

Titanato de circonio: estabilidad termodinámica y expansión térmica

E. LÓPEZ-LÓPEZ, R. MORENO, C. BAUDÍN*

Instituto de Cerámica y Vidrio, CSIC. Kelsen 5, 28049, Madrid, España. * cbaudin@icv.csic.es

El titanato de circonio es un compuesto muy usado en aplicaciones electrocerámicas, aunque también se han descrito aplicaciones en el campo de la catálisis y de los sensores. Dada la anisotropía en la expansión térmica cristalográfica de este compuesto, podría ser planteado como constituyente de componentes estructurales. En general, para asegurar la integridad estructural y la homogeneidad microestructural de una pieza cerámica, es preciso utilizar velocidades de enfriamiento desde la temperatura de fabricación relativamente bajas. Este requerimiento tiene una importancia fundamental en el titanato de circonio, ya que pequeñas variaciones en la composición y en la velocidad de enfriamiento, producen variaciones significativas tanto en la distribución de fases como en la expansión térmica. En este trabajo se revisan los trabajos existentes sobre la estabilidad del titanato de circonio dentro de los sistemas ZrO_2 -Ti O_2 y ZrO_2 -Ti O_2 -Y $_2O_3$. Se describen las principales discrepancias acerca de las fases compatibles existentes en la bibliografía actual y se discute el posible origen de estas discrepancias. Asimismo, se revisan los datos existentes sobre la expansión térmica cristalográfica de este compuesto.

Palabras clave: Diagramas de fases, Reactividad, Propiedades térmicas, Aplicaciones estructurales, Titanato de circonio, sistema ZrO₂-TiO₂-Y₂O₃

Zirconium titanate: stability and thermal expansion

Zirconium titanate is a well known compound in the field of electroceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO_2 -TiO₂ and ZrO_2 -TiO₂-Y₂O₃. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed.

Key words: Phase diagrams, Reactivity, Thermal properties, Structural applications, Zirconium titanate, ZrO₂-TiO₂-Y₂O₃system

1. INTRODUCCIÓN

El titanato de circonio $(Zr_xTi_{1-x})_2O_{4'}$ compuesto intermedio dentro del sistema ZrO2-TiO2 [1, 2] forma una solución sólida que abarca composiciones en las que la fracción molar de Ti, (1-x), varía entre 0.42-0.67, dependiendo de las condiciones de presión y temperatura [3]. El mineral srilankita (ZrTi₂O₆) [4, 5] y los compuestos sintéticos ZrTiO₄ [6] y Zr₅Ti₇O₂₄ [4, 7] son composiciones específicas dentro de esta solución sólida. En los diferentes estudios realizados a presión atmosférica que se describen en este trabajo, se mencionan las composiciones estequiométricas ZrTiO₄, ZrTi₂O₆ y Zr₅Ti₇O₂₄ así como soluciones sólidas de TiO₂ y de ZrO₂ en ZrTiO₄ y ZrTi₂O₆. Por ello, si bien la fórmula química $(Zr_xTi_{1-x})_2O_4$ describe correctamente todas las posibles composiciones, en este trabajo, por claridad, se utilizará la nomenclatura tradicional empleada para la descripción de las soluciones sólidas: ZrTiO₄ss yZrTi₂O₆ss.

El compuesto ZrTiO₄¹ cristaliza en el sistema ortorrómbico con una estructura tipo α -PbO₂. Los átomos de circonio y titanio se distribuyen al azar ocupando sitios octaédricos [6, 8, 9]. El ámbito tradicional de los materiales de titanato de circonio es el de la electrocerámica, como resonadores dieléctricos debido a su elevada constante dieléctrica ($\kappa \approx 35$ -46) [10-14], a su alto factor de calidad (Q ≈ 2000 -8000) medido entre 1 y 10GHz [10-14] y a su pequeña variación de la frecuencia de resonancia con la temperatura ($\tau_t \approx 0$ ppm°C⁻¹) [10, 11, 14]. Estas propiedades hacen que los materiales de titanato de circonio sean usados en el campo de las telecomunicaciones como sintonizadores, filtros y osciladores de tensión sintonizable mediante voltaje [10, 15]. Además, se han determinado las propiedades dieléctricas del titanato de circonio en películas delgadas preparadas por ablación láser [15].

¹ Estructura cristalina: ortorrómbica. Grupo espacial: Pnab.
a=5.03580 nm, b=5.48740 nm, c=4.80180 nm. (PDF: 00-034-0415)

Por otro lado, las mezclas binarias de ZrO₂-TiO₂, tanto sin reaccionar como formando titanato de circonio, se utilizan en aplicaciones catalíticas [16-20]. El titanato de circonio tiene actividad catalítica en algunas reacciones como la deshidrogenación no oxidativa del etilbenceno [17, 20], el cual tiene importancia en la producción de estireno. Así mismo, se ha utilizado en un gran número de reacciones catalíticas como soporte de catalizadores [17]. Además, el titanato de circonio tiene actividad fotocatalítica [16, 17]. También se han descrito aplicaciones del titanato de circonio como pigmento [21] y como sensor de hidrocarburos (metano y propano) [17, 22] y de humedad [23].

De acuerdo con los cálculos realizados por Hom y col. [24], la formación de ZrTiO₄ a partir de ZrO₂ y TiO₂ es termodinámicamente favorable a temperaturas superiores a 980°C (1250 ± 150°K). De hecho, distintos autores han reportado temperaturas de síntesis de ZrTiO₄ por reacción en estado sólido de polvos de ZrO₂ y TiO₂ entre ≈ 1000-1700°C [4, 6, 8-10, 14, 24-27]. Los métodos sol-gel [28], permiten obtener ZrTiO₄ por tratamiento térmico a temperaturas de 500-600°C. La mayoría de los trabajos describen métodos de fabricación de polvos o piezas pequeñas, no habiéndose descrito la fabricación de piezas masivas (≈ 60 x 60 x 5 mm³) hasta fecha reciente [29-31].

2. SISTEMA ZrO,-TiO,

Los primeros estudios del sistema ZrO_2 -Ti O_2 fueron realizados por Sowman y Andrews en 1951 [32]. Estos autores no detectaron la presencia de $ZrTiO_4$ y establecieron que a T

≈ 1600°C el límite de solubilidad en estado sólido de ZrO₂ en TiO₂ era ≈ 21% peso (≈ 14.7% mol), y el de TiO₂ en ZrO₂ ≈ 37% peso (≈ 47.4% mol), concluyendo que el sistema ZrO₂-TiO₂ estaba formado por soluciones sólidas parciales sin compuestos intermedios. Además, propusieron un punto eutéctico localizado entre 50-55% peso (39.3-44.2% mol) de ZrO₂ a 1600°C.

En 1954, de manera independiente Brown y Duwez [1] y Coughanour y col. [2], publicaron por primera vez la existencia de un nuevo compuesto de fórmula ZrTiO₄. Además, Coughanour y col. [2] establecieron que este compuesto cristalizaba en el sistema ortorrómbico y fueron los primeros en proponer la existencia de dos polimorfos de este compuesto con una temperatura de transición comprendida entre \approx 800-1200°C para explicar las diferencias existentes en la longitud del eje cristalográfico b (eje c según la convención usada por Coughanour y col. [2]) en función de la velocidad de enfriamiento.

