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ABSTRACT 20 

 21 

The aims of this paper are to analyze theoretically the influence of the longitudinal slope of a 22 

surface irrigation field on the uniformity of irrigation and to provide practical tools to design, 23 

analyze and manage surface irrigation systems with longitudinal slope and blocked end. An 24 

example is shown where a 20% savings in water is obtained by giving the field the optimal slope. 25 

 26 

In 1982, Clemmens and Dedrick published a practical set of dimensionless graphs to level-basin 27 

design and analysis (with no slope). This article generalizes those graphs taking account the 28 

existence of field slope. So, Clemmens and Dedrick’s graphs are a particular case of obtained 29 

results. 30 

 31 

The analysis is based on solving one-dimensional free surface Saint-Venant equations including 32 

infiltration, applying the dimensional analysis to reduce the number of variables involved. Saint-33 

Venant equations are solved with the finite differences method, applying the full hydrodynamic 34 

model and the zero-inertia model. Two computer programs are used: WinSRFR and POZAL (a 35 

specific software that calculates the optimal cutoff time). 36 



 37 

The result is a set of three-dimensional graphs that show the relationships of field slope, irrigation 38 

uniformity and the rest of the involved dimensionless variables, related to infiltration parameters, 39 

Manning roughness coefficient, cutoff time, inflow rate and field length and width. The graphs 40 

could be useful in practice to determine the optimal slope of a field, the inflow rate or the length and 41 

width of a field, achieving substantial savings of water in surface irrigation. 42 

 43 

1. INTRODUCTION AND OBJECTIVES 44 

 45 

In surface irrigation, the main water losses are usually deep percolation (water infiltrated in the land 46 

beyond the effective range of the crop roots) and, when the end field is open, surface runoff 47 

(Walker and Skogerboe, 1987). 48 

 49 

Surface irrigation is not uniform because there is greater opportunity time for the infiltration of 50 

water in the areas closest to the supply point. In any variant of surface irrigation (basin, border, 51 

furrow, with open or blocked end) the standard uniformity is lower than pressure irrigation 52 

uniformity (sprinkle, drip). The application efficiency (AE) and distribution uniformity (DU) of 53 

surface irrigation are smaller in surface irrigation than in pressurized irrigation, although in certain 54 

situations the values might be comparable. Studies aimed at improving the efficiency of surface 55 

irrigation are usually linked to the analysis of irrigation, its frequency, flow rate (with variable flow 56 

irrigation techniques and pulse flow), cutoff time and dimensions of the fields (length and width). 57 

The related bibliography offers practical recommendations for the design and management of 58 

surface irrigation (Walker and Skogerboe, 1987; FAO, 2002). Thus, typical values for AE are 59 

between 50 % and 80 %, as we can see in table 1, extracted from (De Paco, 1992) which used data 60 

from the National Resources Conservation Service (NRCS) and the International Commission on 61 

Irrigation and Drainage (ICID). 62 



 63 

Table 1. Surface irrigation application efficiency (AE). 64 

 65 

When the field end is blocked (no runoff) and minimal infiltration matches required infiltration, 66 

application efficiency (AE), defined as the ratio between the amounts of water irrigation in the root 67 

zone after irrigation divided by the amounts of water applied, matches the distribution uniformity 68 

(DU), defined here as the ratio between minimum infiltration depth and infiltrated average depth. 69 

 70 

The growing need for saving water and modern techniques of land leveling (laser or GPS), with or 71 

without slope, justify this study of field slope effect on surface irrigation performance. As an 72 

example, Figure 1 shows how the longitudinal slope of a particular basin influences the distribution 73 

uniformity. 74 

 75 

Figure 1. Influence of the longitudinal slope on cutoff time and distribution uniformity (DU). 76 

 77 

This figure was obtained by successive simulations with WinSRFR software, developed by the 78 

Arid-Land Agricultural Research Center of the USA Department of Agriculture (Bautista et al., 79 

