explanations for the fraction pairs. She used addition to expand her explanation of halving: 

"they're halved, so they would be the same. So there's four plus four is eight and two plus two 

is four". Jordan and Emma's use of the word "plus" suggested that students' multiplicative 

understandings of the terms double or half also had an additive resonance and although they 

used an additive word pattern, they could co-ordinate the additive and multiplicative contexts 

correctly. 

Gap thinking was not used by any student as a strategy for the fraction pair 2/4 and 4/8; no 

student compared a difference of two and a difference of four. If gap thinking were present it 

appeared that it was trumped by the additive word pattern for a half.  

Gap thinking emerged at the same time as early equivalence understanding (see Figure 4.35). 

This was not a linear association. The first equivalence tasks that students were successful at 

in the present study involved equivalences to a half. All of the students in Equivalence Band 

B had an Equivalence score of 1 and all but one of the 14 either recognised 2/4 and 4/8 as 

equivalent in the Fraction Pairs task, or had rolled three gold and three white beans in the 

Golden Beans task (Q. 22b) and successfully offered two names for the fraction, three sixths 

and a half. Gap thinking was resolved in students with an Equivalence score of 11 and 12. 
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It seems counter intuitive that a misconception that used incorrect additive language could be 

connected to equivalence which is multiplicative and proportional. However, early 

equivalence knowledge could sound additive because the word pattern for equivalences to a 

half could use the word "plus" as Emma's explanation demonstrated. The quotations from 

students above demonstrated that the additive language lingered for some students. The 

additive nature of gap thinking did not sound like the equivalence explanations of experts but 

highlighted the additive sound of early equivalence knowledge. Cockburn (2008) suggested 

that misconceptions revealed children's thinking. The gap thinking misconception reveals the 

additive base of early equivalence understanding. 

The subgroup of students with an Equivalence score of 2 to 9 had a higher frequency of gap 

thinking (see section 4.5.2.2.2). The students in this sub-group who did not use gap thinking 

performed well on  

• making a new zero-point in broken ruler tasks,  

• realigning a ruler when measuring a streamer that was longer than 30 cm,  

• using cm2 to describe units that have length and width, and 

• not double counting in Part B of the Fraction Pie task.  

The association between success on Part B of the Fraction Pie task and non-presentation of 

gap thinking by students with an Equivalence score of 2-9, suggested that the double count 

misconception was worth investigating with respect to this subgroup of 48 students  This 

interpretive analysis used a finer grained analysis than the dichotomous variables of the 

statistical analysis (correct/incorrect at Part B of the Fraction Pie task and use/non-use of the 

gap thinking strategy if Equivalence score 2-9) and categorised the students into three groups: 

a) no gap thinking (fourteen students), 

b) one instance of gap thinking in the seven fraction pairs (fourteen students), and  

c) two to five instances of gap thinking (twenty students).  

Double counting behaviour was also considered in two other tasks: the triangle 2/3 (Q. 19r) 

and the rectangle 1/6 (Q. 19b) in the Fraction Sort task. The double counting behaviour in the 

three tasks was also classified as conditional or unconditional (see Table 4.37 and Table 4.38).  

The fourteen students in category (a) did not use the gap thinking misconception in any of the 

seven fraction pairs, nor did they use double counting (0%) in Part B of the Fraction Pie task. 

In the two Fraction Sort questions, however, five of the 14 (35.7%) used double counting 

once or twice.   
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The fourteen students in category (b) used gap thinking once in the Fraction Pair task, and 

three of them (21.4%) used conditional double counting in Part B of the Fraction Pie task. A 

further 42.9% used double counting in either or both the two Fraction Sort tasks.  

The twenty students in category (c) used gap thinking for two or more fraction pairs, and four 

of them used unconditional double counting (20%) and one used conditional double counting 

(5%) in Part B of the Fraction Pie task. A further 50% used double counting in either or both 

of the two Fraction Sort questions.  

The subgroup made up of students with an Equivalence score of 2-9 was created in order to 

target gap thinking by removing students with an Equivalence score of 0 (who may or may 

not become gap thinkers) and students with an Equivalence score of 10-12 (who may or may 

not have been gap thinkers). Students who did not use gap thinking did not use double 

counting for Part B of the Fraction Pie and had the lowest frequency of double counting in the 

two other tasks. The use of double counting in the three questions increased in frequency as 

the intensity of gap thinking increased (evident in the number of gap thinking explanations) 

from 35.7% for category (a) to 64.3% for category (b) to 75% overall for Category (c). 

Unconditional double counting in Part B of the Fraction Pie task was only seen in students 

with Gap Thinking scores of 2 and above (in this sub group of students with Equivalence 

scores from 2 to 9).  

The students who imagined an area diagram in the residual pair 5/6 and 7/8, and were gap 

thinkers, used double counting language to describe "one more to be coloured in" for this pair 

and so had folded back to an image whose interpretation was limited (double counting) and 

not generalisable (partitioning and comparisons). Double counting was appropriate for limited 

contexts (equal-parts diagrams) but became a misconception when applied to other examples: 

non-equal-parts diagrams or residual partitioning comparisons. Inappropriate double counting 

appeared to (incorrectly) confirm gap thinking. In this particular pair, it would seem that the 

additive language was compelling. The original term residual thinking had been coined by 

researchers in the Rational Number Project to describe a student invented strategy, which the 

researchers attributed to the use of circle models in fraction instruction (Post et al., 1986; Post 

& Cramer, 1987). Cramer and Wyberg (2009) reported that instruction using fraction charts 

provided Grade 4 students with strong mental images when comparing residual fractions.  

The data in the present study suggested that gap thinking resolved itself: if students had an 

Equivalence score of 11 or 12, gap thinking was not present. On the other hand a coordinated 
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knowledge of partitioning (not having the double count misconception) might offer some 

protection against the development of gap thinking. There was no proof of cause and effect in 

the present study, however, this detailed analysis offers some direction for further research. 

5.1.4.1 Implications. 

Gap thinking is a misconception of equivalence. If teachers thought of gap thinking as one of 

the misconceptions of equivalence, they might target their responses to this misconception 

with more precision. They could choose examples carefully to illustrate the thinking, and 

revisit the images of unit forming and partitioning that students need to fold back to when 

thinking about mathematical symbols. The traditional part-whole interpretation has labelled 

gap thinking as one of several whole number thinking strategies but gap thinking and two 

other whole number thinking strategies (higher or larger numbers, and bigger denominator 

indicates bigger fraction) did not present in the same way. The findings of the present study 

indicate that the difference (additive) language of gap thinking may be a hangover from an 

early additive understanding of equivalence. Attention needs to be drawn to the appropriate 

contexts for additive thinking: 

• equivalences to 1/2, and  

• when comparing fraction pairs between 0 and 1 with the same denominators. 

 Attention also needs to be drawn to inappropriate contexts for additive thinking, particularly 

residual pair comparisons.  

The 50% of students in the present study who used gap thinking when comparing the fraction 

pair 5/6 and 7/8, did not fold back to an image of partitioned areas and use residual thinking to 

compare the parts needed to make the whole. Just as 1/6 and 1/8 are different sized pieces in the 

comparison of partitioned unit fractions so too the residual 1/6 and 1/8 are different sized pieces 

in the comparison of 5/6 and 7/8. Residual comparisons were the first gap thinking type to 

emerge and the last to leave. The use of gap thinking when comparing the fraction pair 5/6 and 
7/8 was demonstrated by students in each Equivalence score from 1 to 10 (except by the four 

students with an Equivalence score of 2). It is possible that the double counting 

misconception reinforces the use of gap thinking in a residual pair. Students need to be able to 

fold back to the understanding that non-equal-parts area diagrams are not named using the 

double count misconception, so that residual pairs are not incorrectly confirmed as equivalent. 

A highly detailed knowledge of gap thinking is needed for improvements in teachers' 

pedagogical content knowledge. Specialised content knowledge (Hill et al., 2008), a 
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knowledge of mathematics and a knowledge of students, is necessary for pedagogical content 

knowledge. The link between the importance of specialised content knowledge and Japanese 

lesson study was made by Knapp, Bomer, and Moore, (2011), who, along with Doig, Groves 

and Fujii (2011) highlighted the study of constructs as an integral part of Japanese lesson 

study.  

5.1.5 Benchmarking/Gap thinking. 

Two strategies (correct/incorrect) with similar initial explanations were evident in the Fraction 

Pairs task (Q. 22e, 4/5 and 4/7). Students' answers, initial explanations, and follow up 

explanations designed to elicit the gap thinking misconception demonstrated that 

observational listening involved careful listening. The similarity of initial explanations of 

misconceptions and correct mathematical thinking was revealed by observational listening 

and further interpretation was possible using the terminology and concepts of classroom 

interaction research: Hermeneutical or responsive listening by teachers (Davis, 1997; Empson 

& Jacobs, 2008), and calculational explanations, equivalent explanations and parallel 

explanations of peer conversations (Cobb, Yackel, & Wood, 1992). 

Experience with students had taught me that confirmatory questions had not been successful 

in the visualisation tasks and therefore in the Fraction Pair task I used non-directive probes. 

Despite this, there were still 11.4% of responses to the fraction pair 4/5 and 4/7 which were 

possible gap thinking, and which further questioning had not elicited the distinction between 

gap thinking and benchmarking (see Tables 4.28 and 4.29). For example, when comparing the 

fraction pair 4/5 and 4/7 Lara chose 4/5 as the larger fraction "'Cause it's only one away from 

being a whole." The prompt "mmm?" encouraged her to elaborate "And this is three away 

from being a whole" (see Table 4.28). Lara was using the gap thinking misconception, 

calculating the complement to one for each fraction and choosing the fraction with the smaller 

gap. In contrast, Adam explained his answer of 4/5 with "four is closer to five." The prompt, 

'Can you tell me a bit more about that?", encouraged him to elaborate "The four and the 

seven, there's more less, like um close to a half, but this one's like almost a whole." Adam was 

benchmarking to a half and one and using a correct mathematical strategy. Chris was also 

benchmarking (see Table 4.28) explaining his answer of 4/5 with "four fifths is almost a 

whole." When prompted, "mmm?", he added, "And four sevenths is um, a bit higher than a 

half." These paired strategies, benchmarking and gap thinking, were difficult to distinguish in 

fraction pairs because the answers were the same and the initial explanations were similar: 

• "'Cause it's only one away from being a whole." 
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• "four is closer to five." 

• "four fifths is almost a whole." 

Both strategies had been identified in the research literature. Benchmarking had been reported 

in Australia (Clark et al., 2007; Clarke & Roche, 2009), and was called the transitive or 

reference point strategy in the United States (Behr & Post, 1986; Behr et al., 1984; Post et al., 

1986; Post & Cramer, 1987). Gap thinking had been described in Australia (Clark et al., 2007; 

Clarke & Roche, 2009; Gould, 2011; Pearn & Stephens, 2004) and was one of four whole 

number dominance strategies described by Post and Cramer (1987).  

Observational listening (Empson & Jacobs, 2008), or interpretive listening (Davis, 1997) was 

used to understand strategies that children were using. In another context, I had identified that 

careful listening was needed to correctly interpret students' strategies (Mitchell, 2004). 

Cockburn (2008) suggested that one way of tackling misconceptions was to check a student's 

response even when he or she answered correctly in case the student and the teacher were 

focusing on different angles of the task. Observational listening and non-directive prompts to 

elaborate further explanations were needed in the fraction pair examined here. 

The fact that the similarity of initial explanations (and the same answers) for paired strategies 

obscures the distinction between correct mathematical reasoning and incorrect mathematical 

reasoning has implications for how teachers respond to students and how students explain 

their thinking to each other. For example, if the teacher were explaining the benchmarking 

strategy for the fraction pair 4/5 and 4/7 and said "four fifths is nearly a whole", Adam might 

hear his benchmarking strategy (four is closer to five) confirmed but Lara would also hear her 

gap thinking strategy confirmed (it's only one away from being a whole). Lara might not 

experience cognitive conflict between the teacher's strategy and her own, because if the 

difference was difficult enough to hear as a researcher with access to transcripts, it would also 

be difficult for Lara to hear the distinction between the mathematically correct reasoning of 

the teacher and her own mathematically incorrect reasoning in the classroom. Researchers had 

suggested that teachers using directive listening interpreted vague explanations as correct 

mathematical reasoning if the answer was also correct (Even, 2005). It is possible that 

students listening to classroom conversations react in the same way: if the answer was the 

same as theirs and the explanations were similar, they would assume their strategy was the 

same as the teachers. 
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In some classrooms calculational explanations counted as an acceptable mathematical 

argument despite the fact that calculational explanations made it difficult for students to 

recognise whether they had equivalent strategies or parallel strategies (Cobb, 2011b). 

Calculational explanations retell the calculational steps of a strategy rather than describe the 

purpose of the calculations (Cobb et al., 1992). This should not be confused with Skemp's 

distinction between relational and instrumental thinking (Cobb, 2011b). For example, if we 

imagine that Lara, Adam and Chris were working together to solve the fraction comparison 

task 4/5 and 4/7, the terminology of peer conversation would enable us to describe their initial 

explanations as calculational: "'Cause it's only one away from being a whole" and "four is 

closer to five" and "four fifths is almost a whole." All three children describe a difference 

calculation and none explain why they are doing this. At this point they might imagine that 

they are agreeing on the strategy (that they have equivalent strategies). Even if Lara added 

"And this is three away from being a whole", Adam might still not realise that she was not 

benchmarking like he was, unless he knew to listen for gap thinking. Parallel interpretations 

have the same answer and the same initial calculational explanation, but are actually different 

strategies. Lara and Adam have parallel strategies. Adam and Chris who are both 

benchmarking have equivalent strategies. Cobb, Yackel and Wood's (1992) examples of 

calculational, parallel, and equivalent explanations were of addition by Grade 2 children. The 

explanations are used here in an imaginary classroom interaction to elaborate this 

phenomenon in a fraction context in Grade 6. 

5.1.5.1 Implications. 

Observational listening by teachers may require interpretations not only of answers and initial 

explanations but also prompting for further explanations and/or consideration of responses to 

other carefully chosen tasks. The students' responses when comparing the fraction pair 4/5 and 
4/7 demonstrated that these initial answers were considered acceptable mathematical answers 

by the students in the interview context. The establishment of sociomathematical norms 

around acceptable mathematical explanations could include the valuing of a why statement 

with calculational explanations. 

The implication of the illustration of (apparent) parallel explanations in the present study of 

Grade 6 students is that students may also need to acquire a repertoire of descriptions of 

strategies and misconceptions at this level. Cobb et al., (1992) were working with Grade 2 

students and excellent teaching by the classroom teacher enabled students to increase their 

knowledge of addition strategies. Grade 6 teachers have access to a repertoire of descriptions 
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of strategies and misconceptions to draw on when responding to student explanations. 

However, for students to recognise parallel explanations, they may need to acquire a similar 

sophisticated repertoire of possible strategies in order to make sense of other students' 

explanations.  

5.1.6 Summary of answer, explanation types, and teacher and student 

conversations. 

The discussion of the students' correct strategies and misconceptions revealed finer 

distinctions in the right answer/wrong answer, partially correct/incorrect reasoning unpacking 

of students' responses to mathematical tasks (see Table 5.1). This is an elaboration of the 

description by M. Clements and Ellerton (1995, 2005). The perimeter indicates area 

misconception in the Similar Shapes task highlighted an undetected conceptual conflict in a 

correct answer for a correct reason. The Fraction Pie task illustrated that students could get 

the wrong answer and still have partial mathematical understanding and be using a strategy 

which if executed correctly would demonstrate correct mathematical reasoning. Gap thinking 

could produce the wrong answer for the wrong reason or the right answer for the wrong 

reason. The importance of further probing was highlighted in the discussion of the paired 

strategies benchmarking and gap thinking in which a student could have the right answer for 

the right reason (benchmarking), the right answer for the wrong reason (gap thinking), be 

assumed to have the right answer for the right reason (benchmarking) when in fact they had 

the right answer for the wrong reason (gap thinking), or be assumed to have the right answer 

for the wrong reason (gap thinking) when in fact they had the right answer for the right reason 

(benchmarking).  
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Table 5.1 

Answer, explanation and further explanation types 

Coded Answer Initial explanation Further explanation Question  

correct correct correct: dynamic imagery, or 
geometric 

 Wattanawa 
Block 

correct correct correct: close to one benchmarking 4/5  4/7 

correct correct correct, but listener unsure if 
dynamic imagery, or geometric 
reasoning used 

probing caused 
agreement 

Cubes 

correct correct correct: areas the same because 
both half, or dynamic imagery 

undetected conflict 
with perimeter 

Similar 
Shapes 

incorrect correct assumed correct: close to one gap thinking 4/5  4/7 

incorrect correct incorrect: gap thinking   3/7  5/8 

correct correct assumed incorrect: gap thinking, 
close to one 

benchmarking 4/5  4/7 

incorrect incorrect partial correct strategy: operator 
or unit-forming 

 Fraction  Pie, 
Part B  

incorrect incorrect incorrect: gap thinking, "the 
same" 

 5/6  7/8 

incorrect incorrect assumed gap thinking   other tasks 
 

5.2 Research Question 2: Associations between performance on fraction 

and measurement tasks 

The second research question addressed is  

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

As I could not confidently distinguish between the students' use of dynamic imagery in the 

visualisation tasks and the use of other geometric reasoning (see sections 4.3 and 5.1.3), this 

aspect of the question remains unexamined. The following section discusses the association 

between the performances on measurement and fraction tasks. 

The linear associations between the students' Number Line score and their performance in 

measurement categories and multiplication have been reported in the Results chapter (Table 

4.23). A Number Line score could be 0 to 8 (see Table 4.21) but there were 45 different 

pathways through the eight number line tasks (see Table 4.22). There were substantial 
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associations between the students' Number Line score and the categories CUNL, CADL, 

Multiplication, CADA, TPUNL, and TPUNA (in order of effect size). 

The linear associations between the students' Equivalence score and their performance in 

measurement categories and multiplication have been reported in the Results chapter (see 

Table 4.17). An Equivalence score could be between 0 and 13 (see Table 4.15) although no 

student scored 13. There were substantial associations between the students' Equivalence 

score and the categories CUNL, Multiplication, TPUNA, CADL, and CADA (in order of 

effect size). 

The linear associations between the students' Fraction Pair score and their performance in 

measurement categories and multiplication have been reported in the Results chapter (see 

Table 4.33). A Fraction Pair score could be between 0 and 7 (see Table 4.25) because Q. 22e 

was excluded from the results. There were substantial associations between the students' 

Fraction Pair score and the categories CUNL, Multiplication, TPUNA, CADA, CUNA, 

TPADA, and CADL (in order of effect size). 

The linear associations between the students' performance on Part B of the Fraction Pie task 

and their performance in measurement and multiplication categories have been reported in the 

Results chapter (see Table 4.39). In the present study, 27.3% of the students were successful 

on Part B of the Fraction Pie task. There was a substantial association between the students' 

performance on Part B of the Fraction Pie task and the category CUNL.  The categories with 

the next highest effect sizes were Multiplication and TPUNA but they had a typical 

association with the students' performance on Part B of the Fraction Pie task. 

5.2.1 Substantial associations with fractions: units and additivity categories of 

measurement. 

All the substantial associations between fraction categories and measurement categories were 

with additivity and units tasks. The measurement category of conceptual tasks assessing the 

units concept in a length context (CUNL) had substantial associations to all four fraction 

categories. The effect size of the association to CUNL was larger than the students' 

Multiplication scores. The measurement category of conceptual tasks assessing the additivity 

concept in a length context (CADL) also had a substantial association with the students' 

Number Line scores (which was a larger effect size than their Multiplication scores), their 

Equivalence scores, and their Fraction Pair scores.  
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The linear associations were calculated using Kendall's tau because the scores were non-

parametric. However, using Pearson's r produced similar results (this test assumed interval 

data and so was not appropriate for the present study). The associations between the students' 

Number Line score and CADL, CUNL, CADA and TPUNA had a larger effect size than their 

Multiplication score but they were all typical not substantial associations. The substantial 

correlations between the students Equivalence score and their performance on other tasks, 

using Pearson's r, were in the same order as reported above using Kendal's tau. Both the 

Students' Multiplication score and their performance in the CUNL category had substantial 

associations with their Fraction Pair scores, with .002 separating them. TPUNA had the 

highest typical association with the students' Fraction Pair scores. The categories CUNL, 

Multiplication score and TPUNA were in the same order but all had typical associations with 

the students' performance on Part B of the Faction Pie task. While a larger sample size would 

give greater statistical power to these calculations, the results from the descriptive statistical 

tests suggest that these tasks can be analysed further. 

The measurement category units had conceptual links to Kieren's measure sub-construct. 

Measuring contexts generated a leftover and quantifying this needed rational numbers. 

Researchers in both measurement (Brown et al., 1995; Lehrer 2003) and fractions (Kieren, 

1995; Lamon, 2007; Sophian, 2002) had proposed a conceptual link between measurement 

and fractions. Russian researchers had suggested that measurement should be taught before 

number (Davydov & Tsvetkovich, 1991) and the pedagogical suggestion to teach number 

through measurement developed from this research (Dougherty & Venenciano, 2007). The 

units category had a fractional component to three of the four task series (CUNL, CUNA, and 

TPUNL) so it is not surprising that students' fraction knowledge was linked to their 

performance on tasks in these categories. However, rather than using descriptive statistics to 

position fraction knowledge as a prerequisite for fraction tasks in other domains (or vice 

versa), I have used the descriptive statistics as a guide to focus my qualitative analysis on 

examining the conceptual links between fraction and measurement tasks.  

5.2.1.1 The Keyboard task. 

The Keyboard task (Q. 39) was the entry-level task for the CUNL category. It was offered to 

every student and 54.5% were successful. Maria's Water Bottle task with a frequency of 

success of 52%, a simpler task with the same partial unit 3/4, was an item on the Grade 3 

Assessment Improvement Monitor (AIM) test used in Victorian State-wide testing (Victorian 

Curriculum and Assessment Authority, 2007) (see Figure 5.1). Taking into account that the 
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Grade levels of the students were different, but that the Maria's Water Bottle task did not have 

whole units to co-ordinate and had multiple choice answers, frequency of success was similar 

(for frequency of success see VCAA, personal communication). The performance of students 

in the present study suggests that they are not an outlier sample. 

 
 

54.5% the present study Grade 6 52% Maria's Water Bottle task, AIM Grade 3 

Figure 5.1. Comparison of frequencies on success on measurement context of three quarters. 

