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1 Introduction and main results

Classical supersymmetric solutions of supergravity theories play a key rôle in many of the
recent developments in string theory, provide vacua, on which the theory can be quantized
and may be interesting for phenomenology, and objects that live in those vacua such as
p-branes, black holes etc. Therefore, the amount of effort that is being devoted to the
classification of supersymmetric solutions of supergravity theories, both in higher [1]-[17]
and lower [18]-[26] dimensions, can hardly be called a surprise.

N = 2, d = 4 supergravities, the cases under consideration, are particularly interesting
theories: they are simple enough to be manageable and yet rich enough in structure,
duality symmetries, interesting solutions and phenomena. Many, but not all, of them are
also related to low-energy limit of Calabi-Yau compactifications of 10-dimensional type II
superstring theories. There is a very extensive literature on these theories3 but, except for
the simplest cases of pure gauged and ungauged supergravity [28, 23], and for black-hole
type solutions,4 there have been no systematic attempts to classify all their supersymmetric
solutions. In this work we start filling this gap by classifying all the supersymmetric
configurations and solutions in the next-to-simplest case, namely pure supergravity coupled
to n vector supermultiplets whose supersymmetric black-hole solutions have been studied
intensively in the not so remote past. This work should also lay the groundwork for the
more complicated cases we intend to study next.

In this work we use the method of Ref. [19], consisting in finding differential and alge-
braic equations satisfied by the tensors that can be built as bilinears of the Killing spinor,
whose existence we assume from the onset. We then derive consistency conditions for these
equations to admit solutions and determine necessary conditions for the backgrounds to
be supersymmetric. Subsequently we show that the conditions are also sufficient, meaning
that we have identified all the supersymmetric configurations of the theory. Finally we
impose the equations of motion in order to find the supersymmetric solutions. Throughout
this work we stress the difference between generic supersymmetric field configurations and
classical solutions of the equations of motion. We will also make use of the Killing spinor
identities, derived in Refs. [33, 34], to minimize the number of independent equations of
motion that need to be checked explicitly in order to prove that a given supersymmetric
configuration is a solution.

Let us briefly describe our results: the supersymmetric solutions of N = 2, d = 4
supergravity coupled to n vector supermultiplets belong to two main classes:

1. Those with a timelike Killing vector. They are essentially the field configurations
found in Ref. [35], and include families of solutions of N = 4, 8, d = 4 supergravity
such as those found and studied, for instance, in Refs. [49, 38, 37]. These solutions
were shown in Ref. [36] to be the only supersymmetric ones with Killing spinors sat-
isfying the constraint Eq. (4.17). Here we show that all the supersymmetric solutions

3A good review on these theories is Ref. [27].
4See, e.g. the reviews [29, 30, 31, 32] and references therein.
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in the timelike class admit Killing spinors that satisfy that constraint and, therefore
there are no more supersymmetric configurations nor solutions in this class.

These supersymmetric configurations are completely determined by a choice of sym-
plectic section V/X. The metric is then given by

ds2 = |M |2(dt+ ω)2 − |M |−2dxidxi , (1.1)

where

|M |−2 = 2eK[V/X,(V/X)∗] , (1.2)

and where K[V/X, (V/X)∗] means that the Kähler potential has to be computed
using in the expression Eq. (C.24) the components of the symplectic section V/X.
ω = ωidx

i is a time-independent 1-form that has to satisfy the constraint

(dω)mn = εmnpe
−K[V/X,(V/X)∗]Qp[V/X, (V/X)∗] , (1.3)

where Qp[V/X, (V/X)∗] is the pullback of the Kähler 1-form connection, computed
in the same fashion.

The vector field strengths are given by

F = 1√
2
{d[|M |2R(dt+ ω)]− ?[|M |2dI ∧ (dt+ ω)]} . (1.4)

where R and I stand, respectively, for the real and imaginary parts of the symplectic
section V/X.

The scalar fields Zi can be computed by taking the quotients

Zi = (V/X)i/(V/X)0 . (1.5)

The supersymmetric configurations are classical solutions iff the real section I is
harmonic on R3. Rewriting the equation that determines ω as

(dω)mn = 2εmnp〈 I | ∂pI 〉 , (1.6)

we see that its integrability condition

〈 I | ∂p∂pI 〉 = 0 , (1.7)

is satisfied for I harmonic on R3. In practice, though, the only functions globally
harmonic in R3 are constant and the rest have singularities and for them the above
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condition becomes non-trivial to satisfy [39, 40]. We will discuss these conditions
and their implications in a forthcoming paper [41].

The 2n̄ real harmonic functions then determine the solution, although one has to
solve R in terms of the I in order to be able to write the whole solution explicitly
in terms of the harmonic functions. This problem is equivalent to that of solving the
stabilization equations and has no known generic solution except in a few cases, some
of which we review in Appendix D.

2. Those with a null Killing vector [42]: Generically they have Brinkmann-type metrics

ds2 = 2du(dv +Hdu+ ω̂)− 2e−Kdzdz∗ . (1.8)

where K is the Kähler potential and ω̂ is determined by the equation

(dω̂)zz∗ = 2ie−KQu , (1.9)

where Qµ is the pullback of the Kaḧler 1-form connection (See Eq. (B.11)).

The scalar fields can be defined through a symplectic section with arbitrary depen-
dence on u and z and the vector fields are determined by complex arbitrary functions
φ(u), ψi(z, z∗, u)

F = e−K/2
(
Uiψi + i

2
V∗φ

)
du ∧ dz∗ + c.c. . (1.10)

The solutions of this case are harder to determine completely. There are, however,
two interesting families of solutions:

(a) Cosmic strings. They have vanishing vector field strengths and scalars that are
arbitrary holomorphic functions Zi(z).

ds2 = 2du(dv +Hdu)− 2e−[K(Z,Z∗)−h−h∗]dzdz∗ ,

Zi = Zi(z) ,

h = h(z) ,

∂z∂z∗H = 0 .

(1.11)

The functions h must have the right behavior under Kähler transformations to
make the metric formally duality-invariant and the Killing spinors well defined.
These solutions generalize the ones found in Ref. [42] in flat spacetime for ar-
bitrary Kähler potentials. Observe that the harmonic function H describes a
plane wave moving along the string.
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(b) Plane waves. In the simplest case they have the form

ds2 = 2du(dv +Hdu)− 2dzdz∗ ,

FΛ + = i
2
L∗Λφ(u)du ∧ dz∗ ,

Zi = Zi(u) ,

H = (Gij∗ŻiŻ∗ j
∗

+ 2|φ|2)|z|2 + f(z, u) + f ∗(z∗, u) ,

(1.12)

where Zi, φ are arbitrary functions of u and f an arbitrary function of u and z.

This work is organized as follows: in section 2 we review the aspects of these theories
relevant for this work: action, equations of motion, supersymmetry transformations and
symplectic transformations. In section 3 we set up the problem we want to solve: Killing
spinor equations, integrability conditions and conditions imposed on Killing spinor bilin-
ears. In section 4 we solve the case in which the Killing vector bilinear is timelike and in
section 5 the case in which it is null. The appendices contain the conventions (A) some
formulae of Kähler (B) and special Kähler (C) geometry plus some explicit examples of
supersymmetric solutions for chosen theories (D).

2 N = 2, d = 4 supergravity coupled to vector super-

multiplets

In this section we are going to describe briefly the theory we are going to work with. Our
main source for the formalism used in this section is Ref. [43], whose notation we use
here quite closely although its origin goes back to Refs. [44, 45]. Our conventions for the
metric, connection, curvature, gamma matrices and spinors are described in detail in the
appendices of Ref. [26] which also contain many identities and results that will be used
repeatedly throughout the text. These conventions are very similar, but not identical, to
those employed in Ref. [43]. The differences and a dictionary of all the indices we use can
be found in Appendix A.

The gravity multiplet of the N = 2, d = 4 theory consists of the graviton eaµ, a pair
of gravitinos ψI µ , (I = 1, 2) which we describe as Weyl spinors, and a vector field Aµ.
Each of the n vector supermultiplets of N = 2, d = 4 supergravity that we are going to
couple to the pure supergravity theory contains complex scalar Zi , (i = 1, · · · , n), a pair
of gauginos λI i, which we also describe as Weyl spinors and a vector field Aiµ. In the
coupled theory, the n̄ = n + 1 vectors can be treated on the same footing and they are
described collectively by an array AΛ

µ (Λ = 1, · · · , n̄). The coupling of scalars to scalars
is described by a non-linear σ-model with Kähler metric Gij∗(Z,Z∗) (see Appendix B),
and the coupling to the vector fields by a complex scalar-field-valued matrix NΛΣ(Z,Z∗).
These two couplings are related by a structure called special Kähler geometry, described
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in Appendix C. The symmetries of these two sectors will be related and this relation will
be discussed shortly.

The action for the bosonic fields of the theory is

S =

∫
d4x
√
|g|
[
R + 2Gij∗∂µZi∂µZ∗ j

∗
+ 2=mNΛΣF

ΛµνFΣ
µν − 2<eNΛΣF

Λµν?FΣ
µν

]
.

(2.1)
Observe that the canonical normalization of the vector fields kinetic terms implies that
=mNΛΣ is negative definite, as is guaranteed by special geometry [46].

For vanishing fermions, the supersymmetry transformation rules of the fermions are

δεψI µ = DµεI + εIJT
+
µνγ

νεJ , (2.2)

δελ
Ii = i 6∂ZiεI + εIJ 6Gi+εJ , (2.3)

where Dµ is defined in Eq. (B.10), which acts on the spinors εI , since they are of Kähler
weight 1/2, as

DµεI ≡ (∇µ + i
2
Qµ)εI , (2.4)

and Qµ is the pullback of the Kähler 1-form defined in Eq. (B.3). The 2-forms T and Gi

are the combinations

Tµν ≡ TΛF
Λ
µν , (2.5)

Gi
µν ≡ T iΛFΛ

µν , (2.6)

where, in turn, TΛ and T iΛ are, respectively, the graviphoton and the matter vector fields
projectors, defined in Eqs. (C.20) and (C.21).

