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Abstract 27 

Objective: To automate the detection of ruck and tackle events in rugby union using a specifically-28 

designed algorithm based on microsensor data. 29 

 30 

Design: Cross-sectional study 31 

 32 

Methods: Elite rugby union players wore microtechnology devices (Catapult, S5) during match-play. 33 

Ruck (n=125) and tackle (n=125) event data was synchronised with video footage compiled from 34 

international rugby union match-play ruck and tackle events. A specifically-designed algorithm to 35 

detect ruck and tackle events was developed using a random forest classification model. This algorithm 36 

was then validated using 8 additional international match-play datasets and video footage, with each 37 

ruck and tackle manually coded and verified if the event was correctly identified by the algorithm. 38 

 39 

Results: The classification algorithm’s results indicated that all rucks and tackles were correctly 40 

identified during match-play when 79.4 ± 9.2% and 81.0 ± 9.3% of the random forest decision trees 41 

agreed with the video-based determination of these events. Sub-group analyses of backs and forwards 42 

yielded similar optimal confidence percentages of 79.7% and 79.1% respectively for rucks. Sub-43 

analysis revealed backs (85.3 ± 7.2%) produced a higher algorithm cut-off for tackles than forwards 44 

(77.7 ± 12.2%). 45 

 46 

Conclusions: The specifically-designed algorithm was able to detect rucks and tackles for all positions 47 

involved. For optimal results, it is recommended that practitioners use the recommended cut-off (80%) 48 

to limit false positives for match-play and training. Although this algorithm provides an improved 49 

insight into the number and type of collisions in which rugby players engage, this algorithm does not 50 

provide impact forces of these events.  51 

 52 

Keywords: algorithm; microtechnology; team sport; ruck; tackle  53 



Introduction 54 

Commercially-available microtechnology devices containing global positioning systems (GPS) and 55 

microsensors (accelerometers, magnetometers and gyroscopes) are extensively used to quantify the 56 

activity demands of various sports, including rugby union.1-5 Rugby union is a high-intensity sport 57 

involving demanding bouts of intense locomotor activity (running, sprinting and accelerations) and 58 

requires players to perform a range of high-intensity collisions (rucks, tackles, mauls and scrums),3-5 59 

interspersed with activities that have lower locomotor demands (standing, walking and jogging).1, 5, 6 60 

Physical demands of rugby union have frequently been reported using video-based time motion analysis 61 

and more recently with the use of microtechnology.7, 8 Recent research using microtechnology 62 

predominantly focuses on positional match-play demands of rugby union reporting locomotor metrics, 63 

such as distance covered, high-speed running and accelerations assisting with athlete physical 64 

preparation and injury prevention.6, 8, 9  65 

 66 

In combination with customised algorithms, microtechnology devices have demonstrated a capacity to 67 

detect sport-specific movements in individual sports such as snow and aqua sports,1 as well as team 68 

sports reporting fast bowling and intensity in cricket,10, 11 and throwing in baseball.12 Furthermore, a 69 

small number of studies have focused on the non-running demands of contact sports.13 Specifically, 70 

such studies have determined whether these microtechnology devices have the ability to detect tackles 71 

in rugby league,14, 15 rugby union13 and Australian Rules football.16, 17 Studies have shown that tackles 72 

performed in rugby league can be reliably detected using wearable microsensors (mild collisions: r = 73 

0.89; moderate collisions: r = 0.97; heavy collisions: r = 0.99)14 with high sensitivity (97.6% ± 1.5) and 74 

specificity (87.6% ±1.2).15 Attempts to apply the same algorithm for tackles in Australian Rules football 75 

and rugby union were unsuccessful due to obvious variations between contact events in these sports. 76 

Specifically, when applied to these sports the rugby league tackle algorithm had a tendency to over-77 

estimate the number of tackle events, incorrectly classifying some rapid changes of direction and other 78 

contact events as tackles.7, 16, 17  79 

 80 



Interestingly, recent research investigated whether existing algorithms developed for rugby league can 81 

be adapted for rugby union.7 This study has shown that manipulation of g-force parameters within the 82 

algorithm was inadequate to provide an accurate tool for automatically recording collisions in rugby 83 

union; possibly due to the wide variety of tackle types.7 Other encouraging results in rugby union using 84 

an accelerometer-based tackle detection algorithm developed applying a limited training set of 85 