Brown y Duwez [1] estudiaron mezclas binarias de TiO₂ y ZrO₂ tratadas a distintas temperaturas y propusieron un diagrama de equilibrio de fases (Fig. 1) en el cual la máxima solubilidad de ZrO₂ en TiO₂ a T ≈ 1760°C era aproximadamente 18% mol y decrecía hasta aproximadamente 6% mol a T ≈ 980°C. Además, pusieron de manifiesto cómo a medida que aumentaba la cantidad de TiO₂ en solución sólida en ZrO₂, la temperatura de transformación de la fase tetragonal (t-ZrO₂) a la monoclínica (m-ZrO₂) se reducía considerablemente hasta llegar a T ≈ 340°C para un máximo de solubilidad de aproximadamente 40% mol de TiO₂ en t-ZrO₂.

Las relaciones de equilibrio de fases entre 1600°C y 1900°C (Fig. 2) propuestas por Coughanour y col. [2] son

Figura 1. Diagrama de equilibrio de fases del sistema ZrO₂-TiO₂ publicado por Brown y Duwez en 1954 [1].

Figura 2. Diagrama de equilibrio de fases del sistema ZrO_2 -Ti O_2 publicado por Coughanour y col. en 1954 [2].

muy similares a las que propusieron Brown y Duwez [1] (Fig. 1). Coughanour y col. [2] fijaron las líneas de solidus y de liquidus a partir del establecimiento de los puntos de fusión de los compuestos puros y de las temperaturas de solidus y de liquidus de mezclas binarias de ZrO_2 y TiO_2 . Estas líneas sólo habían sido dibujadas en tentativa por Brown y Duwez [1].

En 1968, Noguchi y Mizuno [33] realizaron un estudio detallado de las líneas de liquidus para composiciones comprendidas entre 2.5% y 20% mol de TiO₂. Este estudio, al igual que Coughanour y col. [2], lo realizaron a partir del establecimiento de los puntos de fusión de los compuestos puros y de las temperaturas de solidus y de liquidus de las mezclas binarias. A partir del límite de solubilidad sólida de TiO₂ en t-ZrO₂ determinado a 1700°C (17.5% mol de TiO₂ en t-ZrO₂) y de trabajos anteriores de otros autores [34] propusieron un diagrama de fases en tentativa (Fig. 3) en el que los límites de solubilidad sólida de TiO₂ en t-ZrO₂ son muy inferiores a los propuestos en los trabajos anteriormente mencionados [1, 2, 32] y establecieron una región monofásica de ZrTiO₄ss muy estrecha en la zona rica en TiO₂ (50-53%) mol TiO₂). Para satisfacer la regla de las fases, en el diagrama propuesto se exigía la existencia de un nuevo polimorfo de ZrO₂ a temperaturas superiores a 2500°C.

En 1980 Shevchenko y col. [35] estudiaron el diagrama ZrO_2 -Ti O_2 a temperaturas superiores a 1600°C (Fig. 4). El análisis de muestras cristalinas de composiciones con contenidos crecientes de Ti O_2 (0-100% mol) a 1700°C les permitió ajustar la región monofásica de ZrTi O_4 ss a 1700°C, propuesta en tentativa por otros autores [1, 2, 33], entre 40.0-52.5% mol de Ti O_2 . Por otra parte, a partir de las temperaturas de fusión de los compuestos puros y de las temperaturas

de solidus y de liquidus de mezclas binarias de TiO₂ y ZrO₂ establecieron la línea de líquidus con tres puntos invariantes, dos peritécticos ($\approx 2200^{\circ}$ C y 1830 ± 20°C) y un eutéctico (1720 ± 20°C). De acuerdo con estos autores la fusión de ZrTiO₄ es incongruente (1830 ± 20°C).

En 1986, Bannister y Barnes [36] estudiaron la zona rica en ZrO₂ (hasta 30% mol de TiO₂) del sistema ZrO₂-TiO₂, y determinaron que la solubilidad máxima de TiO₂ en t-ZrO₂ a 1300°C era 13.8 ± 0.3% mol, a 1400°C 14.9 ± 0.2% mol y a 1500°C 16.1 ± 0.2% mol. Al igual que Brown y Duwez [1], Bannister y Barnes [36] pusieron de manifiesto que la solución sólida de TiO₂ en ZrO₂ disminuye la temperaturas de transformación de t-ZrO₂ a m-ZrO₂. En particular, determinaron la temperatura de transformación de t-ZrO₂ a m-ZrO₂, ≈ 775 y ≈ 675°C (valores calculados a partir de la representación gráfica incluida en la referencia [36]), para composiciones de ZrO₂ss con 13.8 y 16.1% mol de TiO₂, respectivamente.

Entre 1983 y 1986, McHale y Roth [4, 37] estudiaron composiciones binarias de ZrO_2 y TiO_2 con proporciones de ZrO_2 que oscilaban entre 40 y 60% mol tratadas a 1500°C y con tratamientos isotermos a temperaturas comprendidas entre 1000 y 1200°C durante el enfriamiento. Estos autores observaron que, en muestras de $ZrTiO_4$ tratadas durante 4 meses a T \approx 1000°C, las fases presentes a temperatura ambiente eran una mezcla de m- ZrO_2 ss y una nueva fase donde la relación molar Zr/Ti era 1/2, siendo su fórmula $ZrTi_2O_6$. Por lo tanto, esta nueva fase sería la fase estable a baja temperatura en el sistema ZrO_2 -TiO₂ en ausencia de impurezas. Coincidiendo con los estudios de McHale y Roth [4, 37] se descubrió un nuevo mineral denominado srilankita con la misma composición ($ZrTi_2O_6$) [5, 38], lo cual apoyó las

Figura 3. Diagrama de equilibrio de fases del sistema $\rm ZrO_2\text{-}TiO_2$ publicado por Noguchi y Mizuno en 1968 [33]

Figura 4. Diagrama de equilibrio de fases del sistema ZrO₂-TiO₂ publicado por Shevchenko y col. [35].

conclusiones de estos autores [4]. La estructura cristalina de ZrTi_2O_6 es ortorrómbica, al igual que la de $\text{ZrTi}O_4$, y presenta una superestructura en el eje c (eje a de de acuerdo con la convención usada por McHale y Roth [4]).

De acuerdo con el diagrama de fases propuesto por McHale y Roth [4] (Fig. 5) a T \approx 1100°C hay un punto eutectoide que indica la descomposición de ZrTiO₄ss en t-ZrO₂ss y ZrTi₂O₆.

La presencia de la superestructura en ZrTi₂O₆ indica que es un compuesto ordenado, por lo que la transición de la estructura ordenada (ZrTi₂O₄) a la desordenada (ZrTiO₄) es de tipo orden-desorden. Con objeto de estudiar en detalle esta transformación, McHale y Roth [4, 37] prepararon muestras con composiciones binarias ZrO₂-TiO₂ con una pequeña adición de Y₂O₃ (0.5% mol), compuesto que acelera la cinética de transformación. Sin embargo, las fases presentes a temperatura ambiente en estas muestras fueron $Zr_5Ti_7O_{24}$ c-ZrO₂ y el compuesto con estructura pirocloro Y₂Ti₂O₇ [4]. En el diagrama propuesto a partir de los datos obtenidos (Fig. 5), se propone el compuesto $Zr_5Ti_2O_{24}$ como la fase estable en equilibrio con TiO₂ss a alta temperatura (≈1200-1760°C) en composiciones ricas en TiO₂ (> 58.04% mol). La fase $Zr_5Ti_7O_{24}$ está en equilibrio con ZrTi₂O₆ y TiO₂ss en el punto peritectoide que hay a 1200°C en el diagrama propuesto por estos autores (Fig. 5).

