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Abstract. Coupled dark matter-dark energy systems can suffer from non-adiabatic instabilities at early times and large scales.
In these proceedings, we consider two parameterizations ofthe dark sector interaction. In the first one the energy-momentum
transfer 4-vector is parallel to the dark matter 4-velocityand in the second one to the dark energy 4-velocity. In these cases,
coupled models which suffer from non-adiabatic instabilities can be identified as a function of a generic couplingQ and of
the dark energy equation of statew. In our analysis, we do not refer to any particular cosmic field. We confront then a viable
class of models in which the interaction is directly proportional to the dark energy density and to the Hubble rate parameter to
recent cosmological data. In that framework, we show that correlations between the dark coupling and several cosmological
parameters allow for a larger neutrino mass than in uncoupled models.
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INTRODUCTION

Interactions between dark matter and dark energy are still allowed by observational data today. At the level of the
background evolution equations, one can generally introduce a coupling between these two sectors as follows:

ρ̇dm+3H ρdm = Q, (1)

ρ̇de+3H ρde(1+w) = −Q. (2)

ρdm(ρde) denotes the dark matter (dark energy) energy density, the dot indicates derivative with respect to conformal
time dτ = dt/a, H = ȧ/a and w = Pde/ρde is the dark-energy equation of state (P denotes the pressure). We
work with the Friedman-Robertson-Walker (FRW) metric, assuming a flat universe and pressureless dark matter
wdm = Pdm/ρdm = 0.

Q encodes the dark coupling and drives the energy exchange between dark matter and dark energy. Fore.g. Q< 0
the energy flows from dark matter to dark energy. It also changes the dark matter and dark energy redshift dependence
acting as an extra contribution to their effective equationof state. Fore.g. Q< 0, dark matter redshifts faster, as a
consequence, there is more dark matter in the past compared to uncoupled scenarios assuming that the dark matter
density today is the same in the two models (see also the discussion in Ref. [1]). This general feature of coupled models
is sketched in Fig. 1 (for a particular form ofQ, see also Fig. 2).

Also notice that a universe in accelerated expansion today requiresw < −1/3 even in the presence of a dark
coupling. Indeed, the deceleration parameter satisfies

q = −
Ḣ

H 2 =
1
2
(1+3wΩde) , (3)

either with or without dark coupling. The curvature contribution has been neglected in this equation.
In order to deduce the evolution of density and velocity perturbations in coupled models, we need an expression of

the energy transfer in terms of the stress-energy tensor:

∇µTµ
(dm)ν = Qν and ∇µTµ

(de)ν = −Qν . (4)

The 4-vectorQν governs the energy-momentum transfer between the dark components andTµ
(dm)ν andTµ

(de)ν are the
energy-momentum tensors for the dark matter and dark energy, respectively. Equation (4) guaranties the conservation
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FIGURE 1. This figure illustrates roughly the effect of a negative darkcoupling term Q on dark matter and dark energy evolution.
a is the scale factor,ρi with i = m, r,de corresponds to matter (dark matter plus baryon), radiation and dark energy densities
respectively. Solid curve account for an uncoupled model with constant dark energy equation of state w> −1 and dotted curve for
coupled models with Q< 0 with w> −1.

of the total energy-momentum tensor. In the following we consider two scenarios which reproduce at the background
level Eqs. (1) and (2):

1. Qν is parallel to the dark matter four velocityu(dm)
ν :

Qν = Qu(dm)
ν /a. (5)

This choice of parameterization, which was first proposed inRef. [2], avoids momentum transfer in the rest frame
of dark matter (i.e vi

(dm) = 0),

2. Qν is parallel to the dark energy four velocityu(de)
ν :

Qν = Qu(de)
ν /a. (6)

In this case the dark matter velocity (Euler) equation is modified by the coupling and the weak equivalence
principle is violated (seee.g.Ref [3] for a recent discussion). Notice that one example forthis interaction is

Qν = β ρdm∇ν φ [4, 5], whereφ would be a coupled dark energy scalar field andu(de)
ν ∝ ∇νφ .

