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Abstract 
 
Multiple cutaneous and uterine leiomyomata syndrome (MCL) is an autosomal dominant 

disease characterized by the presence of concurrent benign tumors of smooth muscle 

origin (leiomyoma) in the skin and uterus of affected females, and in the skin of affected 

males.  MCL can also be associated with type II papillary renal cell cancer (HLRCC).  

The genetic locus for MCL and HLRCC was recently mapped to chromosome 1q42.3-43 

and subsequently, dominantly inherited mutations in the fumarate hydratase gene (FH) 

were identified.  Importantly, analysis of the FH gene in tumors of MCL patients 

revealed a second mutation inactivating the wild-type allele in some tumors.  Based on 

these findings, it has been suggested that FH may function as a tumor suppressor gene in 

MCL.  Here, we report the analysis of the FH gene in a group of 11 MCL families, with 

the identification of 8 different mutations accounting for the disease in all families.  One 

of the mutations, 905-1G>A, has been identified in four families of Iranian origin.  The 

analysis of highly polymorphic markers in the vicinity of the FH gene showed a shared 

haplotype in these four families, suggesting that 905-1G>A represents a founder 

mutation.  Collectively, identification of five novel and three recurrent mutations further 

supports the role of FH in the pathogenesis of MCL. 
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INTRODUCTION 

 
Cutaneous leiomyomas are rare, benign tumors arising from the arrector pili 

muscle of the hair follicle.  They can be found in association with uterine fibroids in 

multiple cutaneous and uterine leiomyomata syndrome (MCL; OMIM 150800), inherited 

as an autosomal dominant trait.1,2,3  Association of MCL with familial development of 

type II renal cell cancer has been characterized in a syndrome called hereditary 

leiomyomatosis and renal cell cancer (HLRCC; OMIM 605839).4,5 

 Recently, the genetic locus for MCL and HLRCC was mapped to chromosome 

1q42.3-43.3-6  Subsequently, germline mutations in the fumarate hydratase gene (FH) 

were found in MCL and HLRCC.7-10  Fumarate hydratase is an enzyme that functions as 

part of the Krebs cycle, responsible for cellular energy production and amino acid 

metabolism.  FH has been predicted to act as a tumor suppressor gene, since loss of the 

wild-type allele has been found in cutaneous, uterine, and renal tumor biopsies of MCL 

patients.  Moreover, the FH enzymatic activity is low or absent in tumors from 

individuals with MCL.7 

 While the tumorigenic mechanism of FH mutations remains elusive, evidence is 

clear that dominant mutations in succinate dehydrogenase, also an enzyme of the Krebs 

cycle, cause tumors of the carotid body and adrenal gland, paraganglioma and 

pheochromocytoma, respectively.11  In addition, recessive mutations in the FH gene 

cause fumarate hydratase deficiency (FHD; OMIM 606812), characterized by 

neurological impairment, encephalopathy, and premature death in infants.  Interestingly, 

MCL has been reported in the carrier mother of one infant with FHD.7  However, a recent 
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study has identified other carrier parents of FHD infants who are asymptomatic.  Thus, it 

remains controversial whether all heterozygous FH mutations predispose to MCL.8 

 We previously reported five FH mutations in patients affected with MCL, 

including missense, nonsense, and frameshift mutations.9  Here, we have identified four 

novel and three recurrent mutations in seven MCL families, in addition to a recurrent 

novel splicing mutation, 905-1G>A, in four MCL families.  Haplotype analysis of these 

four families using polymorphic markers surrounding the FH gene provides evidence for 

a founder effect. 

 
MATERIALS AND METHODS 
 
Human Subjects 

We have identified eleven families (MCL-6-16) with dominantly inherited MCL, 

comprising 36 affected individuals and 96 unaffected family members, of which 18 

affected and 13 unaffected individuals have been available for this study. Blood samples 

were collected following informed consent. Families were recruited from different areas 

of Israel (MCL-6-9), the United States (MCL-10-12, 14-16), and Spain (MCL-13).  Of 

these, MCL 6-9 are Jewish families who report ancestors originating from Iran, MCL-11, 

12, 13 and 14 are Caucasian families, MCL-10 originated from Ecuador, and MCL-15 

and 16 originated from the Dominican Republic. 