The supersymmetry transformations of the bosons are

δεe
a
µ = − i

4
(ψ̄I µγ

aεI + ψ̄Iµγ
aεI) , (2.7)

δεA
Λ
µ = 1

4
(LΛ ∗εIJ ψ̄I µεJ + LΛεIJ ψ̄

I
µε
J)

+ i
8
(fΛ

iεIJ λ̄
Iiγµε

J + fΛ∗
i∗ε

IJ λ̄I
i∗γµεJ) , (2.8)

δεZ
i = 1

4
λ̄IiεI . (2.9)

For convenience, we denote the Bianchi identities for the vector field strengths by
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BΛµ ≡ ∇ν
?FΛ νµ . (2.10)

and the bosonic equations of motion by

Eaµ ≡ −
1

2
√
|g|

δS

δeaµ
, Ei ≡ −

1

2
√
|g|

δS

δZi
, EΛ

µ ≡ 1

8
√
|g|

δS

δAΛ
µ

, (2.11)

whose explicit forms can be found to be

Eµν = Gµν + 2Gij∗ [∂µZi∂νZ
∗ j∗ − 1

2
gµν∂ρZ

i∂ρZ∗ j
∗
]

+8=mNΛΣF
Λ +

µ
ρFΣ−

νρ , (2.12)

Ei = ∇µ(Gij∗∂µZ∗ i
∗
)− ∂iGjk∗∂ρZj∂ρZ∗ k

∗
+ ∂i[F̃Λ

µν?FΛ
µν ] , (2.13)

EΛ
µ = ∇ν

?F̃Λ
νµ , (2.14)

where we have defined the dual vector field strength F̃Λ by

F̃Λµν ≡ −
1

4
√
|g|

δS

δ?FΛ
µν

= <eNΛΣF
Σ
µν + =mNΛΣ

∗FΣ
µν . (2.15)

The Maxwell and Bianchi identities can be rotated into each other by GL(2n̄,R) trans-
formations under which they are a 2n̄-dimensional vector:

Eµ ≡

 BΛµ

EΛ
µ

 −→
 D C

B A

 BΛµ

EΛ
µ

 , (2.16)

where A,B,C and D are n̄× n̄ matrices. These transformations act in the same form on
the vector of 2n̄ 2-forms

F ≡

 FΛ

F̃Λ

 −→
 D C

B A

 FΛ

F̃Λ

 , (2.17)

and, since, by definition,

F̃ ′Λ = <eN ′ΛΣF
′Σ + =mN ′ΛΣ

?F ′Σ , (2.18)

for the transformations to be consistently defined, the must act on the period matrix N
according to

N ′ = (AN +B)(CN +D)−1 . (2.19)
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Furthermore, the transformations must preserve the symmetry of the period matrix, which
requires

ATC = CTA , DTB = BTD , ATD − CTB = 1 , (2.20)

i.e. the transformations must belong to Sp(2n̄,R).
The above transformation rules for the vector field strength and period matrix imply

=mN ′ = (CN ∗ +D)−1T=mN (CN +D)−1 , F ′Λ + = (CN ∗ +D)ΛΣF
Σ + , (2.21)

so the combination =mNΛΣF
Λ +

µ
ρFΛ−

νρ that appears in the energy-momentum tensor is
automatically invariant.

The above symplectic transformations of the period matrix N correspond to certain
transformations of the complex scalar fields Zi:

N ′(Z,Z∗) = [AN (Z,Z∗) +B][CN (Z,Z∗) +D]−1 ≡ N (Z ′, Z ′ ∗) . (2.22)

These transformations have to be symmetries of the theory as well, which implies that
they have to be isometries of the special Kähler manifold [47]. Thus only the isometries
of the special Kähler manifold which are embedded in Sp(2n̄,R) are symmetries of all the
equations of motion of the theory (dualities of the theory). Observe that the Kähler poten-
tial is, in general, not invariant under the isometries of the Kähler metric, but undergoes a
Kähler transformation. This means that all objects with non-zero Kähler weight transform
non-trivially under duality.

The scalar equation Ei Eq. (2.13) can be written in a manifestly covariant form by rising
the index with Gj∗i, E i∗ . The complex conjugate equation then takes on the form

E i = Dµ∂
µZi + Gij∗∂j∗ [F̃Λ

µν∗FΛ
µν ] . (2.23)

3 Supersymmetric configurations: general setup

Our first goal is to find all the bosonic field configurations {gµν , FΛ
µν , Z

i} for which the
Killing spinor equations (KSEs):

δεψI µ = DµεI + εIJT
+
µνγ

νεJ = 0 , (3.1)

δελ
Ii = i 6∂ZiεI + εIJ 6Gi+εJ = 0 , (3.2)

admit at least one solution.5 It must be stressed that the configurations considered need

5The generalized holonomy of the gravitino supersymmetry transformation indicates that the minimal
number of solutions that these equations will admit is actually 4 [48], but we will not use this fact in our
derivation. We will, in the end recover the result that supersymmetric solutions generically preserve 1/2
or all supersymmetries.
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not be classical solutions of the equations of motion. Furthermore, we will not assume that
the Bianchi identities are satisfied by the field strengths of a configuration.

Our second goal will be to identify among all the supersymmetric field configurations
those that satisfy all the equations of motion (including the Bianchi identities).

Let us initiate the analysis of the KSEs by studying their integrability conditions.

3.1 Killing Spinor Identities (KSIs)

Using the supersymmetry transformation rules of the bosonic fields Eqs. (2.7–2.9) and using
the results of Refs. [33, 34] we can derive the following relations (Killing spinor identities,
KSIs) between the (off-shell) equations of motion of the bosonic fields Eqs. (2.12–2.14) that
are satisfied by any field configuration {eaµ, AΛ

µ, Z
i} admitting Killing spinors:

EaµγaεI − 4iεIJLΛEΛ
µεJ = 0 , (3.3)

E iεI − 2iεIJf ∗ iΛ 6 EΛεJ = 0 . (3.4)

The vector field Bianchi identities Eq. (2.10) do not appear in these relations because
the procedure used to derive them, assumes the existence of the vector potentials, and
hence the vanishing of the Bianchi identities.

It is convenient to treat the Maxwell equations and Bianchi identities on an equal footing
as to preserve the electric-magnetic dualities of the theory, for which it is convenient to
have a duality-covariant version of the above KSIs. This can be found by performing
duality rotations on the above identities or from the integrability conditions of the KSEs
Eqs. (3.1,3.2), which is the method we are going to use.

Using the Kähler special geometry machinery, we obtain

D[µδεψI ν] = −1
8
{[Rµν

ab − 8TΛT ∗ΣFΛ +
[µ|
aFΣ−

|ν]
b]γab + 4Gij∗∂[µZ

i∂ν]Z
∗ j∗}εI

+εIJD[µT
+
ν]ργ

ρεJ = 0 ,
(3.5)

which gives rise to

4γνD[µδεψI ν] = (Eµν − 1
2
gµν Eσσ)γνεI − 2iεIJLΛ(6 EΛ −NΛΣ 6BΣ)γµε

J = 0 . (3.6)

Contracting the above identity with γµ, we obtain another one involving only the trace
Eσσ, which can be used to eliminate it completely from the KSIs. The result is the duality-
covariant version of (the complex conjugate of) Eq. (3.3) we were after:

EaµγaεI − 4iεIJLΛ(EΛ
µ −NΛΣBΣµ)εJ = 0 . (3.7)

It turns out to be convenient to define the combination
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HΛµ ≡ (=mN )−1|ΛΣ(EΣ
µ −NΣΩBΣµ) . (3.8)

Using it, the above KSIs Eqs. (3.6,3.7) take the form

(Eµν − 1
2
gµν Eσσ)γνεI − TΛ 6HΛγµεIJε

J = 0 , (3.9)

EaµγaεI − 2TΛHΛµεIJε
J = 0 . (3.10)

Observe that the graviphoton-projected combination TΛHΛµ can be written as

TΛHΛµ = 2i[LΛEΛ
µ −MΛBΛµ] = 2i 〈 Eµ | V 〉 , (3.11)

where E is the symplectic vector defined in Eq. (2.16).
The duality-covariant version of Eq. (3.4) can be obtained in a similar fashion, and

reads

− i 6DδελIi = E iεI − 2iT iΛ 6HΛεIJεJ = 0 . (3.12)

Observe that the identities Eqs. (3.6,3.7) and (3.12) are necessary but not sufficient
conditions to have supersymmetry.

From these identities we can derive further identities involving only tensors by multipli-
cation with gamma matrices and conjugate spinor from the left, as to have only bilinears.
As is usual, it is convenient to consider the case in which the vector bilinear V µ ≡ iε̄IγµεI
is timelike and the case in which it is null, separately.

3.1.1 The timelike case: independent e.o.m.’s

When V µ is timelike one can derive the following identities:

Eµν = Eρσvρvσvµvν , (3.13)

TΛHΛµ = − i
2
eiαEρσvρvσvµ , (3.14)

T iΛHΛµ = 1
2
e−iαE ivµ , (3.15)

where we have defined the unit vector and the (local) phase

vµ ≡ V µ/2|X| , eiα ≡ X/|X| . (3.16)

These identities contain a large amount of information about the supersymmetric con-
figurations. In particular, they contain the necessary information about which equations of
motion need to be checked explicitly in order to determine whether a given configuration
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solves the equations of motion: the first of these identities tells us that the only com-
ponents of the Einstein equations that do not vanish automatically for supersymmetric
configurations are those in the direction of vµvν ; the rest vanish automatically. I.e. once
supersymmetry is established, one does not need to check that those components of the
Einstein equations are satisfied. Further, the second and third identities state that the
only components of the combination of Maxwell equations and Bianchi identities HΛµ that
do not vanish automatically are the ones in the direction vµ. For the graviphoton (second
equation), they are related to the only non-trivial components of the Einstein equations
and for the matter vector fields (third equation), they are related to the equations of mo-
tion of the scalars. Therefore, we see that iff the Maxwell equation and Bianchi identities
are satisfied, then the equations of motion of the scalars and the Einstein equations are
satisfied identically. The conclusion then must be that, in the timelike case, one only
needs to solve the Maxwell equation and the Bianchi identities in order to be sure that a
supersymmetric configuration is an actual (supersymmetric) solution of the equations of
motion.

