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Abstract 

Germline mutations in the fumarate hydratase gene (FH) predispose to multiple cutaneous and 

uterine leiomyoma syndrome (MCL) and MCL associated with renal cell cancer. MCL is inherited 

in an autosomal dominant pattern, manifesting as skin leiomyoma and uterine fibroids in affected 

individuals. Fumarate hydratase, a component of the tricarboxylic acid cycle, acts as a tumor 

suppressor gene in the development of cutaneous and uterine leiomyoma and renal cell cancer in 

this syndrome. Here we report the clinical and mutational analysis of five families with MCL, with 

the identification of five new mutations affecting highly conserved residues of the FH protein. 

These results provide further evidence for the role of the FH gene in the pathogenesis of MCL. 
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Cutaneous leiomyomas are rare, benign tumors arising from the arrector pili muscle of hair follicles. 

Multiple cutaneous and uterine leiomyoma syndrome (MCL; MIM #150800), in which affected 

individuals develop associated skin and uterine leiomyomas, is a disorder inherited in an autosomal 

dominant pattern. The skin lesions usually appear between the early teens and the fourth decade of 

life. For the majority of affected women, uterine fibroids of early onset usually require 

hysterectomy or myomectomy (Stewart, 2001). In some families with MCL, the disease is 

associated with an additional predisposition to type II papillary renal cell carcinoma (Launonen et 

al, 2001). 
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The genetic locus for MCL was recently mapped to chromosome 1q42.3-43 (Alamet al, 2001; 

 Kiuru et al, 2001; Martinez-Mir et al, 2002) and subsequently, mutations in the fumarate hydratase 

gene (FH) were identified (Tomlinson et al, 2002). The gene product for FH is fumarate hydratase, 

part of the tricarboxylic acid cycle involved in energy production for the cell. Dominant mutations 

in FH cause MCL in approximately 59.5% of affected individuals (Tomlinson et al, 2002). Based 

on its role in MCL, FH has been hypothesized to act as a tumor suppressor gene in sporadic tumors 

as well. However, two recent reports show a very low frequency of FHmutations in different types 

of tumors, including uterine and cutaneous leiomyomas, leiomyosarcoma, and renal cell carcinoma 

(Barker et al, 2002; Kiuru et al, 2002). Whether FH plays a role in sporadic tumorigenesis remains 

to be determined. Mutations in three different subunits of succinate dehydrogenase, another enzyme 

of the tricarboxylic acid cycle, also correlate with a high incidence of tumors, in particular, 

hereditary paragangliomas (Baysal et al, 2001). Interestingly, autosomal recessive mutations in 

the FH gene have been implicated in fumarate hydratase deficiency, which presents with 

progressive encephalopathy and developmental delay (MIM #606812). Accordingly,Tomlinson et 

al (2002) reported a patient with fumarase deficiency whose mother, a carrier for an FH mutation, 

developed skin leiomyoma. How these two phenotypically distinct disorders are linked to different 

types and combinations of mutations in FH calls for further investigation. 

In this study, we report the clinical and mutational analysis of five families with MCL. We have 

identified five new mutations in the FH gene, further supporting the role of FH in MCL. 

Materials and methods 

Human subjects 

We have identified five families with dominantly inherited MCL, comprising 16 affected 

individuals available for this study. Blood samples were collected according to the local 

Institutional Review Board. Clinical features and pedigrees of four families were previously 

published in case reports (MCL-1, MCL-2, MCL-3, and MCL-5) (Lun and Spelman, 2000; 

Tsoitis et al, 2001; Alam et al, 2002; Martinez-Mir et al, 2002). 