It was first pointed out in Ref. [2] that the dark coupling terms which appears in the non-adiabatic dark energy
pressure perturbations are a source for early time instabilities at large scales for coupled models satisfying Eqs. (4)
and (5). Their analysis was however restricted toQ > 0 proportional to the dark matter density, in which case the
coupled model is particularly unstable for a constant dark energy equation of state. Non-adiabatic instabilities were
subsequently analyzed by several authors, and it was provedthat the stability depends on the type of dark coupling
Q, on the dark energy equation of statew and on theQν 4-velocity dependence, see Ref. [6, 7, 8, 9] (for similar
instabilities pointed out in coupled quintessence models,see Ref. [10, 11]).

Among these references, we proposed in Ref. [8], a criteria associated to the dubbeddoom factorto identify the
stability region of coupled models with a constant dark energy equation of statew satisfying Eqs. (4) and (5). The
doom factor is a function of the model parameters such asQ andw, but it is defined independently of the explicit form
of the couplingQ. We review this result in the next section and extend it to models satisfying Eqs. (4) and (6).

Based on this analysis, we study the compatibility of a successful class of models, in whichQ is proportional to
the dark energy density, with a fixed dataset including WMAP 5year [12, 13] , HST [14], SN [15],H(z) [16] and
LSS [17] data. This work was done using the publicly available CAMB code [18] andcosmomc package [19]. The
latter were modified in order to include the interaction between the dark matter and dark energy components and the
modified dark matter velocity equation in the case of coupledmodels satisfying Eq. (6) (see Eq. (18)). Present data
will be shown to allow for a sizeable interaction strength and to imply weaker cosmological limits on neutrino masses
with respect to non-interacting scenarios.



ORIGIN OF NON-ADIABATIC INSTABILITIES

Non-adiabatic instabilities arise at linear order in perturbations and appear to be driven by the dark coupling term
present in the non-adiabatic dark energy pressure perturbation [2]. Using the definitions of gauge invariant density
perturbation and entropy perturbation (seee.g.Ref. [20]), one can work out a general expression which relates the
dark energy pressure perturbationδPde in its rest frame to the one in any other frame. The former is characterized by
ĉ2

sde= [δPde/δρde]|rf , the propagation speed of pressure fluctuations in the rest frame of dark energy which has to be
distinguished fromc2

ade= Ṗde/ρ̇de, the so called “adiabatic sound speed”. In the synchronous or the Newtonian gauge,
one obtains:

δPde = ĉ2
sdeδρde+(ĉ2

sde−c2
ade)ρ̇de

θde

k2 , (7)

whereδρde denotes the dark energy density perturbation andθde≡ ∂ivi
(de) is the divergence of the dark energy proper

velocity,vi
(de). Using equation (2), we see that the dark coupling resultingfrom theρ̇de term directly affects theδPde.

In Eq. (8), we rewrite Eq. (7) in term of the dubbed doom factord ∝ Q which is a useful tool to spot the combined
role of Q andw in driving the non-adiabatic instabilities. In the following we illustrate this feature in the framework
of coupled models satisfying Eqs. (5) and (6).

Notice that non-adiabatic instabilities differ from the adiabatic ones. The latter appear at relatively small scales and
late times. In the adiabatic regime, the effective sound speed of the fluid tends towards the adiabatic one which turns
out to be negative [21, 22, 23]. As a consequence, pressure nolonger counteracts the effect of gravity and instabilities
can breakout.

In the following, we work with constant equation of statew in which case (c2
ade = w) and we assume that our

universe is in accelerating expansion today, which impliesthatw < −1/3. Moreover, we restrict our analysis to the
case ˆc2

sde> 0 andĉ2
sde= 1 will be assumed for numerical computation.