Como se desprende de la discusión anterior, los trabajos de McHale y Roth [4, 37] pusieron de manifiesto la importancia que tienen la velocidad de enfriamiento y las impurezas en el desarrollo de fases dentro del sistema ZrO_2 -Ti O_2 . Asimismo, se desprende el interés que presenta el estudio del sistema ternario ZrO_2 -Ti O_2 -Y₂O₃.

De acuerdo con el diagrama propuesto por McHale y Roth [4, 37] (Fig. 5), entre 1100 y 1200°C habría una región de coexistencia de las fases ZrTiO, ss y ZrTi,O, ss para composiciones \approx 50-66% mol TiO₂. Sin embargo, los resultados de Troitzsch y Ellis [39], en el año 2005, no mostraron evidencias de la existencia de esta región, por lo que propusieron una modificación del diagrama entre 1000 y 1200°C (Fig. 6), con la presencia de dos fases ordenadas. En este diagrama, la fase ZrTiO₄ss (una de las fases (Zr,Ti)₂O₄ ordenada de acuerdo con la nomenclatura de los autores [39]) tendría un margen de composición muy estrecho y sería la fase estable entre 1160°C y 1080°C. Por debajo de 1080°C la fase estable sería ZrTi₂O₄ss ((Zr,Ti)₂O₄ ordenada de acuerdo con la nomenclatura de los autores [39]). La transición entre ZrTiO₄ss desordenado y ordenado viene acompañada por una reducción significativa de la longitud del eje b.

3. SISTEMA ZrO₂-TiO₂-Y₂O₃

El sistema ZrO_2 -Ti O_2 -Y $_2O_3$ tiene importancia en la obtención de materiales de titanato de circonio-circona, puesto que el Y $_2O_3$ es uno de los aditivos más usados para estabilizar las fases t-Zr O_2 y c-Zr O_2 a temperatura ambiente. Sin embargo este sistema ha recibido poca atención y no se han establecido diagramas de fases completos. En la discusión que se realiza de las figuras 8, 9 y 10, se ha mantenido la nomenclatura usada por los autores en sus trabajos para representar este sistema ternario, Zr O_2 -Ti O_2 -Y $O_{1.5'}$ indicando entre paréntesis la conversión a la nomenclatura no usada, Zr O_2 -Ti O_2 -Y $_2O_{3'}$ con objeto de poder comparar los datos publicados en los distintos trabajos que se describen a continuación.

Figura 5. Diagrama de equilibrio de fases del sistema ZrO₂-TiO₂ publicado por McHale y Roth [4].

Figura 6. Diagrama de equilibrio de fases del sistema ZrO₂-TiO₂ publicado por Troitzsch y Ellis [39].

Uno de los primeros estudios realizados en este sistema, lo llevó a cabo Tsukuma en 1986 [40]. Este autor fabricó materiales de c-ZrO₂ estabilizada con 8% mol de Y_2O_3 con y sin adición de 10% mol de TiO₂. Los materiales con TiO₂ tenían un tamaño de grano mayor que los materiales sin TiO₂ y eran transparentes. Los resultados de este autor demuestran que las soluciones sólidas de c-ZrO₂ con 8% mol de Y_2O_3 y 10% mol de TiO₂ son viables.

Posteriormente, en 1990 Lin y col. [41] estudiaron la solubilidad a 1600°C de TiO₂ en t-ZrO₂, estabilizada con 3% mol de $Y_2O_{3'}$ y en c-Zr $O_{3'}$ estabilizada con 6% mol de Y_2O_3 . A partir de la determinación de la evolución de los parámetros de red con la adición de TiO₂, concluyeron que a 1600°C la máxima solubilidad de TiO₂ en t-ZrO₂ era \approx 14-16% mol, y en $c-ZrO_2 \approx 18\%$ mol. Estos autores observaron que la solución sólida de TiO₂ estabiliza la fase t-ZrO₂, disminuyendo la temperatura de transformación a m-ZrO₂. Por el contrario, a medida que aumenta la proporción de TiO₂ en c-ZrO₂, ésta se desestabiliza transformándose en t-ZrO₂. En ambos casos la disolución de TiO₂ incrementa el tamaño de grano, y en el caso de la t-ZrO, se consigue un tamaño de grano de hasta 10 μ m sin que transforme a m-ZrO₂ en el enfriamiento hasta temperatura ambiente. Además, mediante difracción de rayos X estos autores detectaron la presencia de ZrTiO, en materiales con concentraciones de TiO₂ superiores a 20% mol.

En 1992 Pyda y col. [42] prepararon materiales de ZrO_2 con contenidos de TiO₂ e Y₂O₃ que variaban entre 0-28% y 0.5-3% mol, respectivamente, con objeto de obtener materiales de t-ZrO₂ de alta tenacidad. No encontraron c-ZrO₂ en ninguna de las composiciones estudiadas. En los materiales con contenidos en Y₂O₃ entre 1.5-3% mol, la fase mayoritaria fue t-ZrO₂. A pesar de que la temperatura de sinterización usada por estos autores es muy inferior a la usada por Lin y col. [41], los valores de solución sólida de TiO₂ publicados por Pyda y col. [42] son muy superiores. Así, describen soluciones sólidas de 28% mol de TiO₂ en ZrO₂ con 1.5% mol de Y₂O₃.

Estos autores atribuyen estas diferencias a que su método de síntesis por coprecipitación y posterior tratamiento térmico a 1300°C permite obtener materiales con mayor homogeneidad composicional que el método de reacción en estado sólido usado por Lin y col. [41]. Además, Pyda y col. [42] detectaron la formación de ZrTiO₄ en materiales con un 28% mol de TiO₂ y 0.5-1% mol de Y₂O₃.

En 1993 Yokokawa y col. [43] establecieron una sección isotermal teórica a 1300°C del sistema ZrO₂-TiO₂-Y₂O₃ basándose en datos termodinámicos disponibles en la bibliografía para el ZrO₂ y calculando los de los otros óxidos a partir de correlaciones entre parámetros de interacción y radios iónicos. Calcularon que a 1300°C la solubilidad de TiO, en ZrO₂ con 8% mol de Y₂O₃ era aproximadamente 15% mol. Este valor de solubilidad calculado teóricamente por estos autores, concuerda con los datos experimentales publicados por Liou y Worrel a 1600°C [44]. Además, Yokokawa y col. [45] propusieron que, aunque en el sistema ZrO_2 -Y₂O₃ no hay posibilidad de existencia de fases con estructura pirocloro, es posible la existencia de soluciones sólidas de fórmula $Y_{2}(Ti_{7}Zr)_{2}O_{7}$ en el sistema ZrO_{2} -Ti O_{2} -Y $_{2}O_{2}$, sugiriendo que hay un rango de composición donde coexisten Y2(Ti,Zr)2O2ss y c-ZrO₂ss.

Más tarde, en 1997, Colomer y col. [46] establecieron una sección isotermal experimental a 1500°C centrándose en la zona rica en ZrO₂ (65-97 % mol) que muestra la figura 7. De acuerdo con estos autores, a 1500°C el ZrTiO₄ss puede coexistir con t-ZrO₂ss y c-ZrO₂ss dependiendo de la cantidad de Y₂O₃. Para contenidos de Y₂O₃ menores de 3% mol y de TiO₂ inferiores a 17.9% mol la única fase en equilibrio es t-ZrO₂ss, mientras que para cantidades de TiO₂ superiores a 17.9% mol coexisten t-ZrO₂ss y ZrTiO₄ss. Para contenidos de Y₂O₃ superiores a 3% mol, aparece c-ZrO₂ss para contenidos de TiO₂ entre 0-50% mol. Para contenidos en Y₂O₃ superiores a 6.6% mol no hay presencia de t-ZrO₂ss. A medida que aumenta la cantidad de Y₂O₃, la cantidad de TiO₂ necesaria para formar

Figura 7. Sección isotermal a 1500°C del diagrama de equilibrio de fases del sistema ZrO_2 -Ti O_2 -Y $_2O_3$ propuesto por Colomer y col. [46].