Mutation analysis 

Genomic DNA was isolated from peripheral blood collected in EDTA-containing tubes using the 

PureGene DNA isolation kit (Gentra Systems, Minneapolis, MN). To screen for mutations in the 

human FH gene, all exons and splice junctions were PCR-amplified from genomic DNA. PCR 

primers are shown in Table I. PCR products were sequenced in an ABI Prism 310 automated 

sequencer, using the ABI Prism BigDye terminator cycle sequencing ready reaction kit (PE Applied 



Biosystems, Foster City, CA), following purification in Centriflex gel filtration cartridges (Edge 

Biosystems, Gaitherburg, MD). Mutations were identified by visual inspection and comparison with 

control sequences generated from unrelated unaffected individuals. 

To confirm the mutations identified, direct and mismatched PCR were used. The nonsense mutation 

Q142X and the missense H275Y and V351L were confirmed by digestion of the corresponding 

PCR products with BstNI, BspHI, and MaeIII, respectively. In the case of S115I, a reverse 

mismatched primer (5'-CCT AAC ATT TCA ATT GCT CTA TAG-3') was used to introduce an 

Alu  I restriction site. Finally, the PCR product corresponding to frameshift mutation 1081del4 was 

run on a polyacrylamide gel and visualized by ethidium bromide staining. 

All five DNA variants were tested in a mixed control population of 46–49 individuals. The 

missense  variants S115I, H275Y, and V351L were tested in an additional sample of 32–43 control 

individuals. 

Results 

Clinical findings 

The patients in the five families with MCL (Figure 1) originated in five different countries, namely, 

two Jewish families from Tunisia (MCL-1) and Ethiopia (MCL-4), Greece (MCL-2), Australia 

(MCL-3), and Puerto Rico (MCL-5). They comprised a total of 11 and 5 affected women and men, 

respectively. Skin leiomyomas were found in 14 individuals, 9 women and 5 men, ranging in age 

from 14 to 55 y. The affected patients reported sensitivity of the lesions to cold temperature and 

touch. Two of the female patients exhibited skin leiomyomas alone, without any uterine 

abnormality. The typical skin lesions are firm, skin colored to red, ranging from a few in number to 

approximately 100 in older individuals (Figure 2). The lesions range between 0.2 and 1.0 cm in 

diameter and cluster with time. 

Of the 9 women with uterine leiomyoma, 7 had coexisting skin leiomyoma and 2 had uterine 

leiomyoma alone. Six of these patients with affected uteri eventually underwent hysterectomy or 

myomectomy. 

Mutation analysis in the FH gene 

We have analyzed five families with dominantly inherited MCL for FH mutations. All were found 

to carry heterozygous mutations in the FH gene (Table II). None of these mutations have been 

previously reported in patients with MCL or fumarate hydratase deficiency, and each of them was 



unique to a single family. The fact that they have not been detected in the control population 

excludes them as common polymorphisms. 

A C>T transition at nucleotide position 553, which results in the nonsense mutation Q142X (amino 

acid residue 185 in the mitochondrial isoform), was identified in family MCL-2, and a deletion of 

four nucleotides in exon 7 was found in family MCL-5. This frameshift mutant allele is the result of 

a 4-bp deletion starting at any position between nucleotides 1081–1083, creating a premature 

termination codon 12 amino acids downstream of the deletion site. Three missense mutations were 

also identified: a G>T transversion at nucleotide position 473 in exon 4, leading to the missense 

mutation S115I (mitochondrial amino acid residue 158; family MCL-4), a C>T transition at 

position 952 in exon 7 resulting in the missense mutation H275Y (mitochondrial amino acid residue 

318; family MCL-1), and a G>C transversion at position 1180 in exon 8, creating the missense 

mutation V351L (mitochondrial amino acid residue 394; family MCL-3). Exon number and 

nucleotide positions are derived from the FH sequence (Accession No. 18549070). The amino acid 

position for the cytosolic isoform is given, for comparison with the previously reported mutations 

(Tomlinson et al, 2002; Table II). 

Discussion 

In this study, we have identified five new FH"mutations" in MCL families, further supporting the 

role of this housekeeping gene in tumorigenesis. The nature of these mutations, including non-

sense, frameshift, and missense mutations, clearly supports the role of the FH gene in MCL. 