 

Mutation analysis 

Genomic DNA was isolated from peripheral blood collected in EDTA-containing 

tubes using the PureGene DNA Isolation Kit (Gentra Systems, Minneapolis, MN). To 

screen for mutations in the human FH gene, all exons and splice junctions were PCR-
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amplified from genomic DNA. PCR primers have been described previously.9  PCR 

products were sequenced in an ABI Prism 310 Automated Sequencer, using the ABI 

Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit (PE Applied 

Biosystems, Foster City, CA), following purification in Centriflex Gel Filtration 

Cartridges (Edge Biosystems, Gaithersburg, MD). Mutations were identified by visual 

inspection and comparison with control sequences generated from unrelated, unaffected 

individuals.  

 To confirm the mutations identified, direct or mismatched PCR followed by 

restriction enzyme digestion and/or PCR direct sequencing were used. DNA variants 

H92R and R190C were confirmed by digestion of the corresponding PCR-amplified 

products with BclI and MaeII, respectively. In the case of P149L, a forward primer (5’-

GCTGGGTTTTGAGTAGTTAGTTGG-3’) and a reverse mismatched primer (5’-

GCAGCAGCAATGTGCATTGCTCTG -3’) were used to introduce a DdeI restriction 

site.  Mutation 905-1G>A was tested by PCR direct sequencing. Finally, controls for 

1176del6 mutation were run on a 6% non-denaturing polyacrylamide gel and visualized 

by ethidium bromide staining.  These mutations were tested in a mixed control population 

of 142-152 chromosomes. 

 

Haplotype Analysis 

Microsatellite markers covering the FH locus were selected from the Human 

Genome Working Draft at UCSC (www.genome.ucsc.edu).  Eight polymorphic 

microsatellite markers, D1S517, D1S2785, D1S304, D1S180, D1S204, D1S547, 

D1S1634, and D1S1609, spanning an interval of 4.81 Mb (11.57 cM; Fig 3) surrounding 
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the FH gene on chromosome 1 were chosen.  The PCR-amplified markers were 

electrophoresed in 6% non-denaturing polyacrylamide gels and visualized by ethidium 

bromide staining. 
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RESULTS 

Clinical findings 

 The patients in the eleven families with MCL originated in five different 

countries, namely, four Jewish families from Israel (MCL-6-9), Ecuador (MCL-10), 

Spain (MCL-13), Dominican Republic (MCL-15, 16), and the United States (MCL-11, 

12 & 14; Fig 1). These families comprised a total of 11 and 7 affected women and men, 

respectively, available for this study.  Of 96 unaffected members in these families, 13 

were available for this study.  Skin leiomyomas were found in all of 18 affected 

individuals and none of the unaffected family members.  The patients reported sensitivity 

of the lesions to cold temperature and touch.  The typical skin lesions were firm, skin 

colored to red, and ranged from a few in number to approximately 100 in older 

individuals (Fig 2). The size of the lesions varied between 0.2 to 1.0 cm in diameter and 

clustered with time. 

 Of the eleven female patients, nine had coexisting skin and uterine leiomyoma 

and two of the female patients exhibited skin leiomyoma alone, without any uterine 

lesion.  Five of the patients with affected uteri eventually underwent hysterectomy or 

myomectomy. 

 

Mutation analysis of the FH gene 

We have analyzed eleven families with dominantly inherited MCL for FH 

mutations. All of the families were found to carry heterozygous mutations in the FH gene 

(Table 1). Five of the mutations, H92R, P149L, R190C, 905-1G>A, and 1176del6 

represent novel mutations, whereas Q4X, K187R, and R190H, on the other hand, have 
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been previously described.7,10  The five novel mutations have not previously been 

reported in patients with MCL or fumarate hydratase deficiency, nor have they been 

detected in 142-152 control chromosomes, arguing against them being common 

polymorphisms.  