2009). In this analyzed case, when the field has no slope, DU is 79.3%, but with a slight slope of 4 80 

per 10000, DU is 95.8 %. In terms of saving water, the first case needs a volume of 1266.0 m
3
, and 81 

the second case needs only 1040.4 m
3
 (saving 225.6 m

3
 of water, or 21.68 %). This lower water 82 

consumption would not have an impact on the crop, because the saved water would be lost in deep 83 

percolation. 84 

 85 

This lower use of water is reflected also in cutoff time, as seen in Figure 1. Cutoff time is defined as 86 

the time needed to reach the required depth across the field. Without slope, cutoff time is 211 87 



minutes, but with the slope of 0.0004, cutoff time is 173.4 minutes. Therefore the time for irrigation 88 

is reduced by 37.6 minutes, representing 17.82 % of the initial cutoff time. 89 

 90 

2. METHODOLOGY 91 

 92 

Clemmens et al. (1981) applied the technique of dimensional analysis (Bridgman, 1922) to the 93 

hydrodynamic problem of irrigation of a level basin with blocked end, for analyzing the 94 

dependency of the distribution uniformity with other relevant parameters. 95 

 96 

L),q,tn,a,Ψ(k,=DU inco  (1) 97 

 98 

In expression (1), DU is the distribution uniformity (defined as the minimum infiltration depth zn 99 

divided by the average infiltration zg); k and a are the parameters of the function of infiltration of 100 

Kostiakov; n is the Manning coefficient; tco is the cutoff time; qin is the inflow rate per unit of width, 101 

defined as inflow rate q divided by field width b; and L is the field length. Kostiakov function 102 

(Kostiakov, 1932) relates the infiltration depth z with the opportunity time τ according to the 103 

expression (2). 104 

aτk=z(τ ⋅)  (2) 105 

 106 

Cutoff time tco is supposed to be the strictly necessary time to ensure that the entire field receives 107 

the required depth zd, so that zn=zd. 108 

 109 

With the Saint-Venant governing equations and a particular choice of reference variables, 110 

Clemmens et al. (1981) derive a new dimensionless system: 111 

)L,qf(a,=DU in

**  (3) 112 

 113 
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 120 

The reference variables choice and the process to establish equations (4) to (7) is clearly described 121 

in Strelkoff and Clemmens (1994). In (6) and (7), τn is the time needed to infiltrate a depth zn=zd, 122 

and Cu is a units coefficient that in the international system is 1.0 m
1/2

/s. In expression (3), variables 123 

DU and a are dimensionless. 124 

 125 

Clemmens and Dedrick (1982) took eight different values for a (0.1, 0.3 0.4, 0.5, 0.6, 0.7, 0.8 and 126 

1.0) and for each of them drew a chart representing the functional relationship 127 

 128 

)L,f(q=DU
in

**  (8) 129 

 130 

They used a hydrodynamic one-dimensional computer model of surface irrigation and executed a 131 

sufficient number of different scenarios, solving for Saint Venant equations (conservation of mass 132 

and conservation of momentum) with the finite difference method on the model of zero inertia. 133 

 134 

The appearance of Clemmens and Dedrick graphs is shown in Figure 2. 135 

 136 



Figure 2. Appearance of Clemmens and Dedrick (1982) graphs (DU: distribution uniformity; 137 

qin
*
: dimensionless unit inflow rate; L

*
: dimensionless field length). 138 

 139 

The Clemmens and Dedrick graphs serve as a basic reference used in the design of level basins with 140 

borders. With them one can determine the distribution uniformity as functions of qin
*
 and L

