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There is universal acknowledgement that climate change and extreme 

weather events pose an increasing threat to global health.1,2 Precisely 

how this will affect patterns of disease is open to conjecture. For 

example, while it is predicted that increasingly warmer temperatures 

and more intense heat waves will provoke more cardiovascular, 

respiratory and renal events, a corollary reduction in cardiorespiratory 

events related to cold weather is also predicted.1

As with any threat to human health, it is the most vulnerable who 

will bear the brunt of increasingly unstable climatic conditions. Such 

vulnerability can be immediately identified in low-to-middle income 

countries (LMIC), which have limited resources and flexibility to respond 

to emerging health threats.3 However, despite better capacity to control 

living conditions, high-income countries (HIC) are unlikely to be immune 

to the effects of climate change. Indeed, it has been suggested that 

seasonal variations – predominantly winter peaks in morbidity and 

mortality in the growing population of older patients who have heart 

failure (HF) syndrome in HICs – will increase with global warming.4 

In the absence of a framework to understand and predict inherent 

vulnerability to seasonal change and acute weather events, there 

is a vacuum in clinical research and expert guidelines focusing on 

the detection and prevention of seasonality in HF. It is on this basis 

that we propose a bio-behavioural model of resilience that identifies  

those most vulnerable to patterns of seasonality and climate change.

A Historical Perspective of Climatic Vulnerability 
Adverse human responses to climatic conditions have long been 

recognised. Remarkably though, the impact of seasonal change 

and acute weather events on people with cardiovascular disease 

(CVD) is largely described as an epidemiological phenomenon.4 

Accordingly, population cohort studies typically describe marked peaks 

in cardiovascular-related morbidity and mortality during the winter 

months with troughs during the summer months and less predictable 

peaks in event rates during or immediately following extreme or 

unseasonal weather events including heat-waves.4 People with pre-

existing conditions such as HF and common comorbid metabolic and 

respiratory diseases are most likely to experience a seasonal event.4 

As we try to adapt to the current era of rapid climate change, it has 

been observed that the extent of seasonality in those affected by HF 

and other cardiovascular disease (including ischaemic heart disease, 

stroke and AF) is not precisely correlated with climatic extremes and 

therefore confined to cold climates.5,6 Indeed, there is convincing 

evidence that cardiovascular-related deaths linked to seasonality occur 

more frequently in milder climates.4 

As we will explain, this paradox suggests that seasonality is not entirely 

dependent on periodic exposure to environmental provocations such 

as cold extremes, but also depends on how an individual or society 

modulates their exposure and physiological response to that provocation.
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Understanding Seasonal Vulnerability 
Organisms adapt to seasonal variation and abrupt changes in climatic 

conditions to prolong their longevity and ensure survival. Migratory 

birds adjust their behavioural and/or physiological responses to winter 

conditions, resulting in a winter phenotype characterised by increased 

storage of fat and tolerance to cold and changes in dietary patterns 

during the summer months.7 As humans have steadily migrated 

to diverse and harsh climates, we have also become ‘seasonally 

flexible’ to survive, albeit with an increasing capacity to enhance 

thermoregulatory control through clothing, housing and technology. 

Maintenance of optimal health, including thermoregulation, depends on 

autonomous and voluntary, physiological and behavioural changes to 

modulate the potential adverse impact of rapid or prolonged changes 

in environmental conditions. Human physiological studies demonstrate 

our inherent capacity for blunted shivering and vasoconstrictor 

responses to prolonged cold exposure, as well as adaptations to 

warmer environments.8,9 It is reasonable to assume, therefore, that 

individuals who are routinely exposed to the cold of winter in higher 

latitude countries have developed more resilient, bio-behavioural 

responses over time.

A Model of Seasonal Flexibility
We have developed an interdisciplinary model to explain a spectrum 

of resilience to predictable (seasonal change) and unpredictable 

(extreme weather events) fluctuations in climatic conditions (Figure 1). 