‘contacts’.13 However, researchers concluded that the algorithm’s performance might be improved if 86 

accelerometer data were complemented with magnetometer and gyroscope data.1, 13 87 

 88 

Of the various types of contact events experienced during rugby match-play, rucks and tackles are 89 

reported to be the most frequent.4, 9, 18 On average, tackles and rucks are performed 116 times by each 90 

team during a competitive match, with front on one-on-one tackling the most frequently occurring 91 

tackle type.8, 19, 20 Competition success usually dependent on a team’s ability to endure repeated collision 92 

events that characterise the sport.8, 13, 21 93 

 94 

A rugby union tackle is similar to that of other collision-based sports when a defender successfully 95 

brings an opposing ball carrier to the ground19, 22, other techniques include a standing a tackle when an 96 

attacker is not brought to ground and can potentially become a maul.23 The ruck, as performed in rugby 97 

union, is a unique event that occurs when at least one player from either team competes in a physical 98 

contest for possession after a completed tackle for the ball that is on the ground.20 Although these 99 

collision-based events may involve only a single player from each team, they often escalate involving 100 

numerous players from one or both teams.22 Forwards predominantly perform greater tackle and ruck 101 

events during competitive matches than backs, a player's involvement in these events is not restricted 102 

and, hence, any player may be exposed to these situations during training or match-play.24 103 

 104 

As there is currently no validated algorithm capable of detecting tackles in rugby union, current practice 105 

involves manually counting and subjectively classify tackle events using video footage. This process is 106 

time-consuming and labour-intensive and often prone to many inaccuracies.1, 7 This early work can be 107 

further improved upon by seeking to develop methods that can differentiate tackles from other contact 108 



events in rugby union (e.g. rucks, scrums, mauls), as combining these events in a single category implies 109 

that each event places an equivalent physiological stress on the athletes’ bodies.1 In light of recent 110 

research shortcomings, there is an increasing requirement for automated algorithm detection to improve 111 

quantification of unique rugby union contact events, providing enhanced understanding of the physical 112 

demands.1, 2, 7 113 

 114 

To address this, the study purpose is to use data derived from player-worn microtechnology to develop 115 

and validate an algorithm capable of identifying tackle and ruck events in rugby union match-play 116 

scenarios. It was hypothesised that using the accelerometer, magnetometer and gyroscope data 117 

provided, an algorithm could be developed to automate detection of tackles and rucks in rugby union. 118 

 119 

Methods 120 

Twelve elite male rugby union players (mean ± SD age; 26.6 ± 3.3 yrs; forwards n=7, backs n=5) were 121 

recruited to develop and validate a tackle and ruck detection algorithm. At the time of testing, all 122 

participants were free of injury and had no known medical conditions that would compromise their 123 

participation or influence the recorded outcomes. All participants received a clear explanation of the 124 

study’s requirements and provided written informed consent prior to their involvement. The study’s 125 

experimental procedures were reviewed and approved by the Institution’s Human Research Ethics 126 

Committee (Approval #2014-135Q). 127 

 128 

Participants were required to wear a single Catapult S5 Optimeye device (Melbourne, Victoria, 129 

Australia) positioned between the shoulder blades in a purpose-built vest to assist initial algorithm 130 

development. Devices contained tri-axial accelerometers, gyroscopes and magnetometers that captured 131 

data at 100 Hz. A total of 40 (n=19 Forwards; n=21 Backs) data files were captured across a series of 132 

elite international rugby union matches (n=6) using the aforementioned cohort. Using television 133 

broadcast footage of each match, ruck and tackle events were also manually identified by a single 134 

assessor on two separate occasions that were separated by at least 10 weeks. Statistical comparison of 135 

the two assessments indicated excellent intra-rater reliability for the visual identification of tackles 136 