The Keyboard task and the Number Line question 16d both were representations of 33/4. The 

research literature had suggested that some children may work out the leftover correctly but 

misrepresent the count (Brown et al., 1995). The answer four and three quarters to the 

keyboard task would fit this description and was offered by only two students. Similarly, the 

answer three quarters correctly quantified the leftover part but left out the whole number part 

of the count of units. Eight students had omitted the whole number part in their response to 

the Number Line task (and had not self-corrected during their explanation) but six of them 

answered successfully three and three quarters on the Keyboard task. The measurement 

context would appear to cue these students into the improper fraction context more readily 

than the number line context. Transfer between a measurement context and a number line 

context had not occurred for these six students. However, the results suggest that folding back 

to measurement contexts may be useful for students when thinking about improper fractions.   

Some misconceptions that appeared in the number line questions did not appear in the 

Keyboard task. For example, although eight students used the assuming decimal number lines 

misconception in the number line question (reading the mark at 33/4 as 3.3), five of them 

correctly identified the length of the keyboard as 33/4 or 32/3. These six students did not 

transfer their understanding from the measurement context to the number line question, but 

measurement inscriptions may provide an image to fold back to when interpreting number 

lines. 
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The pair fraction pair 2/4 and 4/2 (Q. 22d) included an improper fraction. Of the 35 students 

correct on this fraction pair, 29 were correct on the keyboard (see Table 4.34). However, of 

the 19 students correct at the Keyboard task who also incorrectly compared the fraction pair, 

14 of them gave explanations for the fraction pair that demonstrated their unfamiliarity with 

the symbolic inscriptions of improper fractions. Some flipped the 4/2 to make it 2/4, some 

pointed to 4/2 and said it was not a fraction, and some said there were the same numbers in 

both. All the students who answered 22g and 22h correctly were successful on the Keyboard. 

A length inscription of an improper fraction appeared easier to interpret than the symbolic 

inscription of an improper fraction. 

There were 12 answers to the Keyboard task in which students gave four (instead of three) as 

the whole number part of the answer (as discussed above two of these students gave the 

answer of four and three quarters). Two thirds of those answers (8 out of 12) were given by 

students with an Equivalence score of 0 and 1. Only one of the 15 students with an 

Equivalence score of 0 was able to describe the Keyboard correctly as three and three quarter 

pencils long. The successful students were able to use the quarter of the pencil past the edge 

of the keyboard to iterate back along the leftover part, to mentally break the line into tenths 

and give a decimal estimate or to mentally halve the fourth pencil and halve again. These 

actions draw on partitioning (iterating and breaking into tenths) and unit-forming (3/4 is 1/2 and 
1/4). Measurement tasks with leftovers to quantify create a context in which students have to 

use partitioning and unit-forming concepts without referring to pre-marked divisions. These 

actions of dividing into equal pieces (partitioning) and non-equal pieces (unit-forming) are 

also needed in the development of equivalence understanding. 

Students with unconditional double counting in Part B of the Fraction Pie task were less likely 

(3 out of 10) to be successful on the Keyboard task than students with conditional double 

counting behaviour (5 out of 9) (see section 4.5.2.4.5). It is possible that the double count 

misconception may interfere with students' understanding of partitioning and unit forming in 

the Keyboard task 

The results from the present study demonstrated that success with an improper fraction in the 

measurement context did not automatically transfer to recognition of the improper fraction in 

the Number Line task nor to the symbolic inscriptions of the Fraction Pair task. Measurement 

contexts can be a useful context for understanding improper fractions but transfer across 

domains is not automatic. Conceptual links between fractions and leftovers in measurement 

can be made in the classroom. Yanik, Helding, and Flores (2008) used fraction bar kits in 
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their length measurement activities. Using these bars to measure classroom objects, the 

researchers encouraged the students to describe their measure in terms of wholes and then a 

fractional part, determined by how many fraction bar wholes had been iterated and what 

fraction bars had been used to quantify the leftover. The researchers then found that the 

students were less likely to assume a number line was a "whole" and paid more attention to 

the scale. This classroom activity was designed to help resolve the misconception of treating a 

number line marked from 0 to more than 1 as one whole. This misconception had also been 

observed in the present study in Q. 16a and Q. 16c (see section 4.5.2.1.1). In a description 

using mixed units, the whole units are the same size and the partial units are the same size. 

The double count misconception is analogous to the non-specifying of mixed units. Both 

improper fractions and the double count misconception have counterparts in measurement 

activities and may be easier to resolve in those contexts. This would then provide an image to 

fold back to when students are thinking about improper fractions and double counting in the 

fractions domain. 

5.2.1.2 Broken Ruler tasks. 

The measurement category CADL had an association with a larger effect size than the 

students' Multiplication score to their Number Line score. The broken ruler task, Freddo (Q. 

41) was the entry-level task and 56.8% of the students were successful. The harder task, Footy 

Card (Q. 42), was also a broken ruler task. A comparison between the frequencies of success 

(see Table 5.2) of students in the present study on the Freddo task and student performance in 

the American National Assessment of Educational Progress (NAEP) testing (47% success on 

a similar broken ruler task and 41% on a broken ruler task with less friendly numbers) shows 

that the students in the present study are not an outlier sample. A similar result had been 

obtained in the United Kingdom on a pen and paper test with a line drawn over 1 to 7 on a 

ruler with 49.1% of 12-year olds successful (n > 500) (Hart, 1981). In a separate interview 

study of 89 New South Wales Grade 6 students, 69% of students successfully identified the 

length in a similar broken ruler task (Bragg & Outhred, 2004).  
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Table 5.2 

Comparison of Frequency of Success on Broken Ruler Tasks 

Task and Test Success Grade level 

Freddo: an object on a diagram over 3 to 8 cm on a ruler. 
Q. 41, interview, the present study. 

56.8% 
 

6 

A diagram of a bar over 3-8 inches on a ruler. 
NAEP 1984, multiple choice, cited in (Kamii & Clark, 1997). 

47% 
 

7 

A diagram of a toothpick over 8 to 121/2 cm on a ruler. 
NAEP 2003, multiple choice, cited in Nguyen (2010). 

41% 
 

8 

 

The frequency of success in the present study (52.3%) on a decimal number line (see Figure 

5.2) was very similar to the success in the New Zealand numeracy project (50.2%, Vince 

Wright, personal communication, January 23, 2008). However, the frequency of success of 

38.6% on Q. 16d (33/4) was less than the 87.2% of Grade 6 students correct on the same 

number line in a multiple choice format (Lesh et al., 1983). 

52.3% (the present study Grade 6) 50.2% (New Zealand Year 7) 

Figure 5.2. Comparison of frequency of success on decimal number line tasks. 

The misconception of counting lines not spaces had been reported in the literature on broken 

ruler tasks in junior primary school children (Lehrer et al., 1998) and in senior primary school 

children (Bragg & Outhred, 2004). In Bragg and Outhred's Australian study, 53% of the 

Grade 6 students used the same misconception on a task using a ruler with marks but no 

numerals to measure a length. This was similar to the 48.9% of students in the present study 

who demonstrated the counting lines not spaces misconception in either the Footy Card or 

Freddo task. The counting lines not spaces misconception had also been reported in the 

literature on number lines (Pearn & Stephens, 2007) and 10.2% of the students in the present 

study used this incorrect strategy on the number line marked at 5/6 (Q. 16e), calling it 6/7.  

The use of the misconception in one context, number lines or broken ruler tasks, did not 

predict performance in the other (see section 4.5.2.1.3). Only 33% (3 out of 9) of the students 

who used the misconception on the number line task (Q. 16e) did so on the Freddo or Footy 

Card tasks. Only 37.5% (9 out of 24) of the students who had been successful on the number 
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line question (Q. 16e) used the counting lines not spaces misconception on the broken ruler 

tasks (either the Freddo or the Footy Card task). This misconception was not the cause of the 

association between performance in the measurement category and performance in this 

particular fraction number line question. A misconception may be a perfectly good rule 

misapplied, in this case that the verbal counting sequence begins at one, but it is not 

applicable to every possible context. Further research could target this specifically and ask the 

students why they counted from 1 in one context and not another.  

The responses to the broken ruler tasks highlighted a distinction between two strategies used 

when students' drew their own number lines (Q. 16a). Both the ratio misconception (using 

other ratios such as 6 out of 9 to represent 2/3 on a number line) and unsuccessful partitioning 

(placing 2/3 two thirds of the way along the line but labelling 1 incorrectly) demonstrated that 

the students had strategies that showed correct mathematical thinking but did not 

accommodate the specific conventions of number lines (see section 4.5.2.1.1). However, the 

difference in performance by students with these two misconceptions, on broken ruler tasks, 

suggests that the unsuccessful partitioning was a less co-ordinated understanding of scales 

than the ratio misconception. A similar percentage of students with the two misconceptions 

(69.2% and 70%) were successful on the Freddo task (Table 4.19). Of the students who used 

the ratio misconception, 53.8% (7 of 13) were successful on the Footy Card task. In contrast, 

10% (1 of 10) of the students who used partitioning unsuccessfully on the number line task 

were successful on the Footy Card task.   

There was a linear association between the measurement category CADL and the students' 

fraction Number Line scores. A higher CADL score was often paired with a higher Number 

Line score, while a lower CADL score was often paired with a lower Number Line score. On 

individual tasks, however, the relationships were more complex. There was no clear trajectory 

through the number line questions. The results did not suggest that marked partitions or 

marking partitions was easier, nor whether number lines from 0 to 1 were easier than 0 to 2. 

There was no significant association between the students' Equivalence scores and Q. 16g, the 

decimal number line representing 6.8. The counting lines not spaces misconception in a 

number line context or a broken ruler context was not predictive of its use in the other 

context. However, despite the similar overall frequency of the misconceptions of unsuccessful 

partitioning (11.4%) and ratio representations (14.8%) (see Table 4.19) when drawing their 

own number line (Q. 16a), the contrast in the students' performance on the broken ruler tasks 



231 
 
suggests that the students using the ratio misconception, while incorrect, had a greater 

understanding of length scales than those using unsuccessful partitioning.   

5.2.1.3 CUNA and CADA. 

The construct validity of some tasks was undermined by novel representations (concrete 

materials and inscriptions). This lack of familiarity was evident in the interview in the 

students' handling of the length representations in the Fraction Sort task (Q. 19m, l and t) and 

the pattern blocks in the Pattern Block task (Q. 17). Alternative tasks would be needed to 

further investigate associations between these aspects of the measure sub-construct and 

measurement categories. The Cuisenaire rods in the Cuisenaire Units task (Q. 48) were 

unfamiliar to the students, and the difficulty, not predicted by the pilot study, of the Array 

with Leftovers task (Q. 46) may explain why the CUNA category did not have strong 

associations with other tasks. 

It appeared that the tools and procedures task for the additivity construct in an area context 

(TPADA) was a prerequisite task for the tasks used to assess the conceptual aspect of the 

additivity concept (see Table 4.5). However, the conceptual category, CADA, had a larger 

effect size than the tools and procedures category, TPADA, in associations with the students' 

Number Line scores, Equivalence scores, Fraction Pair score, and performance on Part B of 

the Fraction Pie task. The area of half rectangles was a measurement context in which a 

simple fraction component could illustrate conceptual links across domains. 

5.2.1.4 Attribute. 

There were no significant associations between CATA, CATL, or TPATA (TPATL had 100% 

frequency of success) and the students' Number Line score (see Table 4.23), nor their 

performance on Part B of the Fraction Pie task (see Table 4.39). There was a typical 

association between TPATA and the students' Fraction Pair score (see Table 4.33) and a 

minimal association with their Equivalence score (see Table 4.17). The concept of attribute 

has been seen as a foundational understanding in measurement instructional trajectories (see 

e.g., Outhred et al., 2003; Wilson & Rowland, 1993). The concept of attribute has also been 

seen as being necessary for the understanding of fraction diagrams (see e.g., Steinle & Price, 

2008). However, in the present study, the misconceptions of an understanding of the key 

concept of attribute appeared to be quarantined. This may be due to construct validity 

problems with the tasks chosen to assess attribute. Or it may be because fraction knowledge 
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masks rather than cures the perimeter indicates area/ same area indicates same perimeter 

misconceptions (see discussion in section 5.1.1).  

5.2.1.5 Proportionality. 

There was a typical association between the measurement categories CPRL, TPPRL and 

TPPRA (CPRA had 100% frequency of success) and the students' Equivalence score (see 

Table 4.17), their Number Line score (see Table 4.23) and their Fraction Pair score (see Table 

4.33). There was a typical association between the measurement category CPRL and the 

students' performance on Part B of the Fraction Pie task (see Table 4.39). Since the 

conceptual link between order, equivalence, ratio and proportion had been elaborated in the 

research literature (see e.g., Behr, Wachsmuth, Post, & Lesh, 1984; Confrey, 2008; Lesh, 

Post, & Behr, 1988; Lamon, 1993), the small effect sizes found in the present study were 

unexpected.  

In the present study 80.7% of the students successfully chose Tim as having the biggest steps 

in the Steps task (Q. 44). In a pen and paper version of this task (National Center for 

Educational Statistics, 2007), 41% of Australian Grade 4 students were successful on the 

2003 Trends in International Mathematics and Science Study. Age and the testing format may 

have influenced the contrasting frequencies of success. In present study 47.7% of the students 

chose and used an equal interval ruler (or imagined equal spaces on a non-equal marked ruler) 

in the Choosing Rulers task (Q. 45). Similarly, Pettito (1990) had found that 42.9% of 

children in late Grade 3 (n = 21) chose the equal spaced ruler.  

The tasks assessing the measurement construct of proportionality were not quantified; the 

students only had to nominate the direction of change. In developing the interview tasks, if a 

proportionality task included quantification I classified it as a (fraction) ratio task. The results 

suggest that there is not a strong association between the concept of proportionality in an 

unquantified context and fraction constructs. If the proportionality (measurement) tasks had 

included a fractional component as the units category did, there may have been stronger 

associations.  

There were analogous tasks in length and area at the easiest level: Part B of the Paperclips 

task (Q. 40b) and Part B of the Draw Your Own Array task (Q. 38b). It would have been 

possible to develop an analogous task in the area context to the Steps task and it is a limitation 
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of the present study that this was not done. However, a task analogous to the Choosing Rulers 

task suitable for Grade 6 students was not developed for the present study.  

5.2.1.6 TPUNA. 

In general, conceptual categories had stronger associations than tools and procedures 

categories to fraction constructs. The categories of CUNL and CADL have been analysed in 

the previous section. However, the category of TPUNA consistently had substantial 

associations with the Fraction constructs (Equivalence scores, Number Line scores, and 

Fraction Pair scores) and, like students' Multiplication score, a typical association with Part B 

of the Fraction Pie task. This was an unexpected result. 

In developing tasks for the interview, I had thought that knowing to offer cm as the unit for 

length tasks, and to offer cm2 as the unit for area tasks was rote learned. Therefore, I did not 

specifically ask the students to explain why they had offered the units that they did, hence I do 

not have verbal explanations to interpret. 

Around 70% of students in Equivalence Bands A, B and C had TPUNA scores of 0 (see Table 

4.18). Around 30% of students in Equivalence Bands D and E had TPUNA scores of 0. No 

students in Equivalence Band F had TPUNA scores of 0. Equivalence Band E represents the 

first band where equivalence knowledge was used as part of another strategy, such as 

benchmarking or creating common denominators. However, while there was an association 

between low Equivalence scores and the use of incorrect units (cm) in area tasks, and high 

scores and the use of correct units (cm2), the specific difference between Equivalence Band D 

and Equivalence Band E was shown not to be important.  

Arrays were used in tasks to assess area knowledge. All students in the present study could 

use coordinates on a grid on the Treasure Map task (Q. 50, see Figure 4.1) thus demonstrating 

that they could see an array structure. Battista et al. (1998) had noted that when younger 

children have to physically draw units on arrays, some drew each square in its entirety rather 

than using one line to show the edge of two adjacent squares. This did not occur in any of the 

88 inscriptions that the students made in the present study (see section 4.2.4.4). Outhred and 

Mitchelmore (2000) had developed the Draw Your Own Array task and 71% of the Grade 4 

students in their study were successful at restructuring the rectangle. In the present study, 

89.8% of the students created an acceptable array or indicated an array with row and column 

hash marks. Of the nine students who were unsuccessful on Part A of the Draw Your Own 
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Array task (Q. 38a), seven had a TPUNA score of 0 (offered cm incorrectly), one had a 

TPUNA score of 1 (offered informal units but not cm2 nor cm), and one had a TPUNA score 

of 2 (offered cm2 and not cm). If the TPUNA category was in fact a conceptual category, then 

the units aspect of the task may be an extension to traditional trajectories of array 

understandings. Battista's array trajectory (2007) and Outhred and Mitchelmore's trajectory 

(2000) had been based on children in Grades Prep to 4 (see section 2.1.2.2). Offering correct 

formal units may need to be incorporated into trajectories for array understanding that extends 

to Grade 6.  

5.2.1.7 Implications. 

The measurement to partitioning/equivalence/unit-forming to measure sub-construct 

conceptual pathway was demonstrated by the substantial associations between the 

measurement categories, additivity and units, and the fraction constructs, equivalence and the 

measure sub-construct (Number Line, Fraction Pair, and Fraction Pie tasks). This pathway 

was also evident in the analysis of students' explanations to particular tasks. This pathway has 

been examined in reports of classroom interventions (see e.g. Cobb et al., 2011; Nguyen, 

2010; Yanik, Helding, & Flores, 2008) and in theoretical models (Confrey, 2008). The 

understanding of key concepts of measurement matter, and can be conceptually connected to 

fraction understanding. The multiplication to equivalence to ratio pathway (see e.g., Confrey, 

2008) is also an important pathway, as demonstrated by the substantial association between 

students' Multiplication scores and fraction constructs, but it is not the only pathway to 

fraction understanding. The present study has shown that there are opportunities for making 

conceptual connections between fractions and length and area measurement. 

Conceptual measurement tasks are important for the development of the measurement to 

partitioning/equivalence/unit-forming to measure sub-construct pathway. Using broken rulers 

is as important as using a ruler. Measuring with items with units that leave a leftover is as 

important as co-ordinating the iteration of a whole number of units. Although it was 

quarantined in the present study, a systemic knowledge of attribute could be part of the 

curriculum. Spatial measures are length, area, volume and angle. Length presents in 

increasingly complex ways from straight paths to perimeters. Area means tiling or 

restructuring in two dimensions not "what's inside" in a three dimensional context. 
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The use of formal units appears to be more than just tools and procedures knowledge. An 

implication of this is that further research is required to extend descriptors of array 

understandings in the elaboration of these trajectories. 

5.3 Research question 3: Kieren's four-three-four model  

The third research question investigated was:  

• Can we use Kieren's four-three four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

There were two key structures to Kieren's four-three-four model. Firstly, there were four sub-

constructs, measure, quotient, operator, and ratio, supported by three concepts, partitioning, 

equivalence, and unit forming. Secondly, while the constructs described different contexts for 

rational numbers, a child's engagement with each construct could be at four levels: 

ethnomathematic, intuitive, technical-symbolic or axiomatic deductive (1988, 1992, 1993, 

1995). Pirie and Kieren (1994a; 1994b) had described the process of dynamical learning, and 

highlighted the role of folding back to earlier images rather than permanently moving past 

earlier understandings, and this can be connected to Kieren's four levels of engagement with 

fractions tasks.  

Kieren's earlier five-part model had many citations in the research literature both in its own 

right (Kieren & Nelson, 1978; Kieren & Southwell, 1979; Leung, 2009; Norton & Wilkins, 

2010) and as the framework for the Rational Number Project research (see e.g. Behr, Harel, 

Post, & Lesh, 1992; Behr, Post, & Silver, 1983). Researchers citing the Rational Number 

Project research often use the five-part model (see e.g. Charalambous & Pitta-Pantazi, 2006; 

Clark et al., 2003; DeWindt-King & Goldin, 2001; Tepylo & Moss, 2011). Some researchers 

using the five-part model noted the double count misconception which could develop from 

the part-whole sub-construct, but they continued to use the model while cautioning against 

simplistic interpretations of part-whole (see e.g. Gould, 2005; Lamon, 2007; Mosely, 2005). 

Research by radical constructivists with other frameworks has continued (Confrey, 2008; 

Nguyen, 2010; Steffe, 2003). Other research with less prominent theoretical frameworks did 

not cite Kieren's work (see e.g. Duzenli-Gokalp & Sharma, 2010; Petit et al., 2010; Rayner, 

Pitsolantis, & Osana, 2009). Kieren's four-three-four part model remains rarely cited in the 

research literature.  On the other hand, the Pirie-Kieren model describing learning as a 

dynamical recursive process had been taken up by researchers who examined children's 

learning (Martin 2008) and pre-service teachers (Borgen, 2006).  
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5.3.1 Measure sub-construct. 

In selecting and designing tasks for the present study, I focussed on the measure sub-construct 

and the concept of equivalence. The measure sub-construct included three aspects. Some tasks 

(bolded) were reported in the Results chapter and have been discussed earlier in this chapter: 

• area and length diagrams or contexts (Tightrope Walker, Q.15; Puff Machine, Q. 23; 

Fraction Sort, Q. 19; Fraction Pie, Q. 14; Fold Me a Quarter, Q. 13), 

• comparisons of the relative size of fractions (Fraction Pairs, Q. 22; Density, Q. 25), 

• Number lines (Q. 16). 

Kieren had included length and area diagrams as part of the measure sub-construct in his 

reframing of the part-whole sub-construct (1992). The research literature had categorised the 

comparison of the relative size of fractions (order) as part of a broad part-whole sub-construct 

(see e.g Behr, Wachsmuth, Post, & Lesh, 1984), as part of the measure sub-construct (Lamon, 

1999; Ni, 2000), as part of equivalence and ratio understanding (Behr et al., 1992), or as 

understanding fractions as numbers (Clarke & Roche, 2009). Following Lamon (1999), I have 

classified the Fraction Pair task as a measure sub-construct task. Number lines have been 

accepted as an example of the measure sub-construct by researchers using Kieren's (1980) 

five-part model (see e.g, Clarke, Roche, & Mitchell, 2011; Lamon, 1999; Pearn & Stephens, 

2007) and by researchers in the Rational Number Project (see e.g., Bright et al., 1988).  

Different strategies for individual tasks illustrate different aspects of the measure sub-

construct, links between sub-constructs, or different levels of response. Hence the Fraction 

Sort task, the Fraction Pie task, the Fold Me a Quarter task, the Fraction Pairs task, and the 

Number lines task will be discussed in this section with respect to the specific concepts as 

appropriate: 

• partitioning concepts drawn on in the measure sub-construct 

• partitioning concepts drawn on in length measurement tasks 

• equivalence concepts drawn on in the measure sub-construct 

• unit-forming concepts drawn on in the measure sub-construct 

For example, there were several correct strategies that were evident in the students' responses 

in the present study to the Fraction Pair task (see Table 5.3) but the different strategies will be 

reported in the partitioning (5.3.1.1), equivalence (5.3.1.2), and unit-forming (5.3.1.3) 

sections. The misconception of gap thinking will be discussed in the equivalence section. 