3.1.2 The null case

When V µ is a null-vector (we will denote it by lµ), using the auxiliary spinor η defined in
the appendix of Ref. [26] to construct a standard complex null tetrad {lµ, nµ,mµ,m∗µ} we
can derive the following identities:

(Eµν − 1
2
gµν Eσσ)lν = (Eµν − 1

2
gµν Eσσ)mν = 0 , (3.17)

Eµνlν = Eµνmν = 0 , (3.18)

TΛHΛµ = 0 , (3.19)

T iΛHΛµlµ = T iΛHΛµmµ = 0 , (3.20)

E i = 0 . (3.21)

Thus, in this case, the equations of motion of the scalars are always automatically
satisfied for a supersymmetric configuration. Only a few components of the Einstein and
Maxwell equations and Bianchi identities may also be non-zero and these are the only ones
that need to be checked if we want to have solutions. Observe that the vanishing of the
graviphoton-projected combination TΛHΛµ does not imply the vanishing of the Maxwell
equations or the Bianchi identities.

3.2 Solving the Killing spinor equations

To solve the KSEs we are going to follow these steps:
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1. In section 3.3, we are going to derive equations for the tensor bilinears that can be
built from the Killing spinors.6 Solving these equations is not, in principle, sufficient
for solving the KSEs, but it is certainly necessary, which is why they are analyzed
first.

2. We are going to see in in the same section that these equations for the bilinears state
that the vector bilinear we denote by V µ, is always a Killing vector, whereas the
other three are closed (locally exact) 1-forms, which need not be independent.

3. In the same section we will derive an expression for the contractions V νFΛ
νµ in terms

of the scalar bilinear X and the scalars Zi. These contractions determine to a large
extent the form of the full vector field strengths, depending on the causal nature of
the Killing vector V µ, which can be timelike or null. These two cases have to be
studied separately.

4. In the timelike case (section 4)

(a) The contractions V νFΛ
νµ fully determine the vector field strengths (section 4.1).

(b) The form of the metric is also fixed by the existence of a timelike Killing vector
and the three exact 1-forms, which, in this case, are independent (section 4.2).

(c) At this point these two fields are entirely expressed in terms of bilinear X and
the scalars Zi, which remain arbitrary, and we are going to check explicitly
(section 4.3) that, in all cases, these field configurations are supersymmetric,
provided that they satisfy the integrability condition Eq. (4.12).

(d) This solves the timelike case, but, obviously, we are particularly interested in
supersymmetric configurations which are solutions. We have seen in the previous
section that the KSIs insure that this is equivalent to satisfying the Maxwell
equations and the Bianchi identities, which, as we are going to see (section 4.4),
is the case if the scalars satisfy the ‘simple’ Eqs. (4.30).

5. In the null case (section 5)

(a) we will use the formalism of Ref. [49], exploiting the fact that the two εI must
be proportional and can be written in the form εI = φIε. The KSEs can be split
into equations involving ε and equations involving φIs.

(b) A second spinor η needs to be introduced as to construct a null tetrad via
spinor bilinears; the relative normalization of ε and η requires η to satisfy a
differential equation whose integrability conditions need to be added to the
KSEs integrability conditions. All these conditions and the conditions implied
for the null tetrad are studied in section 5.2.

6The definitions and properties of these bilinears can be found in the appendices of Ref. [26].
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(c) Since the solution admits a covariantly constant null vector, we can introduce
a coordinate system and solve the consistency conditions (see section 5.3). In
section 5.4 we use this coordinate system to analyze the KSEs, and show that a
supersymmetric configuration preserves either half or all the supersymmetries.

(d) Section 5.5, then, analyzes the equations of motion, reducing them to two,
seemingly involved, differential equations, namely Eqs. (5.88) and (5.91), and
discusses some interesting subclasses of solutions.

3.3 Killing equations for the bilinears

From the gravitino supersymmetry transformation rule Eq. (2.2) we get the independent
equations

DµX = −iT+
µνV

ν , (3.22)

∇µV
I
J ν = iδIJ(XT ∗−µν −X∗T+

µν)− i(εIKT ∗−µρΦKJ
ρ
ν − εJKT+

µρΦ
IK

ν
ρ) .(3.23)

The first equation relates the scalar bilinear X with the self-dual part of the graviphoton
field strength and indicates that it contains all the information of the central charge of the
theory [50].

The first term in the r.h.s. of the second equation is completely antisymmetric in µν
indices and has a non-vanishing trace in IJ indices, while the second term is completely
symmetric in µν indices and traceless in IJ indices. This implies that V µ is a Killing
vector and the 1-form V̂ = Vµdx

µ satisfies the equation

dV̂ = 4i(XT ∗− −X∗T+) , (3.24)

while the remaining 3 independent 1-forms V̂ i ≡ 1√
2
V I

J µσ
i J
Idx

µ (σi IJ , i = 1, 2, 3 are the

Pauli matrices) are exact

dV̂ i = 0 . (3.25)

From the gauginos supersymmetry transformation rules, Eqs. (2.3), we get

V I
K
µ∂µZ

i + εIJΦKJ
µνGi+

µν = 0 , (3.26)

iMKI∂µZ
i + iΦKI

µ
ν∂νZ

i − 4iεIJV K
J
jGi+

µν = 0 . (3.27)

The trace of the first equation gives

V µ∂µZ
i = 0 , (3.28)
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while the antisymmetric part of the second equation gives

2iX∗∂µZ
i + 4iGi+

µνV
ν = 0 . (3.29)

Using Eq. (C.19), we can derive

iL∗ΛT+ + 2fΛ
iG

i+ = FΛ + , (3.30)

which in its turn allows us to combine Eqs. (3.22) and (3.29), as to obtain

V νFΛ +
νµ = L∗ΛDµX +X∗fΛ

i∂µZ
i = L∗ΛDµX +X∗DµLΛ , (3.31)

which, in the timelike case, is enough to completely determine FΛ as a function of the
scalars Zi, X and V .

4 The timelike case

4.1 The vector field strengths

As is well-known, the contraction of a self-dual 2-form with a non-null vector completely
determines the 2-form. In the timelike case we can use V µ and we have

CΛ +
µ ≡ V νFΛ +

νµ ⇒ FΛ + = V −2[V̂ ∧ ĈΛ + + i ?(V̂ ∧ ĈΛ +)] , (4.1)

where CΛ + is given by Eq. (3.31). Therefore, we have the vector field strengths written in
terms of the scalars Zi, X and the vector V . Let us then consider the spacetime metric.

4.2 The metric

It is convenient to choose coordinates adapted to the timelike Killing vector V and also to
use the exact 1-forms V̂ i (which, as was said before, are independent in the timelike case)
to define the spacelike coordinates. Thus, we define a time coordinate t by

V µ∂µ ≡
√

2∂t , (4.2)

and the spacelike coordinates xi by

V̂ i ≡ dxi . (4.3)

Since in this case V µVµ = 2|M |2 = 4|X|2 6= 0, the metric can always be constructed as

ds2 = |M |−2[V̂ ⊗ V̂ − V̂ I
J ⊗ V̂ J

I ] = |M |−2[1
2
V̂ ⊗ V̂ − V̂ i ⊗ V̂ i] , (4.4)

which is manifestly invariant under all the transformations leaving invariant the equa-
tions of motion and the supersymmetry transformation rules. With the above choice of
coordinates, the metric takes on the form
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ds2 = |M |2(dt+ ω)2 − |M |−2dxidxi , i, j = 1, 2, 3 , (4.5)

where ω = ωidx
i is a time-independent 1-form that satisfies an equation that can be found

as follows: the choice of coordinates implies

V̂ = 2
√

2|X|2(dt+ ω) , (4.6)

which trivially implies that

dω = 1
2
√

2
d(|X|−2V̂ ) . (4.7)

Using Eqs. (3.24) and (3.22) we find the equation for ω

dω = − i
2
√

2

?

[
(XDX∗ −X∗DX) ∧ V̂

|X|4

]
. (4.8)

With this equation we have succeeded in expressing completely the metric in terms of
the scalars X,Zi and the vector V , as we did with the vector field strengths.

It is convenient to define the U(1) connection 1-form

ξ ≡ i
2

X∗dX −XdX∗

|X|2
. (4.9)

This ξ is similar to the ξ defined in the N = 4, d = 4 case in Ref. [26], but in this case it
is exact. In terms of ξ and the pullback of the Kähler 1-form Q, the equation for ω is

dω = 1√
2

?

[
(ξ −Q) ∧ V̂

|M |2

]
. (4.10)

In terms of the 3-dimensional Euclidean metric, this equation takes the form

(dω)mn =
1

|X|2
εmnp(Qp − ξp) , (4.11)

and we will later rewrite it to a more standard form.
In what follows the integrability condition for this equation will be needed: It reads

∂m

[
(Qm − ξm)

|X|2

]
= 0 . (4.12)

4.3 Solving the Killing spinor equations

We are now going to show that the field configurations of N = 2, d = 4 given by the
metric Eqs. (4.5) and (4.11) and field strengths Eqs. (4.1) and (3.31) are supersymmetric
for arbitrary values of the complex scalars X,Zi (X 6= 0).

Let us start by the gauginos supersymmetry transformations Eqs. (3.2). Using Eqs. (4.1),
we find
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6FΛ + = − 1

|X|2
CΛ +

ρVσγ
ρσ 1

2
(1− γ5) . (4.13)

On the other hand, using the properties Eqs. (C.12) and (C.13), we find that

T iΛCΛ +
µ = 1

2
X∗∂µZ

i , (4.14)

and, combining this with the previous result we get

T iΛ 6FΛ +εIJεJ = − M IJ

2|X|2
∂ρZ

iVσγ
ρσεJ = i 6∂Zi(iγ0e

−iαεIJεJ) , (4.15)

where α is the phase of the complex scalar bilinear X and we have used that in our Vierbein
basis V̂ = 2|X|e0, Eq. (3.28).