*
. In 141 

practice, this lets us properly determine the inflow rate, the length of the field or its width, with 142 

good distribution uniformity values. 143 

 144 

Previous development starts from the premise that the field has no longitudinal slope. As seen 145 

above, to give the field a certain slope to improve the distribution uniformity may occasionally be 146 

useful. To study this case from the perspective of dimensional analysis, S slope would be a new 147 

independent variable. 148 

 149 

S)L,,q,tn,a,Ψ(k,=DU inco  (9) 150 

 151 

Application of the dimensional analysis (Strelkoff and Clemmens, 1994) leads now to: 152 

 153 

)S,L,qf(a,=DU
in

***  (10) 154 

 155 

The derived dimensionless slope S* is proportional to real slope S. For convenience, we´ll use real 156 

slope. Expression (10) can be seen as a generalization of the analysis of Clemmens and Dedrick 157 

(1982) which considers any longitudinal field slope. In this new approach, the particular case S = 0 158 

is equivalent to the development of Clemens and Dedrick (1982), and then expression (10) is equal 159 

to expression (3). 160 

 161 



For the graphical representation of expression (3), Clemmens and Dedrick (1982) gave different 162 

values to the parameter a, on the basis that it is only possible to represent graphically functions that 163 

depend on two variables, either through contour lines (as Clemmens and Dedrick did) or through 164 

three-dimensional graphics. 165 

 166 

The graphical representation of (10) is somewhat more complicated because an additional variable 167 

intervenes. This leads us to fix a set of specific values for two dimensionless numbers, not only for 168 

one as in the previous case. So, the total number of graphics would be increased by an order of 169 

magnitude. 170 

 171 

For example, in expression (10) we might fix a specific set of values for a and L*. Thus, we achieve 172 

graphics representing the functional relationship between the distribution uniformity, the field slope 173 

and dimensionless unit flow rate. 174 

 175 

)qf(S,=DU
in

*  (11) 176 

 177 

These charts let us, for example, find the best slope of the field for given flow conditions or find a 178 

better flow rate for a given slope. 179 

 180 

3. RESULTS 181 

 182 

For the parameter a, similar values than Clemmens and Dedrick (1982) ones are taken, and for L
*
, 183 

we can take a set of five values that cover a wide range of practical possibilities. 184 

 185 

{ }0.70.6,0.5,0.4,∈a  (12) 186 

{ }.01 0.8,0.6,0.4,0.3,* ∈L  (13) 187 



 188 

Thus, we must configure 4 x 5 = 20 different graphs. Each graph must contain a sufficiently large 189 

number of simulations covering the entire plane formed by S and qin
*
dimensionless numbers. 190 

For dimensionless unit inflow rate, 13 values are taken and 15 values for slope. 191 

 192 

{ } 10.0 8.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1,* ∈inq  (14) 193 









∈
0.01 0.005, 0.003, 0.002, 0.001, 0.0009, 0.0008,

0.0007, 0.0006, 0.0005, 0.0004, 0.0003,0.0002,0.0001,0,
S  (15) 194 

 195 

Then, 20 graphs are represented, with 13 x 15 = 195 simulation points in each of them. A 196 

simulation point implies a set of about eight irrigation simulations to find optimal cutoff time (when 197 

minimal infiltration zn is equal to required infiltration zd). In brief, the total number of simulations is 198 

20 graphs x 195 simulation points x 8 irrigation simulations = 31,200 simulations. 199 

 200 

3.1. Surface irrigation simulation software: WinSRFR and POZAL. 201 

 202 

To run the 31,200 simulations, two programs were used: WinSRFR and POZAL. WinSRFR uses a 203 

zero-inertia model when slope field is slight and a kinematic-wave model when slope is high. 204 

POZAL is a program developed specifically for this work. It applies a full-hydrodynamic model 205 

with a McCormack scheme in finite differences method (Dholakia et al., 1998). 206 

 207 

The main characteristic of the POZAL program is its capacity to calculate optimal cutoff time 208 