Seth's strategy for the fraction pair 3/4 7/9 which used operator thinking will be discussed in the 

links across the four sub-constructs section (5.3.5). 
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Table 5.3 

Strategies for Fraction Pairs 

Fraction 
Pair Possible Correct Strategy 

Fraction Concept  
Drawn On 

3/8   7/8 same denominator and  compare numerators;  
visualisation of area  
complement to one 

partitioning 
partitioning 
unit-forming 

2/4    4/8 equivalence  equivalence  
1/2    5/8 benchmarking  unit forming or equivalence 
2/4     4/2 compare 1/2 and 4/2  

benchmarking to one 
mixed number 

equivalence and partitioning 
equivalence 
unit forming and equivalence 

4/5    4/7 same denominator,  compare numerator  
benchmarking 

partitioning 
equivalence and unit forming 

3/7    5/8 benchmarking  equivalence and unit forming 
5/6    7/8 residual thinking  partitioning 
3/4    7/9 equivalence and residual thinking;  

common denominators  
equivalence and partitioning 
equivalence and partitioning 

5.3.1.1 Partitioning concepts drawn on in the measure sub-construct. 

Kieren’s description of the concept of partitioning was linked to children’s actions of making 

equal parts and exploring the multiplicative relationships between different sized parts: the 

"folding space" (1995). Partitioning privileged the actions of making or imagining equal parts 

rather than double counting pre-shaded area diagrams (Confrey, 2008; Kieren, 1983, 1995). 

However, making equal parts and comparing the results of two different partionings is also an 

aspect of the partitioning concept. In regard to the measure sub-construct, three aspects of 

partitioning are discussed: 

• making equal parts (including using visualisation),  

• the double count misconception, and 

• comparing different sized parts or different numbers of equal sized parts. 

When faced with non-equal-parts area diagrams some students, who understood that 

partitioning was based on equal parts, imagined equal parts. For example, in the Fraction Sort 

task the students had to choose the fraction represented by a diagram of a rectangle divided 

into four non-equal parts (a sixth, see Figure 4.43, Q. 19b). This task had a frequency of 
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success of 50%. For example, Jade described imagining an extra line to make equal parts 

"because if you put a line down there [indicates with finger] there would be six spaces; one 

coloured."  

Making equal parts was also evident in the non-equal-parts diagram of the Fraction Pie task 

(see Figure 4.41). Some students recognised the need to make the same number of partitions 

in both halves. For example, Jack explained how he made the same sized parts on both halves 

of the circle, "There's three of the same size on this size. So that means there would be able to 

fit, uh, three of the same shape on the other side. And that's six. And that would be one of 

them."  

The students who imagined lines back through the left hand side from the radii on the right 

hand side of the Fraction Pie diagram (see Figure 4.41) were attempting to make equal parts. 

They either forgot to exclude the line dividing the quarters, or they believed that the 

imaginary lines divided the quarters in halves and therefore incorrectly made sevenths. It 

would appear that no cognitive conflict was generated by these imagined lines creating four 

parts in the left half and three parts in the right half. The initial premise, making equal parts, 

was a mathematically correct strategy but not executed successfully.  

Partitioning was also utilised in the Number Line task Q. 16a, in which the students had to 

draw a number line and mark two thirds on it. Some students combined successful 

partitioning and successful measure sub-construct knowledge by marking 2/3 two thirds of the 

way between 0 and 1 on the number line. Students partitioned by eye, by iterating with their 

fingers, or by using a ruler. The 33% frequency of success on this question was lower than the 

51% frequency of success on the same question in a larger study (Clarke et al., 2007). One 

misconception observed in the present study was the incorrect labelling of 1 on the number 

line. Some students marked 2/3 two thirds of the way along the line but then labelled 1 at the 

position of 1/3. These students had drawn upon partitioning concepts but they did not co-

ordinate the labelling conventions of number lines with their partitioning, possibly using 1 to 

indicate 1/3. 

This misconception was related conceptually to marking ¼ on a number line marked 0 to 2 at 

a half (a quarter of the way along the line) by partitioning the whole line into quarters.  This 

misconception had been noted in the research literature (Clarke et al., 2007, 2011; Kieren, 

1993; Petit et al., 2010). This response was observed in the present study on Q. 16c. However, 

not all students making this error had done this in both questions (Q. 16a and 16c). This 
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indicated that the different contexts affected whether the partitioning misconception would 

emerge.  

The double count misconception was associated in the literature with the use of limited part-

whole definitions of fractions (Kieren, 1988; Lamon, 2007). In the measure sub-construct 

tasks, the Fraction Pie task and the Fraction Sort task in the present study, the double count 

misconception is classified as a misconception of partitioning. The unconditional double 

count misconception answer of one fifth, because there were five parts, to both Part A and 

Part B of the Fraction Pie task was given by 9.1% of the students. This was less than half of 

the 21.6% of students who gave the answer of one fifth to either Part A or Part B of the 

Fraction Pie (see Table 4.36). The offering of conditional double counting explanations, such 

as Ruby's, "because there are five pieces in it. Um, it would be an equal fifth if they were a bit 

smaller and they were the same size, but they're not. Because those two are bigger than those 

three; so technically they're fifths, they're just not equal fifths" was observed in the present 

study and had also been reported in previous research (Post et al., 1985).  

Although the concept of part-whole in the original research by Kieren (1980) and the Rational 

Number Project researchers (Behr et al., 1983; Behr et al., 1992) was broader than a static 

double count, researchers suggested (see e.g., Lamon, 2007) than teachers' instruction on the 

part-whole concept was limited. Resolving the double count misconception may be complex. 

Simple explanations may confirm a misconception because of the similarity of the linguistic 

structure of correct and incorrect calculational explanations. For example, both Jess and Jade 

gave almost indistinguishable explanations as to why the Fraction Sort card diagram of one of 

six equal parts shaded was one sixth (see Table 4.38): 

• "because there's six there and then there's one um shaded, and there's six." 

• "because there's six pieces and one's coloured." 

One of these students then verbalised the double count misconception when sorting the card 

with a diagram of one shaded part out of four non-equal parts (a sixth): 

• "Yeah I put that there [quarter] because there's four shaded [sic] and one shaded and 

it's a quarter." 

• "because if you put a line down there [indicates with finger] there would be six pieces; 

one coloured." 

If a teacher used a correct explanation like Jade's, "because there's six pieces and one's 

coloured" to explain the strategy of partitioning on an equal-parts diagram, then Jade's correct 
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partitioning thinking would be confirmed. The difference between the explanations to the card 

with the non-equal-parts diagram (a sixth) showed that Jess' explanation was still 

calculational, "Yeah I put that there [quarter] because there's four shaded [sic] and one shaded 

and it's a quarter". Jade's explanation on the other hand, included  

• a calculational aspect, "there would be six pieces; one coloured." 

• how she arrived at the calculation, "because if you put a line down there [indicates 

with finger] there would be six pieces" 

• but not an explicit statement of why she did this (to make equal parts). 

In the Fraction Pairs task (Q. 22) the comparison of the relative size of fractions was 

presented as symbolic inscriptions. Some, but not all, of the strategies used for comparisons 

drew upon simple partitioning concepts (see Table 5.3): 

• comparing different numbers of equal parts, or  

• comparing different sized parts.  

For the fraction pair 3/8 and 7/8, the comparison could involve folding back to an image of   

partitioning into eight equal parts and then comparing different numbers of these parts. This 

was expressed in the technical symbolic language of Lily, "Because there's the same 

denominator and seven's larger." Students who visualised a diagram drew on images of 

partitioning actions to decide that 7/8 was the larger fraction. The classification of these 

strategies as partitioning in a fraction comparison context corresponds to their classification 

as part-whole in research based on other models (see e.g., Cramer & Wyberg, 2009). In the 

present study, improper fractions were an extension of this use of comparison after 

partitioning..Some students called 4/2 an improper fraction signalling that four haves was more 

than one half. For example, Kate explained "Because the four is bigger than two and it's an 

improper fraction". These students also co-ordinated their knowledge of equivalence with this 

partitioning: either renaming 2/4 as a half or benchmarking to 1. 

The fraction pair 4/5 and 4/7 was analogous to unit-fraction pairs. Comparison were based on 

the size of the pieces because the number of pieces was the same. This strategy had been 

described in the research literature (Behr et al., 1984; Clarke & Roche, 2009; Clarke et al., 

2008; Cramer & Wyberg, 2009; Post & Cramer, 1987; Post et al., 1985) and was observed in 

the present study. For example, Sarah chose 4/5 as the larger fraction "Because the top 

numbers are both four, but there's seven and five on the bottom; and seven means that the 

pieces are littler. So four of them wouldn't equal four of the fifths." In classroom activities the 
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actions of partitioning generate unit fractions which are then compared: a fifth is bigger than a 

seventh. This partitioning and comparison action can be extended to the same number of 

pieces of different sizes: four fifths is bigger than four sevenths because if you have the same 

number of pieces you want the bigger pieces. I argue that these comparisons are part of the 

partitioning concept and are drawn upon in the measure sub-construct context of fraction pair 

(presented with symbolic inscriptions) comparisons. 

Residual thinking is the third strategy that is part of the broad understanding of the actions of 

partitioning. Residual thinking had been described in the literature as comparing the unit 

fraction leftover in fraction pairs such as 5/6 and 7/8 (Post, Behr et al., 1986; Clarke & Roche, 

2009; Cramer & Wyberg, 2009). In classroom activities, the action of partitioning produces 

fractional parts of kits or diagrams which are then compared: in this case the residual pieces 

are compared.  

An aspect of partitioning not investigated in this thesis was the multiplicative relationship 

between pieces. For example Kieren describes paper folding problems such as what folds are 

needed to get from thirds to twelfths (1995).  

The measure sub-construct encompassed the contexts of number lines, area diagrams and 

relative size comparisons. The concept of partitioning involved many understandings. The 

making of equal parts on number lines or diagrams, or the imagining of equal parts on non-

equal-parts diagrams, was one aspect of partitioning. Linked to this was resolving the double 

count misconception. Another aspect of partitioning was comparing the results of partitioning. 

Three strategies used in the Fraction Pair task illustrate this: comparing the number of pieces 

if the pieces are the same size, comparing the size of the pieces if there are the same number 

of pieces, and comparing two residual pieces. In the present study, all these aspects of 

partitioning were used by students explaining their responses to measure sub-construct tasks. 

5.3.1.1.1 Partitioning concepts drawn upon in length measurement tasks. 

Partitioning was drawn upon in length measurement contexts. Visualising equal partitions was 

a feature of the responses to the length measurement task, Q. 39 Keyboard (see Figure 4.9). 

Some children worked mentally left to right and divided the final pencil into tenths, or split it 

in half and half again. Other children worked from right to left with the part left over the end 

of the keyboard and iterated backwards to discover it was a quarter. These explanations 

indicated that partitioning was also used in measurement contexts. Subsequent research has 
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confirmed a conceptual link between equi-partitioning and length and area tasks (Nguyen, 

2010). 

The perimeter comparisons of the shaded shapes in the Similar Shapes task (Q. 36h) revealed 

that students could drawn upon partitioning and not recognise that their fraction partitioning 

knowledge was masking a misconception about the relationship between perimeter and area. 

Students recognised that the shaded shapes were both partitioned in halves. However, they 

used this knowledge to incorrectly deduce that the perimeters must be the same. This use of 

fraction partitioning may mask the geometric misconception and this was not flagged by 

Kieren's model which is a framework of ideal knowledge in fractions. 

5.3.1.2 Equivalence concepts drawn on in the measure sub-construct. 

In Kieren's reframing of part-whole, in the four-three-four model (1988, 1992, 1993, 1995) 

the concept of equivalence was given its own category which had conceptual connections to 

not just the ratio sub-construct, but also the measure, quotient and operator sub-constructs. In 

the five-part model for fraction understanding the part-whole sub-construct included order and 

equivalence (Post et al., 1985), and equivalence was linked to ratio (Post et al., 1985; Wong & 

Evans, 2007). 

In the present study, equivalence understanding was drawn upon in the measure sub-construct 

number lines tasks. This was suggested by the common variance of 51% (and a substantial 

association) between the students' Equivalence score and their Number Line score (see Table 

4.40). However, there was no significant association (p = .167) between the students' 

Equivalence scores and Q. 16g, the decimal number line representing 6.8 suggesting that the 

use of only decimal number lines to assess the measure sub-construct may not have content 

validity and that co-ordinating an understanding of fraction number lines may be important.  

The ratio misconception was observed in the first number line question in the present study 

and 14.8% of the students placed 2/3 incorrectly when drawing their own number line (for 

example, at 2 out of 3, 6 out of 9, 6.66 out of 10, or 8 out of 12). These students drew on 

equivalence knowledge, for example, 2/3 is the same as 8 out of 12, but they could not co-

ordinate this successfully with the conventions of a number line (that 2/3 is two thirds of the 

way between 0 and 1). This behaviour had been observed in earlier research on the same task 

(Clarke et al., 2007). 



243 
 
Equivalence understanding was drawn upon in the measure sub-construct tasks using area and 

length diagrams. There were eight cards in the Fraction Sort task (Q. 19) that represented 

equivalent fractions (see Figure 4.20). For example Rohan explained why the length 4/6 was 
2/3, "And this is two thirds 'cause it's four sixths and if you halve it it will be two thirds". Only 

two students could successfully restructure the triangle divided into three non-equal parts into 
6/9 (Q. 19r) but neither could rename this 2/3. Equivalence understanding, in the length and 

area diagram context of the measure sub-construct, required both visualisation and numerical 

skills. There was also a substantial association between the students' Equivalence scores and 

Part B of the Fraction Pie task (see Table 4.40) suggesting that partitioning and equivalence 

concepts were co-ordinated by the students who could correctly name Part B of the Fraction 

Pie as one sixth.  

It was not surprising that there was a substantial relationship between the students' 

Equivalence score and their Fraction Pair score as there were two questions in common (Q. 

22b and Q. 22f) (see Table 4.40). However, there was no significant association (p = .096) 

between the students' Equivalence score and comparing the fraction pair 3/8 and 7/8 (Q. 22a). 

This supports the argument that this particular fraction pair drew on partitioning rather than 

equivalence knowledge.  

The comparison of fractions could require the recognition of equivalent fractions such as 2/4 

and 4/8 (Q. 22b). Previous research had demonstrated the importance of one half as a first step 

to equivalence understanding (see e. g. Callingham & Watson, 2004). In the present study, the 

(in this instance correct) additive language was revealed in some students' explanations of one 

half. For example, Emma explained why 2/4 and 4/8 where the same, "Well 'cause, you just, 

they're all, they're halved, so they would be the same. So there's four plus four is eight and 

two plus two is four." Similarly Jack's explanation illustrated that the relationship could be 

additive or multiplicative but that this was not clear in students' use of the word half, "they're 

both half. Of the bottom number". Multiplicative thinking was evident in Nicky's explanation 

using the word simplify, " 'cause two quarters and four eighths; if you simplify four eighths 

you make it go down to two quarters, you simplify that again it would be one half". 

Another strategy that drew on equivalence was benchmarking where fractions were compared 

to a third fraction such as to 1/2. For example, Lily chose 5/8 as larger than 3/7 explaining, 

"Because half of eight is four and means that's gone more, that's more than a half. And that 

one's three point five. And to go over a half, that has to be four." Adam used benchmarking to 

explain why 4/5 was larger than 4/7, "Um. Four. The four and the seven, there's more less, like, 
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um close to a half, but this one's like almost a whole." In both of these examples 

benchmarking is not possible without knowing that 1/2 is equivalent to 
4/8, 3.5/7 or 2.5/5. A 

related strategy drawing on equivalence was using common denominators. This was 

illustrated in Lily's explanation of how she decided that 7/9 was larger than 3/4, "I tried to get 

thirty six [waves finger across both denominators]. And I times that by nine [points to 3], and 

that by four [points to 7]." Common denominators are used to make friendly equivalent 

fractions. 

The partitioning concepts (correct strategies and the double count misconception) drawn upon 

in the comparison of the residual fraction pair 5/6 and 7/8 have been discussed above in the 

partitioning section (5.3.1.1.1). Gap thinking, a misconception of equivalence (see section 

5.1.4), was used on this residual pair by 50% of the students in the present study. A co-

ordinated knowledge of equivalence includes understanding why residual pairs are not 

equivalent. A classroom activity that addressed equivalence was the Japanese lesson study 

activity the Janken game (paper, scissors, rock). Students received different pattern blocks for 

a win with paper (green sixth), scissors (blue third), or rock (yellow half) (Yamamoto, 2007). 

The practical problem that the children discovered needed solving was how to give "change" 

if their opponent had run out of one sort of pattern block. Trading (equivalence) solved this 

(Yamamoto, 2007). In addition, I would argue, the activity provided students with an image 

of residual fraction comparisons. 2/3 (two blue blocks or four green blocks) as change for a 

whole, given for a win with scissors from a child with no blue blocks left, was not equivalent 

to the 5/6 (five green blocks) given as change for a whole given for a win with paper by a child 

with no green blocks left. The transactions in this game give students a concrete image to fold 

back to of the equivalence of 2/3 and 4/6 and the non-equivalence of the residual pair 2/3 and 5/6. 

I have argued in this thesis that gap thinking could be thought of as a misconception of 

equivalence. Kieren's four-three-four model is explanatory, not in the sense of describing a 

mechanism, but in the sense of naming the key concepts and their connections. Fraction size 

comparisons can be classified as measure sub-construct tasks. Different fraction pairs draw on 

partitioning, equivalence or unit-forming. The as much as meaning of equivalence is drawn 

upon in additive initial understandings of equivalences to one half, illustrated in Emma's use 

of the word plus. This meaning is related to unit-forming: a fractional part can further be 

made up of parts added together (Kieren, 1999). The as many as meaning of equivalence is 

drawn upon in multiplicative understandings of equivalences to one half, illustrated by 

Nicky's use of the word simplify. This aspect of equivalence is related to partitioning: if a 
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fractional part is divided into equal parts, this action is replicated on all parts so that the whole 

is made of, simultaneously, these smaller equal parts and equal parts the size of the original 

fractional unit. This understanding was explored by Clark and Kamii (1996).  

The gap thinking misconception is a misconception of equivalence. Additive calculational 

explanations are inappropriately generalised. They are (incorrectly) confirmed by the 

partitioning or unit forming concepts drawn upon when comparing the fraction pair 3/8 and 7/8 

and the unit forming aspect of equivalence drawn upon in recognising equivalences to one 

half. Gap thinking is reinforced by the double count misconception (a partitioning 

misconception), in the residual fraction pair 5/6 and 7/8. Drawing on (correct) partitioning 

concepts in this fraction pair, grounded in concrete materials or inscriptions, may help resolve 

the gap thinking misconception. Students who consistently use equivalence as part of 

strategies such as benchmarking and common denominators did not exhibit gap thinking 

indicating that this may have contributed to the resolution of this misconception. Kieren's 

terminology of unit-forming, partitioning, and equivalence, and the measure sub-construct 

enable the framing of this discussion of the gap thinking misconception. It would be possible 

to use the sub-construct part-whole as an overarching term for partitioning, equivalence and 

unit-forming, and propose the same explanation for the gap thinking misconception within the 

framework of the five-part model: either Kieren's model (1980) or the Rational Number 

Project framework (Behr et al., 1992; Behr et al., 1983). However, the elaboration of the four-

three-four model (Kieren, 1988, 1992, 1993, 1995) enabled the fine-grained analysis and 

focuses attention on possible strategies to assist in resolution of misconceptions. 

Some research used the five-part model to demonstrate student proficiency in each of the five 

categories, finding that students performed best in part-whole and weakest in measure 

(Charalambous & Pitta-Pantazi, 2006; Leung, 2009). However, equivalence was not a 

separate category in these two projects and I have argued that equivalence could be drawn 

upon in the four sub-constructs (e.g., measure) and thought of a concept in its own right (or 

part of the Rational Number Project's construct of part-whole). The results of the present 

study showed that equivalence was an important facet of students' fraction understanding with 

substantial correlations to other fraction constructs. Including or excluding an equivalence 

component in a task would have changed the construct validity of the category in those two 

research projects that used the five-part model.  
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5.3.1.3 Unit-forming concepts drawn on in the measure sub-construct. 

Confrey (2008) defined equi-partitioning as multiplicative and different from "breaking, 

fracturing, fragmenting, or segmenting in which there is the creation of unequal parts". Kieren 

had also made this distinction, calling this other sort of restructuring into unequal parts unit-

forming or the combining space (Kieren, 1995). This concept was drawn upon in students' 

explanations of measure sub-construct tasks. The number line context and unit-forming has 

not been analysed in this thesis. How the unit-forming concept is drawn upon in the other 

measure sub-construct contexts of non-equal parts diagrams and fraction pair comparisons is 

elaborated in the following paragraphs. 

In non-equal-parts diagrams, the concept of unit forming reinforced that double counting 

would be inappropriate. The research literature had reported classroom activities in which 

students worked with non-equal-parts diagrams approaching the naming of parts from a unit-

forming perspective not with the partitioning misconception of the double count (Kieren, 

1995; Kieren et al., 1996). Students' attempts to compare Part B of the Fraction Pie to Part A 

have been discussed at length in section 5.1.2. For example some answers of a fifth were an 

estimation of a fifth plus a-small-fraction equals a quarter.  

It was the students' choice of strategy that determined whether the Fraction Pie task assessed 

simple partitioning (three on one side so six altogether), unit forming (a sixth plus a twelfth is 

a quarter), or the harder operator (two thirds of a quarter), which were observed in the present 

study; or equivalence (a half is three sixths), or the easier operator (a third of a half) which 

were not observed in the present study. Being unsuccessful on the Part B of the Fraction Pie 

task did not mean that they could not partition. Some had attempted the much more difficult 

operator calculation (two thirds of a quarter) or the more difficult unit-forming calculation (a 

sixth plus a twelfth is a quarter). Presmeg (1985) had cautioned against assuming that a child's 

preferred strategy was their only strategy. Thus a false negative, analogous to the false 

negatives for visualisation described by Bishop (1983), may result if observational listening is 

not used. 

Unit-forming was drawn upon in the measure-sub-construct context of the comparison of 

fraction pairs (Q. 22). The complement to one strategy used in the fraction pair 3/8 and 7/8 

restructured the whole into two unequal added parts: 

• 3/8 plus 5/8, and 

• 7/8 plus 1/8 
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The concept of unit forming enabled the description of improper fractions as mixed numbers. 