GROWTH EQUATION AT LARGE SCALES AND THE DOOM FACTOR

A cartoon equation of the growth equation governing the evolution of energy density linear perturbation for any species
i, j is given by:

(Anti)DampingExponential

leads when A,B negligible
. .

.

. Growth or Oscillations

whereδi = δρi/ρi and the prime denotes a derivative with respect to the scale factor ′ = ∂/∂ a. The evolution of a
perturbation depends on the relative weight of the three terms present in this equationandon their signs:

1. For positiveA, theA andB terms taken by themselves would induce a rapid growth of the perturbation, which may
be damped or antidamped (reinforced) depending on whetherB is negative or positive, respectively. In particular,
for A andB both positive, the solution may enter in an exponentially growing, unstable, regime.

2. For negativeA, in contrast, theA andB terms taken alone describe a harmonic oscillator, with oscillations damped
(antidamped) ifB is negative (positive). In theA,B < 0 regime, the third term may play in fact the leading role.

In the standard uncoupled scenario, the dark matter perturbations behave as in case 1 above (withA > 0 andB < 0),
while the dark energy ones provide an example of behavior as in case 2.

For coupled models, we concentrate on the case in which the dark-coupling terms dominate over the usual one, in
order to put forward the presence of non adiabatic instabilities (see Ref.[8] for more details). For this purpose, let us
rewrite Eq. (7) as:

δPde

δρde
= ĉ2

sde+3(ĉ2
sde−c2

ade)(1+w)(1+ d)
H θde

k2δde
, (8)



whered refers to the doom factor which we have defined as:

d ≡
Q

3H ρde(1+w)
. (9)

Thestrong coupling regimecan be characterized by|d| > 1, which also guarantees that the interaction among the two
dark sectors drives the non-adiabatic contribution to the dark energy pressure perturbation.

In Ref. [8], the strong coupling regime analysis was restricted to coupled models satisfying Eqs. (4) and (5). It is
however rather straightforward to generalize this result to models satisfying Eq. (6) (see also the appendix). At large
scales-early times (H /k ≫ 1), the leading contributions inQ, or equivalently ind, to the second order differential
equation forδde reads:

δ ′′
de ≃ 3d(ĉ2

sde+b)

(

δ ′
de

a
+ 3b

δde

a2

(ĉ2
sde−w)

ĉ2
sde+b

+
3(1+w)

a2 δ [d ]

)

+ ... (10)

where we use theb notation introduced in Ref. [6] ,b = 1 stands for models withQν ∝ u(dm)
ν (5) andb = 0 for models

with Qν ∝ u(de)
ν (6). The sign of the coefficientBe of δ ′

de in this expression is crucial for the analysis of instabilities.
Assuming ˆc2

sde> 0, it reduces to the sign of the doom factord. As previously argued, a positived can trigger large scale
instabilities. Similar second order differential equations forδde were obtained in Refs. [6, 7] for particular expressions
of the dark couplingQ and an analytical form of their solutions were derived in order to determine whenδde blows
up. In particular, the results of Ref. [7] confirm those of Ref. [2] for positiveQ ∝ ρdm and 1+ w > 0. In addition,
our Eq. (10) reproduces as well the dark coupling leading contributions of Ref. [6], which studiedQ ∝ ρde coupled

models, in particular, they carried out the first stability analysis in the framework ofQν ∝ ρdeu
(de)
ν .

VIABLE MODELS: Q ∝ ρde

Using the tools that we have developed in the previous section, we can now easily verify that for

Q = ξH ρde, (11)

we have rather simple and viable models for specific combination of 1+w and of the dimensionless constant coupling
ξ . Indeed in these models the doom factor of Eq. (9) is given by:

d =
ξ

3(1+w)
. (12)

Whend < 0, that is, forξ < 0 and 1+w> 0 (orξ > 0 and 1+w< 0), no instabilities are expected and we can safely
fit the coupled models to cosmological data. Notice that thisresult is in agreement with those of Refs. [7, 6] which
restricted though their stability analysis to theξ > 0 case.