Figura 8. Sección isotermal a 1500°C del diagrama de equilibrio de fases del sistema ZrO_2 -Ti O_2 -Y $_2O_3$ propuesto por Kobayashi y col. [48]. La región rica en circona coincide con la propuesta por Colomer y col. [46].

 $ZrTiO_4$ ss se incrementa hasta un máximo de $\approx 26-28\%$ mol

En ese mismo año (1997), Traqueia y col. [47] publicaron un estudio sobre la conductividad iónica en materiales de c-ZrO₂ con 8% mol de Y₂O₃ a los que le añadían cantidades crecientes de TiO₂ hasta un máximo de 20% mol. Pusieron de manifiesto que en los materiales con 20% mol de TiO₂ se formaba ZrTiO₄. Además, concluyeron que la adición de TiO₂ disminuía la conductividad iónica de c-ZrO₂.

En 1998, Kobayashi y col. [48] establecieron experimentalmente secciones isotermales del sistema ZrO2-TiO₂-Y₂O₂ a distintas temperaturas. La figura 8 muestra la sección isotermal completa a 1500°C. Estudiaron distintas composiciones dentro de los sistemas binarios ZrO2-TiO2 ZrO_2 -YO₁₅ y TiO₂-YO₁₅ y del sistema ternario ZrO_2 -TiO₂-YO₁₅. Estos autores propusieron un campo monofásico de ZrTiO₄ss con un límite de solubilidad de YO₁₅ de $\approx 1.0\%$ mol ($\approx 0.5\%$ mol Y₂O₃. Valor aproximado calculado a partir de la representación gráfica incluida en la referencia [48]). Es de señalar que esta región monofásica fue propuesta en tentativa, a partir de datos experimentales del sistema ZrO₂-TiO₂, pero sin puntos experimentales correspondientes a composiciones ternarias con concentraciones de YO₁₅ en torno a 1% mol ($\approx 0.5\%$ mol Y₂O₂). La composición experimental más cercana a la zona de 1% mol de YO₁₅ estudiada por estos autores, está constituida por $\approx 46\%$ mol de ZrO₂ $\approx 46\%$ mol de TiO₂ y $\approx 8\%$ mol de YO₁₅ ($\approx 48\%$ mol de ZrO₂, $\approx 48\%$ mol de TiO₂ y $\approx 4\%$ mol de Y₂O₃).

En 1999, Feighery y col. [49] establecieron experimentalmente una sección isotermal completa a 1500°C (Fig.9) donde se observa una región monofásica de ZrTiO₄ss en el rango de concentraciones de ZrO₂ comprendido entre 40-55% mol. Esto concuerda con los datos de McHale y Roth [4, 37] (Fig. 5). Se puede observar cómo en esta sección isotermal (Fig. 9) ZrTiO₄ss coexiste con Y₂Ti₂O₇ss. Además, el límite de solubilidad de YO₁₅ en la región monofásica de ZrTiO₄ss es $\approx 2\%$ mol ($\approx 1\%$ mol Y₂O₃. Valor aproximado calculado a partir de la representación gráfica incluida en la referencia [49]). Al igual que Kobayashi y col. [48], Feighery y col. [49] proponen este límite de solubilidad en tentativa ya que tampoco se basan en datos experimentales. La composición experimental más cercana a esa región es $\approx 54\%$ mol ZrO₂, $\approx 43\%$ mol TiO₂ y $\approx 3\%$ mol YO_{1.5} ($\approx 54.5\%$ mol ZrO₂, $\approx 44.0\%$ mol TiO₂ y $\approx 1.5\%$ mol Y,O₃).

En 2008, Schaedler y col. [50] establecieron secciones isotermales a 1300, 1500 y 1600°C combinando datos experimentales y trabajo de modelización. La figura 10 muestra la sección isotermal propuesta por estos autores a 1500°C. Se pueden observar diferencias significativas en cuanto a la compatibilidad de fases propuesta por Feighery y col. [49]. En concreto, en la sección isotermal propuesta por Schaedler y col. a 1500°C [50] (Fig.10) hay compatibilidad entre las fases ZrTiO₄ss y c-ZrO₂ss. La compatibilidad propuesta por Feighery y col. [49] (Fig. 9) a 1500°C entre Y₂Ti₂O₇ss y ZrTiO₄ss también la proponen Schaedler y col. [50] pero a 1300°C. Al igual que Feighery y col. [49], Schaedler y col. [50] proponen el mismo límite de solubilidad de YO₁₅₇ $\approx 2\%$ mol ($\approx 1\%$ mol Y_2O_2), en la región monofásica de ZrTiO₄ss (límite calculado de manera aproximada a partir de la representación gráfica incluida en la referencia [50]). La composición experimental estudiada por Schaedler y col. [50] más cercana a la región monofásica de ZrTiO₄ss es 40% mol ZrO₂, 50% mol TiO₂ y 10% mol YO₁₅ (42.1% mol ZrO₂, 52.6% mol TiO₂ y 5.3% mol Y₂O₃).

Tal y como se ha discutido, las secciones isotermales del sistema ZrO_2 -Ti O_2 -YO_{1.5} propuestas a 1500°C por Kobayashi y col. [48], Feighery y col. [49] y Schaedler y col. [50] (Fig. 8, 9 y 10) presentan diferencias en cuanto a compatibilidad de fases y a los límites de las distintas regiones. Sin embargo, las tres secciones isotermales presentan en tentativa una región monofásica de ZrTi O_4 ss situada aproximadamente entre 40-55% mol de Zr O_2 en la línea binaria Zr O_2 -Ti O_2 . Kobayashi y col. [48] propusieron en tentativa un límite de solubilidad de YO_{1.5} en ZrTi O_4 ss de $\approx 1\%$ mol ($\approx 0.5\%$ mol Y₂O₃), mientras que Feighery y col. [49] y Schaedler y col. [50] establecieron, también en tentativa, ese límite de solubilidad de YO_{1.5} en

Figura 9. Sección isotermal a 1500°C del diagrama de equilibrio de fases del sistema ZrO_2 -Ti O_2 -Y $_2O_3$ propuesto por Feighery y col. [49].

Figura 10. Sección isotermal a 1500°C del diagrama de equilibrio de fases del sistema ZrO_2 -Ti O_2 -Y $_2O_3$ propuesto por Schaedler y col. [50]. Este diagrama de equilibrio coincide en su práctica totalidad con el propuesto por Kobayashi y col. [48].