A mixed number is made up of two unequal parts added together, a whole number part and a 

fractional part. This premise appeared to underpin Tom's explanation for the fraction pair 2/4 

and 4/2, "this is a whole and a half – no two wholes". 

In the fraction pair 5/8 and 1/2 it was possible to use unit forming to think of 5/8 as made of two 

unequal pieces, 1/2 and another piece. Rose used quarters to indicate pieces in her explanation 

of why 5/8 was the larger fraction, "Because this [5/8] is like three quarters out of eight and 

this is only half; and so it's one quarter extra." Of course it was possible to use partitioning  

and equivalence to see 5/8 as 
4/8 plus 

1/8 (benchmarking), which some other students did.  

Although unit-forming can be seen as one aspect of the part-whole sub-construct, as a term 

for a single concept, it can categorise some classroom fraction activities and highlight the 

correct additive thinking required in a co-ordinated understanding of fractions. For example, 

the place value approach to decimals (whole numbers plus tenths plus hundredths plus 

thousandths) was reported as beneficial for students (Desmet, Gregoire, & Mussolin, 2010; 

Roche & Clarke, 2011; Steinle & Stacey, 2011). Using a decimat to represent the additive 

connection between the decimal parts (Roche, 2010, 2011) could be described as using unit-

forming understanding.  

In another classroom activity, Colour in Fractions, children roll two dice (one with a numeral 

for the numerator and one with */x (x was 2, 3, 4, 6, 8, or 12) for the denominator. They then 

coloured in the resulting area on a fraction wall (Clarke et al., 2008; Clarke & Roche, 2010). 

The roll of the dice enabled improper and proper fractions. Equivalence was encountered 

additively: four one-eighths was as much as one half. The activity was framed as exploring 

equivalence and improper fractions but could also be classified as using unit-forming and 

equivalence concepts. For example having rolled 3/4, a child can colour in three one-quarter 

pieces; a half, a sixth and a twelfth; or any combination of fraction wall pieces that add up to 

the roll of 3/4. The child also records this early addition symbolically. The mathematics is 

similar to the unit forming activities that Kieren described in his combining space such as 

making 3/4 out of fraction kit parts (1995).  

Tasks such as Construct a Sum (see Figure 5.3, image supplied by Doug Clarke & Anne 

Roche), developed by the Rational Number Project researchers (Behr et al., 1986; Behr, 

Wachsmuth, & Post, 1985) where students had to make two fractions that would add to close 

to but not equal to one (given a choice of specified numerals), were the types of activities that 
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helped students move from an intuitive understanding of unit-forming to a technical- 

understanding in the measure sub-construct in the context of the relative size of fractions. 

Results from a later study showed that 25.4% of Grade 6 students created a combination 

between 0.9 and 1.1 (Clarke et al., 2008, 2011). 

 

Figure 5.3. Construct a Sum  

5.3.2 Quotient sub-construct. 

The quotient sub-construct described sharing or fractions as division contexts (e.g., Clarke, 

2006; Kieren, 1992; Lamon, 1999). For example three pizzas shared between five people 

yielded a fractional share. 

5.3.2.1 Partitioning concepts drawn on in the quotient sub-construct. 

In the Sharing Custard Tarts task (Q. 20), some children elected to draw a diagram of five 

children sharing three custard tarts. Some used French division, as the Dutch called it 

(Streefland, 1991), and divided each tart into five equal parts. Some had the partitioning 

knowledge to name this correctly as three fifths. Other students' physical partitioning was 

successful but they named the share incorrectly as three fifteenths. Harry's partitioning of 

circles was less developed and after trying halving and quartering, he said, "there's no way 

you can cut it up into five pieces." The ability to keep track of the whole when more than one 

whole was used, which Lamon (1999) called unitising, was connected to the partitioning 

knowledge called upon in this quotient task. Only one student used the technical symbolic 

understanding that three shared between five was three fifths. 

The present study demonstrated that partitioning and unit-forming were drawn upon in 

quotient sub-construct tasks. Researchers had advocated the use of the sharing context as an 

introduction to fractions instead of part-whole (Empson, 1999; Mamede et al., 2005). The 

Dutch fraction curriculum had an emphasis on fair sharing (Streefland, 1991). The connection 
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between fractions and division was shown to be hampered by the use of part-whole as the 

dominant form of fraction instruction (Lamberg & Middleton, 2009). In the present study, 

Kieren's four-three-four model quotient has framed the elaboration of the connection between 

the quotient sub-construct and the underpinning concepts of partitioning, equivalence (not 

analysed here), and unit-forming. The model does not advocate a trajectory but has 

explanatory power of why a quotient sub-construct context can develop early fraction 

understanding. 

5.3.2.2 Unit-forming concepts drawn on in the quotient sub-construct. 

Some students started their attempts at sharing using halving. This had been noted in the 

literature as an early partitioning strategy (Pothier & Sawada, 1983). In the problem of five 

people and three custard tarts this resulted in five halves with one half left over. Some 

students then partitioned this left over half into five parts. This process produced five equal 

shares (of a half and a tenth) but not five equal parts. Re-unitising was difficult for some 

students who incorrectly named the share as a half and a fifth. Unit-forming concepts were 

drawn upon in this (correct) strategy of making a share out of two unequal pieces. This correct 

strategy was often only partially executed as naming the share correctly as six tenths or three 

tenths required complex partitioning knowledge. 

Confrey (2008) used the term equi-partitioning to encompass sharing problems, such as 15 

coins between 3 pirates, or 1 cake between 4 people, which would be classified as quotient 

tasks in Kieren's five part-model (1980) or four-three-four model (1993). The unit-forming 

aspect of naming non-equal shares that arise in students' attempts to apportion equal amounts 

in the quotient sub-construct context is clearer in Kieren's four-three-four model than in 

Confrey's equi-partitioning model.  

Much of the research on fractions as division contexts suggested the inclusion of the quotient 

sub-construct alongside a part-whole sub-construct (Clarke et al., 2007; Lamon, 2007). The 

use of partitioning and unit-forming concepts by students in attempting these tasks supports 

Kieren's classification of these sharing contexts as the quotient sub-construct which draws on 

partitioning, equivalence, and unit-forming concepts making clear the contribution of the 

various concepts that make up "part-whole" knowledge. 
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5.3.3 Ratio sub-construct. 

In the design of tasks to investigate ratio, discrete contexts were chosen in the Fraction Sort 

task (Q. 19f and 19x), in the Golden Beans task (Q. 21a and 21c), and in the Show Me Thirds 

task (Q. 27). It was assumed that most of the instruction prior to the data collection would 

have focused on a part-whole interpretation of these types of tasks because the curriculum 

documents were framed in this construct, however as the present study was not a classroom 

study no evidence was collected to support this. 

5.3.4 Levels of response. 

Kieren's four-three-four model differentiated between levels of understanding as well as 

different constructs (1993). However, his four levels, ethnomathematic, intuitive, technical-

symbolic, and axiomatic- deductive, did not fit seamlessly with empirical data and combined 

approaches were observed (Kieren, 1988). 

Kieren had identified an ethnomathematic response to a sharing task as "each gets a bite and 

Mom puts the rest in the fridge" (1988, p. 172). In the similar Sharing Custard Tarts task (Q. 

20b), no Grade 6 student in the present study offered an ethnomathematic response. Most 

students in the present study operated at the intuitive level using strategies framed by school 

mathematics. The success of these responses varied and included strategies such as French 

division, repeated halving, and non-exhaustive sharing (a share is a half and a bit), but all 

were attempting the task at an intuitive level. One student used the technical-symbolic 

approach and did not need to tie their understanding of the task to a real context or diagram. 

Classroom activities such as the Sharing Chocolate Game (Clarke, 2006) are designed to elicit 

the fractions as division response or technical symbolic level approach.   

The Pirie and Kieren model of dynamical learning (1994a, 1994b) with its emphasis on the 

movement between levels with the notion of folding back, is a better explanatory model than 

the static four level descriptors in Kieren's four-three-four model. In the present study, folding 

back, has been a more useful way of elaborating one of the ways that partitioning, unit-

forming and equivalence are drawn upon in the measure and quotient sub-constructs, than 

categorising students responses using the four levels of the four-three-four model. The Pirie 

Kieren model also has more purchase in the research literature (see e.g. Borgen, 2006; Martin, 

2008). 
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5.3.5 Implications. 

A strength of the four-three-four model was its explanatory power to describe the underlying 

concepts of partitioning, equivalence and unit-forming and link them to the four sub-

constructs measure, quotient, operator and ratio. A co-ordinated understanding of "part-

whole" in other models would include the three concepts of partitioning, unit-forming and 

equivalence but not use these terms (see e.g. Behr, Harel, Post, & Lesh, 1992; Lamon, 2007). 

In that way, the four-three-four model could be seen as an elaboration of the framework used 

by the Rational Number Project researchers in which the part-whole sub-construct was an 

underlying construct that developed into the four sub-constructs (Behr et al., 1983). However, 

it was not substitutable for the five-part model often attributed to the Rational Number Project 

by other researchers (see e.g., Clark et al., 2003), nor the six-part model (including decimals) 

in which part-whole was one of six sub-constructs (Behr & Post, 1992).  

The adoption of the four-three-four model would not be incompatible with the research 

already conducted using variations of the five-part model. The four-three-four model reframes 

the part-whole sub-construct and its relation with the other sub-constructs. Researchers have 

called for the broadening of teachers' pedagogical repertoire of part-whole instruction (see 

e.g., Cramer & Wyberg, 2009; Lamberg & Middleton, 2009; Lamon, 2007). However, 

elaborating the categories of partitioning, equivalence (both already in use) and unit-forming 

would be one way to do it, while still working in the overall research framework influenced 

by  Kieren (1980) and the Rational Number Project (Behr et al., 1992; Behr et al., 1983).  

One way to begin this elaboration of the underlying concepts of partitioning, equivalence and 

unit-forming would be in the classification of classroom activities. Teachers know that games 

such as Colour in Fractions (Clarke & Roche, 2010), problems such as Construct a Sum (Behr 

et al., 1986), and inscriptions such as decimats (Roche, 2010) are the types of activities that 

develop fraction understanding. Being able to classify the partitioning, equivalence and unit-

forming aspects of these activities adds to their pedagogical power. In addition, the concepts 

could be elaborated through developing teachers' pedagogical content knowledge of strategies 

for fraction tasks. The interplay of partitioning, equivalence and unit-forming in the 

misconception of gap thinking provides an example. In addition the distinction between 

fraction pairs that are compared using partitioning rather than equivalence can help teachers 

focus on the use of specific aspects of tasks to elicit specific mathematical thinking.  
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The present study was not a comparative study. I have not evaluated Kieren's model with 

respect to Steffe's learning trajectories (2002) or Confrey's trajectories (2008) for fraction 

understanding. 

Kieren's four-three-four model for rational number knowing (1988, 1992, 1993, 1995) was an 

ideal model. Lehrer's eight key concepts of spatial measurement were also an ideal model of 

measurement understanding. Neither of these models offered hypothetical learning 

trajectories, unlike Steffe's work on fractions (Steffe, 2002) or Confrey's work on rational 

number (Confrey, 2008; Nguyen, 2010). The results of the present study, particularly the 

spread of Equivalence scores from 0 to 12 demonstrated that the underlying concepts are still 

relevant in upper primary school. However, the four-three-four model does not provide detail 

of instructional sequences, it can only serve to frame interventions developed by teachers or 

researchers.  

It is not clear from Kieren's explanation of his four-three-four part model (1995) whether the 

terminology is intended for use in instruction or only for teachers' and researchers' 

conversations. Anecdotally, the introduction of the Early Numeracy Interview in Victoria was 

accompanied by the use of terminology such as "counting on" in professional pedagogical 

conversations and also in instruction, and this led to the children using the terminology in 

their explanations in class. For example a six year old might explain, I counted on from the 

bigger number. If the names of constructs were used in classrooms, as equivalence and ratio 

already have been, then this may be a powerful organising conceptual tool for students. 

The four-three-four model explicitly links the measure sub-construct with length and area 

measurement contexts. My elaboration of the measure sub-construct included number line 

tasks, tasks using non-equal diagrams, and fraction pair comparisons which had precedence in 

the research literature (Kieren, 1992; Lamon, 2007; Ni, 2000). The associations between the 

students' Number Line scores, Fraction Pair scores and performance on Part B of the Fraction 

Pie task, and their performance on measurement tasks illustrated that the conceptual links 

between the measure sub-construct of fractions and the measurement categories of additivity 

and units are worth further investigation.  
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Chapter 6: Conclusions 

This study investigated three things: 

• What strategies are evident in students' explanations of their thinking in a one-to-one 

task-based interview? 

• Is there an association between performance on measurement tasks and performance 

on fractions tasks? Is there an association between the use of the use of dynamic 

imagery on visualisation tasks and performance on fractions tasks? 

• Can we use Kieren's four-three-four model of fraction understanding (1988, 1992, 

1993, 1995) to describe the fraction understandings of students in the present study? 

Data on 88 Grade 6 children's performance on measurement, visualisation, multiplication, and 

fractions tasks, along with their explanations of the strategies they used to attempt those tasks, 

were collected using a one-to-one task-based interview. Each interview lasted on average two 

and a half hours. Notes on record sheets and transcripts from audio and video data supported 

my interpretive analysis of the students' explanations. 

Dimensional sampling was used to select three schools with different socio-economic 

categorisations. The present study did not have a representative sample and so the results are 

not generalisable. However, the comparison of the frequency of success on several tasks used 

in the present study with the frequencies of success of the same or similar tasks in state or 

national tests (see e.g., Figure 5.1, Table 5.2, Figure 5.2) demonstrated that the sample is not 

an outlier group. The baseline tasks on which all students were successful (see Figure 4.1) and 

the ceiling task on which no student was correct (see Figure 4.3) show that all the students 

had some understanding of unit fractions, the array structure, and simple multiplication (or 

repeated addition). Similarly errors and related strategies demonstrating misconceptions such 

as gap thinking was observed in all three schools and, despite only a 12.5% frequency of 

success on the Array with Leftovers task (Q. 46), there were students who answered correctly 

in all three schools. The misconceptions and sophisticated strategies were not the result of the 

individual instruction of one teacher. Therefore the findings of the study have implications for 

other students in other schools.  
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6.1 Research Question 1: Strategies 

The students' explanations of five strategies in particular, some of which were 

misconceptions, were examined in depth.  

The same area indicates same perimeter misconception was not evident in the Fold Me a 

Quarter task (see Figure 1.2) but was evident in the comparison of the perimeters of two non-

congruent halves in a length measurement task. The more sophisticated fraction reasoning, 

that the areas were the same because they were both half, was successful in the area 

comparison, but obscured the measurement misconception that perimeter and area are always 

related.  

As identified in the Introduction chapter, observational listening was required to distinguish 

between the double count misconception and the mathematically correct but only partially 

executed operator (or unit-forming) approach in the Fraction Pie task (see Figure 1.1). The 

answer given might imply a particular misconception but asking the students for an 

explanation revealed that some students were using quite sophisticated strategies which, had 

the students been able to execute them fully, would have led to a correct answer. 

It was not possible in the present study to distinguish between the use of dynamic imagery or 

geometric reasoning on visualisation tasks because any probing questions positioned the 

interviewer as using evaluative listening. Students did not seem to have the language to 

explain dynamic imagery or geometric reasoning. 

Gap thinking in fraction pair comparisons was shown to emerge at the same time as early 

equivalence understanding. Students whose equivalence understanding was strong exhibited 

no gap thinking, but nor did nearly all of the students who had an Equivalence score of 0. Gap 

thinking is additive in nature and this suggests that early equivalence understanding may also 

be additive in nature. Regarding this strategy as a misconception of equivalence (but 

confirmed by the double counting misconception) may broaden teachers' specialised content 

knowledge.  

The correct strategy of benchmarking could present with an answer and calculational 

explanation that was initially indistinguishable from the misconception of gap thinking. Both 

gap thinking and benchmarking generated the correct answer for one fraction pair comparison 
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and the initial explanation sounded similar. It was only after a prompt for further explanation 

that the differences could be established.  

In the introduction, one aspect of the significance of the study that related to this investigation 

of children's strategies, was the complex task that teachers face responding to individual 

children and the whole class in a constructivist environment. The analysis of these five 

strategies only illustrates just how complex that task is. Teachers cannot assume that a correct 

answer and explanation using one domain (fractions) indicates misconception-free thinking in 

another (length measurement).  

Responsive listening includes responding to the student's strategy (Empson & Jacobs, 2008). 

For example, if a child has used a unit-forming approach to the Fraction Pie task, but gives 

the answer (estimate) of one fifth it will be no use if the teacher talks about the double count 

misconception (which can also generate the answer of one fifth). Instead the teacher has to 

determine if the child is using unit forming (one sixth (Part A) plus one twelfth is one quarter 

(Part B)) or operator thinking (two thirds of a quarter is a sixth) and respond to the specific 

strategy. They must be ever alert that students do not perceive them to be using evaluative 

listening.  

A belief in constructivism also involves anticipating misconceptions. If teachers are to tackle 

the gap thinking misconception, then they will need to provide experiences of residual 

fractions that form a strong image for students to fold back to. And it is not just teachers who 

will increase their knowledge of strategies and misconceptions. If students are to learn 

through peer conversation then they must establish the classroom norm that calculational 

answers are only partly acceptable mathematical answers. They will also have to develop their 

own knowledge of strategies, such as gap thinking and benchmarking so that they recognise 

when they have equivalent explanations or parallel explanations. 

6.2 Research Question 2: Associations 

The findings of the present study show that there is an association between fractions and 

measurement understandings. It is strongest between the measurement categories of additivity 

and units, and the fraction sub-construct of measure. One aspect of the significance of the 

present study that relates to this investigation of a conceptual link between fractions and 

measurement, is the development of curriculum that makes these associations evident. Some 

research is already underway in this field using fraction strips in length measurement 
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activities to quantify partial units (Yanik et al., 2008). The findings of the present study 

indicated that it was the conceptual tasks more than the tools and procedures tasks that were 

co-ordinated in the students' understanding and the curriculum should specify this. For 

example, broken rulers are a simple addition to the standard curriculum on length 

measurement. The present study also had some implications for area trajectories. An 

unexpected result was the substantial association of volunteering formal units in area 

problems (cm2) and success on fraction tasks. This suggests that the coordination of formal 

units might be an extension of array trajectories already developed for younger children.  

6.3 Research Question 3: Kieren's four-three-four model 

Kieren's four-three-four model was shown to have significant explanatory power in describing 

students' strategies for tasks in the measure sub-construct. The broadening of the measure sub-

construct to include number lines, fraction pair comparisons and area diagrams was possible 

in this model. The present study was able to analyse in fine detail the way partitioning, 

equivalence and unit-forming concepts were drawn upon in response to measure sub-construct 

tasks. At its simplest, partitioning, equivalence and unit-forming just elaborate the part-whole 

construct. However, the use of these concepts and their connections to all the sub-constructs 

enabled analysis of students' performance on fraction tasks to be classified in a more 

informative way than the use of part-whole.  

The significance of this finding relates back to the big picture presented in the introduction. If 

one-to-one task-based interviews are used in Victorian schools as formative assessment tools 

(see e.g. Department of Education & Training, 2001; Department of Education and Early 

Childhood Development, 2009b) then clear theoretical frameworks are needed to enable 

teachers to interpret the data that they collect. Kieren's four-three-four part model is 

particularly relevant to primary school children's performance and strategy use because it 

explicitly details both underlying concepts (partitioning, equivalence, and unit-forming) and 

levels of understanding with the four sub-constructs. The four-three-four part model for 

fraction understanding does not detail a learning trajectory, and so cannot provide a 

developmental path, unlike the Early Numeracy Project's growth points for number 

knowledge (Clarke et al., 2002). However, it could frame teachers' interpretation of a fraction 

interview, and could be used to extend teachers' pedagogical content knowledge of the 

fractions domain.  
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Equivalence has been a term in use with both teachers and students and so the concept has a 

recognised space in the curriculum. A strength of the four-three-four model was its 

categorisation of unit-forming. This gives prominence to the many correct additive aspects of 

fraction understanding. The concept can be used to describe students' strategies but also to 

describe the mathematical focus of a task. Students and teachers both use the word 

equivalence in classroom conversations.  Extending the vocabulary to include partitioning and 

unit-forming would extend the explanatory power of the model to the students themselves. 

6.4 Directions for further research 

The present study has opened up a range of possibilities for further research. It was a study 

framed using observational listening. However, all of the findings could be investigated in a 

classroom study of responsive listening. Understanding of the strategies, the associations 

between measurement and fractions and the explanatory power of Kieren’s and other models 

would benefit a classroom based longitudinal study.  Some research possibilities are given 

below. 

• A classroom study of gap thinking  

o Thinking of gap thinking as a misconception of equivalence, 

o Focusing on the correct contexts for additive strategies: pairs with the same 

denominator between 0 and 1, and equivalences to a half, 

o distinguishing between double counting and correct partitioning strategies in 

fraction area diagrams, 

o including a longitudinal component to track gap thinking and equivalence 

knowledge. 

• Evaluation of another model for fraction understanding. For example, the present 

study did not compare Kieren’s model (1995) to Steffe (2002) to determine if this had 

the explanatory power to describe the data found in the present study. 

• Investigating the volunteering of cm2 as a unit for area measurement and linking this 

to models of the understanding of arrays.  

• A classroom study investigating the effects of the students using the terminology of 

Kieren's four-three-four part model. 

o Linking partitioning and fraction size comparisons, 
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o Naming unit-forming activities, 

o Introducing additive (as much as) equivalence and ratio (as many as) 

equivalence, 

o Using measurement contexts such as measuring length with fraction strips 

(Yanik et al., 2008), the Keyboard task (Q. 39) or broken ruler tasks and 

linking these to the measure sub-construct, 

o Using sharing contexts in early fraction work. 

  



259 
 

Reference List 

American Psychological Society. (2010). Publication manual of the American Psychological 
Association (6th ed.). Washington, DC: Author. 

Armstrong, B., & Novillis Larson, C. (1995). Students’ use of part-whole and direct 
comparison strategies for comparing partitioned rectangles. Journal for Research in 
Mathematics Education, 26, 2-19.  

Australian Council for Educational Research. (1978). Space test: test booklet. Hawthorn, 
Australia: Author. 

Ball, D. L. (1993). Halves, pieces, and twoths: Constructing and using representational 
contexts in teaching fractions. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), 
Rational numbers: An integration of research (pp. 157-195). Hillsdale, NJ: Lawrence 
Erlbaum. 

Bana, J., & Korbosky, R. (1995). Children's knowledge and understanding of basic number 
facts. Perth, Australia: Mathematics, Science & Technology Education Centre, Edith 
Cowan University. 