(ICC: 0.998; 95% CI: 0.995 to 0.998) and rucks (ICC: 0.997; 95% CI: 0.995 to 0.998). Tackle criteria 137 

were set as one-on-one tackles completed by defenders, where an opposing attacking player was taken 138 

to ground as a result, using varied tackling techniques and varying points of impact. Due to one-on-one 139 

tackling being the most common tackle type, any assisting tackle events were excluded.19 Ruck events 140 

were selected based on the criteria that a player had taken part in a ruck and was involved in a physical 141 

competition for possession with an opposing player in attack or defence. Events that did not require a 142 

competition with an opposing player were not included.  143 

 144 

A total of 250 tackle (n=125) and ruck (n=125) events were manually identified from the video using 145 

the defined criteria, only using tackles requiring one player from either team from the selected sub-146 

group. Microtechnology and video data were then synchronised in order to construct 20-second video 147 

clips of each identified ruck/tackle instance (10-seconds before and after the frame of impact in each 148 

selected ruck/tackle instance). The corresponding 20-seconds of data from the microtechnology device 149 

was then extracted at 100 Hz. In addition to the ruck/tackle event data gathered from match-play, a 150 

further 29 microtechnology data files were collected from training sessions completed by the 151 

aforementioned cohort. These supplementary training files did not include any ruck, tackle or contact 152 

events, but rather were used within the investigation and categorised as ‘other movements’. Each of the 153 

‘other movement’ files were at least 1-hour long, with 20 second windows across the files randomly 154 

extracted to assist algorithm differentiation between ‘contact’ and ‘non-contact’ events. An initial two-155 

second sliding window was designed to develop a descriptive feature set for tackle and ruck 156 

movements.25 For individual movement identification in isolated windows (activity-specific 157 

recordings) accelerometer and gyroscope data (X, Y, and Z axes) were utilised to effectively develop a 158 

descriptive feature set for each of the required movements (tackle, ruck and ‘other movement’) over 159 

each of the 50% overlap of sliding window (S*) regions (Figure 1).21 Features were extracted from 160 

within each of these regions for each of the relevant sensor outputs, with the feature set containing both 161 

temporal and spatial features of each contact type. 162 

 163 

FIGURE 1 HERE 164 



 165 

Once temporal and spatial features were identified, these signals were applied to a random forest 166 

classification model using 166 (two thirds) randomly selected files from the total 250 tackle and ruck 167 

files to train the algorithm. Resultant magnitude of accelerometer data was identified using 168 

√𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐, where 𝒙, 𝒚, and 𝒛 represent data from each of the individual accelerometer axes. These 169 

were then smoothed using a low-pass 4th order Butterworth filter with a 25 Hz cut-off frequency. 170 

Movement profiles were clustered using Gaussian Mixture Models (GMM)26 over one-second windows 171 

and classified using Dynamic Time Warping (DTW)27 methods. Random forest models were optimised 172 

using the original 166 files using the identified variables for detection (Figure 2). This process was 173 

repeated 10 times to achieve a 10-fold cross-validation, after which the means and standard deviations 174 

were calculated. The remaining 84 files from initial ruck and tackle events were subsequently used to 175 

validate algorithm’s capability to detect both ruck and tackle events. 176 

 177 

FIGURE 2 HERE 178 

 179 

Following development and optimisation of the ruck and tackle classification algorithm, we sought to 180 

validate the algorithm using an additional 177 microtechnology data files with synchronised video data, 181 

collected from the same cohort during eight international matches. Video data recorded during these 182 

matches were initially manually coded by an experienced sports scientist who recorded all rucks (979 183 

total) and tackles (781 total) completed in these matches and their timings for the video and 184 

microtechnology datasets. the 177 data files collected were processed in the R statistical software 185 

package (http://www.r-project.org/) using the developed tackle- and ruck-detecting algorithm.  186 

 187 

To effectively process continuous match-play data to identify the incidence of rucks and tackles, the 188 

algorithm sequentially processed the time-series of the three-dimensional accelerations and orientations 189 

from the microtechnology units within consecutive 2-second windows with a 0.5 second overlap for 190 

event identification.  For each 2-second window, the algorithm generated a series of decision trees from 191 



the random forest using recognised variables that collectively determined whether the data within the 192 

window represented; i) a tackle; ii) a ruck; or iii) another movement; providing a confidence score based 193 

on each outcome (sum of probabilities within each window equalled 100%). For example, within a 2-194 

second window, the proportion of decision trees agreeing that the data represented a ruck might have 195 

been 60%, while 25% might have indicated a tackle and 15% may have indicated another movement.  196 

