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This paper shows how to generate underactuated manipulators by substituting nonholo-
nomic spherical pairs for (holonomic) spherical pairs in ordinary (i.e. not underactuated)
manipulators. As a case study, an underactuated manipulator, previously proposed by one
of the authors, is demonstrated to be generated, through this pair substitution from an
inversion of the 6-3 fully parallel manipulator. Moreover, the kinetostatic analysis of this
underactuated manipulator is reconsidered, and a simple and compact formulation is
obtained. The results of this kinetostatic analysis can be used both in the design of the
underactuated manipulator and in its control. �DOI: 10.1115/1.4000527�
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Introduction
Nonholonomic constraints arise in many different areas of ro-

otics �1–4� such as motion planning and control of mobile ro-
ots, reorientation of free-flying space robots, rolling contacts of
ultifingered hands, etc. In all these cases, the nonholonomic con-

traints are inherent to the problem, but there are some cases in
hich the artificial introduction of this kind of constraints can
rovide important advantages.

In pick-and-place applications of manipulators, only the initial
nd the final poses �position and orientation� of the end effector
re assigned by the task, whereas the end-effector path between
hem is free. The ideal manipulator for these applications should
e able to make the end effector reach any pose in the six-
imensional operational space, and, by exploiting the free fly of
he end effector, it should be able to satisfy additional design
onditions that reduce its hardware complexity. Joints with non-
olonomic constraints do not reduce the reachable relative poses
f the links connected by the joint since nonholonomic constraints
ave the only effect of reducing the set of paths that can be cov-
red for moving between two reachable relative poses. This reduc-
ion in practicable paths is accompanied by the rising of new
eaction forces in the joint, which can be usefully exploited to
liminate actuators. Thus, designing a manipulator with fewer ac-
uators than the degrees-of-freedom �DOF�1 of its configuration
pace—to reduce bulk, weight, and expense—becomes feasible
y introducing mechanical elements that lead to nonholonomic
onstraints.

The literature on the use of nonholonomic devices in the design
f manipulators is limited to few examples. In Ref. �7�, Stammers
t al. presented a robot wrist that can attain any orientation with
wo motors only. This is achieved by means of a friction drive,
sing rollers on a spherical ball to which the end effector is fixed,
nd by fixing the two motors to the arm. In Ref. �8�, Peshkin et al.

1The degrees-of-freedom �DOF� of the configuration space, also called configu-
ation �or finite� DOF �5�, are the minimum number of geometric parameters neces-
ary to uniquely identify the configuration of the mechanical system �6�. They may
e different from the instantaneous DOF, also called velocity DOF �5�, of the same
echanical system.
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presented a passive spherical robot, which can display program-
mable constraints. The device is based on a nonholonomic ele-
ment involving a sphere and three reorientable rollers. In Ref. �9�,
Nakamura et al. described an n-joint serial robot, which can reach
any pose in its n-dimensional configuration space with only two
actuators. The joints of this manipulator are coupled by �n−1�
nonholonomic devices, based on spheres and rollers, so that it
reaches a desired pose by following a path whose computation is
algorithmically equivalent to maneuvering a car with n-trailers.
More recently, in Ref. �10�, Ben-Horin and Thomas proposed a
three-legged parallel robot, where each leg is connected to the
base through a sphere whose motion is constrained by a roller.
This latter parallel architecture permits to attain any position and
orientation for the platform using only three prismatic actuators.

Despite the difference of purpose, all mentioned examples in-
clude at least one sphere whose motion is constrained by a roller
that can freely roll in contact with the sphere without slipping
laterally. This no-slip constraint is a nonholonomic constraint, a
constraint relating the velocities of the sphere and the roller. The
kinematics of this sphere-roller assembly is equivalent to that of a
unicycle on a sphere whose equations of motion can be repre-
sented by first-order differential equations �11�.

Many research efforts have been made to clarify different as-
pects of nonholonomic mechanical systems, including their con-
trollability, stability, feedback stabilization, time-periodic control,
chained form transformation, etc. but, in any case, achieving a
formulation for the kinematics of the system, as compact and
simple as possible, is essential to explore the applicability of all
these results available in the literature.