For the sake of completeness we first give the expressions of the background dark fluids energy densities and first
order perturbation evolution equations which were introduced in theCAMB code [18]. As previously mentioned, we
work in the synchronous gauge.

Background

The solutions to Eqs. (1) and (2) using Eq (11) are:

ρdm = ρ (0)
dma−3+ ρ (0)

de
ξ

3w+ ξ
(1−a−3w−ξ)a−3 , (13)

ρde = ρ (0)
de a−3(1+w)+ξ . (14)

The dark energy density is thus always positive, all along the cosmic evolution and since its initial moment. To ensure
that the same happens with the dark matter density, all values of w < 0 are acceptable forξ < 0, while for positiveξ
it is required that

ξ∼<−w.



In Fig. 2, we see that negative (positive) couplings lead to more (less) dark matter in the past than in the uncoupled
case. In the following we focus on negative couplings in order to avoid non-adiabatic instabilities.

Wde

Wdm+b

Wrad
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FIGURE 2. Scenario with Q∝ ρde. Relative energy densities of dark matter plus baryonsΩdm+b (blue), radiationΩrad (black)
and dark energyΩde (red), as a function of the scale factor a, for w=-0.9. Three values of the coupling are illustrated:ξ = 0 (solid
curve),0.25 (long dashed curve) and−0.25 (short dashed curve).

Linear perturbation theory

In the synchronous comoving gauge, metric scalar perturbations are described by the two usual fields [24]h(x,τ)
andη(x,τ). Definingδ ≡ δρ/ρ for the fluid density perturbations,θ ≡ ∂ivi for the divergence of the fluid proper
velocityvi and using Eq. (4), it results, at first order in perturbation theory:

δ̇dm = −(θdm+
1
2

ḣ)+ ξH
ρde

ρdm
(δde− δdm) (15)

θ̇dm = −H θdm+ ξH (1−b)
ρde

ρdm
(θde−θdm) . (16)

δ̇de = −(1+w)(θde+
1
2

ḣ)−3H
(

ĉ2
sde−w

)

[

δde+H (3(1+w)+ ξ )
θde

k2

]

, (17)

θ̇de = −H

(

1−3ĉ2
sde−

ĉ2
sde+b

1+w
ξ
)

θde+
k2

1+w
ĉ2

sdeδde−bξH
θdm

1+w
, (18)

whereb = 1 stands for models withQν ∝ u(dm)
ν (5) andb = 0 for models withQν ∝ u(de)

ν (6). We have assumed that
H is the global expansion rate and that it does not contribute to Q perturbation.

Notice that the continuity equation for dark matter (15) always includes an extra term compared to uncoupled
models which depends on the dark interactionQ of Eq. (11). Focusing on viable models, it can be shown1 that the dark
matter growth equation at small scales is mainly modified in two ways: (i) the background evolution (in particular,ρdm

1 See [3] for similar coupled models. The details of the growthat small scales associated to the models studied here will bepresented elsewhere.
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FIGURE 3. Scenario with Q∝ ρde. The two upper panels correspond to models with Qν ∝ u(dm)
ν , the two lower panels to models

with Qν ∝ u(de)
ν . Left (right) panel: 1σ and 2σ marginalized contours in theξ–Ωdmh2 (ξ– fν ) plane. The largest, green contours

show the current constraints from WMAP (5 year data), HST, SNand H(z) data. The smallest, red contours show the current
constraints from WMAP (5 year data), HST, SN, H(z) and LSS data.

andH evolution) is different, (ii) the Hubble friction term and the source term get extra contributions fromQ. For
negative couplings, these two modifications lead to an enhancement of the dark matter growth compared to uncoupled
models (see also Ref. [1] for similar models). The closerξ gets to -1, the larger is the growth. This particular feature
can be constrained by cosmological data, in particular in the next section we will see that large scale structure data
provide the strongest limits on the interactionQ.