ZrTiO₄ss en $\approx 2\%$ mol ($\approx 1\%$ mol Y₂O₃). Ninguno de estos autores determinó experimentalmente el límite de solubilidad de YO_{1.5} en ZrTiO₄ss. Es lógico pensar que Kobayashi y col. [48], Feighery y col. [49] y Schaedler y col. [50] propusieran los límites de solubilidad de YO_{1.5} en ZrTiO₄ss basándose en el trabajo experimental de McHale y Roth [4]. Estos autores encontraron ZrTiO₄ como única fase presente en materiales preparados a 1500°C a partir de mezclas de ZrO₂ y TiO₂, cuya composición variaba entre 41.46-54.73% mol de ZrO, y 58.04-44.77% mol de TiO_y con una cantidad fija de 0.5% mol de Y_2O_2 (1% mol YO_{1.5}) en todos los casos. En este mismo trabajo, McHale y Roth [4] proponen que el límite de solubilidad de Y₂O₂ en ZrTiO₄ss a 1500°C está comprendido entre 0.5-1.0% mol (1-2% mol YO_{1.5}). Dado que estos autores no estudiaron composiciones con adiciones de Y₂O₃ distintas a 0.5% en mol $(1\% \text{ mol YO}_{15})$ [4], no hay evidencia experimental de que no haya soluciones sólidas a 1500°C de ZrTiO₄ss con contenidos superiores a 1% mol de Y_2O_3 (2% mol YO_{15}).

Como señalan Fagg y col. [51] las composiciones dentro del sistema ZrO_2 -Ti O_2 -Y $_2O_3$ son muy sensibles a pequeñas variaciones de temperatura, composición y velocidades de enfriamiento. Por lo tanto, las discrepancias existentes pueden

deberse a las distintas condiciones experimentales utilizadas. En todos los trabajos descritos se utilizó la reacción en estado sólido a partir de polvos como método de fabricación de las probetas. Sin embargo, Kobayashi y col. [48] utilizaron polvos obtenidos vía sol-gel a partir de mezclas de alcóxidos con un posterior tratamiento térmico a 1500°C durante 10h. Feighery y col. [49] prepararon materiales a 1500°C durante 36h a partir de polvos de alta pureza de Y_2O_3 , ZrO_2 y TiO_2, con moliendas intermedias y enfriamientos bruscos. Schaedler y col. [50] usaron métodos de coprecipitación para la obtención de los polvos y realizaron tratamientos térmicos a 1500°C durante 50-220h. Las velocidades de calentamiento y enfriamiento eran de 10°C/min en la mayoría de las composiciones estudiadas.

En principio, los métodos sol-gel y de coprecipitación dan lugar a mezclas más íntimas de los componentes que la mezcla de óxidos. Por otra parte, la molienda intermedia hace que nuevas superficies entren en contacto durante el prensado, por lo que favorece que la reacción prosiga. Además, para retener las fases de alta temperatura es preciso congelar los equilibrios alcanzados a elevadas temperaturas (mediante enfriamientos bruscos), como se hace de manera sistemática en la elaboración

Figura 11. Sistema ternario ZrO_2 -TiO_2-Y_2O_3 donde se señalan los puntos experimentales publicados en bibliografía por distintos autores. Las fases propuestas por Feighery y col. [49] para el punto experimental 1 no están de acuerdo con las fases propuestas por Kobayashi y col. [48], Schaedler y col. [50] y López-López y col. [31] para los puntos experimentales 2, 3, 4 y 5, respectivamente.

de diagramas de equilibrio de fases, porque, tal y como se ha discutido anteriormente, la velocidad de enfriamiento es fundamental en la evolución de las composiciones estudiadas en este sistema.

En 2010 López-López y col. [31] estudiaron mezclas equimolares de TiO₂ y t-ZrO₂ estabilizada con 3% mol de Y₂O₃ calentadas a 1500°C durante 2 y 30 horas con velocidades de calentamiento y enfriamiento de 5°C/min. Encontraron un compuesto con estructura pirocloro en los bordes de grano de ZrTiO₄ y c-ZrO₂ss en los materiales tratados durante 2 horas. Los tratamientos a 30 horas demostraron que este compuesto no es una fase de equilibro a 1500°C. Una explicación plausible es que el compuesto de tipo pirocloro se forma a baja temperatura debido a su menor energía libre de formación (-4593 kJ/mol a 1000°C para el compuesto con estructura pirocloro y -2292 kJ/mol a 1000°C para ZrTiO₄, calculadas usando las ecuaciones publicadas por Schaedler y col. [50]) y a alta temperatura desaparece en función del tiempo de permanencia. La no estabilidad del compuesto con estructura pirocloro está en desacuerdo con la sección isotermal propuesta por Feighery y col. a 1500°C [49].

Si se representan en un diagrama ternario los puntos experimentales estudiados por McHale y Roth [4], Colomer y col.[46], Kobayashi y col. [48], Feighery y col. [49], Schaedler y col. [50] y López-López y col. [31] (Fig. 11. Se ha usado la nomenclatura ZrO_2 -Ti O_2 -YO_{1.5} para representar todas las composiciones) indicando las fases encontradas por los autores para las distintas composiciones representadas, se pueden observar algunas discrepancias en los límites de compatibilidad de las distintas regiones. La discrepancia más clara se puede observar en que el punto experimental de composición $\approx 53.9 \%$ mol ZrO₂, $\approx 43.1 \%$ mol TiO₂, $\approx 3.0 \%$ mol YO₁₅ (punto 1 en la fig. 11), el cual según Feighery y col. [49] estaría situado en una región trifásica de ZrTiO₄ss, c-ZrO₂ss e Y,Ti,O,ss, sería incompatible con los puntos estudiados por Kobayashi y col. [48](\approx 46.3 % mol ZrO₂, \approx 45.7 % mol TiO₂, \approx 8.0 % mol YO₁₅, punto 2 en la fig. 11) y Schaedler y col. [50] (30 % mol ZrO₂, 50 % mol TiO₂, 20 % mol YO_{1.5} y 40 % mol ZrO₂, 50 % mol TiO₂, 10 % mol YO₁₅, puntos 3 y 4, respectivamente en la fig. 11) que estarían en una región trifásica de ZrTiO₄ss, c-ZrO₂ss y TiO₂ss, y con el punto experimental estudiado por López-López y col. [31] (47.78 % mol ZrO₂, 49.26 % mol TiO₂, 2.96 % mol YO_{1.5'} punto 5 en la fig. 11) el cual estaría en una región bifásica de ZrTiO₄ss y c-ZrO₂ss.

4. EXPANSIÓN TÉRMICA DEL TITANATO DE CIRCONIO

La expansión térmica de los materiales cerámicos determina las tensiones que se generan en un material como consecuencia de las variaciones temporales o gradientes espaciales de temperatura. Por tanto, es una propiedad fundamental a estudiar para poder diseñar materiales resistentes al choque térmico [52, 53].

Uno de los primeros estudios sobre la expansión térmica del titanato de circonio lo realizaron Lynch y Morosin [54] en 1972, los cuales determinaron los parámetros de red a temperatura ambiente de tres materiales monofásicos de ZrTiO, fabricados a partir de polvos sintetizados por reacción en estado sólido de mezclas estequiométricas de polvos de ZrO₂ y TiO₂. El material de partida se obtuvo por tratamiento térmico a 1625°C durante 6h (1625°C-6h, velocidad de enfriamiento no especificada) y los otros dos materiales se obtuvieron por recocido a 1300°C del material inicial, utilizando dos ciclos diferentes: tratamiento isotermo a 1300°C durante 72h y enfriamiento brusco (1300°C-72h) y tratamiento isotermo a 1300°C durante 24h y enfriamiento lento (1300°C-24h, velocidad de enfriamiento no especificada). Estos autores observaron que las longitudes del eje cristalográfico b en los materiales inicial (1625°C-6h) y enfriado lentamente desde 1300°C (1300°C-24h) eran similares mientras que en el material 1300°C-72h era significativamente mayor ($\Delta b \approx 0.070$ Å). Esta diferencia entre los ejes b de materiales enfriados lenta y bruscamente es del mismo signo que la observada por Coughanour y col. [2].