 A G-to-A transition at the invariant G of the 3’ acceptor site of intron 6 (905-

1G>A) was identified in four families from the Middle East (MCL-6-9) (Table 1).  The 

seven mutations in the coding region, on the other hand, are each unique to a single 

family.  Nonsense mutation Q4X (amino acid residue 47 in the mitochondrial isoform), 

was found in family MCL-14.  A six nucleotide in-frame deletion starting at nucleotide 

position 1176 that led to deletion of residues A350 and V351 (amino acid residues 393 

and 394 in the mitochondrial isoform) was identified in family MCL-16.  Five missense 

mutations were also identified: H92R in family MCL-15 (mitochondrial amino acid 

residue 135), P149L in family MCL-13 (mitochondrial amino acid residue 192), K187R 

in family MCL-11 (mitochondrial amino acid residue 230), R190C in family MCL-10 

(mitochondrial amino acid residue 233), and R190H in family MCL-12 (mitochondrial 

amino acid residue 233).  In families with more than one affected individual available for 

study, MCL-7, 9, 11, 13, cosegregation of the mutation with the disease phenotype was 

confirmed.  Two unaffected carriers, III-3 and III-1, were identified in MCL-6 and 

MCL15, respectively (Fig 1). 

 

Haplotype analysis 

Closer examination of ancestry revealed that the four Jewish families sharing the 

905-1G>A mutation reported ancestors originating from Iran, specifically Tehran (MCL-
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6 and 7) and Shiraz (MCL-8 and 9) (Fig 3).  From these four families, a total of eight 

affected and nine unaffected family members were available for the study.  Genotyping 

of microsattelite markers D1S517, D1S2785, D1S304, D1S180, D1S204, D1S547, 

D1S1634, and D1S1609 revealed that all affected individuals in these four families 

shared a common haplotype for markers D1S304, D1S180, D1S204, D1S547, and 

D1S1634.  The shared haplotype covers an interval of 0.95 Mb (3.97 cM) surrounding the 

FH gene.  Although for one of the families, MCL-8, we had access to only one family 

member, the genotypes for the microsatellite markers analyzed were compatible with the 

common haplotype.  Given that the FH gene is positioned between D1S204 and D1S547, 

the common haplotype highly suggests that mutation 905-1G>A represents a founder 

mutation.  One unaffected individual, III-3 from MCL-6 (Fig 3), was shown to carry the 

disease haplotype.  Sequence analysis confirmed that he is a carrier of the 905-1G>A 

splice site mutation. 
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DISCUSSION 

Including our previous work,6,9 we have studied a group of 16 MCL families and 

have identified a total of 13 different mutations accounting for the disease in all families.  

Interestingly, previous studies have identified mutations in 60%, 76%, and 89% of the 

families studied.7,8,10  The observed variability in mutation detection rate may be 

attributed to the different mutation detection methods employed in each study and to 

mutations present in the non-coding region.  Based on the number of MCL families in 

which no FH mutations have been detected, it still remains possible that the 

predisposition to MCL is genetically heterogeneous.  Further studies will be necessary to 

discriminate between undetected mutations and locus heterogeneity. 

Pooling the data from this study and our previous report,6,9 there were 38 affected 

female patients from 16 MCL pedigrees, including family members not available for 

mutation studies.  Twenty-six affected females developed concurrent skin and uterine 

lesions (67%), eight of them developed uterine tumors only (20%), and five developed 

skin leiomyomas only (13%).  It remains possible that patients with only uterine 

leiomyoma may have coexisting skin lesions that are difficult to detect.  We have 

observed in this and our previous study,6,9 that patients from the same family may display 

intra-familial variability of the disease. 