Nonetheless, the involvement of a housekeeping gene such as FH in tumorigenesis unveils new 

questions about the etiologic mechanism underlying MCL. 

Our study has identified a heterozygous nonsense (Q142X) and a frameshift mutation (1081del4) in 

two of the families. The most likely fate of the mRNA of these mutant alleles would be nonsense-

mediated mRNA decay, where the nonsense-bearing mRNA is recognized and degraded soon after 

transcription (Frischmeyer and Dietz, 1999). Unfortunately, mRNA samples from these families 

were not available for further testing and therefore other possible mechanisms such as translation 

into a truncated protein or exon skipping cannot be ruled out. 

Regarding the three missense changes identified in our study, S115I (MCL-4), H275Y (MCL-1), 

and V351L (MCL-3), the possibility of these being rare polymorphisms cannot be completely 

excluded, because a mixed control population was used owing to unavailability of a sufficient 

number of ethnically matched controls. This is especially true for V531L, where both amino acids 

consist of hydrophobic side chains with only one carbon difference. It is noteworthy, however, that 



7 of the 17 mutations reported by Tomlinson et al (2002) were also missense mutations. The 

affected amino acid residues S115, H275, and V351 are conserved among human, pig, rat, and 

mouse FH. 

Cosegregation between the mutations and the MCL phenotype was confirmed for families MCL-1 

(H275Y) and MCL-3 (V351L), for which blood samples from several affected family members 

were available. These two missense variants show reduced penetrance for the skin and uterine 

lesions. H275Y was identified in family MCL-1 (Figure 1), in which we had previously performed 

linkage studies (Martinez-Mir et al, 2002). Restriction analysis in all family members showed that 

12 individuals, 7 women and 5 men, were heterozygous for the mutation. Of the 7 carrier women, 4 

presented with both skin and diagnosed or suspected uterine lesions (hysterectomy in III-17 and III-

19, diagnosed myoma in IV-12, and menorrhagia in V-12), 2 presented with skin lesions alone (III-

21 and IV-2), and 1 was an asymptomatic female (V-2). With the exception of V-17, all carrier men 

suffered from skin leiomyomata. Thus, only two young asymptomatic carriers were identified, V-2 

(age 19) and V-17 (age 18). V-17 was reported to carry the disease-associated haplotype during our 

studies to refine the MCUL1 locus (Martinez-Mir et al, 2002). V-2, on the other hand, showed a key 

recombination event within the disease-associated haplotype (Martinez-Mir et al, 2002). Owing to 

the fact that V-2 was an unaffected individual and that the location and identity of the causative 

gene was still unknown at the time these studies were performed, her carrier status as an 

asymptomatic carrier or unaffected could not be established. With the identification of the FH gene 

by Tomlinson et al (2002), we confirmed that V-2 did indeed carry the disease-associated haplotype 

and, as shown here, an FH mutation. 

In family MCL-3 (Figure 1), on the other hand, the V351L missense substitution was present in 

three women, one of them with both uterine and skin involvement and the remaining two with only 

uterine myoma. The grandmother in this family, reported to have uterine polyps on a biopsy report, 

did not carry the mutation. For family MCL-2 (Q142X; Figure 1) the mutation was only present in 

the affected individual and his mother and absent in the unaffected father and sibling. Since no 

family history of MCL was reported for the affected member of this family, the carrier mother will 

be reexamined for skin and uterine lesions. The missense variant S115I in family MCL-4 was 

present in the affected family member only and absent in the remaining three unaffected siblings 

(Figure 1). The parents of these individuals were not available for the study. Finally, only one 

individual from family MCL-5 (Figure 1, Figure 2), an affected woman, was available for 

examination and was heterozygous for the frameshift mutation. None of the families studied here 

suffered from any other type of tumor, including papillary renal cell cancer. 



In summary, of 11 female patients, 7 exhibited concurrent skin and uterine leiomyoma involvement. 