This model proposes a combination of physiological and behavioural 

factors reflecting physical and cultural adaptations specific to the 

surrounding environment/climate many of which are reflected 

in distinctive cultural practices that contribute to an individual’s 

cardiovascular-specific and broader response to ambient climatic 

conditions. These factors, along with the roles of infectious diseases, 

pollution and mental health, contribute to a spectrum of risk for 

a cardiovascular event, ranging from resilience to vulnerability.10  

This model has particular relevance to understanding the pattern of 

disease associated with:

Figure 1: Spectrum of Individual Resilience to Seasonal Change and Acute Weather Events:  
A Cardiovascular Perspective

People who are at increased
risk of cardiovascular-related
morbidityy and mortality
in response to seasonal
or acute climatic change

= summer/heatwaves

Vulnerable

Resilent

Behavioral Decisions
Thermoregulatory control
Tobacco use
Energy intake/composition
Physical activity levels
Alcohol consumption

Physiological Traits
Haemodynamic pro�le
Cardiovascular �tness
Mental health
Vascular function
Body composition
Vitamin D levels

Modulators
Modi�able
Socioeconomic resources
Clinical management
Physical environment
Seasonal awareness
Non-modi�able
Age
Sex
Extent of disease

Seasonal Flexibility in Cardiovascular Disease

Modulators

Physiological

Behavioural

= air pollution = infectious disease = winter/cold-snaps

Figure 2: Phenotypes of Vulnerability and Flexibility to 
Seasonal/Weather Provocations
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•	 The increasing number of older people who survive an acute 

cardiac event and subsequently develop HF and multimorbidity in 

HICs. 

•	 The increasing number of younger people in LMICs at risk 

of developing HF secondary to infectious causes and/or 

hypertension.11 

Identifying Vulnerable People
It is feasible to phenotype people based on their seasonal flexibility. 

Figure 2 shows the polar opposites of a highly vulnerable phenotype 

versus a resilient one; the former being readily identifiable in most 

HF cohorts. We also propose that the key modulators (Figure 1), 

including financial resources, seasonal awareness, treatment and 

cardiorespiratory fitness, are critical in characterising these phenotypes. 

While this model presupposes that most people categorised as resilient 

will be younger and free from CVD, it also embraces the potential for 

those with pre-existing disease, including HF, to develop or regain 

seasonal resilience. 

Promoting Resilience to Seasonal Change  
and Extreme Weather Events
There is evidence to support the notion that promoting seasonal 

resilience improves health outcomes. For example, a study from 

2007 examined people’s ability to adapt to winter in 50 cities in 

America, suggested central heating may reduce seasonal mortality.12 

Moreover, clinical recommendations for large-scale vaccination 

programmes against influenza and pneumococcus are largely based 

on winter peaks in concurrent respiratory illnesses among patients 

with HF.4 In HICs, there is scope to run public health campaigns 

advising whole communities to prepare for seasonal change and 

acute weather events, along with individual alerts and subsidies for 

heating and cooling in vulnerable groups. However, reflecting current 

expert guidelines, beyond singular strategies addressing some of 

the components highlighted by our model, there is a lack of studies 

focusing on the complex profile and needs of vulnerable people to 

attenuate the effects of seasonality.13 

Conclusion
In a global environment of rapid and extreme climatic events, more 

populations will be exposed to conditions they are not readily adapted to 

from a bio-behavioural perspective. Contrary to current predictions, this 

may mean a paradoxical increase in the seasonal cycle of events with 

greater winter peaks in acute decompensation and sudden cardiac death 

among a growing patient population with HF linked to cold exposure, 

even as overall global temperatures rise.1 Further research is required to 

determine the feasibility of characterising seasonal vulnerability in HIC 

and LMIC settings and to develop cost-effective strategies to promote 

resilience against the provocations of climate change. 
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