 197 

The proportion of decision trees agreeing data within each 2-second window represented a tackle, a 198 

ruck, or another movement was exported to Excel, where these data were compared with visually-199 

identified events derived from synchronised video data. This process involved determining the optimal 200 

proportion of decision trees that were required to be in agreement to maximise the likelihood of 201 

correctly identifying that a specific movement had occurred. To facilitate this, the criteria of true 202 

positives, true negatives, false positives and false negatives were determined, with the optimal cut-off 203 

considered to be the proportion of agreeing decision trees that generated the least number of false 204 

positives and false negatives. 205 

 206 

To evaluate the performance of the ruck and tackle algorithm, results were provided as a percentage of 207 

random forest decisions that agreed with video-based determination of ruck, tackle or other movement 208 

events. In the first instance, the movement that corresponded with the highest proportion of agreeing 209 

decision trees was recorded as the event that was occurring during each 2-second window. Using this 210 

approach resulted in a high number of false positives being recorded (e.g. a tackle or a ruck being 211 

recorded when one did not exist); hence the optimal proportion of agreeing decision trees was sought 212 

to maximise the algorithm's predictive capacity of the validation data set. 213 

 214 

Means and standard deviations were calculated for the entire cohort and each positional sub-group 215 

(forwards, backs) using all ruck and tackle results. Normative distributions of the data were also derived 216 

to gain a better understanding of any outliers and overall spread of the results. Finally, the data were 217 

also evaluated to determine whether the performance of the algorithm was frequency dependent; that 218 



is, if algorithm performance was influenced by the number of rucks or tackles performed by a specific 219 

player. 220 

 221 



Results 222 

For the entire cohort, the results of this process indicated that rucks were accurately predicted by the 223 

algorithm when an average of 79.4 ±9.2% of the decision trees agreed that a ruck event had occurred 224 

(Figure 3). Importantly, this value was not influenced by the players' sub-group, with the respective cut-225 

offs for forwards and backs being 79.8±9.8% and 79.1±8.5%. With respect to the algorithm's capacity 226 

to predict tackles, it was shown that events were correctly identified when an average of 81.0±9.3% of 227 

the decision trees agreed that a tackle had taken place. Sub-analysis of the positional groups indicated 228 

that the optimal cut-off for tackles experienced by forwards (77.7±12.2%) was significantly lower than 229 

the cut-off for tackles experienced by backs (85.3±7.2%). The proportion of agreeing decision trees 230 

required to optimise the algorithm’s ability to predict rucks (79.4±9.2%) and tackles (81.0±9.3%) was 231 

not influenced by the number of actual rucks and tackles performed by each of the players. 232 

 233 

FIGURE 3 HERE  234 



Discussion 235 

This is the first study to investigate the use of microtechnology and associated algorithms to 236 

automatically detect ruck and tackle events in elite rugby union. Results demonstrate that ruck and 237 

tackle events can be correctly detected when applying a specifically-designed algorithm to 238 

microtechnology data during international match-play. The algorithm was developed and trained to 239 

return a number reflecting the algorithm's confidence that a time-series of data represented a ruck, tackle 240 

or ‘other’ event (e.g. a locomotor activity, such as running). To minimise the risk of over- or under-241 

reporting the number of rucks and tackles, the optimum confidence cut-off was determined via 242 

validation of the algorithm's outcomes against traditional video coding techniques. Results showed that 243 

using an algorithm confidence cut-off of 80% for both rucks and tackles would provide practitioners 244 

with the best ability to characterise a large proportion of commonly occurring contact-related demands 245 

of rugby union training and match-play. 246 

 247 

Overall, the results revealed similar optimal algorithm confidence cut-off for rucks involving the whole 248 

cohort and the forwards (79.7%) and backs (79.1%), separately. Furthermore, optimal cut-offs for both 249 

groups had low standard deviations, which can likely be attributed to the homogeneity of the ruck 250 