Además, Lynch y Morosin, analizaron la expansión térmica del material enfriado lentamente. La tabla I muestra los coeficientes medios de expansión térmica de los ejes cristalográficos de este material ($\alpha_{a'} \alpha_{b} y \alpha_{c}$), calculados entre 25 y 600°C a partir de la gráfica recogida en su artículo [54].

En 1988 Ikawa y col. [55] estudiaron la expansión térmica de materiales monofásicos de ZrTiO₄ obtenidos a partir de mezclas estequiométricas de ZrO₂ y TiO₂ obtenidas por coprecipitación. El material de partida se obtuvo por tratamiento térmico a 1600°C durante un tiempo no especificado entre 5-10h con velocidad de enfriamiento de 10°C/min (ZrTiO₄ – 1600°C). Los otros dos materiales fueron obtenidos a partir de polvos de este material tratados a menor temperatura y realizando enfriamientos bruscos. Los tratamientos isotermos utilizados fueron 5h a 1500°C (ZrTiO₄-1500) y 720h a 1000°C (ZrTiO₄-1000°C). En la tabla I se recogen los coeficientes medios de expansión térmica entre 25 y 600°C de los ejes cristalográficos

Tabla I. Coeficientes medios de expansión térmica calculados entre 25-600°C a partir de la gráfica y datos publicados por Lynch y Morosin [54] e Ikawa y col. [55], respectivamente.

Material	Tratamiento Térmico	Enfriamiento	α _a (°C-1)	α _ь (°C-1)	α _c (°C-1)
$ZrTiO_4 - 1000$ [55]	1000°C/720h	Brusco	$\approx 4.3 \ge 10^{-6}$	$\approx 16.0 \ge 10^{-6}$	$\approx 7.7 \ge 10^{-6}$
ZrTiO ₄ – 1300 [54]	1300°C/24h	Lento	≈ 6.2 x 10 ⁻⁶	≈ 12.3 x 10 ⁻⁶	≈ 7.7 x 10 ⁻⁶
ZrTiO ₄ – 1600 [55]	1600°C/5-10h	10°C/min	≈ 6.4 x 10 ⁻⁶	≈ 10.2 x 10 ⁻⁶	≈ 8.1 x 10 ⁻⁶
ZrTiO ₄ – 1500 [55]	1500°C/5h	Brusco	≈ 6.9 x 10 ⁻⁶	≈ 4.9 x 10 ⁻⁶	≈ 7.3 x 10 ⁻⁶

 $(\alpha_{a'}, \alpha_{b}, y, \alpha_{c})$ de los tres materiales, calculados a partir de los datos publicados por estos autores [55].

Si se comparan los resultados de la tabla I, los valores de α correspondientes a los ejes a y c son similares para los 4 materiales. Sin embargo, existen diferencias significativas entre los valores correspondientes al eje b en función del tratamiento térmico, siendo significativamente inferior para el material cuya estructura de alta temperatura ha sido congelada mediante enfriamiento brusco (1500°C), y aumentando con el tiempo de permanencia a temperaturas comprendidas entre \approx 1000-1300°C.

Los resultados recogidos en la tabla I están de acuerdo con las observaciones de Park y Kim [10] en materiales monofásicos de ZrTiO₄ preparados a partir de polvos sintetizados por reacción en estado sólido de mezclas estequiométricas de ZrO₂ y TiO₂. Estos autores pusieron de manifiesto cómo a medida que aumenta la velocidad de enfriamiento (0.5-100°C/h) desde la temperatura de sinterización (1400°C-4h), la longitud del eje cristalográfico b (eje c según la convención usada por Park y Kim [10]) aumenta significativamente. Asimismo Park y Kim [10] observaron una expansión térmica durante calentamientos hasta 1400°C menor en el material enfriado a 100°C/h que en el enfriado a 1°C/h.

Por último, Park [56] estudió la expansión térmica de los ejes cristalográficos de un monocristal de ZrTiO₄ enfriado muy lentamente (0.3°C/h) desde 1300°C hasta temperatura ambiente y determinó dos variaciones bruscas en la longitud del eje b (eje c según la convención usada por Park [56]) a T \approx 1125°C y a T \approx 845°C las cuales atribuyó a sendos cambios de fase.

5. CONSIDERACIONES GENERALES

De la discusión anterior se desprende que, a temperaturas superiores a 1200°C, en el sistema binario ZrO_2 -Ti O_2 existe un compuesto intermedio, de composición $ZrTiO_4$ y estructura cristalina ortorrómbica, que admite solución sólida de Ti O_2 y de ZrO_2 . Distintos autores han estudiado experimentalmente y/o propuesto en tentativa rangos de solución sólida a diferentes temperaturas. En general, los datos reportados son complementarios y no existen contradicciones significativas entre ellos. A presión atmosférica, la composición de esta fase de alta temperatura se puede representar por la fórmula ($Zr_xTi_{1,x}$)₂O₄, donde la fracción molar de Ti, (1-x), varía entre 0.42-0.58.

Si bien inicialmente se pensó que éste era el único compuesto intermedio, trabajos posteriores demostraron que por debajo de 1100°C la fase estable tiene también estructura ortorrómbica pero su composición puede describirse por la fórmula ZrTi₂O₆. Partiendo de la fase de alta temperatura, la transición entre estas dos fases tiene lugar a través de una fase ordenada, de composición ZrTiO₄ss, que se forma por un ordenamiento gradual de los cationes que forman la red cristalina de la fase desordenada de alta temperatura. Este ordenamiento gradual da lugar a una reducción de la longitud del eje cristalográfico b. El grado de orden depende fuertemente de la velocidad de enfriamiento utilizada para la obtención del material, lo que ha dado lugar a una aparente discrepancia en los resultados de distintos autores. De hecho, no fue hasta el año 2005 cuando Troitzsch y Ellis publicaron el diagrama de la figura 6 en el cual la transición de fases

propuestas explica los resultados de los autores anteriores.

En cuanto al sistema ternario ZrO_2 - TiO_2 - Y_2O_3 , únicamente se han publicado secciones isotermales a temperaturas entre 1000 y 1700°C. La temperatura sobre la que ha trabajado un número mayor de autores es 1500°C. Como muestra la figura 11, los resultados publicados son, en general, compatibles, con pequeñas diferencias en los límites de compatibilidad de las distintas regiones. La única discrepancia significativa se refiere a la región de compatibilidad bifásica entre c- ZrO_2ss - $ZrTiO_4ss$, propuesta por la mayoría de los autores, la cual es modificada por Feighery y col. en una región trifásica de coexistencia de c- ZrO_2ss - $ZrTiO_4ss$ - $Y_2Ti_2O_7ss$ y una región bifásica de coexistencia de $ZrTiO_4ss$ - $Y_2Ti_2O_7ss$.

Todos los estudios sobre expansión térmica de materiales con la composición estequiométrica, $ZrTiO_4$, describen anisotropía cristalográfica. Sin embargo, el grado de anisotropía depende de la historia térmica de los materiales caracterizados. Este hecho se explica por la transición gradual orden-desorden entre las fases de baja y alta temperatura. Así, dependiendo de la temperatura de tratamiento del material y de la velocidad de enfriamiento, las estructuras cristalinas obtenidas, con diferentes longitudes del eje b, presentarán diferentes grados de expansión térmica en este eje. De hecho, como se muestra en la tabla 1, los coeficientes de expansión térmica de los ejes a y c para diferentes materiales son similares mientras que se aprecian diferencias significativas en el eje b.