Baroody, A. J., & Coslick, R. T. (1998). Fostering children's mathematical power: An 
investigative approach to K-8 mathematics instruction. Mahwah, NJ: Lawrence 
Erlbaum. 

Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children's 
developing abstractions for linear measurement. Cognition and Instruction, 21, 475-
520.  

Barrett, J. E., Clements, D. H., Klanderman, D., Pennisi, S.-J., & Polaki, M. V. (2006). 
Students' coordination of geometric reasoning and measuring strategies on a fixed 
perimeter task: Developing mathematical understanding of linear measurement. Journal 
for Research in Mathematics Education, 37, 187-221.  

Barrett, J. E., Jones, G. A., Thornton, C., & Dickson, S. (2003). Understanding children's 
developing strategies and concepts for length. In D. H. Clements & G. Bright (Eds.), 
Learning and teaching measurement: 2003 Yearbook of the National Council of 
Teachers of Mathematics (pp. 17-30). Reston, VA: National Council of Teachers of 
Mathematics. 

Barwell, R. (2003). Discursive psychology and mathematics education: Possibilities and 
challenges. ZDM, 35, 201-207.  

Barwell, R. (2009). Researchers' descriptions and the construction of mathematical thinking. 
Educational Studies in Mathematics, 72, 255-269. doi: 10.1007/s10649-009-9202-4 

Battista, M. T. (2003). Understanding students' thinking about area and volume measurement. 
In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: 2003 
Yearbook of the National Council of Teachers of Mathematics (pp. 122-142). Reston, 
VA: National Council of Teachers of Mathematics. 



260 
 
Battista, M. T. (2004). Applying cognition-based assessment to elementary school students' 

understanding of area and volume measurement. Mathematical Thinking and Learning, 
6, 185-204.  

Battista, M. T. (2006). Understanding the development of students' thinking about length. 
Teaching Children Mathematics, 13, 140-146.  

Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. J. Lester 
(Ed.), Second handbook of research on mathematics teaching and learning: A project of 
the National Council of Teachers of Mathematics (pp. 843-908). Charlotte, NC: 
Information Age Publishing. 

Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. (1998). Students' 
spatial structuring of 2D arrays of squares. Journal for Research in Mathematics 
Education, 29, 503-532.  

Baturo, A. R. (2004). Empowering Andrea to help Year 5 students construct fraction 
understanding. In M. Johnsen-Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th 
Conference of the International Group for the Psychology of Mathematics Education 
(Vol. 2, pp. 95-102). Bergen, Norway: PME. 

Behr, M. J., Harel, G., Post, T. R., & Lesh, R. (1991). The operator construct of rational 
number: A refinement of the concept. In F. Furinghetti (Ed.), Proceedings of the 15th 
Conference of the International Group for the Psychology of Mathematics Education 
(pp. 120-127). Assisi, Italy: PME. 

Behr, M. J., Harel, G., Post, T. R., & Lesh, R. (1992). Rational number, ratio, and proportion. 
In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning 
(pp. 296-333). New York, NY: Macmillan. 

Behr, M. J., Khoury, H. A., Harel, G., Post, T. R., & Lesh, R. (1997). Conceptual units 
analysis of preservice elementary school teachers' strategies on a rational-number-as-
operator task. Journal for Research in Mathematics Education, 28, 48-69.  

Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational number concepts. In R. 
Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-
125). New York, NY: Academic Press. 

Behr, M. J., & Post, T. R. (1981). The effect of visual perceptual distractors on children's 
logical-mathematical thinking in rational number situations. In T. R. Post & M. Roberts 
(Eds.), Proceedings of the 3rd Annual Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education (pp. 8-16). 
Minneapolis: University of Minnesota. 

Behr, M. J., & Post, T. R. (1992). Teaching rational number and decimal concepts. In T. R. 
Post (Ed.), Teaching mathematics in grades K–8: Research-based methods (2nd ed., pp. 
201-248). Boston, MA: Allyn and Bacon. 

Behr, M. J., Post, T. R., & Lesh, R. (1981). Construct analysis, manipulative aids, 
representational systems and learning rational number concepts. In C. Comiti & G. 
Vergnaud (Eds.), Proceedings of the 5th Conference of the International Group for the 
Psychology of Mathematics Education. (pp. 203-209). Grenoble, France: University of 
Grenoble. 



261 
 
Behr, M. J., Post, T. R., & Wachsmuth, I. (1986). Estimation and children's concept of 

rational number size. In H. Schoen & M. Zweng (Eds.), Estimation and mental 
computation: 1986 Yearbook of the National Council of Teachers of Mathematics (pp. 
103-111). Reston, VA: National Council of Teachers of Mathematics. 

Behr, M. J., Wachsmuth, I., & Post, T. R. (1985). Construct a sum: A measure of children's 
understanding of fraction size. Journal for Research in Mathematics Education, 16, 
120-131.  

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational 
numbers: A clinical teaching experiment. Journal for Research in Mathematics 
Education, 15, 323-341.  

Bishop, A. J. (1977). On developing spatial abilities: A report to the Mathematics Education 
Centre, University of Technology, Lae, Papua New Guinea. 

Bishop, A. J. (1979). Visualising and mathematics in a pre-technological culture. Educational 
Studies in Mathematics, 10, 135-146.  

Bishop, A. J. (1983). Space and geometry. In R. Lesh & M. Landau (Eds.), Acquisition of 
mathematics concepts and processes (pp. 175-203). New York, NY: Academic Press. 

Bishop, A. J. (1986). What are some obstacles to learning geometry? Studies in Mathematics 
Education, UNESCO, 5, 141-159.  

Board of Studies. (1995). Curriculum and standards framework. Carlton, Australia: Author. 

Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, 
Kendall and Spearman correlations. Psychometrika, 65, 23-28. doi: 
10.1007/BF02294183 

Boote, D. N., & Beile, P. (2005). Scholars before researchers: On the centrality of the 
dissertation literature review in research preparation. Educational Researcher, 34, 3-15.  

Borgen, K. L. (2006). From Mathematics learner to mathematics teacher: Preservice 
teachers' growth of understanding of teaching and learning mathematics (Unpublished 
doctoral dissertation), The University of British Columbia, Canada. 

Bouma, G. D., & Ling, R. (2004). The research process (5th ed.). South Melbourne, 
Australia: Oxford University Press. 

Bragg, P., & Outhred, L. (2000). What is taught versus what is learnt: The case of linear 
measurement. In J. Bana & A. Chapman (Eds.), Mathematics education beyond 2000 
(Proceedings of the 23rd annual conference of the Mathematics Education Research 
Group of Australia, Fremantle, pp. 112-118). Sydney, Australia: MERGA. 

Bragg, P., & Outhred, L. (2004). A measure of rulers - The importance of units in a measure. 
In M. Johnsen-Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 159-
166). Bergen, Norway: PME. 

Bright, G., Behr, M. J., Post, T. R., & Wachsmuth, I. (1988). Indentifying fractions on 
number lines. Journal for Research in Mathematics Education, 19, 215-232.  



262 
 
Brown, M., Blondel, E., Simon, S., & Black, P. (1995). Progression in measuring. Research 

Papers in Education 10, 143-179. doi: 10.1080/0267152950100202 

Callingham, R., & Watson, J. (2004). A developmental scale of mental computation with 
part-whole numbers. Mathematics Education Research Journal, 16(2), 69-86.  

Carpenter, T. P. (1975). Measurement concepts of first- and second-grade students. Journal 
for Research in Mathematics Education, 6, 3-13.  

Carrahar, D. W. (1996). Learning about fractions. In L. P. Steffe, P. Nesher, P. Cobb, G. A. 
Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 241-266). Mahwah, 
NJ: Lawrence Erlbaum. 

Charalambous, C. Y., & Pitta-Pantazi, D. (2006). Drawing on a theoretical model to study 
students' understanding of fractions. Educational Studies in Mathematics, 64, 293-316. 
doi: 10.1007/s10649-006-9036-2 

Chinnappan, M., & Pandian, A. (2009). Malaysian and Australian children's representations 
and explanations of numeracy problems. Educational Research Policy and Practice, 8, 
197-209. doi: 10.1007/s10671-009-9071-8 

Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in 
Grades 1-5. Journal for Research in Mathematics Education, 27, 41-51.  

Clark, M. R., Berenson, S. B., & Cavey, L. O. (2003). A comparison of ratios and fractions 
and their roles as tools in proportional reasoning. Journal of Mathematical Behavior, 
22, 297-317. doi: 10.1016/S0732-3123(03)00023-3 

Clarke, D. M. (2005). Written algorithms in the primary years: Undoing the ‘good work’? In 
M. Coupland, J. Anderson, & T. Spencer (Eds.), Making mathematics vital 
(Proceedings of the 20th biennial conference of the Australian Association of 
Mathematics Teachers, pp. 93-98). Sydney, Australia: AAMT. 

Clarke, D. M. (2006). Fractions as division: The forgotten notion? Australian Primary 
Mathematics Classroom, 11(3), 4-10.  

Clarke, D. M., Cheeseman, J., Gervasoni, A., Gronn, D., Horne, M., McDonough, A., 
Montgomery, P., Sullivan, P., Clarke, B., & Rowley, G. (2002). Early Numeracy 
Research Project final report. Melbourne, Australia: Australian Catholic University. 

Clarke, D. M., Cheeseman, J., McDonough, A., & Clarke, B. (2003). Assessing and 
developing measurement with young children. In D. H. Clements (Ed.), Learning  and 
teaching measurement: 2003 Yearbook of the National Council of Teachers of 
Mathematics (pp. 68-80). Reston, VA: National Council of Teachers of Mathematics. 

Clarke, D. M., Mitchell, A., & Roche, A. (2005). Student one-to-one assessment interviews in 
mathematics: A powerful tool for teachers. In J. Mousley, L. Bragg, & C. Campbell 
(Eds.), Mathematics: Celebrating achievement (Proceedings of the 42nd annual 
conference of the Mathematical Association of Victoria, Bundoora, pp. 66-80). 
Melbourne, Australia: MAV. 

Clarke, D. M., & Roche, A. (2009). Students' fraction comparison strategies as a window into 
robust understanding and possible pointers for instruction. Educational Studies in 
Mathematics, 72, 127-138. doi: 10.1007/s10649-009-9198-9 



263 
 
Clarke, D. M., & Roche, A. (2010). The power of a single game to address a range of 

important ideas in fraction learning. Australian Primary Mathematics Classroom, 15(3), 
18-24.  

Clarke, D. M., Roche, A., & Mitchell, A. (2007). Year six fraction understanding: A part of 
the whole story. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, 
essential practice (Proceedings of the 30th annual conference of the Mathematics 
Education Research Group of Australasia, Hobart, pp. 207-216). Hobart, Australia: 
MERGA. 

Clarke, D. M., Roche, A., & Mitchell, A. (2008). Ten practical, research-based tips for 
making fractions come alive (and make sense) in the middle years. Mathematics 
Teaching in the Middle School, 13, 373-380.  

Clarke, D. M., Roche, A., & Mitchell, A. (2011). One-to-one student interviews provide 
powerful insights and clear focus for the teaching of fractions in the middle years. In J. 
Way & J. Bobis (Eds.), Fractions: Teaching for understanding. Adelaide, Australia: 
The Australian Association of Mathematics Teachers. 

Clarke, D. M., Roche, A., Mitchell, A., & Sukenik, M. (2006). Assessing fraction 
understanding using task-based interviews In J. Novotna, H. Moraova, M. Kratka, & N. 
Stehlikova (Eds.), Proceedings of the 30th Conference of the International Group for 
the Psychology of Mathematics Education (Vol. 2, pp. 337-344). Prague, Czech 
Republic: PME. 

Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In A. E. 
Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science 
education (pp. 547-589). Mahwah, NJ: Lawrence Erlbaum. 

Clements, D. H. (1999b). Teaching length measurement: Research challenges. School Science 
and Mathematics, 99, 5-11.  

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws 
(Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). New 
York, NY: Macmillan. 

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. 
Mathematical Thinking and Learning, 6, 81-89.  

Clements, M. A. (1980). Analyzing children's errors on written mathematical tasks. 
Educational Studies in Mathematics, 11, 1-21.  

Clements, M. A. (1981). Visual imagery and school mathematics. For the Learning of 
Mathematics, 2(2), 2-9.  

Clements, M. A. (1982). Careless errors made by sixth-grade children on written 
mathematical tasks. Journal for Research in Childhood Education, 13, 136-144. 
http://www.jstor.org/stable/748360 

Clements, M. A. (1983). The question of how spatial ability is defined and its relevance to 
mathematics education Zentralblatt fur Didaktik der Mathematik, 15, 8-20.  

Clements, M. A., & Ellerton, N. (1995). Assessing the effectiveness of pencil-and-paper tests 
for school mathematics. In B. Atweh & S. Flavel (Eds.), Galtha (Proceedings of the 



264 
 

18th annual conference of the Mathematics Education Research Group of Australasia, 
Darwin, pp. 184-188). Darwin, Australia: MERGA. 

Clements, M. A., & Ellerton, N. (2005). Assessing the effectiveness of pencil-and-paper tests 
for school mathematics. In P. C. Clarkson, A. Downton, D. Gronn, M. Horne, A. 
McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Research, theory and 
practice (Proceedings of the 28th annual conference of the Mathematics Education 
Research Group of Australasia, Melbourne, pp. 545- 552). Melbourne, Australia: 
MERGA. 

Cobb, P. (2002). Reasoning with tools and inscriptions. Journal of the Learning Sciences, 11, 
187-215.  

Cobb, P. (2011a). Introduction to Part I. In E. Yackel, K. Gravemeijer, & A. Sfard (Eds.), A 
journey in mathematics education research: Insights from the work of Paul Cobb (pp. 
9-17). Dordrecht, The Netherlands: Springer. 

Cobb, P. (2011b). Introduction to Part III. In E. Yackel, K. Gravemeijer, & A. Sfard (Eds.), A 
journey in mathematics education research: Insights from the work of Paul Cobb (pp. 
75-84). Dordrecht, The Netherlands: Springer. 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in 
educational research. Educational Researcher, 32, 9-13.  

Cobb, P., Stephen, M., McClain, K., & Gravemeijer, K. (2011). Participating in classroom 
mathematical practices. In E. Yackel, K. Gravemeijer, & A. Sfard (Eds.), A journey in 
mathematics education research: Insights from the work of Paul Cobb (pp. 117-163). 
Dordrecht, The Netherlands: Springer. 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the 
context of development research. Educational Psychologist, 31, 175-190.  

Cobb, P., Yackel, E., & Wood, T. (1992). Interaction and learning in mathematics classroom 
situations. Educational Studies in Mathematics, 23, 99-122. doi: Stable URL: 
http://www.jstor.org/stable/3482604 

Cockburn, A. D. (2008). Developing and understanding of children's acquisition of number 
concepts. In A. D. Cockburn & G. Littler (Eds.), Mathematical misconceptions: A guide 
for primary teachers (pp. 86-100). Los Angeles, CA: Sage. 

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6th ed.). 
London, United Kingdom: Routledge. 

Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication 
and exponential functions. In G. Harel & J. Confrey (Eds.), The development of 
multiplicative reasoning in the learning of mathematics. Albany: State University of 
New York Press. 

Confrey, J. (2008). A synthesis of the research on rational number reasoning. Paper presented 
at the XI International Congress in Mathematics Education, Monterrey, Mexico.  

Cramer, K. A., Behr, M. J., Post, T. R., & Lesh, R. (1997). Rational Number Project: Fraction 
lessons for the middle grades - level 1, Retrieved from 
http://education.umn.edu/rationalnumberproject/97_3.html 



265 
 
Cramer, K. A., & Lesh, R. (1988). Rational number knowledge of preservice elementary 

education teachers. In M. J. Behr (Ed.), Proceedings of the 10th Annual Meeting of the 
North American Chapter of the International Group for Psychology of Mathematics 
Education (pp. 425-431). DeKalb, IL: PME. 

Cramer, K. A., & Post, T. R. (1995). Facilitating children's development of rational number 
knowledge. In D. T. Owens, M. Reed, & G. M. Millsaps (Eds.), Proceedings 17th 
Annual Meeting of the North American Chapter of the International Group for 
Psychology of Mathematics Education (pp. 377-382). Columbus, OH: PME. 

Cramer, K. A., Post, T. R., & Currier, S. (1993). Learning and teaching ratio and proportion: 
Research implications. In D. T. Owens (Ed.), Research ideas for the classroom: Middle 
grades mathematics (pp. 159-178). New York, NY: Macmillan. 

Cramer, K. A., Post, T. R., & del Mas, R. (2002). Initial fraction learning by fourth- and fifth-
grade students: A comparison of the effects of the using commercial curricula with the 
effects of using the Rational Number Project curriculum. Journal for Research in 
Mathematics Education, 33, 111-144.  

Cramer, K. A., & Wyberg, T. (2009). Efficacy of different concrete models for teaching the 
part-whole construct for fractions. Mathematical Thinking and Learning, 11, 226-257. 
doi: 10.1080/10986060903246479 

Crandall, B. (2006). Woking minds: A practotioner's guide to cognitive task analysis   
Retrieved from http://site.ebrary.com/lib/australiancathu/Doc?id=10173549&ppg=26  

Crespo, S. (2000). See more than right and wrong answers: Prospective teachers' 
interpretations of students' mathematical work. Journal of Mathematics Teacher 
Education, 3, 155-181.  

Crotty. (1998). The foundations of social research:Meaning and persepectives in the research 
process. St Leonards, Australia: Allen and Unwin. 

Cunningham, A. W. (2009). Using the number line to teach signed numbers remedial 
community college mathematics. Mathematics Teaching-Research Journal Online 3(4), 
1-45.  

Davis, B. (1997). Listening for differences: An evolving conception of mathematics teaching. 
Journal for Research in Mathematics Education, 28, 355-376. 
http://www.jstor.org/stable/749785 

Davydov, V. V., & Tsvetkovich, Z. H. (1991). The object sources of the concept of fractions. 
In L. P. Steffe (Ed.), Psychological abilities of primary school children in learning 
mathematics (pp. 86-147). Reston, VA: National Council of Teachers of Mathematics. 

Denzin, N. K., & Lincoln, Y. S. (2008). Strategies of qualitative inquiry (3rd ed.). London, 
United Kingdom: Sage. 

Department of Education & Training. (2001). Early numeracy interview booklet. Retrieved 
from http://www.education.vic.gov.au/studentlearning/teachingresources/preptoyear10 
.htm  



266 
 
Department of Education & Training. (2005). Victorian essential learning standards: 

Discipline based learning strand; Mathematics, draft document, Retrieved from 
http://vels.vcaa.vic.edu.au/downloads/vels_standards/Maths_20050630.pdf 

Department of Education & Training. (2006). Victorian essential learning standards: 
Discipline based learning strand; Mathematics  Retrieved March 9, 2006, Retrieved 
from http://vels.vcaa.vic.edu.au/downloads/vels_standards/velsrevisedmathematics.pdf 

Department of Education and Early Childhood Development. (2008). Summary statistics for 
Victorian schools http://www.eduweb.vic.gov.au/edulibrary/public/publ/research/publ/ 
Brochure2008March-brc-v1_0-20080331.pdf. 

Department of Education and Early Childhood Development. (2009a). Fractions and decimals 
online interview classroom activities Retrieved from http://www.eduweb.vic.gov.au/ 
edulibrary/public/teachlearn/student/mathscontinuum/facdecactivities.pdf  

Department of Education and Early Childhood Development. (2009b). Fractions and decimals 
online interview script Retrieved from http://www.eduweb.vic.gov.au/edulibrary/public/ 
teachlearn/student/mathscontinuum/fracdecimalscript.pdf  

Department of Education and Early Childhood Development. (2009c). Government school 
performance summary 2009, Retrieved from http://www.education.vic.gov.au/ 
aboutschool/schoolreports/default.htm 

Desmet, L., Gregoire, J., & Mussolin, C. (2010). Developmental changes in the comparison of 
decimal fractions. Learning and Instruction, 20, 521-532. doi: 
10.1016/j.learninstruc.2009.07.004 

DeWindt-King, A. M., & Goldin, G. A. (2001). A study of children's visual imagery in 
solving problems with fractions. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of 
the 25th Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 2, pp. 345-352). Utrecht, The Netherlands: PME. 

Dickson, L., Brown, M., & Gibson, O. (1984). Children learning mathematics: A teacher's 
guide to recent research. London, United Kingdom: Holt, Rinehart  and Winston. 

Diezmann, C. M. (2005). Primary students' knowledge of the properties of spatially-oriented 
diagrams. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 281-
288). Melbourne, Australia: PME. 

Diezmann, C. M., & English, L. (2001). Promoting the use of diagrams as tools for thinking. 
In A. A. Cuoco & F. R. Curcio (Eds.), The role of representation in school 
mathematics: 2001 Yearbook of the National Council of Teachers of Mathematics (pp. 
77-89). Reston, VA: National Council of Teachers of Mathematics. 

diSessa, A. (2007). An interactional analysis of clinical interviewing. Cognition and 
Instruction, 25, 523-565.  

diSessa, A., & Cobb, P. (2004). Ontological innovation and the role of theory in design 
experiments. Journal of the Learning Sciences, 13, 77-103. doi: 
10.1207/s15327809jls1301_4 



267 
 
Doig, B., Groves, S., & Fujii, T. (2011). The critical role of task development in lesson study. 

In L. C. Hart, A. S. Alston, & A. Murata (Eds.), Lesson study research and practice in 
mathematics education (pp. 181-199). Dordrecht, The Netherlands: Springer. 

Dougherty, B. J., & Venenciano, L. C. H. (2007). Measure up for understanding. Teaching 
Children Mathematics, 13, 452-456.  

Drake, M. (2007). Informal knowledge and prior learning: Student strategies for identifying 
and locating numbers on scales. In J. Watson & K. Beswick (Eds.), Mathematics: 
Essential research, essential practice (Proceedings of the 30th annual conference of the 
Mathematics Education Research Group of Australasia, Hobart, pp. 255-264). Hobart, 
Australia: MERGA. 

Duzenli-Gokalp, N., & Sharma, M. D. (2010). A study on addition and subtraction of 
fractions: The use of Pirie and Kieren model and hands on activities. Procedia Social 
and Behavioral Sciences, 2, 5168-5171. doi: 10.1016/j.sbspro.2010.03.840 

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction 
concepts in a first-grade classroom. Cognition and Instruction, 17, 283-342.  

Empson, S. B., & Jacobs, V. R. (2008). Learning to listen to children's mathematics. In D. 
Tirosh & T. Wood (Eds.), Tools and processes in mathematics teacher education (pp. 
257-281). Rotterdam, The Netherlands: Sense Publishers. 

