Phenolic compounds are frequently used as chemical markers in chemotaxonomy. Moreover, some phenolics are antioxidants contributing to a reduction in the risk of cardiovascular diseases, hypertension and cancer (1). Initially antioxidant activity was principally associated with stilbenes and flavonoids, but evidence is now increasing that hydroxycinnamates and their derivatives are similarly actives. The hydroxycinnamic acid derivatives are the major group of phenolic compounds in white musts and wines and Baderschneider and Winterhalter (2) reported that the radical scavenging capacity of these derivatives does not differ significantly from that of other phenolic antioxidants. However, and in spite of the importance of this phenolic compounds, there is little information about these compounds in musts; it is especially true for musts from Galician white cultivars. In this study we report the characterization of 4-O-β-D-glucoside of p-coumaric acid in musts of the white cv Albariño, the most important white cultivar growing in Galicia (northwest Spain). This compound was previously reported in white German wines but, as far as we know, it was identified for the first time in white musts. The extraction of phenolic compounds was carried out according to the procedure described previously (3) and the extracts were used for the reversed-phase HPLC-DAD analysis. Peak of retention time 8.1 (peak A) showed an UV spectrum with an absorbance maximum in 294 nm that suggest an hydroxycinnamic acid-sugar derivative. Extracts were repeatedly injected (twenty times) in HPLC and the fraction corresponding to the 7-9 minutes (that contains this chromatographic peak) collected using a Waters WFC III fraction collector. Fractions were mixed, evaporated to dryness in a vacuum evaporator, resolubilized with 0.5 mL of methanol/water (1:1, v/v) and repeatedly injected (ten times) in HPLC with new chromatographic conditions for the best separation of peak A. Peak A was collected, mixed and characterized by spectrophotometric and chromatographic methods by comparison with standard. Further evidence for the structure of the compound corresponding to peak A was by analyzing the products of the alkaline and enzymatic hydrolysis (4). Aglycone was identified as p-coumaric acid by comparison with an authentic standard and sugar as glucose according to Markham (4). 1.- Li, H.; Wang, X.; Li, P. and Wang, H. (2009). Phenolic compounds and antioxidant properties of selected China wines. Food Chemistry 112: 454-460. 2.- Baderschneider, B. and Winterhalter, P. (2001). Isolation and Characterization of Novel Benzoates, Cinnamates, Flavonoids, and Lignans from Riesling Wine and Screening for Antioxidant Activity. J. Agric. Food Chem. 49 (6): 2788-2798. 3.- Masa, A.; Villanova, M. And Pomar, F. (2007). Varietal differences among the flavonoid profiles of white grape cultivars studied by high-performance liquid chromatography. J. Chromatogr. A 1164: 291-297. 4.- Markham, K.R. (1982). Techniques of Flavonoid Identification. Academic Press, London.