Dada la anisotropía de la expansión térmica cristalográfica de este compuesto, podría ser planteado como constituyente de componentes estructurales. En general, para asegurar la integridad estructural y la homogeneidad microestructural de una pieza cerámica, es preciso utilizar velocidades de enfriamiento desde la temperatura de fabricación relativamente bajas. A partir de los resultados expuestos en este trabajo, el uso de velocidades de enfriamiento compatibles con el procesamiento de piezas cerámicas tiene una importancia fundamental en el caso del titanato de circonio. La posibilidad real de uso de este compuesto como constituyente de materiales con aplicaciones estructurales exige, no sólo el conocimiento de las relaciones de equilibrio de fases, sino, también, el control de los parámetros de procesamiento para manipular las propiedades de los materiales obtenidos.

AGRADECIMIENTOS

Este trabajo ha sido desarrollado gracias a la financiación económica del Ministerio de Ciencia e Innovación (MICINN) a través del proyecto MAT 2009-14369-C02-01.

Emilio López-López agradece a la Comunidad de Madrid y al Fondo Social Europeo la financiación económica a través del contrato CPI/0552/2007.

BIBLIOGRAFÍA

- F. H. Brown and P. Duwez, "The zirconia-titania system," J. Am. Ceram. Soc., vol. 37, pp. 129-132, 1954.
- L. W. Coughanour, R. S. Roth, and V. A. DeProsse, "Phase equilibrium relations in the systems lime-titania and zirconia-titania," J. Res. Nat. Bur. Stand., vol. 52, pp. 37-42, 1954.
- U. Troitzsch and D. J. Ellis, "High-PT study of solid solutions in the system ZrO₂-TiO₂:The stability of srilankite," Eur. J. Mineral, vol. 16, pp. 577-584, 2004.

- A. E. McHale and R. S. Roth, "Low-temperature phase relationships in the 4.
- system ZrO₂-TiO₂," J. Am. Ceram. Soc., vol. 69, pp. 827-832, 1986. A. Willgallis, E. Seigmann, and T. Hettiarachi, "Srilankite, a new Zr-Ti 5. oxide mineral," N. Jb. Miner. Mh., vol. 4, pp. 151-157, 1983.
- R. E. Newnham, "Crystal Structure of ZrTiO4" J. Am. Ceram. Soc., vol. 50, 6. pp. 216, 1967. P. Bordet, A. McHale, A. Santoro, and R. S. Roth, "Powder neutron
- 7 diffraction study of ZrTiO_4/ Zr_5Ti_7O_{24} and FeNb_2O_{6'}" J. Solid State Chem., vol. 64, pp. 30-46, 1986.
- U. Troitzsch, A. G. Christy, and D. J. Ellis, "The crystal structure of 8. disordered (Zr,Ti)O2 solid solution including srilankite: evolution towards tetragonal ZrO, with increasing Zr," Phys. Chem. Minerals, vol. 32, pp. 504-514, 2005.
- N. Vittayakorn, "Synthesis and a crystal structural study of microwave 9. dielectric zirconium titanate (ZrTiQ) powders via a mixed oxide synthesis route," J. Ceram. Process. Res., vol. 7, pp. 288-291, 2006.
- 10. Y. Park and Y. Kim, "Influence on cooling rate on the physical properties of tin modified zirconium titanate," J. Mater. Sci. Lett., vol. 15, pp. 853-855,
- G. Wolfram and H. E. Göbel, "Existence range, structural and dielectric properties of Zr_xTi_ySnzO₄ ceramics (X+Y+Z=2)," Mater. Res. Bull., vol. 16, pp. 1455-1463, 1981.
- A. Bianco, G. Gusmano, R. Freer, and P. Smith, "Zirconium titanate 12. microwave dielectrics prepared via polymeric precursor route," J. Eur. Ceram. Soc, vol. 19, pp. 959-963, 1999.
- S. Hirano, T. Hayashi, and A. Hattori, "Chemical processing and 13. mircrowave characteristic of (Zr,Sn)TiO4 microwave dielectrics," J. Am. Ceram. Soc., vol. 74, pp. 1320-1324, 1991.
- R. Christoffersen, P. K. Davies, X. Wei, and T. Negas, "Effect of Sn 14. substitution on cation ordering in $(\mathrm{Zr}_{1:x}\mathrm{Sn}_x)\mathrm{TiO}_4$ microwave dielectric ceramics," J. Am. Ceram. Soc., vol. 77, pp. 441-450, 1994. P. Victor, S. Bhattacharyya, and S. B. Krupanidhi, "Dielectric relaxation in
- 15. laser ablated polycrystalline ZrTiO₄ thin films," J. Appl. Phys., vol. 94, pp. 5135-5142, 2003.
- 16. S. W. Liu, C. F. Song, M. K. Lü, S. F. Wang, D. L. Sung, Y. X. Qi, D. Xu, and D. R. Yuan, "A novel TiO₂/Zr_xTi_{1-x}O₂ composite photocatalytic films," Catal. Commun., vol. 4, pp. 343-346, 2003.
- 17. B. M. Reddy and A. Khan, "Recent advances on TiO₂-ZrO₂ miexed oxides as catalysts and catalyst supports," Catalysis reviews: Sci. and Eng., vol. 47, pp. 257-296, 2005.
- 18. Y. S. Mazurkevich and I. M. Kobasa, "ZrO2-TiO2 materials," Inorg. Mater., vol. 37, pp. 1285-1288, 2001.
- J. R. Sohn and S. H. Lee, "Effect of TiO2-ZrO2 composition on catalytic 19. activity of supported NiSO4 for ethylene dimerization," Appl. Catal. A: Gen, vol. 321, pp. 27-34, 2007.
- J. C. Wu, C. S. Chung, C. L. Ay, and I. Wang, "Nonoxidative dehydrogenation of ethylbenzene over TiO₂-ZrO₂ catalysts," J. Catal., vol. 87, pp. 98-107, 20. 1984
- C. E. F. Costa, C. L. Samara, S. J. G. Lima, C. A. Paskocimas, E. Longo, V. J. 21. F. Jr., A. S. Araújo, I. M. G. Santos, and A. G. Souza, "Synthesis and thermal characterization of zirconium titanate pigments," J. Them. Anal. Cal., vol. 75, pp. 467-473, 2004.
- S. Rengakuji, Y. Nakamura, and Y. Hara, "Preparation hydrocarbon sensing properties of Ti-Zr-O thin film," Electrochemistry, vol. 69, pp. 764-768, 2001.
- A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, and D. 23. S. Su, "Structure and electrical conductivity of porous zirconium titanate ceramics produced by mechanochemical treatment and sintering," J. Alloy Compd., vol. 479, pp. 525-531, 2009.
- B. K. Hom, R. Stevens, B. F. Woodfield, J. Boerio-Goates, R. L. Putnam, K. 24 B. Helean, and A. Navrotsky, "The thermodynamics of formation, molar heat capacity, and thermodynamic functions of ZrTiO4 (cr)," J. Chem. Thermodynamics, vol. 33, pp. 165-178, 2001.
- I. J. Kim and H. C. Kim, "Zero level thermal expansion materials based 25. on ZrTiO4-Al2TiO5 ceramics synthesized by reaction sintering," J. Ceram. Process. Res., vol. 5, pp. 308-312, 2004.
- S. Ananta, R. Tipakontitikul, and T. Tunkasiri, "Synthesis, formation and 26. characterization of zirconium titanate (ZT) powders," Mater. Lett., vol. 57, pp. 2637-2642, 2003.
- V. Licina, A. Gajovic, A. Mogus-Milankovic, I. Djerdj, N. Tomastic, and D. 27. Su, "Correlation between the microstructure and the electrical properties of ZrTiO₄ ceramics," J. Am. Ceram. Soc., vol. 91, pp. 178-186, 2008.
- A. K. Bhattacharya, K. K. Mallick, A. Hartridge, and J. L. Woodhead, "Sol 28. gel preparation, structure and thermal stability of crystalline zirconium titanate microspheres," J. Mater. Sci. Lett., vol. 31, pp. 267-271, 1996.
- 29. E. López-López, C. Baudín, and R. Moreno, "Synthesis of zirconium titanate-based materials by colloidal filtration and reaction sintering," Int. J. Appl. Ceram. Technol., vol. 5, pp. 394-400, 2008.