Herein, how underactuated manipulators can be generated
through the substitution of a spherical pair �S pair� by a particular
nonholonomic pair, named nonholonomic spherical pair �nS pair�,
in ordinary �i.e., not underactuated� manipulators is shown. As a
case study, the underactuated parallel architecture presented in
Ref. �10� is demonstrated to be generable from an inversion of the
6-3 fully parallel manipulator �FPM�. Its kinetostatic analysis is
reformulated, and a simple and compact formulation useful for its
design and control, is obtained.

This paper is structured as follows. Section 2 describes how to
generate underactuated manipulators through substitution of suit-
able kinematic pairs in ordinary manipulators. Section 3 is de-

voted to the case study: A compact formulation for its instanta-
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eous kinematics and statics is obtained, and some clues for the
haracterization of its singularities are provided. Eventually, Sec.
offers the conclusions.

Generation of Under-Actuated Manipulators
Two rigid bodies �RBs� connected by a S pair can assume any

elative orientation, and can move from one relative orientation to
nother by covering any spherical-motion path that joins the two
elative orientations. Actually, the possibility of freely orientating
wo RBs with respect to one another is not related to the possibil-
ty of performing relative rotations around axes, which pass
hrough the center of spherical motion and have any direction. In
act, a suitable sequence �at least three� of finite rotations around
oplanar axes that pass through the spherical-motion center can
reely orientate one RB with respect to another. Thus, if the only
ree relative orientation of two RBs is required, the use of a S pair
ill be redundant. The use of a kinematic pair that allows only

otations around coplanar axes that pass through a fixed point
ould be sufficient.
Due to frictional forces, the rolling contact between a sphere

nd a roller forbids the sphere rotations around the axis through
he sphere center, and perpendicular to the plane defined by the
oller axis and the sphere center. By combining such a nonholo-
omic constraint with other constraints that forbid the relative
ranslation between the sphere center and the roller axis, a non-
olonomic joint will result. This joint constrains two RBs: one
xed to the sphere and the other fixed to the plane, defined by the
oller axis and the sphere center so that the resulting constrained
otion permits only relative rotations around axes lying on the

bovementioned plane and passing through the sphere center.
ereafter, this type of joint will be called nS pair.
The constraint forces, which two RBs, joined by a nS pair, exert

n one another through the joint, can be reduced to a resultant
orce applied on the sphere center and a torque perpendicular to
he plane defined by the roller axis and the sphere center. The
orque is the static effect of the nonholonomic constraint, whereas
he resultant force on the sphere center is the same static effect
hat a S pair would have generated.

A nS pair could be manufactured, as shown in Fig. 1. From a
anufacturing point of view, it is worth noting that, in a nS pair,

he presence of any number of roller-sphere contacts does not alter
he kinetostatics of the nS pair, provided that all the roller axes lie
n a same plane passing through the sphere center2. Moreover, the

2In general, two rollers whose axes locate with the sphere center two different
lanes constrain the sphere to rotate around the intersection line between the two
lanes, whereas three rollers whose axes locate with the sphere center three different

ig. 1 3D CAD model of one out of many different manufac-
uring schemes for the nS pair: „1… sphere, „2… roller „carried out
hrough a roller bearing…, „3… spherical bearing „there are three
pherical bearings „only two are visible… that forbid the trans-
ation of the sphere…, „4… preload adjust screw, and „5… parallel-
sm adjust screws
lanes lock the sphere.
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maximum torque transmitted through the nS pair, due to its fric-
tional origin, can be fixed by suitably choosing the number of
roller-sphere contacts together with the normal force transmitted
through each contact.

The above discussion brings the proposition: �i� the substitution
of a number of nS pairs for as many S pairs in a kinematic chain
does not change the configuration space of that chain �i.e., neither
the DOF3 of the configuration space nor the reachable configura-
tions change�. It only reduces the practicable paths for moving
that chain from one configuration to another.

Moreover, due to the torque that arises in a nS pair and to
proposition �i�, the following proposition holds: �ii� in a manipu-
lator, the substitution of a number of nS pairs for as many S pairs
does not change its workspace and allows the elimination of a
number of actuators equal to the number of introduced nS pairs
�i.e., generates an underactuated manipulator�.