(cutoff time that gets minimum depth zn in the field equal to required depth zd), saving computing 209 

time. It applies the secant method to find the intersection between required depth and minimum 210 

depth function (depending on cutoff time). Figure 3 illustrates this idea. 211 

 212 



Figure 3. Optimal cutoff time. 213 

 214 

In the figure, minimum depth is throughout the field, so it will be zero until water reaches the field 215 

end (advance time). In the case shown, it occurs when cutoff time is about 26 minutes (advance 216 

time will be higher, because water advance continues after cutoff time). Then, minimum depth will 217 

usually occur at the end of the field, and will increase with time. So, an optimal cutoff time will 218 

cause a minimum depth equal to required depth (either excess or lack of water). As explained 219 

above, POZAL automatically finds this optimal cutoff time. 220 

 221 

3.2. Analysis of graphs. 222 

 223 

An example graph is shown with distribution uniformity (expressed as a percentage) for a=0.5 y 224 

L
*
=0.6. Figure 4 shows contour lines projected over the plane corresponding to DU = 55 % and 225 

Figure 5 shows the same graph in three-dimensional view. 226 

 227 

Figure 4. Distribution uniformity for a=0.5 y L*=0.6. Contour lines. 228 

 229 

Figure 5. Distribution uniformity for a=0.5 y L*=0.6. Three-dimensional graph. 230 

 231 

A black line in figures 4 and 5 shows the moment when cutoff ratio is 85%. This indicator is the 232 

ratio of advance at cutoff to field length, and when it is lower than 85%, there is an increasing risk 233 

that water will not reach the end of the field if actual conditions depart from the input data. 234 

Clemmens and Dedrick (1982) used this line as a design criteria too, a limit for practical level-basin 235 

design, as they titled their work. 236 

 237 



Distribution uniformity in figures 4 and 5 shows a curved and decreasing peak, which 238 

asymptotically takes a value of DU = 100% when S=0 and qin
*
→∞ (it would be a hypothetical 239 

instant application of all the volume of required water, obviously without taking into account the 240 

ground erosion phenomena). Keeping S=0, when flow decreases, the uniformity of distribution also 241 

decreases, because opportunity times at the beginning of the field are longer resulting in a less 242 

homogeneous irrigation. This fact can be seen in the graphs of Clemmens and Dedrick (1982) too, 243 

whose values match with those seen in figures 4 and 5 for S=0. 244 

 245 

For a given inflow rate, distribution uniformity initially increases as the slope increases and 246 

afterwards begins to decrease; an optimal slope exists. Fixing the slope, distribution uniformity first 247 

grows and then decreases when dimensionless unit inflow grows, so there is an optimal value for 248 

unit flow rate that maximizes the uniformity of distribution for a given slope. Peak distribution 249 

uniformity decreases to hypothetical values of DU→0 when qin
*
→0. The crest has less and less 250 

altitude (as the slope of the field increases, the optimal distribution uniformity which can be reached 251 

is less), to an asymptotic value of DU→0 when S→∞ (the field is a vertical wall, and water falls at 252 

the end of the field). 253 

 254 

3.3. The set of graphs. 255 

 256 

Figures 6 and 7 show the final graphs obtained. Figure 6 represents graphs for a=0.4 and a=0.5, 257 

and Figure 7 shows the cases where a=0.6 and a=0.7. Vertically, dimensionless length L
*
 increases 258 

from 0.3 to 1.0, making the peak lower and displacing it from down to up. 259 

 260 

Figure 6. Graphs for a=0.4 and a=0.5 (a: Kostiakov exponent; L
*
: dimensionless field length). 261 

 262 

Figure 7. Graphs for a=0.6 and a=0.7 (a: Kostiakov exponent; L
*
: dimensionless field length). 263 



 264 

If we put together the twenty graphs, we can make some joint analysis about the shape and 265 

evolution of them. For example, we see how when increasing L
*
, the peak is separated from the 266 

horizontal axis. In practice, this refers to higher flows are required for long fields. When L
*
 is equal 267 

to or greater than 0.8, DU=90% cannot be achieved without exceeding limit line. Furthermore, with 268 

high values of L
*
, the peak becomes narrower, which implies a greater sensitivity of designs. 269 