- 30. E. López-López, C. Baudín, and R. Moreno, "Thermal expansion of zirconia-zirconium titanate materials obtained by slip casting of mixtures of Y-TZP-TiO₂," J. Eur. Ceram. Soc, vol. 29, pp. 3219-3225, 2009.
- 31. E. López-López, M. L. Sanjuán, R. Moreno, and C. Baudín, "Phase evolution in reaction sintered zirconium titanate based materials," J. Eur. Ceram. Soc, vol. 30, pp. 981-991, 2010.
- 32. H. G. Sowman and A. I. Andrews, "A study of the phase relations of ZrO₂-TiO₂ and ZrO₂-TiO₂-SiO₂," J. Am. Ceram. Soc., vol. 34, pp. 298-301, 1951.
- 33. T. Noguchi and M. Mizuno, "Phase changes in the ZrO₂-TiO₂ system," B. Chem. Soc. Jpn., vol. 41, pp. 2895-2899, 1968.
- A. Cocco and G. Torriano, "Relations between the solid phases in the 34. system ZrO₂-TiO₂," Ann. Chim. (Rome), vol. 55, pp. 153-163, 1965.
- 35. A. V. Shevchenko, L. M. Lopato, I. M. Maister, and O. S. Gorbunov, "The TiO₂-ZrO₂ System," Russ. J. Inorg. Chem., vol. 25, pp. 1379-1381, 1980. M. J. Bannister and J. M. Barnes, "Solubility of TiO₂ in ZrO₂," J. Am. Ceram.
- 36. Soc., vol. 69, pp. C269-C271, 1986.
- 37. A. E. McHale and R. S. Roth, "Investigation of the phase transition in ZrTiO₄ and ZrTiO₄-SnO₂ solid solutions," J. Am. Ceram. Soc., vol. 66, pp. C18-C20, 1983
- A. Willgallis and H. Hartl, " $(Zr_{0.33}Ti_{0.87})O_2$ A natural zirconium-titanium oxide with an alpha-PbO₂ structure," Z. Kristallogr., vol. 164, pp. 59-66, 38. 1983.
- U. Troitzsch and D. J. Ellis, "The ZrO2-TiO2 phase diagram," J. Mater. Sci., 39. vol. 40, pp. 4571-4577, 2005.
- 40. K. Tsukuma, "Transparent titania-yttria-zirconia ceramics," J. Mater. Sci. Lett., vol. 5, pp. 1143-1144, 1986.
- 41. C. L. Lin, D. Gan, and P. Shen, "The effects of TiO, addition on the microstructure and transformation of ZrO, with 3 and 6 mol.% Yo,"
- Mater. Sci. Eng. A, vol. 129, pp. 147-15, 1990. W. Pyda, K. Haberko, and M. M. Bucko, "A study on preparation of tetragonal zirconia polycrystal (TZP) in the TiO₂-Y₂O₃-ZrO₂ system," 42. Ceram. Int., vol. 18, pp. 321-326, 1992.
- H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, "Phase diagram 43 calculations for ZrO₂ based ceramics:thermodynamic regularities in zirconate foramtion and solubilities of transition metal oxides," Sci. and technol. zirconia V. Ed. by S.P.S. Badwal, M. J. Bannister and R. H. J.
- Hannink, Technomic Publishing, Lancaster, Pennsylvania, pp. 59-68, 1993.S. S. Liou and W. L. Worrel, "Electrical properties of novel mixed conducting oxides," Appl. Phys. A., vol. 49, pp. 25-31, 1989. 44.
- H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, "Phase diagram 45. calculations for ZrO_2 based ceramics:thermodynamic regularities in zirconate foramtion and solubilities of transition metal oxides," Sci. and technol. zirconia V. Ed. by S.P.S. Badwal, M. J. Bannister and R. H. J. Hannink, Technomic Publishing, Lancaster, Pennsylvania, pp. 59-68, 1993.
- 46. M. T. Colomer, P. Durán, A. Caballero, and J. R. Jurado, "Microstructure, electrical porpoerties and phase equilibria relationships in the ZrO₂-Y₂O₃-TiO, system: the subsolidus isothermal section at 1500°C," Mater. Sci. Eng. A, vol. 229, pp. 114-122, 1997.
- 47. L. S. M. Traqueia, T. Pagnier, and F. M. B. Marques, "Structural and electrical characterization of titania-doped YSZ," J. Eur. Ceram. Soc, vol. 17, pp. 1019-1026, 1997.
- 48. K. Kobayashi, K. Kato, K.Terabe, S.Yamaguchi, and Y.Iguchi, "Phase relation of ZrO₂-YO_{1.5}-TiO₂ ceramics prepared by sol-gel method," J. Ceram. Soc. Jpn., vol. 106, pp. 860-866, 1998.
- A. J. Feighery, J. T. S. Irvine, D. P. Fagg, and A. Kaiser, "Phase relations at 1500°C in the ternary system ZrO_2 -Y₂O₃-TiO₂" J. Solid State Chem., vol. 143, pp. 273-276, 1999.
- 50. T. A. Schaedler, O. Fabrichnaya, and C. G. Levi, "Phase equilibria in the TiO₂-YO₁₅-ZrO₂ system," J. Eur. Ceram. Soc, vol. 28, pp. 2509-2520, 2008.
- D. P. Fagg, J. R. Frade, M. Mogensen, and J. T. S. Irvine, "Effects of firing 51 schedule on solubility limits and transport properties of ZrO2-TiO2-Y2O3 fluorites," J. Solid State Chem., vol. 180, pp. 2371-2376, 2007. C. Baudín, "Resistencia de los refractarios al choque térmico. I:
- 52. Aproximación termoelástica y criterio de balance energético," Bol. Soc. Esp. Ceram. V., vol. 32, pp. 237-244 (1993).
- 53. C. Baudín, "Resistencia de los refractarios al choque térmico. II: Teoría unificada de Hasselman," Bol. Soc. Esp. Ceram. V., vol. 32, pp. 293-298 (1993).54. R. W. Lynch and B. Morosin, "Thermal expansion, compressibility, and polymorphism in hafnium and zirconium titanates, J. Am. Ceram. Soc., vol. 55, pp. 409-413, 1972.
- H. Ikawa, A. Iwai, K. Hiruta, H. Shimojima, K. Urabe, and S. Udagawa, 55. "Phase transformation and thermal expansion of zirconium and hafnium titanates and their solid solutions," J. Am. Ceram. Soc., vol. 71, pp. 120-127, 1988
- 56. Y. Park, "Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal," Mater. Res. Bull, vol. 33, pp. 1325-1329, 1998.

Recibido: 24/03/2011 Aceptado: 22/07/2011