Ernest, P. (2006). A semiotic perspective of mathematical activity: The case of number. 
Educational Studies in Mathematics, 61, 67-101. doi: 10.1007/s10649-006-6423-7 

Even, R. (2005). Using assessment to inform instructional decisions: How hard can it be? 
Mathematics Education Research Journal, 17(3), 45-61.  

Fennema, E., Franke, M. L., Carpenter, T. P., & Carey, D. A. (1993). Using children's 
mathematical knowledge in instruction. American Educational Research Journal, 30, 
555-583.  

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London, United Kingdom: Sage. 

Fosnot, C. T., & Dolk, M. (2002). Young mathematicians at work: Constructing fractions, 
decimals and percents. Portsmouth, NH: Heinemann. 

Gearhart, M., & Saxe, G. B. (2004). When teachers know what students know: Integrating 
mathematics assessment. Theory into Practice, 43, 304-313.  

Gilpin, A. R. (1993). Table for conversion of Kendall's Tau to Spearman's Rho within the 
context of measures of magnitude of effect for meta-analysis. Educational and 
Psychological Measurements, 53, 87-92.  

Ginsberg, H. P. (1997). Entering the child's mind: The clinical interview in psychological 
research and practice. Cambridge, United Kingdom: Cambridge University Press. 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in 
mathematics education research. In A. E. Kelly & R. Lesh (Eds.), Handbook of research 
design in mathematics and science education (pp. 517-545). Mahwah, NJ: Lawrence 
Erlbaum. 



268 
 
Gorgorio, N. (1998). Exploring the functionality of visual and non-visual strategies in solving 

rotation problems. Educational Studies in Mathematics, 35, 207-231.  

Gould, P. (2005). Really broken numbers. Australian Primary Mathematics Classroom, 10(3), 
4-10.  

Gould, P. (2011). Developing an understanding of the size of fractions. In J. Way & J. Bobis 
(Eds.), Fractions: Teaching for understanding (pp. 63-70). Adelaide, Australia: The 
Australian Association of Mathematics Teachers. 

Greer, B. (2009). Representational flexibility and mathematical expertise. ZDM, 41, 697-702. 
doi: 10.1007/s11858-009-0211-7 

Hart, K. M. (1981). Children's understanding of mathematics: 10-16. London, United 
Kingdom: John Murray. 

Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-
taking spatial abilities. Intelligence, 32, 175-191. doi: 10.1016/j.intell.2003.12.001 

Heinz, K., Kinzel, M., Simon, M. A., & Tzur, R. (2000). Moving students through steps of 
mathematical knowing: An account of the practice of an elementary mathematics 
teacher in transition. Journal of Mathematical Behavior, 19, 83-107.  

Herscovics, N. (1996). The construction of conceptual schemes in mathematics. In L. P. 
Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical 
learning (pp. 351-379). Mahwah, NJ: Lawrence Erlbaum. 

Hiebert, J. (1979). The effect of cognitive development on first-grade children's ability to 
learn linear measurement concepts  (Doctoral dissertation).  Retrieved from ProQuest 
Dissertations and Theses database. (UMI 7924171)   

Hiebert, J. A., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. 
Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-
97). New York, NY: Macmillan. 

Hiebert, J. A., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: 
An introductory analysis. In J. A. Hiebert (Ed.), Conceptual and procedural knowledge: 
The case of mathematics (pp. 265-300). Hillsdale, NJ: Lawrence Erlbaum. 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: 
Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal 
for Research in Mathematics Education, 39, 372-400.  

Hodgson, T., Simonsen, L., Lubek, J., & Anderson, L. (2003). Measuring Montana: An 
episode in estimation. In D. H. Clements & G. Bright (Eds.), Learning and teaching 
measurement: 2003 Yearbook of the National Council of Teachers of Mathematics (pp. 
220-228). Reston, VA: National Council of Teachers of Mathematics. 

Holzl, R. (1996). How does "dragging" affect the learning of geometry. International Journal 
of Computers for Mathematical Learning, 1, 169-187.  

Hunting, R. P., Pitkethly, A., & Pepper, K. (1990). Knowing and telling: Language carriers 
and barriers in early fraction learning. In G. Davis & R. P. Hunting (Eds.), Language 



269 
 

issues in learning and teaching mathematics (pp. 100-111). Bundoora, Australia: The 
Institute of Mathematics Education, La Trobe University. 

Hunting, R. P., & Sharpley, C. F. (1988). Fraction knowledge in pre-school children. Journal 
for Research in Mathematics Education, 19, 75-80.  

Izsak, A. (2005). "You have to count the squares": Applying knowledge in pieces to learning 
rectangular area. Journal of the Learning Sciences, 14, 361-403.  

Izsak, A. (2008). mathematical knowledge for teaching fraction multiplication. Cognition and 
Instruction, 26, 95-143. doi: 10.1080/07370000701798529 

Jansen, A., & Spitzer, S. M. (2009). Prospective middle teachers' reflective thinking skills: 
Descriptions of their students' thinking and interpretations of their teaching. Journal of 
Mathematics Teacher Education, 12, 133-151. doi: 10.1007/s10857-009-9099-y 

Jenkins, O. F. (2010). Developing teachers' knowledge of students as learners of mathematics 
through structured interviews. Journal of Mathematics Teacher Education, 13, 141-154. 
doi: 10.1007/s10857-009-9129-9 

Joram, E., Gabriele, A. J., Bertheau, M., Gelman, R., & Subrahmanyam, K. (2005). Children's 
use of the reference point strategy for measurement estimation. Journal for Research in 
Mathematics Education, 36, 4-23.  

Kamii, C., & Clark, F. B. (1995). Equivalent fractions: Their difficulty and educational 
implications. Journal of Mathematical Behavior, 14, 365-378.  

Kamii, C., & Clark, F. B. (1997). Measurement of length: The need for a better approach to 
teaching. School Science and Mathematics, 97, 116-121.  

Keijzer, R., & Terwel, J. (2002). Audrey's acquisition of fractions: A case study into the 
learning of formal mathematics. Educational Studies in Mathematics, 47, 53-73.  

Kidman, G. C. (2001). Testing for additivity in intuitive thinking of area. In J. Bobis, B. 
Perry, & M. C. Mitchelmore (Eds.), Numeracy and beyond (Proceedings of 24th annual 
conference of the Mathematics Education Research Group of Australasia, Sydney, pp. 
322-329). Sydney, Australia: MERGA. 

Kidman, G. C. (2002). The accuracy of mathematical diagrams in curriculum materials. In N. 
A. Pateman, B. J. Dougherty, & J. T. Zillliox (Eds.), Proceedings of the 26th 
Conference of the International Group for the Psychology of Mathematics Education 
(Vol. 3, pp. 201-208). Norwich, United Kingdom: PME. 

Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational 
numbers. In R. Lesh (Ed.), Number and measurement: Papers from a research 
workshop. Athens: Georgia Centre for the study of Learning and Teaching 
Mathematics, University of Georgia. 

Kieren, T. E. (1980). The rational number construct: Its elements and mechanisms. In T. E. 
Kieren (Ed.), Recent research on number learning (pp. 125-149). Columbus, OH: ERIC 
Clearinghouse for Science, Mathematics and Environmental Education. 

Kieren, T. E. (1983). Partitioning, equivalence and the construction of rational number ideas. 
In M. Zweng, T. Green, J. Kilpatrick, H. Pollak, & M. Suydam (Eds.), Proceedings of 



270 
 

the Fourth International Congress on Mathematical Education (pp. 506-508). Boston, 
MA: Birkhauser. 

Kieren, T. E. (1988). Personal knowledge of rational numbers: Its intuitive and formal 
development. In J. A. Hiebert & M. J. Behr (Eds.), Number concepts and operations in 
the middle grades (pp. 162-181). Reston, VA: Lawrence Erlbaum. 

Kieren, T. E. (1992). Rational and fractional numbers as mathematical and personal 
knowledge: Implications for curriculum and instruction. In G. Leinhardt, R. Putnam, & 
R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 323-371). 
Hillsdale, NJ: Lawrence Erlbaum. 

Kieren, T. E. (1993). Rational and fractional numbers: From quotient fields to recursive 
understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational 
numbers: An integration of research (pp. 49-84). Hillsdale, NJ: Lawrence Erlbaum. 

Kieren, T. E. (1995). Creating spaces for learning fractions. In J. T. Sowder & B. P. 
Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle 
grades (pp. 31-65). Albany: State University of New York Press. 

Kieren, T. E. (1999). Language use in embodied action and interaction in knowing fractions 
PME-NA incomplete. 

Kieren, T. E., Davis, B., & Mason, R. (1996). Fraction flags: Learning from children to help 
children learn. Mathematics Teaching in the Middle School, 2(1), 14-19.  

Kieren, T. E., & Nelson, D. (1978). The operator construct of rational numbers in childhood 
and adolescence: An exploratory study. The Alberta Journal of Educational Research, 
24, 22-30.  

Kieren, T. E., Nelson, D., & Smith, G. (1985). Graphical algorithms in partitioning tasks. 
Journal of Mathematical Behavior, 4, 25-36.  

Kieren, T. E., & Southwell, B. (1979). The development in children and adolescents of the 
construct of rational numbers as operators. The Alberta Journal of Educational 
Research, 25, 234-247.  

Knapp, A., Bomer, M., & Moore, C. (2011). Lesson study as a learning environment for 
coaches of mathematics teachers. In L. C. Hart, A. S. Alston, & A. Murata (Eds.), 
Lesson study research and practice in mathematics education (pp. 181-199). Dordrecht, 
The Netherlands: Springer. 

Kordaki, M. (2003). The effect of tools of a computer microworld on students' strategies 
regarding the concept of conservation of area. Educational Studies in Mathematics, 52, 
177-209.  

Kouba, V. L., & Franklin, K. (1993). Multiplication and division: Sense making and meaning. 
In R. J. Jensen (Ed.), Research ideas for the classroom: Early childhood mathematics 
(pp. 103-126). New York, NY: Macmillan. 

Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children (J. 
Teller, Trans.). Chicago, IL: The University of Chicago Press. 



271 
 
Lamberg, T. d., & Middleton, J. (2009). Design research perspectives on transitioning from 

individual microgenetic interviews to a whole-class teaching experiment. Educational 
Researcher, 38, 233-254. doi: 10.3102/0013189X09334206 

Lamon, S. J. (1993). Ratio and proportion: Connecting content and children’s thinking. 
Journal for Research in Mathematics Education, 24, 41-61.  

Lamon, S. J. (1999). Teaching fractions and ratios for understanding: Essential content 
knowledge and instructional strategies for teachers. Mahwah, NJ: Lawrence Erlbaum. 

Lamon, S. J. (2002). Can you see it? In G. Bright & B. Litwiller (Eds.), Classroom activities 
for making sense of fractions, ratios and proportions: 2002 Yearbook of the National 
Council of the Teachers of Mathematics (pp. 17-19). Reston, VA: National Council of 
the Teachers of Mathematics. 

Lamon, S. J. (2007). Rational numbers and proportional reasoning: Towards a theoretical 
framework for research. In F. K. J. Lester (Ed.), Second handbook of research on 
mathematics teaching and learning: A project of the National Council of Teachers of 
Mathematics (pp. 629-667). Charlotte, NC: Information Age Publishing. 

Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. Martin, 
& D. Schifter (Eds.), A research companion to principles and standards for school 
mathematics (pp. 179-192). Reston, VA: National Council for Teachers of 
Mathematics. 

Lehrer, R., Jaslow, L., & Curtis, C. L. (2003). Developing an understanding of measurement 
in the elementary grades. In D. H. Clements & G. Bright (Eds.), Learning and teaching 
measurement: 2003 Yearbook of the National Council of Teachers of Mathematics (pp. 
100-121). Reston, VA: National Council of Teachers of Mathematics. 

Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children's reasoning about 
space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments 
for developing understanding of geometry and space (pp. 137-167). Mahwah, NY: 
Lawrence Erlbaum. 

Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. 
Mathematical Thinking and Learning, 5, 211-233. doi: 10.1207/S15327833MTL 
0502&3_05 

Lesh, R., & Kelly, A. E. (2000). Multitiered teaching experiments. In A. E. Kelly & R. Lesh 
(Eds.), Research design in mathematics and science education (pp. 197-230). Mahwah, 
NJ: Lawrence Erlbaum. 

Lesh, R., Landau, M., & Hamilton, E. (1983). Conceptual models and applied mathematical 
problem-solving research. In R. Lesh & M. Landau (Eds.), Acquisition of mathematical 
concepts and processes (pp. 263-343). New York, NY: Academic Press. 

Lesh, R., Post, T. R., & Behr, M. J. (1988). Proportional reasoning. In J. A. Hiebert & M. J. 
Behr (Eds.), Number concepts and operations in the middle grades (pp. 93-118). 
Reston, VA: Lawrence Erlbaum. 



272 
 
Leung, C.-K. (2009). A preliminary study on Hong Kong students' understanding of fraction 

Paper presented at the 3rd Redesigning Pedagogy International Conference, June 
2009, Singapore. 

Mamede, E., Nunes, T., & Bryant, P. (2005). The equivalence and ordering of fractions in 
part-whole and quotient situations. In H. L. Chick & J. L. Vincent (Eds.), Proceedings 
of the 29th Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 3, pp. 281-288). Melbourne, Australia: PME. 

Marriott, P. (1978). Fractions: Now you see them, now you don't. In D. Williams (Ed.), 
Learning and applying mathematics (pp. 196-203). Melbourne, Australia: Australian 
Association of Mathematics Teachers. 

Martin, L. C. (2008). Folding back and the dynamical growth of mathematical understanding: 
Elaborating the Pirie-Kieren theory. The Journal of Mathematical Behavior, 27, 64-85. 
doi: 10.1016/j.jmathb.2008.04.001 

McClain, K., Cobb, P., Gravemeijer, K., & Estes, B. (1999). Developing mathematical 
reasoning within the context of measurement. In L. V. Stiff & F. R. Curcio (Eds.), 
Developing mathematical reasoning in grades K-12: 1999 yearbook (pp. 93-106). 
Reston, VA: National Council of Teachers of Mathematics. 

McIntosh, A., De Nardi, E., & Swan, P. (1994). Think mathematically. South Melbourne, 
Australia: Longman. 

Miller, J. E. (2004). The Chicago guide to writing about numbers. Chicago, IL: University of 
Chicago Press. 

Millsaps, G. M. (2005). Interrelationships between teachers' content knowledge of rational 
number, their instructional practice, and the students' emergent conceptual knowledge 
of rational number  (Doctoral dissertation).  Retrieved from ProQuest Disseratations 
and Theses database. (UMI No. 3182764)   

Ministry of Education. (2007). The diagnostic interview.   Retrieved from 
http://www.nzmaths.co.nz/Numeracy/2007numPDFs/NumBk2.pdf  

Mitchell, A. (2005). Measuring fractions. In P. C. Clarkson, A. Downton, D. Gronn, M. 
Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Research, 
theory and practice (Proceedings of the 28th annual conference of the Mathematics 
Education Research Group of Australasia, Melbourne, pp. 545- 552). Melbourne, 
Australia: MERGA. 

Mitchell, A., & Clarke, D. M. (2004). When is three quarters not three quarters? Listening for 
conceptual understanding in children's explanations in a fraction interview. In I. Putt, R. 
Faragher, & M. McLean (Eds.), Mathematics education for the third millennium: 
Towards 2010 (Proceedings of the 27th annual conference of the Mathematics 
Education Research Group of Australasia, Townsville, pp. 367-373). Townsville, 
Australia: MERGA. 

Mitchell, A., & Horne, M. (2008). Fraction number line tasks and the additivity concept of 
length measurement. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating currents 
(Proceedings of the 31st annual conference of the Mathematics Education Research 
Group of Australasia, Brisbane, pp. 353-360). Brisbane, Australia: MERGA. 



273 
 
Mitchell, A., & Horne, M. (2009). There are more than part-whole strategies at work in 

understanding non-equal-parts fraction area models. In R. Hunter, B. Bicknell, & T. 
Burgess (Eds.), Crossing divides (Proceedings of the 32nd annual conference of the 
Mathematics Research Group of Australasia, Wellington, pp. 371-378). Palmerston 
North, New Zealand: MERGA. 

Mitchell, A., & Horne, M. (2010). Gap thinking in fraction pair comparisons is not whole 
number thinking: Is this what early equivalence thinking sounds like? In L. Sparrow, B. 
Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education (Proceedings 
of the 33rd annual conference of the Mathematics Research Group of Australasia, 
Fremantle, pp. 414-421). Fremantle, Australia: MERGA. 

Mitchell, A., & Horne, M. (2011). Measurement matters: Fraction number lines and length 
concepts are related. In J. Way & J. Bobis (Eds.), Fractions: Teaching for 
understanding (pp. 52-62). Adelaide, Australia, Australia: The Australian Association 
of Mathematics Teachers. 

Moseley, B. (2005). Students' early mathematical representation knowledge: The effects of 
emphasizing single or multiple perspectives of the rational number domain in problem 
solving. Educational Studies in Mathematics, 60, 37-69.  

Nabors, W. K. (2003). From fractions to proportional reasoning: A cognitive schemes of 
operation approach. Journal of Mathematical Behavior, 22, 133-179. doi: 
10.1016/S0732-3123(03)00018-X 

National Center for Educational Statistics. (2007). Mathematical concepts and mathematical 
items Retrieved from http://nces.ed.gov/timss/pdf/TIMSS4_Math_ConceptsItems.pdf  

Neuman, W. L. (2003). Social research methods: Qualitative and quantitative approaches 
(5th ed.). Boston, MA: Allyn and Bacon. 

Nguyen, K. H. (2010). Investigating the role of equipartitioning and creative internal units in 
the construction of a learning trajectory for length and area (Unpublished doctoral 
dissertation). North Carolina State University. United States. 

Ni, Y. (2000). How valid is it to use number lines to measure children's conceptual knowledge 
about rational number? Educational Psychology, 20, 139-152.  

Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The 
origins and implications of whole number bias. Educational Psychologist, 40, 27-52.  

Norton, A., & Wilkins, J. L. M. (2009). A quantitative analysis of children's splitting 
operations and fraction schemes. Journal of Mathematical Behavior, 28, 150-161. doi: 
10.1016/j.jmathb.2009.06.002 

Norton, A., & Wilkins, J. L. M. (2010). Students' partitive reasoning. The Journal of 
Mathematical Behavior, 29, 181-194. doi: 10.1016/j.mathb.2010.10.001 

Novillis-Larson, C. (1980). Seventh-grade students' ability to associate proper fractions with 
points on the number line. In T. E. Kieren (Ed.), Recent research on number learning 
(pp. 151-166). Columbus, OH: ERIC Clearinghouse for Science, Mathematics and 
Environmental Education. 



274 
 
Ohlsson, S. (1988). Mathematical meaning and applicational meaning in the semantics of 

fractions and related concepts. In J. A. Hiebert & M. J. Behr (Eds.), Number concepts 
and operations in the middle grades (pp. 53-92). Reston, VA: Lawrence Erlbaum. 

Olive, J., & Steffe, L. P. (2002). The construction of an iterative fractional scheme: The case 
of Joe. Journal of Mathematical Behavior, 20, 413-437.  

Outhred, L., & McPhail, D. (2000). A framework for teaching early measurement. In J. Bana 
& A. Chapman (Eds.), Mathematics education beyond 2000 (Proceedings of the 23rd 
annual conference of the Mathematics Education Research Group of Australasia, 
Fremantle, pp. 487-494). Sydney, Australia: MERGA. 

Outhred, L., & Mitchelmore, M. C. (2000). Young children's intuitive understanding of 
rectangular area measurement. Journal for Research in Mathematics Education, 31, 
144-167.  

Outhred, L., Mitchelmore, M. C., McPhail, D., & Gould, P. (2003). Count me into 
measurement: A program for the early elementary school. In D. H. Clements & G. 
Bright (Eds.), Learning and teaching measurement: 2003 Yearbook of the National 
Council of Teachers of Mathematics (pp. 81-99). Reston, VA: National Council of 
Teachers of Mathematics. 

Pantziara, M., Gagatsis, A., & Pitta-Pantazi, D. (2004). The use of diagrams in solving non 
routine problems. In M. Johnsen-Hoines & A. B. Fuglestad (Eds.), Proceedings of the 
28th Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 3, pp. 489-496). Bergen, Norway: PME. 

Patton, M. Q. (2002). Qualitative research & evaluation methods. Thousand Oaks, CA: Sage. 

Pearn, C. (1996). Young children's strategies in solving rational number tasks. In J. Mulligan 
& M. C. Mitchelmore (Eds.), Children's number learning. Adelaide, Australia, 
Australia: The Australian Association of Mathematics Teachers. 

Pearn, C., & Stephens, M. (2004). Why you have to probe to discover what year 8 students 
really think about fractions. In I. Putt, R. Faragher, & M. McLean (Eds.), Mathematics 
education for the third millennium: Towards 2010 (Proceedings of the 27th annual 
conference of the Mathematics Education Research Group of Australasia, Townsville, 
pp. 430-437). Townsville, Australia: MERGA. 

Pearn, C., & Stephens, M. (2007). Whole number knowledge and number lines help develop 
fraction concepts. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, 
essential practice (Proceedings of the 30th annual conference of the Mathematics 
Education Research Group of Australasia, Hobart, pp. 601-610). Hobart, Australia: 
MERGA. 

Pepper, K., & Hunting, R. P. (1998). Preschoolers' counting and sharing. Journal for 
Research in Mathematics Education, 29, 164-184.  

Petit, M. M., Laird, R. F., & Marsden, E. L. (2010). A focus on fractions: Bringing research 
to the classroom. New York, NY: Routledge. 

Petitto, A. L. (1990). Development of numberline and measurement concepts. Cognition and 
Instruction, 7, 55-78.  



275 
 
Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child's conception of geometry (E. A. 

Lunzer, Trans.). London, United Kingdom: Routledge and Kegan Paul. 

Pirie, S., & Kieren, T. E. (1994a). Beyond metaphor: Formalising in mathematical 
understanding within constructivist environments. For the Learning of Mathematics, 
14(1), 39-43.  http://www.jstor.org/stable/40248102 

Pirie, S. E. B., & Kieren, T. E. (1994b). Growth in mathematical understanding: How can we 
characterise it and how can we represent it? Educational Studies in Mathematics, 26, 
165-190.  

Post, T., & Cramer, K. (1987). Children's strategies in ordering rational numbers. Arithmetic 
Teacher, 35(2), 33-35.  

Post, T. R., Behr, M. J., & Lesh, R. (1986). Reseach-based observations about children's 
learning of rational number concepts. Focus on Learning Problems in Mathematics, 
8(1), 39-48.  