movement, regardless of playing position. In contrast, the optimal cut-off for tackles completed by the 251 

backs (85.3%) was marginally higher than reported for the forwards (77.7%). Although tackle 252 

techniques are similar, there are likely to be a number of potential variations that occur due to 253 

differences in the speeds and points of contact made between the athletes involved in one-on-one 254 

tackles. This study focused on tackles that required the ball carrier to be taken to ground; however, there 255 

are other one-on-one tackle situations that do not require the attacking player to go to ground, but still 256 

impede the ball carrier’s progress.23 Therefore, a limitation of this study was that only one-on-one 257 

tackles resulting in the ball carrier being taken to ground were validated. In contrast, the algorithm’s 258 

predictions of ruck events were possibly more consistent due to the body position required to best 259 

compete for possession after a completed tackle.  260 

 261 



To determine whether the predictive capability of the algorithm was influenced by the number of 262 

collision events that a specific player was involved in, the optimal algorithm cut-offs were analysed 263 

separately for players who completed few rucks/tackles and those who completed many. On the basis 264 

of this analysis, it was shown that the algorithm's predictive ability was not affected by the frequency 265 

of either collision event; returning similar optimal cut-offs for players who performed one tackle and/or 266 

ruck and those who completed many (up to 21 tackles and 31 rucks). These results demonstrated that 267 

the algorithm is capable of providing a consistent account of a player's contact events, irrespective of 268 

the number of contacts they perform during training or match-play.   269 

 270 

Results of this study complement those of a recently published paper that describes the use of 271 

microtechnology data to quantify the number and timing of scrum events completed by rugby union 272 

players during training and match-play.28  Furthermore, this study adds to growing literature that has 273 

highlighted the overwhelming potential of the time-series data that is available from athlete-worn 274 

microtechnology.1 Application of these specifically-designed algorithms have already been highlighted. 275 

However, it is important to recognise that many of the algorithms developed using microtechnology 276 

data are highly specific to the sports for which they were developed, which likely influences their 277 

transferability to sports that share some similarities. For example, previously highlighted research in 278 

rugby league, demonstrates the performance decrement of an tackle detection algorithm when applied 279 

to rugby union and Australian Rules football.7, 14, 16, 17 The reduced performance of the rugby league-280 

specific algorithm in other codes of football is likely explained by the distinct variations that exist in 281 

the tackling techniques of the different sports.29 Furthermore, each of these sports involves unique 282 

collision events that may elicit similar patterns in the microtechnology data, but are considered quite 283 

different to tackles in the context of the game (e.g. hip and shoulder in Australian Rules football). 284 

Collectively, these data suggest that it is important to implement collision-detecting algorithms that 285 

have been developed and validated using data derived from athletes that are intended to be examined.1, 286 

16, 17 287 

 288 



During rugby training and match-play, coaches and analysts count tackles and rucks using labour-289 

intensive and time-consuming video notational analysis. Previous research highlights 290 

microtechnology’s limitations in rugby union and inability to detect and distinguish between collisions, 291 

as previous research identifies all contacts as ‘collisions’ or ‘static exertions’.1 This research has found 292 

a practical method to automate collection and differentiation of such events and builds on earlier work 293 

in this area.7, 28 Collectively, these results provide practitioners with novel and time-efficient means for 294 

discriminating between the different types of contact events in rugby union, which will ultimately 295 

facilitate better interpretation of an individual's physical load in training and match-play situations.1 296 

 297 

Although results of this study suggest that the presented algorithm may provide sports scientists with 298 

an efficient and objective means of understanding the contact demands of training and match-play in 299 

rugby union, there are a number of potential limitations that should be considered. First, this algorithm 300 

was developed and validated using data collected during match-play for one International rugby union 301 

team. Although it could be argued that tackles and rucks would not differ considerably between other 302 

elite level squads, at lower levels of competition subtle differences may exist, where techniques may 303 

vary. As such, future research is needed to determine the suitability of the presented algorithm for use 304 

in different rugby union populations. Second, although this algorithm has been shown to accurately 305 

detect ruck and tackle events, it is not capable of providing insight into the nature of the forces 306 

experienced by the players during such events. As such, the presented algorithm is limited by the 307 

assumption that all tackles and rucks involve equal force; emphasising future developments that are 308 

capable of providing insight into the specific physical demands of each collision to further quantify 309 

total training and match loads. As previously stated, the algorithm was trained using one-on-one tackles, 310 

thereby disregarding the contact load required during tackle assists. Despite the advancements in 311 

detecting contact demands in rugby union there is still a possibility that there is an underestimation of 312 

a player’s contact demands. 313 

 314 

 315 

 316 



Conclusion 317 

Current research has focused on the running demands of rugby union and more recently scrum demands. 318 