Eq. (3.2) takes, then the form

i 6∂Zi(εI + iγ0e
−iαεIJεJ) = 0 , (4.16)

and can always be solved by imposing the constraint

εI + iγ0e
iαεIJε

J = 0 , (4.17)

which breaks half of the available supersymmetries.
Let us now consider the 0th component of the gravitino supersymmetry transformations

Eq. (3.1): using Eq. (4.11), we find

D0εI =
1√

2|X|
{∂t −X∗DmXγ0m}εI . (4.18)

On the other hand, using Eqs. (C.11) and (C.12), we find

TΛF
Λ +

0m = i√
2
DmX , (4.19)

and combining this with the previous result we find that the 0th component of Eq. (3.1)
takes, up to a global factor, the form

∂tεI −
X∗DmX

|X|2
γ0m

[
εI + iγ0e

iαεIJε
J
]

= 0 , (4.20)

which is always solved by time-independent spinors satisfying the constraint (4.17).
Finally, let us consider the mth component of Eq. (3.1): using essentially the same

properties, we find on the one hand

DmεI =
√

2|X|
{
Dm − i

2
εmnp −

X∗DpX

|X|2
γ0n

}
εI , (4.21)

and on the other,
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TΛF
Λ +

maγ
a = 1√

2
(δmp − iεmnpγ0m)DpXiγ0 . (4.22)

Combining these two results and using the constraint Eq. (4.17) as to have an equation
involving spinors of the same chirality, we find that the mth component of Eq. (3.1), up to
a multiplicative factor, reads

∂m(X−1/2εI) = 0 , (4.23)

which is solved by

εI = X1/2εI 0 , ∂µεI 0 = 0 , εI 0 + iγ0εIJε
J

0 = 0 . (4.24)

This is the form of the Killing spinor associated to the field configurations that we
have found. All of them are, therefore, supersymmetric and preserve, at least, 1/2 of the
possible supersymmetries.

Observe, however, that in this proof we have assumed that Eq. (4.11) can be solved.
Thus, we have assumed implicitly that the integrability condition of this equation, Eq. (4.12),
has been solved. This equation is the only condition that the field configurations consid-
ered need to satisfy in order to be supersymmetric and, in fact, to be well defined. We will
reconsider this condition when we consider supersymmetric solutions, but we can already
see that our result is different from the one in Ref. [35], where the pull-back of the Kähler
form had to vanish in order for the solution to be supersymmetric.

4.4 Equations of motion

Following Refs. [49, 26] we are going to introduce an Sp(2n̄,R) vector of electric and
magnetic scalar potentials E defined by

∇µE ≡ V νFνµ , (4.25)

where Fµν the Sp(2n̄,R) vector of field strengths defined in Eq. (2.17). Let us also define
the real symplectic sections I and R

R ≡ <e(V/X) , I ≡ =m(V/X) , (4.26)

where V is the symplectic section defined in Appendix C.
Then, using Eq. (3.31) we find

E = 2|X|2R , (4.27)

and using the explicit form of V̂ and the property Eq. (4.8) we can write

F = −1
2
{d[RV̂ ]− ?[dI ∧ V̂ ]} . (4.28)

which immediately leads to the following form of the Bianchi identities and Maxwell equa-
tions:
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dF = 1
2
d?[dI ∧ V̂ ] . (4.29)

Rewriting these equations in standard Cartesian R3 language, we find that the Maxwell
equations and Bianchi identities (whence, according to the KSIs, all the equations of motion
of N = 2, d = 4 supergravity) are satisfied if

∂m∂mI = 0 , (4.30)

i.e. if the imaginary parts of LΛ/X and MΛ/X are given by 2n̄ real harmonic functions
on R3.

Let us now reconsider the integrability condition Eq. (4.12) of the differential equation
that defines the 1-form ω. The equation for the 1-form ω (4.11) can be rewritten as to give

(dω)mn = 2εmnp〈 I | ∂pI 〉 , (4.31)

and its integrability condition takes on the simple form

〈 I | ∂p∂pI 〉 = 0 , (4.32)

which is, as discussed in the introduction, a non-trivial condition due to the presence of
singularities in harmonic function [39, 40].

Summarizing, we have just shown that the configurations of N = 2, d = 4 supergravity
given by the metric Eqs. (4.5) and (4.11) and field strengths Eqs. (4.1) and (3.31) are
solutions of the equations of motion iff the scalars X,Zi satisfy the condition Eq. (4.30).
The integrability condition of the equation for the 1-form ω, which was the only condition
necessary to have supersymmetry, is automatically satisfied for supersymmetric solutions.

We still have to show how, given the real harmonic section I, we can express the
scalars, the vector field strengths and the metric in terms of this harmonic section: the
metric Eq. (4.5) depends of the 1-form ω which can be calculated from I integrating
Eq. (4.31) and on the absolute value of the bilinear scalar X, which can be computed from
I and R observing that

〈 (V/X)∗ | V/X 〉 = 2i〈R | I 〉 = i
1

|X|2
, (4.33)

and that

〈 (V/X)∗ | V/X 〉 = ie−K[V/X,(V/X)∗] , (4.34)

where K[V/X, (V/X)∗] is the expression for the Kähler potential obtained in Eq. (C.24)
where the coordinates X have been substituted by L/X. This leads to the expression

|M |2 = 2|X|2 = 2eK[V/X,(V/X)∗] . (4.35)

Observe that the form of the Kähler potential that has to be used here, namely
Eq. (C.24), is fixed after a section has been chosen and no Kähler transformations are
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allowed. Otherwise, the whole construction would be inconsistent since, as we have dis-
cussed, the spacetime metric is invariant under all the symmetries of the equations of
motion and, in particular, under Kähler transformations.

It is also possible to rewrite Eq. (4.31) for ω as

(dω)mn = εmnpe
−K[V/X,(V/X)∗]Qp[V/X, (V/X)∗] . (4.36)

It is clear that, in order to find |M |2, and also in order to find the field strengths using
Eqs. (4.28) and the scalars using, for instance, the special coordinates

Zi =
Li

L0
=
Li/X
L0/X

, (4.37)

we need the real section R expressed as a function of I. Finding R(I) is equivalent to
solving the so-called “stabilization equations” [51, 52] which are nothing but Eqs. (4.29) for
static, spherical, asymptotically flat black holes evaluated at the black-hole horizon: the
l.h.s. gives the Sp(2n̄,R) vector of charges qt ≡

(
pΛ , qΛ

)
and this essentially determines

the coefficient of the harmonic functions I. Solving the stability equations amounts to
finding the real part of the section V/X as a function of the imaginary part, i.e. of the
charges. There seems to be no systematic procedure to find R(I) and the solution of this
problem is only known in a few simple cases, some of which we review in Appendix D.

At this point we should compare our results with those of Refs. [35] and [36]. In th efirst
of these references, the supersymmetric configurations we have found were proposed as an
Ansatz and they were shown to be supersymmetric. In the second, the same solutions were
found from the KSEs of superconformal gravity starting with an Ansatz for the contraint
satisfied by the Killing spinors of the form Eq. (4.17)7. We have just shown that all the
solutions8 in the timelike class satisfy this constraint and there are no more solutions than
those found by Behrndt, Lüst and Sabra in the timelike class, although there are more
supersymmetric solutions in the null class, as we are going to see.

5 The null case

In the null case9 the two spinors εI are proportional εI = φIε. The complex scalar functions
φI carry a -1 U(1) charge w.r.t. the purely imaginary connection

ζ ≡ φIdφI , (5.1)

opposite to that of the spinor ε, so the εI are neutral. On the other hand, the φIs are
neutral with respect to the Kähler connection, and the Kähler weight of the spinor ε is the
same as that of the spinor εI , i.e. 1/2.

7Their results include also R2 corrections, but we are not concerned with them here.
8The exceptions are the maximally supersymmetric Minkowski and Bertotti-Robinson-type solutions.
9The technical details concerning the normalization of the spinors and the construction of the bilinears

in this case are explained in the Appendix of Ref. [26].
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We are now going to substitute εI = φIε into the KSEs and we are going to use the
normalization condition of the scalars φIφ

I = 1 to split the KSEs into three algebraic and
one differential equation for ε; one of the algebraic equations for ε will be a differential
equation for φI .

This substitution immediately yields

∂µφIε+ φIDµε− εIJφJT+
µνγ

νε∗ = 0 , (5.2)

φI 6∂Ziε∗ + εIJφJ 6Gi+ε = 0 . (5.3)

Acting on Eq. (5.2) with φI leads to

Dµε = −φI∂µφIε , (5.4)

which takes the form

D̃µε ≡ (Dµ + ζµ)ε = 0 , (5.5)

and becomes the only differential equation for ε. Observe that the covariant derivative D̃µ
contains, apart from the connection ζ, the spin and Kähler connections. Plugging Eq. (5.5)
into Eq. (5.2) as to eliminate Dµε we obtain

D̃φIε+ εIJφ
JT+

µνγ
νε∗ = 0 , (D̃φI ≡ (∂µ − ζµ)φI) , (5.6)

which is one of the algebraic constraints for ε and is a differential equation for φI .
Multiplying Eq. (5.3) with φI , we see that it splits into two algebraic constraints for ε:

6∂Ziε∗ = 0 , (5.7)

6Gi+ε = 0 . (5.8)

Finally, we add to the system an auxiliary spinor η, with the same chirality as ε but
with all U(1) charges opposite to those of ε and normalized by the condition

ε̄η = 1
2
. (5.9)

This normalization condition will be preserved if and only if η satisfies

D̃µη + aµε = 0 , (5.10)

for some aµ with U(1) charges −2 times those of ε, i.e.

D̃µaν = (∇µ − 2ζµ − iQµ)aν , (5.11)
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to be determined by the requirement that the integrability conditions of this differential
equation have to be compatible with those of the differential equation for ε.