Of the remaining 4 affected female patients, 2 had skin lesions only and 2 had uterine leiomyoma 

alone. Patients from the same family may display different phenotypic expression of the disease. 

For example, in family MCL-3, a mother with uterine leiomyoma and no skin lesions had two 

daughters, one with both skin and uterine lesions and the other with uterine involvement only. 

Seventeen of 42 families reported by Tomlinson et al (2002) did not display mutations in the FH 

 gene. The rate of mutation detection in our study, on the other hand, reached 100%.Tomlinson et 

al (2002) performed single-strand conformation polymorphism and conformation-specific gel 

electrophoresis as mutation detection methods in some of their families versus direct sequencing in 

our study. This could account for the lower mutation rate in the original report. Overall, it still 

remains possible that the predisposition to MCL is genetically heterogeneous. 

One of the implications of gene identification for inherited susceptibility to tumorigenesis is the 

possible role they may play in the more common sporadic presentation of the same type of tumors. 

Families with MCL present with benign skin and uterine leiomyomas, the latter being a major 

public health issue. In addition, the aggressive papillary renal cell carcinoma can also be associated 

with MCL, as well as leiomyosarcoma (Launonen et al, 2001). Based on this hypothesis, two 

groups have recently searched for mutations in the  FH gene in different types of tumors. Kiuru et 

al (2002)  have analyzed a total of 200 sporadic tumors, including uterine and cutaneous 

leiomyomas, leiomyosarcomas, and papillary renal cell carcinomas. However, only five  FH  

mutations were identified. Barker et al (2002), on the other hand, studied 26 leiomyosarcomas and 

129 uterine leiomyomas. In this case, no FH mutations were identified, although LOH for 1q and 

1q42-43 was detected in 50 and 5% of leiomyosarcomas and leiomyomas, respectively. 

Collectively, these data suggests either that  FH  does not play a major role in the development of 

sporadic tumors or that the pathologic mechanism of FH in MCL involves events different from 

somatic mutations. 

The identification of the particular FH mutation in each MCL family will allow for close follow-up 

of those individuals at risk for the development of the aggressive papillary renal cell cancer 

(Kiuru et al,  2001;  Launonen et al, 2001). Establishing the etiologic mechanisms of MCL may 

facilitate development of new therapeutic options for affected patients. 

References 

1. Alam NA, Bevan S & Churchman M et al. Localization of a gene (MCUL1) for multiple 
cutaneous leiomyomata and uterine fibroids to chromosome 1q42.3–q43. Am J Hum 
Genet (2001) 1264–1269.  



2. Alam M, Rabinowitz AD & Engler DE. Gabapentin treatment of multiple piloleiomyoma-
related pain. J Am Acad Dermatol (2002) 46: S27–S29.  

3. Barker KT, Bevan S & Wang R et al. Low frequency of somatic mutations in the FH/multiple 
cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br J 
Cancer (2002) 87: 446–448.  

4. Baysal BE, Rubinstein WS & Taschner PE. Phenotypic dichotomy in mitochondrial complex II 
genetic disorders. J Mol Med (2001) 79: 495–503.  

5. Frischmeyer PA & Dietz HC. Nonsense-mediated mRNA decay in health and disease.Hum Mol 
Genet (1999) 8: 1893–1900.  

6. Kiuru M, Launonen V & Hietala M et al. Familial cutaneous leiomyomatosis is a two-hit 
condition associated with renal cell cancer of characteristic histopathology. Am J 
Pathol(2001) 159: 825–829.  

7. Kiuru M, Lehtonen R & Arola J et al. Few FH mutations in sporadic counterparts of tumor 
types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer 
Res(2002) 62: 4554–4557.  

8. Launonen V, Vierimaa O & Kiuru M et al. Inherited susceptibility to uterine leiomyomas and 
renal cell cancer. Proc Natl Acad Sci USA (2001) 98: 3387–3392.  