 On the other hand, increased Kostiakov exponent (greater infiltration) also implies a separation of 270 

the peak from the horizontal axis: more water is required to irrigate the field. We also observe a 271 

rightward shift of the peak, which means that greater slopes are needed when infiltration rate is 272 

high. 273 

 274 

4. APPLICATIONS. 275 

These graphs allow us to design and analyze surface irrigation systems with longitudinal slope and 276 

blocked end. We can determine the best field slope, or the best length, or the best unit flow rate (and 277 

therefore, the best width of the field) or the best combination for a set of variables. 278 

 279 

4.1 Determination of the best field slope. 280 

 281 

 If parameters k and a of the Kostiakov infiltration function (through field experiments or using 282 

tables), the Manning n coefficient (using tables based on soil and crop), opportunity time τn (from 283 

the required infiltration zd and the function of infiltration), unit inflow rate qin (dividing irrigation 284 

flow by the field width) and the field length L, are known we can calculate qin
*
 and L

*
 from (4) and 285 

(5). Then, we choose the graph that best matches L
*
 and a. As we know qin

*
, we can observe what 286 

slope offers a better distribution uniformity. 287 

 288 



For example, in the case shown in Figure 1: qin is 0.002 m
2
/s (dividing 100 l/s by 50 m); from 289 

equation (2) we have τn=16408 s; from (6) Q is 1.919·10
-3
 m

2
/s; from (7) X is 314.96 m. Then, from 290 

(5) L
*
 is near 0.6. We will take the graph corresponding to a=0.5 and L

*
=0.6 (see Figure 8). 291 

 292 

Figure 8. Example of determination of the best field slope. 293 

 294 

As equation (4) gives qin
*
=1.04, the graph indicates that maximal distribution uniformity will occur 295 

when field slope is about 0.0004. This is the best slope for this field in these conditions, and 296 

theoretical distribution uniformity will be near 95%. Because zn=zd , application efficiency will be 297 

95% too. In practice, these almost perfect values will not occur, but they will be the highest possible 298 

with the slope calculated in Figure 8. The obtained design point matches the black line in Figure 6, 299 

so cutoff time is about 85%; the designed slope can initially be considered valid. 300 

This graph also offers information about sensitivity of the solution. This is an important issue, 301 

because in practice, real conditions are different from design inputs. Design points must be centered 302 

in the high parts of the graph peak, to avoid decreasing tendencies of distribution uniformity. In the 303 

graphs, vertical axis scale is not uniform, and user must remember this when analyzing solutions 304 

sensitivity to avoid false appearances in the evaluation of DU variations. 305 

Figure 8 shows that, for this example, performance will drop below DU=0.95 with slight changes in 306 

slope or inflow rate. However, it also shows that DU of 0.9 is still attainable with qin
*
=1, but with 307 

slopes in the range 0.003-0.006.  The design can be made even more robust by selecting a smaller 308 

qin
*
 (~0.9) and a slope of 0.0005, which puts the design in the middle of the 0.9 DU contour. 309 

Another viable alternative is to select a slope of 0.0001, but this may result in exceeding the limit 310 

line. The graph also shows that under the given soil conditions, it is difficult to maintain a DU>0.85 311 

with slopes greater than 0.0015. 312 

 313 

4.2 Determination of the best field length. 314 



 315 

If k, a, n, τn, qin and S are known, we can calculate qin
*
 and choose the graph with a value equal to 316 

the known a value. In these graphs, we obtain DU from qin
*
 and S. We take L* from the graph 317 

which offers a better value of DU and finally L is calculated from (5). 318 

 319 

4.3 Determination of the best inflow rate. 320 

 321 

If k, a, n, τn, L, S and b are known, we can calculate L
*
 from (5) and choose the corresponding L