This study provides sport scientists with a valid method of quantifying the contact and collision 319 

demands of rugby union by counting ruck and tackle events. This research enhances the ability to 320 

improve preparation and injury prevention of rugby union players. Automated detection of ruck and 321 

tackle events provides a time-efficient alternative to traditional time-consuming and labour-intensive 322 

methods requiring video-based analyses. Furthermore, it complements previous research that has 323 

described microtechnology-based algorithms to quantify the running demands and scrum incidence in 324 

rugby union athletes. Further research investigating forces within these contact movements is 325 

advocated. 326 

 327 

Practical Applications 328 

• Results demonstrate the competencies of microtechnology, demonstrating the ability to detect 329 

ruck and tackle events in rugby union when applying a specifically designed algorithm. In 330 

collaboration with recent research, providing sport scientists the capability to detect and 331 

quantify the most frequent collisions in rugby union using microtechnology devices. 332 

• This current study provides practitioners with a time efficient and validated method to detect 333 

and monitor rucks and tackles events during match-play and training to assist with player 334 

preparation and injury prevention. Providing more objective results than previous labour-335 

intensive methods that are potentially error prone. 336 

• This research will provide sport scientists with a more in-depth understanding of a player’s 337 

demands by allowing different contact types, in this instance rucks and tackles, to be 338 

independently classified.  339 
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Figure Captions 411 

Figure 1. Schematic overview of methodology 412 

 413 

Figure 2. Decrease in accuracy due to exclusion of a single predictor variable. Variables with a larger 414 

mean decrease in accuracy are of greater importance for event classification. 415 

 416 

Figure 3. Study outcomes showing the; A) distribution of rucks completed by players and lowest 417 

returned average algorithm percentage; B) distribution of tackles completed by players and lowest 418 

returned average algorithm percentage; C) variation amongst the cohort, with respect to the number of 419 

rucks completed during match play (x-axis) and the corresponding optimal algorithm cut-off (y-axis); 420 

and D) variation amongst the cohort, with respect to the number of tackles completed during match play 421 

(x-axis) and the corresponding optimal algorithm cut-off (y-axis). Note: The optimal cut-off refers to 422 

the percentage of decisions trees within the random forest classification algorithm that produced the 423 

greatest level of agreement between the algorithm’s predictions and the vide-based appraisal of the 424 

collision events. 425 
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Figure 1. 428 

  429 

Synchronise video and microsensor sources and extract 
20-second windows of data corresponding with 250 

collision-based events (125 rucks, 125 tackles) for 
algorithm training. Add a further 29 data files containing 

other movements (non-contact), also exported at 100 Hz.

Identify key temporal and spatial features for the relevant 
variables:

• Maximum
• Minimum
• Mean
• Variance
• Kurtosis
• Skewness
• Spectral Bandwidth
• Spectral Centroid
• Magnitude

Identify initial ruck and tackle movements from match play 
for testing set data.

Export microsensor data (100 Hz) for 40 players (21 Backs, 
19 Forwards) collected over 6 matches.

Create 2-second sliding window (s*) for all files and 
calculate relevant variables and descriptive feature sets to 

characterise rucks, tackles and other movements.

Train and optimise random forest classification algorithm 
for ruck and tackle events using 166 data files from the 

original 250 training set data files.

Internal validation of random forest classification 
algorithm for rucks and tackles using the remaining 84 
data files from the original 250 training set data files.  

Use a further 177 unique data files exported at 100 Hz 
from match-play (testing set) to validate the algorithm 

against manually-coded video instances of rucks (n=979) 
and tackles (n=781).
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