Post, T. R., Cramer, K. A., Behr, M. J., Lesh, R., & Harel, G. (1993). Curriculum implications 
of research on the learning, teaching and assessing of rational number concepts. In T. P. 
Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of 
research (pp. 327-362). Hillsdale, NJ: Lawrence Erlbaum. 

Post, T. R., Harel, G., Behr, M. J., & Lesh, R. (1988). Intermediate teachers' knowledge of 
rational number concepts. In E. Fennema (Ed.), Papers from first Wisconsin symposium 
for research on teaching and learning mathematics (pp. 194-219). Madison: Wisconsin 
Centre for Education Research. 

Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J. (1985). Order and equivalence of rational 
numbers: A cognitive analysis. Journal for Research in Mathematics Education, 16, 18-
36.  

Pothier, Y., & Sawada, D. (1983). Partitioning: The emergence of rational number ideas in 
young children. Journal for Research in Mathematics Education, 14, 307-317.  

Presmeg, N. (1985). The role of visually mediated processes in high school mathematics: A 
classroom investigation  (Unpublished doctoral dissertation). University of Cambridge. 
United Kingdom.    

Presmeg, N. (1986). Visualisation in high school mathematics. For the Learning of 
Mathematics, 6(3), 42-46.  

Presmeg, N. (2006a). Research on visualization in learning and teaching mathematics. In A. 
Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics 
education (pp. 205-235). Rotterdam, The Netherlands: Sense Publishers. 

Presmeg, N. (2006b). Semiotics and the "connections" standard: Significance of semiotics for 
the teachers of mathematics. Educational Studies in Mathematics, 61, 163-182. doi: 
10.1007/s10649-006-3365-z 

Pring, R. (2005). Philosophy of Educational Research (2nd ed.). London, United Kingdom: 
Continuum. 



276 
 
Rayner, V., Pitsolantis, N., & Osana, H. (2009). Mathematics anxiety in preservice teachers: 

Its relationship to the conceptual and procedural knowledge of fractions. Mathematics 
Education Research Journal, 21(3), 60-85.  

Resnick, L. B., & Singer, J. A. (1993). Protoquantitative origins of ratio reasoning. In T. P. 
Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of 
research (pp. 107-130). Hillsdale, NJ: Lawrence Erlbaum. 

Roche, A. (2010). Helping students to make sense of decimal place value. Australian Primary 
Mathematics Classroom, 15(2), 4-10.  

Roche, A. (2011). Which is larger? A decimal dilemma. In J. Way & J. Bobis (Eds.), 
Fractions: Teaching for understanding (pp. 116-124). Adelaide, Australia: The 
Australian Association of Mathematics Teachers. 

Roth, W.-M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as 
social practice. Review of Educational Research, 68, 35-59.  

Saxe, G. B., Taylor, E. V., McIntosh, C., & Gearhart, M. (2005). Representing fractions with 
standard notation: A developmental analysis. Journal for Research in Mathematics 
Education, 36, 137-157.  

Schifter, D., & Szymaszek, J. (2003). Structuring a rectangle: Teachers write to learn about 
their students' thinking. In D. H. Clements & G. Bright (Eds.), Learning and teaching 
measurement: 2003 Yearbook of the National Council of Teachers of Mathematics (pp. 
143-156). Reston, VA: National Council of Teachers of Mathematics. 

Sherin, B., & Fuson, K. C. (2005). Multiplication strategies and the appropriation of 
computation resources. Journal for Research in Mathematics Education, 36, 347-395.  

Siemon, D. (2003). Number sense: The key to teaching and learning number in the primary 
years of schooling. Prime Number, 18(1), 5-11.  

Silverman. (2000). Doing qualitative research. London, United Kingdom: Sage. 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 
perspective. Journal for Research in Mathematics Education, 26, 114-145.  

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual 
learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking 
and Learning, 6, 91-104.  

Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for 
conceptual learning: Elaborating the construct of reflective abstraction. Journal for 
Research in Mathematics Education, 35, 305-329.  

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics 
Teaching, 77, 20-26.  

Smith, J. P., diSessa, A., & Roschelle, J. (1993-1994). Misconceptions reconceived: A 
constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3, 
115-163.  



277 
 
Sophian, C. (2002). Learning about what fits: Preschool children's reasoning about effects of 

object size. Journal for Research in Mathematics Education, 33, 290-302.  

Sophian, C., Garyantes, D., & Chang, C. (1997). When is three less than two: Early 
developments in children's understanding of fractional quantities. Developmental 
Psychology, 33, 731-744.  

Sophian, C., & Wood, A. (1997). Proportional reasoning in young children: The parts and the 
whole of it. Journal of Educational Psychology, 89, 309-317.  

Sowder, J. T. (1988). Mental computation and number comparison: Their roles in the 
development of number sense and computational estimation. In J. A. Hiebert & M. J. 
Behr (Eds.), Number concepts and operations in the middle grades (pp. 182-197). 
Reston, VA: Lawrence Erlbaum. 

Sparrow, L., & McIntosh, A. (2004). Developing number sense in classrooms. In A. McIntosh 
& L. Sparrow (Eds.), Beyond written computation (pp. 150-159). Perth, Australia: 
Mathematics, Science & Technology Education Centre, Edith Cowan University. 

Stafylidou, S., & Vosniadou, S. (2004). The development of students' understanding of the 
numerical value of fractions. Learning and Instruction, 14, 503-518. doi: 
10.1016/j.learninstruc.2004.06.015 

Steffe, L. P. (2002). A new hypothesis concerning children's fractional knowledge. Journal of 
Mathematical Behavior, 20, 267-307.  

Steffe, L. P. (2003). Fractional commensurate, composition, and adding schemes: Learning 
trajectories of Jason and Laura: Grade 5. Journal of Mathematical Behavior, 22, 237-
295. doi: 10.1016/S0732-3123(03)00022-1 

Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of 
commensurate fractions. Mathematical Thinking and Learning, 6, 129-162.  

Steffe, L. P., & Wiegel, H. G. (1996). On the nature of a model of mathematical learning. In 
L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of 
mathematical learning (pp. 477-498). Mahwah, NJ: Lawrence Erlbaum. 

Steinle, V., & Price, B. (2008). What does three-quarters look like? Students' representations 
of three-quarters. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating Currents 
(Proceedings of the 31st annual conference of the Mathematics Education Research 
Group of Australasia, Brisbane, pp. 483-489). Brisbane, Australia: MERGA. 

Steinle, V., & Stacey, K. (2004). A longitudinal study of students’ understanding of decimal 
notation: An overview and refined results In I. Putt, R. Faragher, & M. McLean (Eds.), 
Mathematics education for the third millennium: Towards 2010 (Proceedings of the 
27th annual conference of the Mathematics Education Research Group of Australasia, 
Townsville, pp. 541-548). Townsville, Australia: MERGA. 

Steinle, V., & Stacey, K. (2011). Understanding decimal numbers. In J. Way & J. Bobis 
(Eds.), Fractions: Teaching for understanding (pp. 101-115). Adelaide, Australia: The 
Australian Association of Mathematics Teachers. 

Stewart, V. M. (2005). Making sense of students' understandings of fractions: An exploratory 
study of sixth graders' construction of fraction concepts through the use of physical 



278 
 

referents and real world representations  (Doctoral dissertation). Retrieved from 
http://etd.lib.fsu.edu/theses/available/etd-10302005-024424/   

Strahan, R. F. (1982). Assessing magnitude of effect from rank-order correlation coefficients. 
Educational and Psychological Measurements, 42, 763-765.  

Strausss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures 
for developing grounded theory. Thousand Oaks, CA: Sage. 

Streefland, L. (1991). Fractions: An integrated perspective. In L. Streefland (Ed.), Realistic 
mathematics education in primary school: On the occasion of the opening of the 
Freudenthal Institute (pp. 93-118). Utrecht, The Netherlands: Center for Science and 
Mathematics Education, Utrecht University. 

Streefland, L. (1993). Fractions: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A. 
Romberg (Eds.), Rational numbers: An integration of research (pp. 289-325). Hillsdale, 
NJ: Lawrence Erlbaum. 

Tavory, I., & Timmermans, S. (2009). Two cases of ethnography: Grounded theory and 
extended case method. Ethnography, 10, 243-263.  

Tepylo, D. H., & Moss, J. (2011). Examining change in teacher mathematical knowledge 
through lesson study. In L. C. Hart, A. S. Alston, & A. Murata (Eds.), Lesson study 
research and practice in mathematics education (pp. 59-77). Dordrecht, The 
Netherlands: Springer. 

Thompson, P. W. (1982). Were lions to speak, we wouldn't understand. Journal of 
Mathematical Behavior, 3, 147-165. doi: Retrieved from http://pat-thompson.net/ 
PDFversions/1982WereLions.pdf 

Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. 
Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and 
standards for school mathematics (pp. 95-113). Reston, VA: National Council for 
Teachers of Mathematics. 

Tilley, A. (1993). An introduction to psychological research and statistics (2nd ed.). 
Brisbane, Australia: Pineapple Press. 

Vaske, J. J. (2002). Communicating judgements about practical significance: Effect size, 
confidence intervals and odds ratios. Human Dimensions in Wildlife, 7, 287-300.  

Victorian Curriculum and Assessment Authority. (2006). Assessment and Improvement 
Monitor: Mathematics Year 5, Retrieved from http://vcaa.vic.edu.au/prep10/ 
aim/testing/tests/2006/AIM2006-Y5Maths.pdf 

Victorian Curriculum and Assessment Authority. (2007). Assessment and Improvement 
Monitor: Mathematics Year 3, Retrieved from 
http://www.vcaa.vic.edu.au/prep10/aim/testing/tests/2007/y3maths-test.pdf 

Von Glaserfeld, E. (1995). Radical constructivism: A way of knowing and learning. London, 
United Kingdom: Falmer Press. 

Walker, D. A. (2003). JMASM9: Converting Kendall's Tau for correlational or meta-analytic 
analyses. Journal of Modern Applied Statistical Methods, 2, 525-530.  



279 
 
Walta, A. H. (1973). An exploratory study of relationships between an understanding of 

fractional numbers and the development of area concepts Research Report (Victoria. 
Education Department, Curriculum and Research Branch); 4/73 (pp. 1-35). Melbourne, 
Australia: Education Department, Victoria Curriculum and Research Branch. 

Wenrick, M. R. (2003). Elementary students' use of relationships and physical models to 
understand order and equivalence of rational numbers  (Doctoral dissertation). 
Retrieved from 
http://repositories.lib.utexas.edu/bitstream/handle/2152/1055/wenrickmr036.pdf   

Wilson, P. S., & Osborne, A. (1992). Foundational ideas in teaching about measure. In T. R. 
Post (Ed.), Teaching mathematics in Grades K-8: Research-based methods (2nd ed., pp. 
89-121). Boston, MA: Allyn and Bacon. 

Wilson, P. S., & Rowland, R. (1993). Teaching measurement. In R. J. Jenson (Ed.), Research 
ideas for the classroom: Early childhood mathematics (pp. 171-194). New York, NY: 
Macmillan. 

Wong, M., & Evans, D. (2007). Students conceptual understanding of equivalent fractions. In 
J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice 
(Proceedings of the 30th annual conference of the Mathematics Education Research 
Group of Australasia, Hobart, pp. 824-833). Hobart, Australia: MERGA. 

Wooffitt, R. (2005). Conversation analysis and discourse analysis: A comparative and 
critical introduction. London, United Kingdom: Sage. 

Yamamoto, Y. (2007). Section 2.3: Problem = discovery oriented teaching methods and 
examples. What are problem-discovery oriented lessons. In M. Isoda, T. Miyakawa, & 
M. Stephens (Eds.), Japanese lesson study in mathematics: Its impact, diversity, and 
potential for educational improvement (pp. 112-121). Hackensack, NJ: World scientific. 

Yanik, H. B., Helding, B., & Flores, A. (2008). Teaching the concept of unit in measurement 
interpretation of rational numbers. Elementary Education Online, 7, 693-705.  

 



280 
 

Appendices 

Appendix A: Data Collection Interview 

Appendix B: Ethics 

Appendix C: Summary Statistics for Victorian Government Schools 

 

  



281 
 

Appendix A: Data Collection Interview 

Introduction 

This appendix contains the interview script, task cards, and images of materials used in the 

data collection interview. In this interview protocol: 

• Italic text described what the interviewer did.  

• Plain text was what the interviewer said.  

• Students were not told whether their answers were correct or incorrect. But they were 

usually asked, "and how did you work that out?" 

• If students answered "don't know" or did not offer an answer, they were not asked 

"How did you work that out?", instead they were prompted to elaborate if they could, 

for example, "If you knew what to do, what do you think you might do?" or "What are 

you thinking?"  

• Students were praised and encouraged by being thanked for sharing their thinking, or 

helping pack up tasks. If students were having obvious difficulty with many questions, 

while they remained willing to participate, they were given the option of saying "I 

don't know" to tasks that they felt that they could not attempt. 

• All task cards in this appendix are reproduced at a similar size to the actual materials 

used during data collection. Most were laminated. Task cards for the pen and paper 

test, Q16a Number line and 16b Number line, and Q38a Draw Your Own Array, were 

printed on plain paper and were consumable, that is, the students wrote or drew on 

them. 

• The actual script used by the interviewer during the interview did not include masters 

of task cards, nor references, but these have been added to this reference appendix 

version for readers of the thesis. These images have not been labelled as figures. 

• A prepared record sheet was used during the interview to note students' responses and 

this follows at the end of the interview tasks. It was slightly larger, but has been 

reduced to fit the margins of the pages in this thesis. 

• The order of the interview tasks was: multiplication and division, four pen and paper 

measurement tasks, fractions, measurement, geometry and visualisation. 
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• If tasks were used or adapted from other sources an acknowledgement in italics 

appears after the question. If there is no acknowledgement, it can be assumed that the 

task was developed by me in conjunction with other ACU staff. 

Materials list 

The content of the task cards were developed or adapted by me and many were digitally 

produced by Rikki Bochow, at Acornweb.com.au, using Adobe Illustrator. I produced tasks 

Q. 22, Q. 26, Q. 44, Q. 46 and Q. 48 using Microsoft Word 2003 tools. The task cards were 

printed on coloured paper and cut and laminated as necessary. Paper and pen and a 30cm 

ruler, marked in cm but not mm, were on the interview table and available if the student chose 

to use them except in tasks where the interviewer specifically requested that they not be used, 

for example, Q. 11 Missing Number or Q. 22 Fraction Pairs. Some other objects were used in 

the tasks and they are detailed below: 

• Multiplication and division 

o Tennis balls in a packet of three. 

• Fractions 

o Kinder squares (12.5cm x 12.5cm coloured paper squares)  

o Pattern blocks: two yellow hexagons, two red trapeziums, two blue rhombi, 

one 2cm orange square, one green triangle 

o Figurines of people (6cm high) 

o Golden beans (lima beans spray-painted gold on one side) 

o Doll for tightrope walker (artist's doll with movable joints) 

o String tightrope 

• Measurement 

o 93cm  streamer 

o Nine 33mm  and four 50mm paper clips 

o DVD case (rated G) 

o Cuisenaire rods 

o Sixteen 2cm square, orange pattern blocks  

o Kinder squares (12.5cm x 12.5cm coloured paper squares) 

• Spatial visualisation and geometry 

o Flag on stick 

o 2cm wooden cubes and models of Q. 58 Cube Rotations multiple choice 

answers 



283 
 

o 2cm wooden cubes and model of Q. 60 Blocks 

Interview script 

The interview begins with the following words by the interviewer: 

Are you happy to do some maths with me today? 

I am interested in how you think when you are doing maths. I have a whole lot of tasks to do 

with you here. I won't tell you whether you get an answer right or wrong. But I will probably 

always say, and how did you work that out? You can tell me what you were thinking while 

you were working out the problem. Or, sometimes you just know an answer, so then you can 

explain how you know that you are right. If you change your mind about an answer while you 

are explaining it, that's fine, you just tell me your new answer. 

Some of the questions might be easy. Some might be hard. Some of the things you might not 

have been taught yet, so just do your best. 

When resuming an interview, repeat part or all of the above as necessary. 

Multiplication and division 

All tasks in the multiplication and division section were from the Victorian Department of 

Education and Early Childhood Development (DEECD) Early Numeracy Interview booklet, 

(Department of Education & Training, 2001). The task numbering was different to the 

DEECD interview as some of those tasks were omitted. This interview can be found in Clarke 

et al., (2002) and can also be downloaded as the mathematics online interview from  

http://www.eduweb.vic.gov.au/edulibrary/public/teachlearn/student/mathscontinuum/onlinein

terviewbooklet.pdf   

 

Q. 1 Tennis Ball task. 

Put out 1 packet of 3 tennis balls.  

Here is a packet of tennis balls. How many balls 

would there be in four packets? How did you work 

that out? 

If the child appears to be counting all, ask 

Could you do that another way, without counting 

them one by one? 
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Q. 2 Dots Array task. 

Here are some dots. Show card for an instant, in the orientation shown.  

I'm going to hide some. 

Cover the bottom 4 × 3 section and the bottom half of the 3 dots above it   

a) How many dots are there altogether on the whole card? How did you work that out?  

If the child appears to be counting all, ask: 

b) Could you do that another way, without counting them one by one? 

 

     

 

 

 

 

 

 

 

 

 

 

Q. 3 Teddy Cars. 

Not offered. 

Q. 4. Sharing Teddies on the Mats. 

Not offered. 
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Q. 5 Children at the Movies. 

There are fifteen children altogether at the movies. They are sitting in three equal rows. How 

many children are in each row? How did you work that out?  

Adaption for this data collection, if the student answers 45, prompt with, "there's fifteen 

altogether." 

 

Q. 6 Multiplication Problems. 

Show the child the card 3×10. Establish what the child prefers (e.g., do you say three times 

ten or do you say three tens) Remove the card. 

Tell me the answers to these questions 

Read the problems one at a time. 

a) 3×10 

b) 2×7 

c) 10×7 

d) 3×50 

e) 4×30 

f) 5×7 
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Q. 7 Division Problems. 

Show the child the card 16 ÷ 2. Establish what the child prefers (e.g., do you say "sixteen 

divided by two?" or do you say "sixteen how many twos?" or do you say "how many twos in 

sixteen?") Remove the card. 

Tell me the answers to these questions 

Read the problems one at a time.  

a)16 ÷ 2 

 

b) 60 ÷ 10 

c) 80 ÷ 4 

d) 24 ÷ 3 

e) 35 ÷ 5 

f) 35 ÷ 7 

 

 
Q. 8 Off to the Circus. 

Ninety-seven people are going to the circus. Twenty people can ride in each bus. How many 

buses will be needed to get all ninety-seven people to the circus? 
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Q. 9 Sharing Our Money. 

Pen and paper methods are acceptable for this task. 

Show the child the card $52 

Share fifty-two dollars evenly between four people. 

How much does each person get? How did you work that out?  

 

 

Q. 10 In Your Head. 

Show the child the card with the expression 23 × 4.  

Please tell me the answer for 23 × 4. 

How did you work that out? 

 

  



288 
 
Q. 11 Missing Number. 

Show the child the orange card with 54 × __ = __ __ 2 

a) The answer to fifty-four times something ends in 2.What can you tell me about this missing 

number? …Pointing to the space after the multiplication sign. 

How did you work that out?  

b) Could it be any other number? How do you know? 

 

 

Pen and paper measurement tasks 

Q. 62 Staircase Array, (Battista, et al., 1998), 

Q. 63 Area Calculation of a Rectangle, 

Q. 64 Dragonfly, 

Q. 65 Witch's Hats. (Adapted from Presmeg, 1985).  

The pen and paper test on the following page was read aloud if necessary. The tasks were 

numbered Q. 62 to Q. 65 in my coding, although they were completed after Q. 11 in the 

multiplication and division section, and before Q. 12 in the fractions section.  
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The area of the big rectangle is being 
measured using 1cm square tiles.  

But there are not enough tiles to cover the 
whole shape. 

What is the area of the big rectangle? 

 

 

What is the area of this rectangle? 

 

 

 

This ruler measures in centimetres.  

What is the length of the dragonfly? 

 

A child put a row of witch's hats along the 
side of a swimming pool. The pool was 25 
metres long. The child put one witch's hat at 
each end of the pool, and one every five 
metres in between. 

How many witch's hats did he put out 
altogether? 
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Fractions 

Q. 12 Book worms. 

Place pictures of four bookworms and a pile of books in front of child. 

This bookworm ...point to third bookworm…eats twice as much as this bookworm…point to 

smallest 

This one….point to second…eats three times as much as this one....point to the smallest. 

This one….point to first…eats six times as much as this one....point to the smallest 

This bookworm…point to third…eats twice as much because it is twice as tall. 

And this one…point to second…eats three times as much because it is three times as tall. 

And this one…point to first…eats six times as much because it is six times as tall. 

a) If this one eats one book...place one book in front of smallest…how many books do the 

other bookworms eat? If necessary, repeat introduction… 

How did you work that out? 

b) If this one eats four books…place 4 books in front of third…how many books do the other 

bookworms eat? How did you work that out? 

c) If this one eats this many books…place 9  books in random arrangement in front of second 

bookworm…how many books do the other bookworms eat? How did you work that out? 

Adapted from Clark and Kamii (1996) 
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Q. 13 Fold Me a Quarter. 

Hand the child one square piece of paper (kinder square).  

a) Please fold the square into quarters. 

Hand the child a second square piece of paper. 

Please fold this into quarters a different way. 

b) Let's look at these two parts indicate a quarter on each of the child's folded pieces of 

paper. What can you tell me about the area of these two pieces? Point to non-congruent 

quarters. Does one piece have a larger area than the other or are they the same?  

How did you work that out? 

c) This is another square that has been folded. Show child third kinder square, folded into 

quarters a different way (squares, triangles, or sticks prepared earlier).  

What can you tell me about the area of these pieces? Point to a quarter on their square and a 

shaded quarter on third prepared kinder square. 

How did you work that out? 

Repeat with other comparison – their second quarter and the third prepared kinder square. 

Developed by Anne Roche and Doug Clarke, Australian Catholic University (ACU). 
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Q. 14 Fraction Pie. 

Show the child the fraction pie diagram. Point to the region as it is named in the question. 

a) What fraction of the circle is part A? How did you work that out? 

b) What fraction of the circle is part B? How did you work that out? 

Adapted from fraction assessment interview in Cramer et al. (1997). 