*
 322 

and a graph. From S value, we take the value of qin
*
 that offers a greater UD. From (4) we calculate 323 

qin and multiplying by the field width b we get the best inflow rate q=b·qin. 324 

 325 

4.4 Determination of the best field width. 326 

 327 

If k, a, n, τn, L, S and q are known, we proceed as in the previous paragraph, and once we obtain qin, 328 

we calculate the field width with b=q/qin. 329 

 330 

4.5 Determination of two variables simultaneously. 331 

 332 

With these graphs, several combinations of solutions can be studied when there are two or more 333 

decision variables (e.g., length and width, or slope and width) through the analysis of a defined set 334 

of possible solutions. 335 

 336 

5. DISCUSSION AND CONCLUSIONS. 337 

 338 

Firstly, it is important to note that a surface irrigation field with longitudinal slope and blocked end 339 

requires a precise handling of irrigation water, either furrows or basin/border systems. If more water 340 



than expected is applied, it will go to the end of the field, and some crops cannot tolerate excessive 341 

ponding. Moreover, in long fields, the end dikes must be high to avoid overflow risk. 342 

 343 

The results must be considered as an approximation to reality. It is a one-dimensional analysis with 344 

constant parameters. In practice, infiltration function is not uniform along a field. Manning 345 

roughness coefficient and inflow rate can vary too. The effect of micro-topography is not 346 

considered here, but it is an important factor in distribution uniformity (Playán et al., 1996; Zapata 347 

and Playán, 2000). 348 

 349 

However, graphs could be useful in real design and management of surface irrigation fields. In the 350 

above example, theoretical distribution uniformity and application efficiency were 95% with a slope 351 

of 0.0004 . Putting this case into practice, real values will be lower (perhaps 85%?). But in any case, 352 

calculated slope will get maximal values for both indicators, and practical recommendation for 353 

irrigator would be to consider giving this slope to the field when leveling this field, considering also 354 

the negative impacts of land leveling (costs, changes in soil characteristics and productivity). 355 

 356 

In real cases, values for a and L
* 
 probably will be different than discrete values taken in figures 6 357 

and 7 and represented in expressions (12) and (13), so interpolation process have to be applied, 358 

taking values from two or more graphs. 359 

 360 

Dimensionless graphs obtained are a continuation of Clemmens and Dedrick (1982) graphs, a kind 361 

of generalization, and could be useful when designing and management surface irrigations fields 362 

with longitudinal slope and blocked end. 363 

 364 
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Figure 1. Influence of the longitudinal slope on cutoff time and distribution uniformity (DU). 401 
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 403 
Figure 2. Appearance of Clemmens and Dedrick (1982) graphs (DU: distribution uniformity; 404 

qin
*
: dimensionless unit inflow rate; L

*
: dimensionless field length). 405 
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Figure 3. Optimal cutoff time. 409 
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Figure 4. Distribution uniformity for a=0.5 y L*=0.6. Contour lines. 412 



0.1

0.3

0.6

1

3

5
10

50

55

60

65

70

75

80

85

90

95

100

0
.0

0
.0

0
0

1

0
.0

0
0

2

0
.0

0
0

3

0
.0

0
0

4

0
.0

0
0

5

0
.0

0
0

6

0
.0

0
0

7

0
.0

0
0

8

0
.0

0
0

9

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
5

0
.0

1

95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

D
is

tr
ib

u
ti

o
n

 u
n

if
o

rm
it

y
 D

U

 413 
 414 
Figure 5. Distribution uniformity for a=0.5 y L*=0.6. Three-dimensional graph. 415 
 416 
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Figure 6. Graphs for a=0.4 and a=0.5 (a: Kostiakov exponent; L
*
: dimensionless field length). 423 
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Figure 7. Graphs for a=0.6 and a=0.7 (a: Kostiakov exponent; L
*
: dimensionless field length). 430 
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Figure 8. Example of determination of the best field slope. 433 
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