Also notice that the Euler equation for dark matter (16) is only modified in theQν ∝ u(de)
ν (6) case, leading a violation

of the weak equivalence principle. Constraints resulting from the difference between dark matter and baryon velocities
could provide additional restrictions on the allowed values of the dark coupling, to be added to the ones presented in

the following section. For the sake of comparison with the already studiedQν ∝ u(dm)
ν (5) model we present below the

likelihood plots for the two coupled models (5) and (6).

COSMOLOGICAL CONSTRAINTS FROM DATA FOR Q = ξH ρde

In Ref. [8], we explore the constraints on the dark energy-dark matter couplingξ using the publicly available package
cosmomc [19]. The latter is modified in order to include the coupling among the dark matter and dark energy
components. More details on the cosmological model and on the priors adopted can be found in Ref. [8]. The datasets



in the analysis are:

1. WMAP 5-year data [12, 13]
2. Prior on the Hubble parameter of 72±8 km/s/Mpc from the Hubble key project (HST) [14]
3. Super Novae Ia (SN Ia) data [15]
4. H(z) data at 0< z< 1.8 from galaxy ages [16]
5. Large scale structure data (LSS data) from the Sloan Digital Sky Survey [17]

The data analysis is carried out into two runs, the first run includes the datasets from 1 to 4 while in the second run the
fifth dataset is added. We restrict ourselves tow > −1 andξ < 0, a parameter region which ensures a negative doom
factor, see Eq. (12), and thus spans an instability–free region of scenarios to explore.

Figure 3 (left panel) illustrates the 1 and 2σ marginalized contours in theξ –Ωdmh2 plane, whereΩdm is today’s
ratio between dark matter energy density and critical energy density. The results from the two runs described above are
shown. Notice that a huge degeneracy is present, beingξ andΩdmh2 positively correlated. The shape of the contours
can be easily understood following our discussion in the previous sections. In a universe with a negative dark coupling
ξ , there is an enhancement of the growth of structure relativeto the non interacting case. The amount ofintrinsic
dark matter (which is directly proportional toΩdmh2) needed to reproduce the LSS data should decrease as the dark
coupling becomes more and more negative. We also see that theaddition of LSS data in the second run (red contours
in Figs. 3 and 4) gives the most stringent constraint onξ .

The right panel of Fig. 3 shows the correlation among the fraction of matter energy-density in the form of massive
neutrinosfν and the dark couplingξ . The relation between the neutrino fraction used herefν and the neutrino mass
for Nν degenerate neutrinos reads

fν =
Ωνh2

Ωdmh2 =
∑mν

93.2eV
·

1
Ωdmh2 =

Nν mν
93.2eV

·
1

Ωdmh2 . (19)

Neutrinos can indeed play a relevant role in large scale structure formation and leave key signatures in several
cosmological datasets. Degeneracies between dark energy sector parameters and∑mν are rather well known, see
Ref. [25, 26, 27]. Non-relativistic neutrinos in the recentUniverse suppress the growth of matter density fluctuations
and galaxy clustering. This effect can be compensated by theexistence of a coupling between the dark sectors, due to
the fact that in the coupled model negative couplings enhance the growth of matter density perturbations.

Notice that the constraints on theQν ∝ u(dm)
ν (5) andQν ∝ u(de)

ν (6) models are rather equivalent, due to the fact that
the background evolution history (see Eqs. (13) and (14)) isthe same, and the evolution of perturbations (15) - (18) is
also very similar for these two models.