Observe that the null tetrad of vector bilinears one constructs from ε and η will in
general have non-trivial charges and, in particular, non-trivial Kähler weight: taking into
account the definition of the bilinear vectors in Ref. [26], which we reproduce here for
convenience

lµ = i
√

2ε̄∗γµε , nµ = i
√

2η̄∗γµη , mµ = i
√

2ε̄∗γµη = iη̄γµε
∗ , m∗µ = i

√
2ε̄γµη

∗ = iη̄∗γµε .
(5.12)

we see that l and n have 0 U(1) charges but m has −2 times the charges of ε and m∗ has
+2 times the charges of ε. The metric

ds2 = 2l̂ ⊗ n̂− 2m̂⊗ m̂∗ , (5.13)

is invariant, though.
The orientation of the null tetrad is important: we choose the relation between a

standard Cartesian tetrad {e0, e1, e2, e3} and the complex null tetrad {eu, ev, ez, ez∗} =
{l̂, n̂, m̂, m̂∗} to be 

eu

ev

ez

ez
∗

 =
1√
2


1 1
1 −1

1 i
1 −i




e0

e1

e2

e3

 . (5.14)

This translates into identical relations between gamma matrices:
γu

γv

γz

γz
∗

 =


6 l
6 n
6m
6m∗

 =
1√
2


1 1
1 −1

1 i
1 −i




γ0

γ1

γ2

γ3

 . (5.15)

This choice implies for the chirality matrix

γ5 ≡ −iγ0γ1γ2γ3 = −γuvγzz∗ . (5.16)

5.1 Killing equations for the vector bilinears and first conse-
quences

We are now ready to derive equations involving the bilinears, in particular the vector
bilinears constructed from ε and the auxiliary spinor η introduced above. First we deal
with the equations that do not involve derivative of the spinors. Acting with ε̄ on Eq. (5.6)
and with ε̄γµ on Eq. (5.8) we get, respectively
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T+
µνl

ν = 0 , (5.17)

Gi+
µνl

ν = 0 , (5.18)

which together imply

FΛ +
µνl

ν = 0 , (5.19)

which in its turn implies

FΛ + = 1
2
φΛl̂ ∧ m̂∗ , (5.20)

where φΛ is some complex function. This form of FΛ + completely solves Eq. (5.8), as
becomes paramount through the Fierz identity

lµγ
µνε∗ = 3lνε∗ . (5.21)

Acting with η̄ on Eq. (5.6) we get

D̃µφI + i
√

2εIJφ
JT+

µνm
ν = 0 , (5.22)

and substituting Eq. (5.20) into it, we obtain

D̃µφI − i√
2
εIJφ

JTΛφ
Λlµ = 0 . (5.23)

Finally, acting with ε̄ and η̄ on Eq. (5.7) we get

lµ∂µZ
i = 0 , (5.24)

mµ∂µZ
i = 0 , (5.25)

which imply

dZi = Ail̂ +Bim̂ , (5.26)

for some functions Ai and Bi that are v independent. Observe that, since dZi and l̂ have
no Kähler weight and m̂ has Kähler weight +2, Bi must have Kähler weight −2. As shown
in Refs. [49, 26], for a single scalar (dZ = Al̂ + Bm̂) we can always assume that either B
is zero (case A) or A is zero (case B). However, for more than one scalar, it is not possible
to remove all the Ais and we are going to have, in general, non-vanishing Ais and Bis,
although we can consider particular cases in which either all the Ais or all the Bis vanish.

Observe that, due to the Fierz identity
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6 lε∗ =6mε∗ = 0 , (5.27)

the above expression solves Eq. (5.7) identically. These are all the algebraic equations for
the bilinears. Now, from Eqs. (5.5) and (5.10) we find the differential equations

∇µlν = 0 , (5.28)

D̃µnν = ∇µnν = −a∗µmν − aµm∗ν , (5.29)

D̃µmν = (∇µ − 2ζµ − iQµ)mν = −aµlν . (5.30)

5.2 Equations of motion and integrability constraints

Our immediate objective is to find information about the connection ζµ using the KSIs
and the integrability equations of Eqs. (5.5) and (5.10).

Using the results of the previous section, we can write the Einstein equations the form

Eµν − 1
2
gµνEρρ = Rµν +

[
2Gij∗AiA∗ j

∗ − 8=mNΛΣφ
Λφ∗Σ

]
lµlν

+2Gij∗BiB∗ j
∗
m(µm

∗
ν) + 2Gij∗AiB∗ j

∗
l(µm

∗
ν)

+2Gij∗BiA∗ j
∗
l(µmν) .

(5.31)

Comparing with the KSI Eq. (3.17), we end up with tho following two conditions

Rµνl
ν = 0 , (5.32)

Rµνm
ν − Gij∗(Ailµ +Bimµ)B∗ j

∗
= 0 . (5.33)

Commuting the derivative and projecting with gamma matrices and spinors in the usual
way, and using

(dQ)µνm
∗ν = iGij∗BiB∗ j

∗
m∗µ , (dQ)µνl

ν = (dQ)µνn
ν = 0 , (5.34)

which follow from the definition of the Kähler connection and Kähler form Eq. (5.26), it
is easy to find, from Eq. (5.5)

{Rµν + 2(dζ)µν}lν = 0 , (5.35)

{Rµν + 2(dζ)µν}m∗ ν − Gij∗Bi(A∗ j
∗
lµ +B∗ j

∗
m∗µ) = 0 , (5.36)
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and from Eq. (5.10)

{Rµν − 2(dζ)µν}mν − Gij∗(Ailµ +Bimµ)B∗ j
∗

+ 2(D̃a)µνl
ν = 0 , (5.37)

{Rµν − 2(dζ)µν}nν + 2(D̃a)µνm
∗ ν = 0 . (5.38)

Comparing these three sets of equations, we find that they are compatible if

(dζ)µνl
ν = (dζ)µνm

ν = 0 , ⇒ dζ = 0 , ⇒ ζ = dα , (5.39)

locally, and, eliminating ζ by a local phase redefinition, D̃a becomes just Da and we get

(Dâ)µνl
ν = 0 , (5.40)

(Dâ)µνm
∗ ν = −1

2
Rµνn

ν , (5.41)

so that

Dâ = −1
2
Rz∗um̂ ∧ m̂∗ + 1

2
Ruul̂ ∧ m̂+ Cl̂ ∧ m̂∗ , (5.42)

where C is a function that needs to be chosen as to make this equation (and, hence,
Eq. (5.10)) integrable. We also have to satisfy the integrability equations (5.32) and (5.33).

Another consequence of the elimination of ζµ is that D̃φI becomes just dφI , whence

Eq. (5.23) implies that dφI ∼ l̂ and the graviphoton combination

φ ≡ TΛφ
Λ , dφ ∼ l̂ . (5.43)

Observe that a similar statement cannot be made about the matter combinations

ψi ≡ T iΛφΛ . (5.44)

The variables φ, ψi will be convenient for further calculations, and the relation between
them and the φΛ can be obtained from Eq. (3.30):

φΛ = iL∗Λφ+ 2fΛ
iψ

i . (5.45)

Using these variables, the symplectic vector of field strengths defined in Eq. (2.17) takes
the form

F =
(
Uiψi + i

2
V∗φ

)
l̂ ∧ m̂∗ + c.c. , (5.46)

and the symplectic vector containing the Bianchi identities and Maxwell equations, defined
in Eq. (2.16) is, in differential-form language
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?Ê = dF = −l̂ ∧
[
d
(
Uiψi + i

2
V∗φ

)
∧ m̂∗ +

(
Uiψi + i

2
V∗φ

)
dm̂∗ + c.c.

]
. (5.47)

Since dφ ∼ l̂, it drops out of the above equations. Next, we substitute

dV∗ = U∗i∗dZ∗ i
∗

+ 1
2
V∗dK . (5.48)

Finally, using Eqs. (5.30) and (5.26) we find

l̂ ∧ dm̂∗ = l̂ ∧ (−1
2
dK) ∧ m̂∗ , (5.49)

which, after substituting and assuming independence of v, leads to

?Ê = eK/2d(e−K/2ψiUi) ∧ l̂ ∧ m̂∗ + c.c. (5.50)

We are now in a position to check the KSIs that involve the Maxwell equations and Bianchi
identities: first of all, Eqs. (3.20) are satisfied automatically, and Eq. (3.19) can be put in
the form

〈 ?Ê | V 〉 = 0 . (5.51)

Rewriting

?Ê = [eKd(e−Kdψi)Ui − eK/2ψim∗µ∂µZjDjUi m̂] ∧ l̂ ∧ m̂∗ + c.c. (5.52)

and using 〈Ui | V〉 = 〈U∗i∗ | V〉 = 〈DjUi | V〉 = 〈Dj∗U∗i∗ | V〉 = 0 we see that the above
equation is always satisfied.

The only component of these equations is, then,

m∗µ∂µ(e−K/2ψiUi)− c.c. = 0 . (5.53)

Finally, let us consider the scalar equation of motion, which takes the form

E i∗ = m∗µDµB
∗ i∗ −B∗ i∗lµa∗µ . (5.54)

According to Eq. (3.21), this combination has to vanish in order to have supersymmetry,
and in the next section we are going to see that this happens if the Bis are covariantly
holomorphic in a complex coordinate, denoted by z, and lµaµ = 0.