 

 

 

 

 

 

 

 

 

 

Q. 15 Tightrope Walker. 

Place pegs and tightrope walker in front of child, and show picture of tightrope walker. Use 

gender of child in asking question- he/she 

This is a tightrope walker. He/she uses this rope to practise. Because he/she falls off, he/she 

has put some marks along the rope so that he/she knows how far along he/she got before 

falling off.   

a) Please put a peg on the rope to show where half way across would be. How did you work 

that out? 

b) Roughly, where would nine-tenths of the way across be?  

c) Indicate second mark If he/she fell off here, how far across would he/she have got?  
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Q. 16a Number Line. 

Give the child a blank piece of paper and pen. 

Please draw a number line and mark two thirds on it. 

If child does not mark 0 or 1, ask where does zero go? …  Where does one go?  

How did you work that out? 

Clarke et al. (2007). 

 

Q. 16b Number Line. 

Place number line B (0, ½  marked) in front of child 

If this is half, point to half, please mark where one and a half would be. 

If child does not label fraction say, please label it one and a half.  

How did you work that out? 

Bright et al. (1988). 

Q. 16c Number Line.  

Place number line C (0, 1, 2 marked) in front of child  

Please mark where one quarter would be. 

If child does not label fraction say, please label it one quarter. 

How did you work that out? 

Pearn and Stephens (2007). 
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Q. 16d Number Line. 

Place number line D (0-4 marked) in front of child. Indicate hash mark pointed to by arrow  

What number or fraction is that point on the number line? How did you work that out? 

Adapted from Lesh, Landau, and Hamilton (1983). 

 

Q. 16e Number Line. 

Place number line E (0, 1 marked, with evenly spaced hash marks) in front of child. Indicate 

hash mark pointed to by arrow  

What number or fraction is that point on the number line? How did you work that out? 

Adapted from Novillis (1976). 

 

Q. 16f Number Line. 

Place number line F (0, 1 marked, with non-evenly spaced hash marks) in front of child. 

Indicate hash mark pointed to by arrow. 

What number or fraction is that point on the number line? How did you work that out? 

Adapted from Pearn and Stephens (2007). 
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Q. 16g Number Line. 

Place number line G (6-8 marked) in front of child. Indicate hash mark pointed to by arrow. 

What number or fraction is that point on the number line? How did you work that out? 

Ministry of Education (2007) (New Zealand). 

 

 

Q. 16h Number Line. 

Place number line H (0-1 and beyond marked in even spacings with arrow on improper 

fraction) in front of child. 

What number or fraction is that point on the number line? How did you work that out? 
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Q. 17 Pattern Blocks. 

Place pattern blocks on the table (2 yellow hexagons, 1 red trapezium, 2 blue rhombi, 1 green 

triangle, and 1 orange 2cm square). 

You can move the blocks and pick them up if you need to. 

a)  A blue is what fraction of a yellow? How did you work that out? 

b) A blue is what fraction of a red? How did you work that out? 

c)  This time the blue is a whole. What could you call the red, if the blue is one? How did you 

work that out? 

d) If the green is a half, what would you call the yellow? How did you work that out? 

Adapted from tasks developed by Doug Clarke, ACU. 
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Q. 18. Simple Operators. 

Administer verbally, first three to be done in child's head: 

a) What is one-half of six?  

b) What is two and a half times six? 

c) What is two-thirds of nine?  

d) What is one third of a half? If no answer given or child is thinking, ask  

Would you like to try that with pen and paper? How did you work that out?  

e) What is one half of a third? If immediate answer given, ask How did you work that out? 

Otherwise offer paper and pen and then ask Can you tell me about what you've done? 

If diagrammatic methods used for d and e, ask did you think about the other questions –half 

of six, a fifth of ten, two thirds of nine – as a picture as well? How did you think about them? 

Adapted from Clarke et al. (2007). 

 

Q. 19 Fraction Sort. 

Place cards with "1/4", "1/6", "2/3" and "others", and fraction sort cards, in front of child. Point 

to cards when saying fraction name. Start with simple circle quarter. 

Here are some cards that represent different fractions. Some are one quarter, some are one 

sixth, some are two thirds and some are none of those so we can call them others indicate 

cards. 

Please sort the fractions into the correct group. If the picture isn't one of these fractions, you 

can put it near "others". Tell me what you're thinking as you go. 

Some representations adapted from Baturo (2004); National Center for Educational Statistics 

(2007) 
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Q. 20. Sharing Custard Tarts and Liquorice. 

a) Place 5 people and the picture of the 3 pieces of liquorice in front of child. 

Five people are sharing three strips of liquorice equally.  

The liquorice can be cut anywhere. How much of a strip does each person get? 

Provide the child with pen and paper to draw if necessary. 

b) Place 5 people and the picture of the 3 custard tarts in front of child 

Five people are sharing three custard tarts equally.  

The tarts can be cut anywhere. How much custard tart does each person get? 

Provide the child with pen and paper to draw if necessary 

c) Place 5 people and the picture of the 7 custard tart in front of child 

This time, seven custard tarts were shared equally between the five children.  

How much custard tart does each child get?  

Provide the child with pen and paper to draw if necessary. 

d) Place 4 people and the picture of the 9 pieces of liquorice in front of child. 

Now there are only four children. They are sharing nine strips of liquorice equally.  

How much of a strip does each child get?  

Provide the child with pen and paper to draw if necessary. 

Adapted from Clarke et al. (2007). Similar tasks appear in Keijzer and Terwel (2002); Lamon 

(1999) 
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Q. 21 Golden Beans. 

Place on the table 6 beans that are gold on one side and white on the other 

a) Here are six beans that are gold on one side and white on the other demonstrate as you say 

this Please toss the beans like this (demonstrate)…….  

Now you have a turn. What fraction of the beans have landed gold side up? How did you 

work that out? 

(If 6 white or 6 gold land face up, then ask the child to toss them again) 

b) Is there another name for that fraction?  

If necessary prompt, Can you think of an equivalent fraction?  

c) This time I'm going to add some beans. Please toss the beans again. 

Add three beans so that 9 beans are on the table with 3 gold/white and 6 white/gold facing up 

in a mixed up arrangement. 

If nine beans had landed like this, what fraction of the group of beans is gold/white (the 

colour of the three beans)?  

How did you work that out? 

d) Is there another name for that? 

If necessary prompt, Can you think of an equivalent fraction?  

How did you work that out? 

Task adapted from one developed by Doug Clarke, ACU. 
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Q. 22 Fraction Pairs. 

Show the child each fraction pair card, one at a time, a-g 

Please point to the larger fraction, or tell me if they are the same…….  

How did you decide?  

Don't allow use of pen and paper 

h) If successful on at least 6 of 7 pairs, place selection of fractions on individual cards in 

front of child. 

These are some of the same fractions as before. Please put them in order from smallest to 

largest. Tell me about the order that you have put them in. Where would zero go? Where 

would one go?  

Adapted from Clarke et al. (2007). 
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Q. 23 Puff Machine. 

Show the child picture of the puff machine 

This machine measures how much air, in litres, I can blow out of my lungs. What is the 

reading on the machine? 

 

  

9
7
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Q. 24 Arc, Angle, Area. 

Place card with circle unit fractions in front of child. Point to shaded pieces 

a) Which shaded part is bigger? How do you know? 

b) I asked some other children how they knew that it was the bigger part. One said, because 

the angle here (point to angle) was bigger. One said, because you could cover this space with 

more tiles point to shaded parts. And the last one said, because this line is longer (trace arc of 

larger shaded part with finger).  What do you think of their explanations? 

c) Did you use any of those ideas to help you decide which shaded part was bigger? 

Q. 

25. Density. 

Place the card 2/5 to 3/5 in front of the child. 

a) Is there a fraction between two-fifths and three-fifths? If child says yes, ask, what is it? 

If the child says two and a half-fifths ask, What is another name for that?  

How did you work that out? 

b) Are there any other fractions between two-fifths and three-fifths?  

If child answers yes, ask  How many are there? 

How do you know? 

Task developed by Doug Clarke, ACU. Similar  tasks in appear in Lamon (1999). 
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Q. 26 Fraction Algorithms. 

Place pen and paper and algorithm cards in front of child. 

Here are some fraction problems. These are addition, this is take-away and this is 

multiplication. Can you work out the answer to these? You can do them in any order you like. 

 

=+
2
1

4
3

 

 

=−
4
2

4
14

                          

     

  

      

=+
6
1

6
5

 

=+
2
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3
1

 

 

  

=+ 131287 =× 3121
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Q. 27 Show Me Thirds. 

Place picture of cupcake arrays (4) and pen in front of child  

These are some cupcakes that have been iced. 

a) Without counting them all one by one, can you see half of the tray? Please use the pen to 

show me the halves.  

If necessary….Can you do it without counting every cupcake?  

How did you work that out? 

b) Can you see thirds? (Use the pen to show me). How did you work that out? 

c) Can you see sixths? (Use the pen to show me). How did you work that out? 

Adapted from Lamon (2002). 

 

 

Q. 28 Crossroads. 

Place diagram of crossroads in front of the child. 

This is the whole. Indicate the whole shape. What fraction of the whole shape is shaded? How 

did you work that out? 

Adapted from Victorian Curriculum and Assessment Authority (2006). 
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Q. 29 Ending on a Positive: Fraction. 

Place Cuisenaire rods in front of child.  

Show me any fraction you like using these rods. 

If child is correct, tell them so. If not, modify task or offer new task until they get one correct. 

 
Q. 30 Off the Record. 

You have done lots of different tasks about fractions today. Which did you like best? Why 

was that?  

When you have done fractions in class, what sort of activities have you done? 

Have you seen any of the questions we did today before? 

Did you think the tasks we did today were easy or challenging or both? 

Reflect back child's experience.  
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Measurement 

This section of the interview is introduced with:  

For some of the tasks you might use pen and paper or a ruler. 

Q. 31 Streamer. 

I tried to cut one meter piece of streamer. Please measure how long the streamer is (allow the 

child to use a pen to mark the streamer if necessary, but without prompting)…. What did you 

find? 

If correct number but no units given in answer, prompt for units, eg ninety what? 

How far out was I? (If child is unclear, ask how far off one meter was I?) 

Adapted from the Early Numeracy Interview, Department of Education & Training (2001). 

 

 

Q. 32. Measure a  DVD with a Ruler 

(if incorrect on Q. 31). 

Here is a DVD. Here is a ruler. Please measure this length of the DVD with the ruler (indicate 

longer side). What did you find? 

If correct number but no units given in answer, prompt for units, e.g. nineteen what? 

Adapted from the Early Numeracy Interview, Department of Education & Training (2001). 
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Q. 33 Area Calculation – Half Rectangle. 

Place 3 by 4cm rectangle diagram, shaded in halves, in front of child. 

What is the area of the shaded part?  

If correct number but no units given in answer, prompt for units, e.g. twelve what? 

How did you work that out? 

 

Q. 34. Square to Triangle Sequence –Cutting  

(if incorrect on Q. 13 and/or Q. 33). 

Give child two kinder squares and scissors.  

Please cut the square in half… indicate diagonally. Now move the pieces around to make a 

new shape. Does this square have a bigger area, does this shape have a bigger area or do they 

have the same area? 

How did you work that out? 

Task developed by Catherine Trethowan (Watsonia Heights Primary School). 
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Q. 35 Missing Oval 

(if incorrect on Q. 33, or incorrect area units on Q. 62). 

Show array diagram with oval missing grid lines. 

This rectangle was covered with one centimetre square tiles. Point to complete tile But some 

of them have been rubbed out. What is the area of this rectangle?  

If correct number but no units given in answer, prompt for units, eg 20 what? 

How did you work that out? 

Battista, et al. (1998). 
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Q. 36. Similar Shapes. 

Show child shape comparison pictures one at a time. 

The perimeter is the length around the outside of a shape. Trace perimeter with finger.  

a) What can you tell me about the perimeter of these two shapes.  

If necessary, does one have a larger perimeter than the other or are they the same?  

How do you know? 

b) The area is how many units fit inside the shape. Trace inside shape with finger. 

What can you tell me about the area of these two shapes? 

If necessary, does one have a greater area than the other or are they the same?  

How do you know? 

Repeat for each pair: a) and b) square, c) and d) circle, e) and f) rectangles, g) and h) shaded 

rectangle halved 
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Q. 37 Four Triangles  

(if correct on Q. 36h). 

Place task cards in front of child. 

Here are four triangles. They are right angle triangles and these lengths are 5cm and this 

length we don't know (indicate on diagram.) 

a)These four triangles have been moved to make this shape (point to rectangle).  

What is the area of this shape? How did you work that out? 

b) What is the area of this shape (point to square)? How did you work that out? 

c) What is the area of this shape (point to trapezium)? How did you work that out? 

Adapted from National Center for Educational Statistics (2007). 
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Q. 38. Draw Your Own Array. 

Give child tile and rectangle diagram and show one 2cm square pattern block. 

This is one tile, place block on square tile in diagram.  

a) Please draw the tiles on this rectangle. What is the area of this rectangle?  

If correct number but no units given in answer, prompt for units, eg thirty what? 

How did you work that out? 

Drawing on diagram is required, ruler permitted 

b) Inverse relationship between size of tile and count (if incorrect on Q. 36h) 

Show child picture of two draw your own array diagrams, one with bigger tile. 

This is the same as your diagram. If you used this tile instead, would you need more or less or 

the same number of tiles? How did you work that out? 

Adapted from Outhred and Mitchelmore (2000). 
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Q. 39 Keyboard. 

Place picture of keyboard and pencils in front of child. 

Some children were measuring things in the classroom using pencils as their units. How long 

is this keyboard in pencils?  

If a whole number given, prompt, e.g. Is it exactly four?  

If correct number but no units given in answer, prompt for units, e.g. three and three quarter 

what? 

How did you work that out? 

 

Q. 40. Using Paperclips to Measure  

(if incorrect on Q. 39). 

Place paper clips (33mm and 50mm) and DVD in front of child. 

Please measure the width of the DVD with the paper clips.  

(indicate shorter length of DVD).  

If child hesitates Use the paper clips to measure the 

DVD. 

What did you find?  

If correct number but no units given in answer, prompt 

for units, e.g. four what? 

How did you work that out? 

Adapted from Department of Education & Training (2001). 
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Q. 41 Freddo Frog. 

Place picture of broken ruler measuring Freddo Frog in front of child. 

This centimetre ruler is broken. It is measuring a Freddo frog. How long is the Freddo frog? 

How did you work that out? 

Adapted from Bragg and Outhred (2004). 

(Permission to use Freddo Frog image in this thesis given by Kraft Foods, see Chapter 3, 

section 3.2.1.3)  
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Q. 42 Footy Card  

(if correct on Q. 41). 

Place picture of ruler with no numerals measuring a footy card in front of child. 

This ruler measures in centimetres but there are no numbers on it. 

What is the length of the footy card? How did you work that out? 

Adapted from Bragg and Outhred (2004).  
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Q. 43 Straightening Wires  

(if incorrect on Q. 41) 

Place diagram of two wires in front of child 

These are two pieces of wire that can be moved. Between the dots is the same length.  

If the wires were straight would they be the same length, or would one be longer than the 

other? How did you work that out? 

Adapted from Battista (2006). 
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Q. 44 Steps. 

Place paces table in front of child 

a) Some children were measuring the length of the room by counting how many steps they 

took. This shows how many steps each child took across the classroom.  

Point to name … Jack took 10 steps, Emily took 8 steps, Max took 9 steps, Tim took 7 steps. 

Who takes the biggest steps? How did you work that out? 

Adapted from National Center for Educational Statistics (2007). 

 

Name Number of steps 

Jack 10 

Emily 8 

Max 9 

Tim 7 
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Q. 45 Choosing Rulers  

(if correct on Q. 44).  

Place rulers and object in front of child. 

Here are some rulers marked in millimetres.  

a) Please choose a ruler that will help you measure the length of the pie. How long is the pie? 

How did you work that out? 

b) Can you use any other of the other rulers to measure? Why/ what did you find? 

Adapted from Petitto (1990). 
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Q. 45c Two Sizes of Paperclips.  

(if incorrect on Q. 44). 

A child was using paperclips to measure the length of this DVD. He/she has these two 

different sizes. If they used these ones…indicate group with longer length... would s/he use 

more or less or the same number as these …indicate other pile. 

How did you work that out? 
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Q. 46 Array with Leftovers. 

Place card with array, and 16 orange 2cm square pattern blocks in front of child. 

Here is a shape. Trace around outside of shape with finger. Please use the tiles to measure the 

area of the shape. A tile fits in this square. 

Demonstrate that one tile fits in a partitioned square.  

What is the area of the shape? How did you work that out? 
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Q. 47. Packing Boxes. 

(if correct on Q. 46). 

Place diagram in front of child. 

In this cup factory, the cups are always boxed as pairs. So a cup is put in a box, and then two 

are boxed together like this….indicate on diagram. Then those boxes are packed into crates. 

Three boxes like this fit up the side of the crate. Three boxes like this fit along the end of the 

crate. And five boxes like this fit down the length of the crate….indicate on diagram. How 

many cups fit into the crate….indicate single box? How did you work that out? 

Adapted from Battista (2007). 
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Q. 48. Cuisenaire Units. 

Place square and Cuisenaire rods in front of child. 

We can use these rods to measure the area of this square. If this is a square unit indicate a 

"white one", what is the area of the square? How did you work that out? 
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Q. 49 Perimeter of an L shape. 

The perimeter of a shape is the length around the outside. So the perimeter of this rectangle is 

this length, plus this length, plus this length, plus this length,  

run finger along 8 by 7 rectangle sides (8, 8, 7, 7).  

What is the perimeter of this shape? Point to L shape How did you work that out?  

Adapted from Battista (2006). 
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Q. 50 Pirate Treasure Map. 

Place diagram of pirate treasure in front of child 

This is a treasure map.  

a) Please tell me what is on square D3. How did you work that out? 

b) What are the co-ordinates for the square with the palm tree in it?  

How did you work that out? 
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Q. 51 Sawmill. 

Place picture of log and circular saw in front of child. 

At the sawmill they want to cut this log into eight pieces. They can move it indicate on 

diagram backwards and forwards. The saw goes bzzzt like that to cut it indicate vertical cut. 

How many cuts will they need to make with the saw to get eight pieces? How did you work 

that out?  

Adapted from Presmeg (1985). 
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Q. 52 Angle Pieces. 

Place pieces of circle in front of child. 

 Indicate smaller piece These are two fractional pieces from different circles. Can you show 

me with your finger what the whole circle would look like.  

Indicate larger piece Can you show me what the circle that this piece came from would look 

like.  

Indicate smaller piece This is one sixth of a circle. If this is one sixth, what fraction of its 

circle is this piece? How did you work that out? 
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Q. 53 Area Calculation – Triangle  

(if correct on Q. 33). 

Place 3 by 4 triangle diagram in front of child. 

What is the area of this triangle?  

If correct number but no units given in answer, prompt for units, e.g. twelve what? 

How did you work that out? 
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Q. 54 Blocks of Ice. 

Show child picture of ice hotel. Have you heard about the ice hotel? Everything is made of 

ice, the chairs, even the roof and the beds. This man is going to build an ice hotel out of ice 

with these big blocks of ice.  

What could he measure about these blocks? Show me on the diagram what that would be. 

If necessary, what attributes of the blocks could he measure?  

What else could he measure?  

Repeat until child can not come up with more attributes. If child does not volunteer a length 

measure or an area measure, prompt with, could he measure a length? Could he measure an 

area? Show me on the diagram what that would be. 

 

Q. 55 Connections. 

You have done some measurement tasks and some fractions tasks with me. Can you see 

anything similar about fractions and measuring? 
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Dynamic imagery 

Q. 56 Flags. 

Place plastic flag in front of child, "blowing" to the right. 

When this flag is blowing in the wind on top of a flag pole the pattern on it looks like this. 

The pattern goes through to the other side. When the flag blows in the opposite direction,  

move flag through 180 degree rotation, the pattern looks different.  

This is a different flag. Point to the flag at the top of the diagram.  

One of these is the same as this flag but it is blowing in the opposite direction… point to row 

of 4 flags and then model 180 degree rotation with hand. 

Which one is it? How did you work that out? Ask confirmation question if unclear about 

whether dynamic imagery or geometric properties of shape reasoning was used. 

Adapted from Australian Council for Educational Research (1978). 
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Q. 57 Puzzle. 

Place the green card with the shading on the table. Randomly place the six mauve shapes 

beside the green card (mix these up to avoid prompting). 

This is like a jigsaw puzzle. I have this card with a square on it…I'm wondering, without 

moving any pieces yet, if you can find three pieces that you think would fit together like a 

puzzle to cover the square exactly, Please point to them if you think you know. 

If the child suggests three correct pieces, push the others to one side, and ask them to try and 

show how they fit. Ask confirmation question if unclear about whether dynamic imagery or 

geometric properties of shape reasoning was used. 

Department of Education & Training (2001). 
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Q. 58 Cube Rotations. 

a). Place task card and real cubes in front of child.  

This shape, point to first shape, has been made with cubes like these. Can you please make 

this shape with the blocks.  

Place fixed models of cube shapes in front of child. 

b). One of these four shapes is the same as the top one, but it has been moved around in the 

air. The other three are different shapes. Which one is the same as the top one? How did you 

work that out? 

Ask confirmation question if unclear about whether dynamic imagery or geometric properties 

of shape reasoning was used. 

Adapted from National Center for Educational Statistics (2007). 
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Q. 59 Design. 

Show the child the white page with the design on it. 

a) Pointing to the small pieces on the page, Which piece is not part of the design? This may 

take a little while. 

If some time passes without comment or action...Would you like to tell me what you are 

thinking? 

Once the child has decided which piece is not part of the design….How did you work that 

out? 

Ask confirmation question if unclear about whether dynamic imagery or geometric properties 

of shape reasoning was used. 

Department of Education & Training (2001). 
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Q. 60 Wattanawaha Block Rotation. 

Place H models in front of child.  

These two blocks are the same, and they have coloured corners that match. 

This one has moved in the air and landed like this. Arrange blocks as diagram 

 

a) What colour would go on that corner (point to corner 2)? 

How did you work that out? 

b) Please describe how the shape moved. 

Adapted from M. Clements (1983). 

 

 

Q. 66 Wet-day Timetable. 

Think about all the tasks that we have done and the materials that we have used. If it was wet 

day timetable, would you play with any of these things? 
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Record Sheet 
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Appendix B: Ethics 

Approval from the Australian Catholic University Human Research Ethics Committee. 

Approval from the Department of Education and Early Childhood Development.  

Information letter for Director of Northern Metropolitan Region, Department of Education 

and Early Childhood Development.  

Information letter to Principals and consent form (principals). 

Information letter to participants and consent forms (parents/guardians and children). 

Approval from Cadbury to use the Freddo image. 
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Appendix C: Summary Statistics for 

Victorian Government Schools 

Reprinted from Department of Education and Early Childhood Development (2008). 
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