CONCLUSIONS

In these proceedings, we discuss the origin of non-adiabatic instabilities in coupled models satisfying

∇µTµ
dmν = Qudm(de)

ν /a and∇µTµ
deν = Qudm(de)

ν /a. We show that the sign of the doom factor

d ≡
Q

3H ρde(1+w)
(20)

reveals the presence of instabilities. In particular, whend is positive and sizeable,d > 1, the dark-coupling dependent
terms may dominate the evolution of the dark energy perturbation, and drive an unstable growth regime. Notice thatd
has been defined for a constant dark energy equation of statew (seee.g.Ref. [9, 28] forw = w(a)).

We have studied the constraints from current cosmological data on the dimensionless couplingξ in a class of
viable models in whichQ = ξH ρde, independently of the dark interaction term 4-velocity dependence. The analyses
presented here were carried out in theξ < 0 and positive(1+w) region of the parameter space, which offers the best
agreement with data on large scale structure formation. From the results of our fits we find that bothw andξ are not
very constrained from data: it can be noticed from Fig. 4 thatsubstantial values for both parameters, near -0.5, are
easily allowed. Furthermore,ξ turns out to be positively correlated withΩdmh2 and a larger neutrino fractionfν than
in uncoupled models is allowed for negative values of the coupling ξ .
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FIGURE 4. Scenario with Q∝ ρde. Left (right) panel: 1σ and 2σ marginalized contours in theξ–w plane for Qν ∝ u(dm)
ν

(Qν ∝ u(dm)
ν ). The largest, green contours show the current constraintsfrom WMAP (5 year data), HST, SN and H(z) data. The

smallest, red contours show the current constraints from WMAP (5 year data), HST, SN, H(z) and LSS data.

ACKNOWLEDGMENTS

The work reported associated to theQν ∝ u(dm)
ν models has been done in collaboration with B. Gavela, D. Hernandez,

O. Mena and S. Rigolin, see Ref. [8]. L. L. H thanks the organizers of the Invisible Universe conference (Paris) for
giving her the opportunity to give a talk on “dark couplings”and the I.F.I.C. group (Valencia), where part of the

Qν ∝ u(de)
ν work was carried out, for its hospitality . We also acknowledge R. Jiménez B. Reid and L. Verde for useful

comments and discussions. L. L. H was partially supported byCICYT through the project FPA2006-05423, by CAM
through the project HEPHACOS, P-ESP-00346, by the PAU (Physics of the accelerating universe) Consolider Ingenio
2010, by the F.N.R.S. and the I.I.S.N.. O. M. work is supported by a Ramón y Cajal contract from MEC, Spain

APPENDIX: GROWTH OF PERTURBATIONS IN STRONGLY COUPLED SCENARIOS

The strong coupling regime can be characterized by
∣

∣

∣

∣

Q
H ρde

∣

∣

∣

∣

≫ |3(1+w)| , (21)

∣

∣

∣

∣

Q
H ρde

ĉ2
sde+1
1+w

∣

∣

∣

∣

≫
∣

∣1−3ĉ2
sde

∣

∣ , (22)

which ensure that the dark-coupling terms dominate the evolution of bothδde andθde. With c2
sde> 0, Eq. (21) alone

is enough to define the regime.
For coupled models satisfying Eqs. (4), (5) and (6), the resulting growth equation for dark energy perturbations at

large scales (H /k≫ 1) can be approximated by

δ ′′
de ≃

δ ′
de

a

(

Q
H ρde

ĉ2
sde+b

1+w
+a(ln[Q/ρde])

′

)

+3
δde

a2 (ĉ2
sde−w)

(

Q
H ρde

b
1+w

+a(ln[Q/ρde])
′

)

+
1

a2H
δ [Q/ρde]

(

ĉ2
sde+b

1+w
Q

H ρde
+a(ln[Q/ρde])

′−
1
2
−

3
2

wΩde

)

−
1

aH
(δ [Q/ρde])

′− (1+w)
ḣ
2

. (23)



whereb = 1 for models withQν ∝ u(dm)
ν (5) andb = 0 for models withQν ∝ u(de)

ν (6).
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