5.3 Metric

In order to advance and check the KSIs involving the Ricci tensor we need an explicit form
of the metric. This form is dictated by the existence of a covariantly constant null Killing
vector, Eq. (5.28), which tells us that the spacetime is a Brinkmann pp-wave, [53, 54].
Since lµ is a Killing vector and dl̂ = 0 we can introduce the coordinates u and v such that
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l̂ = lµdx
µ ≡ du , (5.55)

lµ∂µ ≡
∂

∂v
. (5.56)

We can also define a complex coordinate z by

m̂ = eUdz , (5.57)

where U may depend on z, z∗ and u. Eq. (5.24) then states that the scalars Zi are functions
of z and u only:

Zi = Zi(z, u) , (5.58)

and, therefore, the functions Ai and Bi defined in Eq. (5.26) are

Ai = ∂uZ
i , eUBi = ∂zZ

i , ⇒ ∂z∗(e
UBi) = 0 . (5.59)

Finally, the most general form that n̂ can take in this case is

n̂ = dv +Hdu+ ω̂ , ω̂ = ωzdz + ωz∗dz
∗ , (5.60)

where all the functions in the metric are independent of v and where either H or the 1-form
ω̂ could, in principle, be removed by a coordinate transformation but we have to check that
the tetrad integrability equations (5.28)-(5.30) are satisfied by our choices of eU , H and ω̂.
Eq. (5.13) and the above choice of coordinates, lead to the metric10

ds2 = 2du(dv +Hdu+ ω̂)− 2e2Udzdz∗ . (5.61)

Let us then consider the tetrad integrability equations (5.28)-(5.30): the first equation
is solved because the metric does not depend on v. The third equation, with the choice of
coordinate z, Eq. (5.57), implies11

â =
[
U̇ − iQu

]
m̂+Dl̂ , (5.62)

U = −K/2 , (5.63)

where D(z, z∗, u) is a functions to be determined and over-dots denote partial derivation
w.r.t. u. Combining both equations we get

10The components of the connection and the Ricci tensor of this metric can be found in the Appendix
of Ref. [26].

11Actually, the most general solution is U = −K/2 + h(u), but we can always eliminate h(u) by a
redefinition of z that does not change the structure of the metric.
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â = −Ai∂iKm̂+Dl̂ . (5.64)

Finally, the second tetrad integrability equation (5.29) implies

D = eK/2(∂z∗H − ω̇z∗) , (5.65)

(dω̂)zz∗ = 2ie−KQu , (5.66)

whence â is given by

â = −Ai∂iKm̂+ eK/2(∂z∗H − ω̇z∗)l̂ . (5.67)

Observe that this implies aµl
µ = 0. On the other hand, the last of Eqs. (5.59) together

with Eq. (5.63)

∂z∗(e
−K/2Bi) = Dz∗B

i = 0 . (5.68)

Thus, the scalar equation of motion (5.54) is identically satisfied and so is the KSI (3.19).
Having a coordinate system, we can check the integrability conditions Eqs. (5.32,5.33).

The first of these is automatically satisfied for Brinkmann metrics. The second splits into

Ruz∗ + Gij∗AiB∗ j
∗

= 0 ,

Rzz∗ + Gij∗BiB∗ j
∗

= 0 .
(5.69)

The coefficients of the Ricci tensor for Brinkmann metrics were given in the Appendix of
Ref. [26]: substituting Eqs. (5.63) and (5.66) into those expressions and using the holo-
morphicity of the Zis the above equations are seen to be satisfied identically.12

Having an expression for â, Eq. (5.67), we can impose the integrability condition
Eq. (5.42), resulting in

C = −eK/2∂z∗ [eK/2(∂z∗H − ω̇z∗)] , (5.70)

Ruu = −2∂u(A
i∂iK)− 2eK/2Dz[e

K/2(∂z∗H − ω̇z∗)] + 2(Ai∂iK)2 , (5.71)

Ruz∗ = −2eK/2∂z∗(A
i∂iK) = −2Gij∗AiB∗ j

∗
. (5.72)

12 We would like to point out a typo in Tod’s article [49]: The metric has the part 2m(µm
∗
ν), which

together with [49, (A.9–10)], indicates that the metric factor should be e−2φωω̄ and not Eq. [49, (A.17)],
which is just the inverse. After taking this into account, Tod’s results fully agree with the ones presented
here.
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The second equation is satisfied automatically. The last equation is, however, incompat-
ible with the integrability equation Eq. (5.69) and with the actual value of Ruz∗ for the
Brinkmann metric unless

∂uZ
i∂z∗Z

∗ j∗Gij∗ = 0 . (5.73)

This conditions is a consequence of the choice of η, i.e. of our frame and coordinate
choice, and should be of no importance whatsoever to the problem of solving the KSEs.
Actually, it is easy to see that it can always be satisfied by a shift in η that preserves the
normalization condition ε̄η = 1/2:

η′ = η + δε , ⇒


l̂′ = l̂ ,

n̂′ = n̂+ δ∗m̂+ δm̂∗ + |δ|2l̂ ,
m̂′ = m̂+ δl̂ .

(5.74)

If Bi = ∂zZ
i = 0 then the condition is automatically satisfied. If Bi = ∂zZ

i 6= 0 then
Gij∗BiB∗ j

∗ 6= 0 and we just have to perform the above shift with

δ = −Gij
∗AiB∗ j

∗

Gij∗BiB∗ j∗
, (5.75)

in order to trivialize the condition (5.73).

5.4 Solving the Killing spinor equations

We are now going to see that field configurations given by a metric of the form (Eqs. (5.61)
and (5.63))

ds2 = 2du(dv +Hdu+ ω̂)− 2e−Kdzdz∗ , (5.76)

where ω̂ satisfies (Eq. (5.66))

(dω)zz∗ = 2ie−KQu , (5.77)

scalars of the form (Eq. (5.26))

dZi = Ail̂ +Bim̂ , (5.78)

and vector field strengths of the form (Eq. (5.20))

FΛ + = 1
2
φΛl̂ ∧ m̂∗ , (5.79)

are always supersymmetric, even though we derived these equations as necessary conditions
for supersymmetry.

With the above form of the scalars and vector field strengths the KSE δελ
iI = 0 takes

the form
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iAi 6 lεI + iBi 6mεI − 1
2
εIJT iΛφΛ 6m∗6 lεJ = 0 , (5.80)

and can be solved by imposing two conditions on the spinors:

6 lεI = 0 , 6mεI = 0 , (5.81)

which formally coincide with the Fierz identities Eqs. (5.27), although now, since there is
no à priori relation between l, m and εI , they are not identities but constraints on εI . This
fact should be enough to show that they are compatible, but we are going to go further
and show that they are equivalent. Multiplying the first condition by 6 n and the second
by 6m∗ we obtain the more conventional-looking conditions

6 n 6 lεI = (1− γuv)εI = 0 ,

6m∗ 6mεI = −(1 + γzz
∗
)εI = 0 .

(5.82)

If εI satisfies the second condition, using γ5 = −γuvγzz∗

γzz
∗
εI = −εI , ⇒ γuvγzz

∗
εI = γuvεI , ⇒ −γ5εI = γuvεI , (5.83)

which, due to the chirality of εI , leads to the first condition.
Let us now consider the KSE δεψI a = 0. Taking into account Eqs. (5.81), our tetrad

choice and Eq. (5.66), we find that the Killing spinors εI must be independent of v, z, z∗

and must satisfy

ε̇I + 1
2
εIJφγ

z∗εJ = 0 , (5.84)

where φ = TΛφ
Λ = φ(u). Observe that this equation can always be integrated, even though

the explicit form of the εI may be hard to find.
If φ(u) is a real function, however, the general solution is readily found to be

εI = eiΦεI 0 + 1√
2
εIJγ

z∗e−iΦεJ0, , (5.85)

where

γz
∗
εI 0 = γuεI 0 = 0 , (εI 0)∗ = εI0 Φ̇ = −iφ/

√
2 . (5.86)

Thus, all the configurations identified are supersymmetric and preserve, at least 1/2
of the available supersymmetries. One can see, moreover, that the only configurations
that preserve more than 1/2 are in fact maximally supersymmetric: Minkowski space and
the maximally supersymmetric wave of minimal N = 2 D = 4 supergravity found by
Kowalski-Glikman [55], embedded such that only the graviphoton is non-trivial.
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5.5 Equations of motion

Let us start with the Maxwell equations and Bianchi identities, given in Eq. (5.50). There
is only one non-trivial component which is not automatically satisfied for supersymmetric
configurations, namely Eq. (5.53), and we can rewrite it as

eK/2Dz(e
−K/2ψi)Ui + ψi∂zZ

jDjUi − c.c. = 0 , (5.87)

where one should keep in mind that the combination e−K/2ψi is a weight −1 vector field.
Taking the symplectic product with Uk and using Eqs. (C.3,C.4) and (C.6), one finds

Dz∗(e
−K/2ψ∗ i

∗
)− ie−K/2ψj∂zZkCjki

∗
= 0 . (5.88)

A somewhat lighter equation can be derived by defining

ψi = eKGij∗ Pj∗ → ∂z∗P
∗
i = iCijk

∗
∂zZ

j Pk∗ , (5.89)

where Pi∗ is of Kähler weight (0, 2). This equation determines ψi, but it is extremely
difficult to find a general solution, although we will give some solutions in Appendix D.

The only non-automatically satisfied component of the Einstein equations is the uu one

Euu = Ruu + 2Gij∗AiA∗ j
∗ − i=mNΛΣφ

ΛφΣ = 0 . (5.90)

Using Eq. (5.45), and the value of Ruu this equation takes the form

−2e−2U∂z∂z∗H + 1
2
e−4U(∂z∗ωz − ∂zωz∗)2 + e−2U(∂z∗ω̇z + ∂zω̇z∗)

+2(Ü + U̇ U̇) + 2Gij∗(AiA∗ j
∗

+ 8ψiψ∗ j
∗
) + 4|φ|2 = 0 .

(5.91)

A supersymmetric solution in this class is, then, fully determined by the real func-
tion H(z, z∗, u) and the complex functions ωz(z, z

∗, u), φ(u), ψi(z, z∗, u), Zi(z, u) satisfying
Eqs. (5.77,5.87) and (5.91). There are two simple and interesting families of solutions

1. Zi = Zi(z). (Ai = 0). This implies that Qu = 0 and we can safely take ω̂ = 0. The
Einstein equation takes the form

eK∂z∂z∗H = 8Gij∗ψiψ∗ j
∗

+ 2|φ|2 , (5.92)

and can be integrated once the solutions to the Maxwell and Bianchi equations, ψi,
are given (φ(u) is an arbitrary complex function).

If we set to zero the vector field strengths φ = ψi = 0, the Einstein equation reduces
to the statement that H is a real harmonic function on C.