Predisposition to type II papillary renal cell carcinoma has been documented in a 

subset of MCL families.8,10,12  Although we have not encountered MCL probands with 

renal cell carcinoma, one family, MCL-12 (R190H) reported a sibling affected with MCL 

that developed renal cell cancer of unspecified histology.  Renal screening of II-2 in 

MCL-15 revealed a renal cyst, with no suggestion for malignancy.  One of the five MCL 
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families reported by Toro et al with renal cell cancer had a missense mutation in the same 

residue as MCL-12, R190L.10  The overall frequency of HLRCC is variable depending on 

the studies, ranging from 1-2% and 14.3%.8,10  In addition to type II papillary renal cell 

carcinoma, association between MCL and collecting duct carcinoma of the kidney has 

been recently reported.8,10,13 

One of the mutations identified in our patient collection is a novel splice site 

mutation, 905-1G>A, present in four Jewish families recruited in the Middle East (MCL-

6-9).  The fact that all four families originate from Iran, together with the presence of a 

common haplotype surrounding the FH gene, suggests that 905-1G>A is most likely a 

founder mutation.  Four previously described FH mutations, N64T, K187R, R190H, and 

G354R, were also found in multiple families and analysis of three microsatellite markers 

within the FH gene showed a common haplotype shared by the carriers of each 

mutation.8  The missense mutation R190H found in this and two other studies8,10 deserves 

special mention.  While two of R190H MCL families described by Alam et al8 originated 

from Spain and shared a common haplotype as described above, haplotype analysis of 

eleven families with the same mutation from North America showed no shared 

haplotype.10  In our study, the MCL proband with the R190H mutation is a Caucasian 

American.  Collectively, the recurrence of R190H mutation in families of diverse ethnic 

origin and geographic distribution highlights the crucial function of this residue for the 

activity of the protein.  According to the proposed structural model,8 R190, along with 

K187 and E312, are required to maintain a charge-charge interaction that is important to 

stabilize an active site loop.  In this regard, it is interesting that two other missense 

mutations affect this residue, R190L10 and R190C (this study). 
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The three novel missense changes identified in this study, H92R, R190C, and 

P149L, have not been identified in a collection of 142-152 control chromosomes.  

Although they could still represent rare variants present in the general population, it is 

noteworthy that 13 out of 21 and 13 out of 20 FH mutations detected thus far were 

missense mutations.8,10  The five missense mutations reported here, H92R, K187R, P149L 

R190H, and R190C, affect highly conserved residues among human, pig, rat, mouse, 

yeast, and E. coli FH (data not shown).  As mentioned above, the proposed FH crystal 

structure suggests that the interaction between K187 and R190 residues, along with E312, 

would be crucial for the stability of the active site loops.8  According to the same model, 

P149 is positioned adjacent to an active site required for tetramerization of the FH 

protein.  Mutations in these highly conserved residues would very likely disrupt the 

folding and tetramerization of the enzyme. 

In addition to nonsense, splice site, and missense mutations, we have also 

identified a novel 6 bp deletion starting at nucleotide 1176, 1176del6, in MCL-16, 

resulting in an in-frame deletion of two amino acids, A350 and V351.  Amino acid 

residues A350 and V351 are conserved in human, pig, rat, and mouse FH.  The mutation 

V351L, affecting one of the residues involved in the deletion, was identified in one of our 

previously reported MCL families.9 

We have identified two unaffected carriers of FH mutations.  The first one, III-3 

from MCL-6 family (Fig 1), is a 17-year-old male.  Sequence analysis confirmed the 

haplotype results (Fig 3), with the identification of the splice site mutation 905-1G>A in 

III-3 and his mother, II-6, who reported onset of MCL symptoms at the age of 23.  Exon-

skipping is likely to be the mechanism in which the involved exon is spliced out of the 
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mRNA.14  Skipping of exon 7 would result in an in-frame deletion.  Unfortunately, 

mRNA sample from this family was not available for further testing.  The second 

unaffected carrier identified in our study is a 12-year-old child, III-1 from pedigree MCL-

15, who carries the missense mutation H92R (Fig 1).  The age of onset of MCL in her 

mother (II-2) was 30 years.  Given the typical delayed onset of MCL in their affected 

parents, III-3 (MCL-6) and III-1  (MCL-15) are most likely predisposed to develop MCL 

later in life. 