9. Lun KR & Spelman LJ. Multiple piloleiomyomas. Australas J Dermatol (2000) 41: 185–186.  

10. Martinez-Mir A, Gordon D, Horev L, Klapholz L, Ott J, Christiano AM & Zlotogorski A. 
Multiple cutaneous and uterine leiomyomas: Refinement of the genetic locus for multiple 
cutaneous and uterine leiomyomas on chromosome 1q42.3–q43. J Invest Dermatol (2002)118: 
876–880.  

11. Stewart EA. Uterine fibroids. Lancet (2001) 357: 293–298.  

12. Tomlinson IP, Alam NA & Rowan AJ et al. Germline mutations in FH predispose to 
dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat 
Genet (2002) 30: 406–410.  

13. Tsoitis G, Kanitakis J, Papadimitriou C, Hatzibougias Y, Asvesti K & Happle R. Cutaneous 
leiomyomatosis with type 2 segmental involvement. J Dermatol (2001) 28: 251–255.  

 

Acknowledgments 

The authors thank all family members for their invaluable contribution to this study; HaMut Lam 

(USA) and Sharona Tornovsky (Israel) for expert technical assistance, and Victoria Shepherd, MD 

(Australia), for medical assistance. This work was supported in part by the Skin Disease Research 

Center, Department of Dermatology, Columbia University (P30 AR44535); a research grant K01-

HG0005501 (to D.G.); and a research grant from the Women's Health Program, supported by 

HWZOA (to A.Z. and B.G.). G.S.C. is a Medical Student Research Training Fellow of Howard 

Hughes Medical Institute. 

Figures 

Figure I 



 

Pedigrees with MCL. Black, gray, and empty symbols, affected, unknown, and unaffected family 

members, respectively. Asterisks, individuals whose blood samples were available, except in MCL-

1 where blood samples for most family members were available. 

Figure II 

 

Clinical picture of cutaneous leiomyoma. Clustering of skin leiomyoma lesions can be observed 

on upper back (A) and arm (B). 

Tables 

Table I. PCR primers for amplification of the FH gene 



Exon Forward primer Reverse primer Size (bp) 

1 CCCAGAAATTCTACCCAAGC AGGGCTGAAGGTCACTGC 214 

2 TGATCCTGGGTTTCTTTTCAAC ATGAATACAGCCTACTTCATCC 240 

3 CCAAAATAATAAACTTCCATGC ATGGGTCTGAGGTTATTAAG 221 

4 CTGTATTCAAACTCTGTGGC TTATAACCAAAAAACAGCAAAGC 288 

5 GTTTTTGTTGCCTCTGATTTAAC TGGCCATTTGTACCAAGCTC 290 

6 GAGTAACTTGTAAGCTATTAGG AATGTACAGACCACGTA 285 

7 TAACTTGTTCACCCATCTAGG CTAGTCAAGTTTTAGCTCCAAC 287 

8 TTAGTCTTTACTCTGTCATTGG TAATAAGCCTTTGGTCAAAAAAC 212 

9 ATTGTATATTTACTGTCAACCAG AAACACTGATCCACTTGTCTCT 356 

10 CTGCTAACCCATATGTCGTC CGTTTTTAAGAAATGGGAGTCTG 252 

 

Table II. Germline FH mutations in MCL families 

Family Wild-type sequence Mutant sequence Amino-acid changea Exon 

MCL-4 AGC ATC S115I 4 

MCL-2 CAG TAG Q142X 4 

MCL-1 CAT TAT H275Y 7 

MCL-5 GAAAATG-AACCA GAAAACCA 4-bp del between amino acids 318 and 319 7 

MCL-3 GTC CTC V351L 8 

 

a Amino-acid positions are derived from the cytosolic enzyme sequence (468 amino acids). The 

exon number corresponds to the entire gene; exon 1 encodes the 43 amino acids that form the 

mitochondrial signal peptide and the first amino acid of the cytosolic protein. 
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