The solutions in this subclass are combinations of pp-waves associated to the har-
monic function H and cosmic strings of the kind considered in Ref. [42], i.e. deter-
mined by n holomorphic functions Zi = Zi(z). Now the metric is determined by
supersymmetry to be
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
ds2 = 2du(dv +Hdu)− 2e−2K(Z,Z∗)dzdz∗ ,

Zi = Zi(z) ,

∂z∂z∗H = 0 .

(5.93)

In order to study the behaviour of these solutions under the symmetries of the theory,
it is convenient to express them in an arbitrary system of holomorphic coordinates

ds2 = 2du(dv +Hdu)− 2e−[K(Z,Z∗)−h−h∗]dzdz∗ ,

Zi = Zi(z) ,

h = h(z) ,

∂z∂z∗H = 0 .

(5.94)

The Killing spinors of these solutions are

εI = e−
1
4

(h−h∗)εI 0 , γz
∗
εI 0 = 0 . (5.95)

The isometries of the Kähler metric (which are the duality symmetries of our theory)
leave invariant the Kähler potential up to Kähler transformations Eq. (B.7). Of
course, these duality transformations leave invariant the spacetime metric, but the
relation between the gzz∗ component and the Kähler potential will change unless the
holomorphic function h transforms according to

h′ = h+ f , (5.96)

which makes the Killing spinors transform precisely as objects of Kähler weight 1/2,
as they should. Actually, for the metric to be form-invariant, it is enough that
<e(h′) = <e(h′) + <e(f) while the spinors will behave as objects of Kähler weight
1/2 if =m(h′) = =m(h′) + =m(f). These two conditions are independent. Only the
first was required in the construction of Ref. [42], but supersymmetry requires the
second.13

The holomorphic functions Zi(z) will in general be multi-valued and will have non-
trivial monodromies. Only those which are isometries of the Kähler metric can be
allowed. The metric will be invariant and the Killing spinors will also have the correct
monodromy if h transforms as above.

13We thank Jelle Hartong for useful conversations on this point.
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2. Zi = Zi(u) = 0. This implies that K and, therefore, U are functions of u only, whence
the latter can be eliminated from the metric by a change of coordinates. Since the
pullback of Kähler 1-form depends on u only, we can solve Eq. (5.66) for ω̂:

ω̂ = ie−KQu(zdz∗ − z∗dz) , (5.97)

which can, however, be eliminated by further change of coordinates. The remaining
Einstein equation takes the form

2∂z∂z∗H = 2Gij∗(AiA∗ j
∗

+ 8ψiψ∗ j
∗
) + 4|φ|2 . (5.98)

Eq. (5.88) can in this case be solved, leading to the statement that ψi only depends on
u and z∗. Introducing then the functions Υi, defined through the relation ∂z∗Υ

i = ψi,
the above equation can be integrated with great ease, giving

H = (Gij∗ŻiŻ∗ j
∗

+ 2|φ|2)|z|2 + 8Gij∗ΥiΥ∗j
∗

+ f(z, u) + f ∗(z∗, u) . (5.99)

The supersymmetric solutions of this class take, therefore, the form
ds2 = 2du(dv +Hdu)− 2dzdz∗ ,

FΛ + =
[
i
2
L∗Λφ(u) + fΛ

i ψ
i(u, z∗)

]
du ∧ dz∗ ,

Zi = Zi(u) ,

(5.100)

where Zi, φ are arbitrary functions of u and H is given above.
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A Conventions

In this paper we use basically the notation of Ref. [43] and the conventions of Ref. [26],
to which we have adapted the formulae of Ref. [43]. The main differences between the
conventions of those two references are the signs of spin connection, the completely an-
tisymmetric tensor εabcd and γ5. Thus, chiralities are reversed and self-dual tensors are
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replaced by anti-self-dual tensors and vice-versa. The curvatures are identical. Finally, the
normalization of the 2-form components differs by a factor of 2: for us

F = dA = 1
2
Fµνdx

µ ∧ dxν ⇒ Fµν = 2∂[µAν] , (A.1)

which amounts to a difference of a factor of 2 in the vectors supersymmetry transformations
Eq. (2.8). Further, all fermions and supersymmetry parameters from Ref. [43] have been
rescaled by a factor of 1

2
, which introduces additional factors of 1

4
in all the bosonic fields

supersymmetry transformations Eqs. (2.7-2.9).
The meaning of the different indices used in this paper is explained in Table 1. We use

the shorthand n̄ ≡ n+ 1.

Type Associated structure

µ, ν, . . . Curved space
a, b, . . . Tangent space
m,n, . . . Cartesian R3-indices
i, j, . . .; i∗, j∗, . . . Complex scalar fields and their conjugates. There are n of them.
Λ,Σ, . . . sp(n̄) indices (n̄ = n+ 1)
I, J, . . . N = 2 spinor indices

Table 1: Meaning of the indices used in this paper.

B Kähler geometry

A Kähler manifold M is a complex manifold on which there exist complex coordinates zi

and z∗ i
∗

= (zi)∗ and a function K, called the Kähler potential, such that the line element
is

ds2 = 2Gii∗ dzidz∗ i
∗
, (B.1)

with

Gii∗ = ∂i∂i∗K . (B.2)

The Kähler (connection) 1-form Q is defined by

Q ≡ (2i)−1(dzi∂iK − dz∗ i
∗
∂i∗K) , (B.3)

and the Kähler 2-form J is its exterior derivative

J ≡ dQ = iGii∗dzi ∧ dz∗ i
∗
. (B.4)

The Levi-Cività connection on a Kähler manifold is given by
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Γjk
i = Gii∗∂jGi∗k , Γj∗k∗

i∗ = Gi∗i∂j∗Gk∗i . (B.5)

The Riemann curvature tensor has as only non-vanishing components Rij∗kl∗ , but we will
not need their explicit expression. The Ricci tensor is given by

Rii∗ = ∂i∂i∗
(

1
2

log detG
)
. (B.6)

The Kähler potential is not unique: it is defined only up to Kähler transformations of
the form

K′(z, z∗) = K(z, z∗) + f + f ∗ , (B.7)

where f is any holomorphic function of the complex coordinates zi. Under these transfor-
mations, the Kähler metric and Kähler 2-form are invariant, while the components of the
Kähler connection 1-form transform according to

Q′i = Qi − i
2
∂if . (B.8)

By definition, objects with Kähler weight (q, q̄) transform under the above Kähler
transformations with a factor e−(qf+q̄f∗)/2 and the Kähler-covariant derivative D acting on
them is given by

Di ≡ ∇i + iqQi , Di∗ ≡ ∇i∗ − iq̄Qi∗ , (B.9)

where ∇ is the standard covariant derivative associated to the Levi-Cività connection on
M.

When (q, q̄) = (1,−1), this defines a complex line bundle L1 → M over the Kähler
manifold M whose first, and only, Chern class equals the Kähler 2-form J . A complex
line bundle with this property is known as a Kähler-Hodge (KH) manifold and provides
the formal starting point for the definition of a special Kähler manifold14 that is explained
in the next Appendix.

We will often use the spacetime pullback of the Kähler-covariant derivative on tensor
fields with Kähler weight (q,−q) (weight q, for short) for which it takes the simple form

Dµ = ∇µ + iqQµ , (B.10)

where ∇µ is the standard spacetime covariant derivative plus possibly the pullback of the
Levi-Cività connection on M; Qµ is the pullback of the Kähler 1-form, i.e.

Qµ = (2i)−1(∂µz
i∂iK − ∂µz∗ i

∗
∂i∗K) . (B.11)

14Some basic references for this material are [56, 50, 46] and the review [27]. The definition of special
Kähler manifold was made in Ref. [57], formalizing the original results of Ref. [45].
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C Special Kähler geometry

Let us now consider a flat 2n̄-dimensional vector bundle E → M with structure group
Sp(n̄;R), and take a section V of the product bundle E ⊗ L1 → M and its complex
conjugate V , which formally is a section of the bundle E ⊗ L−1 → M. Then, a special
Kähler manifold, is a bundle E ⊗ L1 →M, for which there exists a section V such that

V =

(
LΛ

MΣ

)
→


〈V | V∗〉 ≡ L∗ΛMΛ − LΛM∗

Λ = −i ,

Di∗V = (∂i∗ + 1
2
∂i∗K)V = 0 ,

〈DiV | V〉 = 0 .

(C.1)

If we then define

Ui ≡ DiV =

(
fΛ

i

hΣ i

)
, U∗i∗ = (Ui)∗ , (C.2)

then it follows from the basic definitions that

Di∗ Ui = Gii∗ V 〈Ui | U∗i∗〉 = iGii∗ ,

〈Ui | V∗〉 = 0 , 〈Ui | V〉 = 0 .
(C.3)

Taking the covariant derivative of the last identity 〈Ui | V〉 = 0 we find immediately that
〈DiUj | V〉 = −〈 Uj | Ui〉. It can be shown that the r.h.s. of this equation is antisymmetric
while the l.h.s. is symmetric, so that

〈DiUj | V〉 = 〈Uj | Ui〉 = 0 . (C.4)

The importance of this last equation is that if we group together EΛ = (V ,Ui), we can
see that 〈EΣ | E∗Λ〉 is a non-degenerate matrix. This then allows us to construct an identity
operator for the symplectic indices, such that for a given section of A 3 Γ (E,M) we have

A = i〈A | V∗〉V − i〈A | V〉 V∗ + i〈A | Ui〉Gii
∗ U∗i∗ − i〈A | U∗i∗〉Gii

∗Ui . (C.5)

As we have seen DiUj is symmetric in i and j, but what more can be said about it: as
one can easily see, the inner product with V∗ and U∗i∗ vanishes due to the basic properties.
Let us then define the Kähler-weight 2 object

Cijk ≡ 〈Di Uj | Uk〉 → Di Uj = iCijkGkl
∗U∗l∗ , (C.6)

where the last equation is a consequence of Eq. (C.5). Since the U ’s are orthogonal,
however, one can see that C is completely symmetric in its 3 indices. Furthermore one can
show that
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Di∗ Cjkl = 0 , D[i Cj]kl = 0 . (C.7)

Observe that these equations imply the existence of a function S, such that

Cijk = DiDjDk S . (C.8)

The function S is given by [58]

S ∼ LΛ=mNΛΣLΣ , (C.9)

where N is the period or monodromy matrix. This matrix is defined by the relations

MΛ = NΛΣLΣ , hΛ i = N ∗ΛΣf
Σ
i . (C.10)

The relation 〈Ui | V〉 = 0 then implies that N is symmetric, which then also trivializes
〈Ui | Uj〉 = 0.