 An important implication of identifying susceptibility genes for tumorigenesis 

such as MCL is the possible role they may play in the more common sporadic 

presentation of the same type of tumors.  Families with MCL present with benign skin 

and uterine leiomyomas, the latter being a major public health issue for women. In 

addition, the aggressive papillary renal cell carcinoma and collecting duct carcinoma of 

the kidney can also be associated with MCL, as well as malignant leiomyosarcoma.5,8,10  

So far, several groups have studied different types of malignancies, and have found FH 

mutations in a small number of tumors, including uterine and cutaneous leiomyomas, 

leiomyosarcomas and soft tissue sarcoma.12,15,16  Two other studies have excluded FH 

involvement in the pathogenesis of familial and sporadic prostate cancer.17,18  Recently, a 

novel alternatively-spliced transcript of the human alpha-methylacyl-CoA racemase, 

known to be elevated in prostate cancer, was found to have 88% identity with a 521-bp 

sequence spanning exons 7-10 of FH.19  In all, the role of FH mutations in sporadic 

tumorigenesis remains inconclusive. 

 The identification of the particular FH mutation in each MCL family will allow 

for close follow-up of those individuals at risk for the development of the aggressive 
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papillary renal cell cancer and collecting duct cancer of the kidney.4,5  The finding of skin 

leiomyoma in a patient should promote the examination for multiple leiomyomata in this 

patient as well as in all family members, together with the screening of the FH gene.  

Special attention should be paid for the early-onset of uterine fibroids in females and for 

the existence of kidney cancer in male and females within the family. 
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Table 1. Germline FH Mutations in MCL Families 

 
Family Wildtype sequence Mutant sequence Amino-acid changea Exon 

MCL-14 CAA TAA Q4X 2 

MCL-15 CAT CGT H92R 4 

MCL-4* AGC ATC S115I 4 

MCL-2* CAG TAG Q142X 4 

MCL-13 CCC CTC P149L 5 

MCL-11 AAG AGG K187R 5 

MCL-10 CGT TGT R190C 5 

MCL-12 CGT CAT R190H 5 

MCL-6 905-1G 905-1G>A - Intron 6 

MCL-7 905-1G 905-1G>A - Intron 6 

MCL-8 905-1G 905-1G>A - Intron 6 

MCL-9 905-1G 905-1G>A - Intron 6 

MCL-1* CAT TAT H275Y 7 

MCL-5* GAAAATGAACCA GAAAACCA 1081del4b 7 

MCL-16 CATGTTGCTGTCACT CATGTCACT 1176del6 8 

MCL-3* GTC CTC V351L 8 
a Amino-acid positions are derived from the cytosolic enzyme sequence (468 aa). The 
exon number corresponds to the entire gene; exon 1 encodes the 43 aa that form the 
mitochondrial signal peptide and the first amino acid of the cytosolic protein. 
b1081del4 mutation corresponds to a 4-bp deletion between amino acids 318 and 319. 
* denote mutations reported in our previous study.9 



 

 

20 

LEGENDS FOR FIGURES 

 

Fig 1. Pedigrees with MCL. Black, gray, and empty symbols indicate affected, unknown, 

and unaffected family members, respectively. Asteriks indicate individuals whose blood 

samples were available.  No pedigree information was available for family MCL-10. 

 

Fig 2. Clinical Pathology of Cutaneous Leiomyoma. Note the lesions on legs (MCL-13) 

(A), neck (MCL-9) (B), lower back (MCL-8) (C), and upper back (MCL-6) (D).  

Clustered lesions typically present on upper trunk and back.  Lesions clustering in the 

neck and leg as shown in (A) and (B) are uncommon. 

 

Fig 3. Haplotype Analysis of MCL-6-9 Families.  (A) Distances between polymorphic 

markers and the FH gene are shown in Mb and cM.  (B) The genotypes shown for each 

individual correspond to markers D1S517, D1S2785, D1S304 D1S180, D1S204, D1S547, 

D1S1634, and D1S1609 (from centromere to telomere, top to bottom). +/- denotes the 

carrier of an FH mutation in MCL-6. 
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