From the other basic properties in (C.3) we find

LΛ=mNΛΣL∗Σ = −1
2
, (C.11)

LΛ=mNΛΣf
Σ
i = LΛ=mNΛΣf

∗Σ
i∗ = 0 , (C.12)

fΛ
i =mNΛΣf

∗Σ
i∗ = −1

2
Gii∗ . (C.13)

Further identities that can be derived are

(∂iNΛΣ)LΣ = −2i=m(N )ΛΣ fΣ
i , (C.14)

∂iN ∗ΛΣ fΣ
j = −2CijkGkk

∗=mNΛΣf
∗Σ

k∗ , (C.15)

Cijk = fΛ
if

Σ
j∂kN ∗ΛΣ , (C.16)

LΣ∂i∗NΛΣ = 0 , (C.17)

∂i∗N ∗ΛΣ fΣ
i = 2iGii∗=mNΛΣLΣ . (C.18)

An important identity one can derive, and that will be used various times in the main
text, is given by

UΛΣ ≡ fΛ
iGii

∗
f ∗Σ

i∗ = −1
2
=m(N )−1|ΛΣ − L∗ΛLΣ , (C.19)
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whence (UΛΣ)∗ = UΣΛ.
We can define the graviphoton and matter vector projectors

TΛ ≡ 2iLΛ = 2iLΣ=mNΣΛ , (C.20)

T iΛ ≡ −f ∗Λi = −Gij∗f ∗Σ
j∗=mNΣΛ . (C.21)

Using these definitions and the above properties one can show the following identities
for the derivatives of the period matrix:

∂iNΛΣ = 4Ti(ΛTΣ) ,

∂i∗NΛΣ = 4C∗i∗j∗k∗T i
∗

(ΛT j
∗

Σ) .
(C.22)

C.1 Prepotential: Existence and more formulae

Let us start by introducing the explicitly holomorphic section Ω = e−K/2V , which allows
us to rewrite the system Eqs. (C.1) as

Ω =

(
XΛ

FΣ

)
→


〈Ω | Ω∗〉 ≡ X ∗ΛFΛ −XΛF∗Λ = −i e−K ,

∂i∗Ω = 0 ,

〈∂iΩ | Ω〉 = 0 .

(C.23)

Observe that the first of Eqs. (C.23) together with the definition of the period matrix
N imply the following expression for the Kähler potential:

e−K = −2=mNΛΣXΛX ∗Σ . (C.24)

If we now assume that FΛ depends on Zi through the X ’s, then from the last equation
we can derive that

∂iXΛ
[
2FΛ − ∂Λ

(
XΣFΣ

)]
= 0 . (C.25)

If ∂iXΛ is invertible as an n× n̄ matrix, then we must conclude that

FΛ = ∂ΛF(X ) , (C.26)

where F is a homogeneous function of degree 2, called the prepotential.
Making use of the prepotential and the definitions (C.10), we can calculate

NΛΣ = F∗ΛΣ + 2i
=mFΛΛ′XΛ′=mFΣΣ′XΣ′

XΩ=mFΩΩ′XΩ′
. (C.27)
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Having the explicit form of N , we can also derive an explicit representation for C by
applying Eq. (C.17). One finds

Cijk = eK∂iXΛ∂jXΣ∂kXΩFΛΣΩ , (C.28)

so that the prepotential really determines all structures in special geometry.
A last remark has to be made about the existence of a prepotential: clearly, given a

holomorphic section Ω a prepotential need not exist. It was shown in Ref. [46], however,
that one can always apply an Sp(n̄,R) transformation such that a prepotential exists.
Clearly the N = 2 SUGRA action is not invariant under the full Sp(n̄,R), but the equations
of motion and the supersymmetry equations are. This means that for the purpose of this
article we can always, even if this is not done, impose the existence of a prepotential.

D Some explicit cases

D.1 Quadratic prepotential

This is a simple, but important, case in which there is a prepotential and it takes the form

F = 1
2
FΛΣXΛXΣ , (D.1)

where FΛΣ is a complex, symmetric, constant matrix that coincides with the matrix of
second derivatives of F . Its imaginary part must be negative definite. The period matrix
is given by Eq. (C.27). Observe that

FΛ = FΛΣXΣ . (D.2)

The Kähler potential is

e−K = −2=mNΛΣX ∗ΛXΣ . (D.3)

To construct the general solution of the timelike case, we need to relate the real section
R and I defined in Eqs. (C.10). This can be done by using the property Eq. (D.2), rescaling
it by eK/2/X:

MΛ/X = FΛΣLΣ/X , (D.4)

and then, taking the imaginary part of this equation and using the invertibility of =mFΛΣ,
we find the solution

<e(LΛ/X) = =m(F)−1|ΛΣ[=m(MΣ/X)−<e(FΣΩ=m(LΩ/X)] , (D.5)

which implies

LΛ/X = =m(F)−1|ΛΣ[=m(MΣ/X)−F∗ΣΩ)=m(LΩ/X)] . (D.6)
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In other words, this implies that we can take the components of the section LΛ/X to be
arbitrary complex harmonic functions HΛ.

Now, |M |2 which appears in the metric Eq. (4.5) is given, according to Eq. (4.35),
by the Kähler potential Eq. (D.3) where the scalars XΛ are substituted by the complex
harmonic functions HΛ, i.e.

|M |2 = 2|X|2 = −[=mFΛΣH∗ΛHΣ]−1 . (D.7)

The other term that appears in the metric ω, is given in terms of the real section I by
Eq. (4.31). Substituting the imaginary parts of the harmonic functions HΛ in that formula,
we get

(dω)mn = −iεmnp=mFΛΣ[∂pHΛH∗Σ − ∂pH∗ΛHΣ] = −εmnpe−KQp[V/X, (V/X)∗] , (D.8)

where Qp[V/X, (V/X)∗] stands for the pull-back of the Kähler 1-form substituting the
XΛs by the harmonic functions HΛ. For the n̄ = 2 case, which can be embedded in pure
N = 4, d = 4 supergravity, these expressions were first found in Ref. [37]. We stress that
these functions are completely arbitrary and that there is no further constraint on them.
Different choices lead to solutions describing different physical systems. In Ref. [37] the
most general choice that leads to a stationary, axisymmetric, asymptotically flat spacetime
in the n̄ = 2 case was studied. These spacetimes correspond, in general, to charged,
rotating “black holes” (sometimes with singular horizon), with NUT charge.

As one can see from Eq. (C.28), the fact that we are dealing with a quadratic pre-
potential implies that Cijk = 0. This then means that Eq. (5.88) is generically solved
by

ψi = eK Gij∗ Pj∗(u, z∗) , (D.9)

so that in the case of a quadratic prepotential there are only two differential equations that
need to be solved: eqs. (5.77) and (5.91).

D.2 STU-like models

By an STU -like model, we mean a theory with a prepotential of the type

F = −dijk
X iX jX k

X 0
(i, j, k = 1, . . . , n) , (D.10)

where dabc is a totally symmetric tensor. The proper STU -model is defined by n = 3 and
d123 = 1 as the only non-vanishing coefficients of d. The coefficients dijk are related to the
Cijk by

Cijk = eK dijk ; e−K = 8 dijk =m(Zi)=m(Zj)=m(Zk) . (D.11)

In [59] Shmakova found a generic, conditional solution to the stabilization equation for
STU -like models. Writing IT = (pΛ, qΛ), the stabilization equations read pΛ = Im(XΛ)
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and

q0 = |X 0|−4 dijk Im
(

(X 0
)2X iX jX k

)
, (D.12)

qi = |X 0|−2 dijk Im
(
X 0X jX k

)
. (D.13)

Clearly the stabilization equations for pΛ are solved by the Ansatz

X 0 = p0 (i − Y0) , X i = Y i − piY0 + ipi , (D.14)

and plugging this Ansatz into the stabilization equation (D.13), we can see that it can be
solved by redefining Y i =

√
1 + Y 2

0 Ỹ i iff a solution to

dijkỸ
jỸ k = 1

3
p0qi + dijk p

jpk , (D.15)

can be found. Assuming that such a solution exists, we can then analyze Eq. (D.12) by
direct substitution, as to find

1 + Y 2
0 =

4∆̃2

4∆̃2 − [p0pΛqΛ + 2∆]2
, (D.16)

where we have defined ∆ = dijkp
ipjpk and ∆̃ = dijkỸ

iỸ jỸ k. Armed with this knowledge
one can then, using Eqs. (4.33), calculate

1

|X|2
=

4
√

4∆̃2 − [p0pΛqΛ + 2∆]2

p0
. (D.17)

It should be clear that Eq. (D.15) acts as the keystone for this construction.
There are 2 cases for which a solution to Eq. (D.15) is near trivial to find. The first

one is the STU -model, so that n = 3 and d123 = 1 is the only non-vanishing coefficient of
d where one can see that the general solution reads

Ỹ i =

√
dijkΥjΥk

4Υi

; Υi ≡ 1
3
p0qi − dijkpipj . (D.18)

Of course, the other case is when Eq. (D.15) reduces to a purely quadratic equation, which
happens when dijk = δijδjk, where for simplicity we have chosen possible constants to be
unity. The solution then reads

Ỹ i =
√

Υi . (D.19)

With this knowledge and a choice for the harmonic functions, needed to calculate ω through
Eq. (4.31), the solution is fully specified in the timelike case.

The null case is in general a far harder nut to crack, and as one might have suspected,
we have been unable to find a generic solution to Eq. (5.88) for the STU -like models. A
particular, but non-trivial, solution we were able to find is for the case n = 1, d111 = 1 and
reads

ψ1 =
(
a =m(t)−3 + ib =m(t)

)
∂z∗t

∗ , (D.20)

where we have used the notation t = Z1.
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