S pairs are extensively employed in spatial parallel manipula-
tors �see, for instance, Refs. �12–15��. In particular, FPMs feature
two platforms: one mobile �end effector� and the other fixed
�frame�, connected to each other by means of six universal�U�-
prismatic�P�-spherical�S� kinematic chains �UPS limbs�, where
the prismatic pairs �P� are the only actuated pairs. In each limb,
the centers of the universal joint and of the spherical pair �limb’s
attachment points� are points, fixed either to the end effector or to
the frame, whose distance �limb length� is controlled by the actu-
ated prismatic pair. Two or more attachment points, either in the
end effector or in the frame, can coalesce into a unique point.
According to the number of attachment points �no matter if they
are multiple or not�, in the end effector, say p, and in the frame,
say q, different FPM architectures named p-q FPM are distin-
guished �15�.

Due to the high number of S pairs appearing in FPMs, the
substitutions of nS pairs for S pairs, accompanied by as many
eliminations of actuators in the prismatic pairs, can be operated in
many ways in all the FPM architectures. By exploiting all the
possible substitutions, a lot of new underactuated parallel manipu-
lators can be generated. It is worth noting that a passive UPS limb
only affects the workspace borders since it has connectivity six,
and, if this effect is not necessary, the elimination of the actuator
in a prismatic pair could be accompanied by the elimination of the
whole resulting passive UPS limb.

3 Case Study
In this section, an underactuated parallel manipulator generated

from the 6-3 FPM �Fig. 2� is studied.
The 6-3 FPM architecture features three couples of UPS limbs

with coalesced S pairs in the end effector. This architecture was
proposed first by Stewart �16� in 1965 for a flight simulator. Suc-
cessively, with the renewed interest for the parallel architectures

3The presence of nonholonomic constraints does not change the configuration
DOF �5,6�. It only affects the instantaneous DOF of the mechanism. Hereafter, the

Fig. 2 6-3 FPM
acronym dof used alone will mean configuration DOF.
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hat started at the end of the 80s, it was diffusely studied. In
articular, regarding the direct position analysis of the 6-3 FPM,
nnocenti and Parenti-Castelli �17� demonstrated that at most, 16
nd-effector poses correspond to a given set of limb lengths.
hen, Parenti-Castelli and Di Gregorio �18� demonstrated that the
nd-effector pose is uniquely determined when the value of one
assive joint variable is measured besides the six limb lengths.
he direct position analysis of this FPM can also be used for
patial parallel manipulators that become 3-RS structures when
he actuators are locked �see, for instance, Refs. �19–22��.

Starting from the 6-3 architecture, each couple of UPS limbs
ith coalesced S pairs �Fig. 3, left� can be transformed into an
PnS limb, as shown in Fig. 3 �right�, without affecting the work-

pace of the manipulator �see proposition �i��. By operating this
ubstitution in all the three couples of UPS limbs, together with
he inversion of the end effector with the frame, the underactuated

anipulator with topology 3-nSPU, shown in Fig. 4, is obtained.
his underactuated manipulator is able to move the end effector in
6-DOF workspace by changing only the three limb lengths. The
-nSPU has been proposed first in Ref. �10�.

ig. 3 UPnS limb „right… generated by substituting an nS pair
or the S pair in the two UPS limbs with coalesced S pairs „left…

ig. 4 Underactuated manipulator with topology 3-nSPU: „a…

inematic model, „b… 3D CAD model of a manufacturing scheme

ournal of Mechanisms and Robotics
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Regarding the direct position analysis �DPA� of the 3-nSPU,
since its configuration space has 6 DOF, a number of closure
equations equals to the number of unknowns can be written if, and
only if, over the three limb lengths, three more passive joint vari-
ables are assigned �measured�. By assigning �measuring� the three
joint variables of the three revolute pairs4 not adjacent to the end
effector, the closure equation system coincides with the one of the
6-3 FPM for assigned limb lengths �18�, and admits, at most, 16
solutions for the end-effector pose. Moreover, if the joint variable
of a revolute pair adjacent to the end effector is also measured �or
coherently assigned�, only one end-effector pose satisfies the clo-
sure equations �18�.

3.1 Instantaneous Kinematics. Fig. 5 shows the i-th limb,
i=1,2 ,3, together with the notation that will be used. w1i and w2i
are two mutually orthogonal unit vectors fixed to the frame and
lying on the plane defined by the roller axis and the center Ai of
the sphere in the roller-sphere contact. w3i and w4i are the two
mutually orthogonal unit vectors of the axes of the two revolute
pairs constituting the U joint. Bi is the center of the U joint. ai and
bi are the two position vectors, which locate the points Ai and Bi,
respectively, in a generic Cartesian reference fixed to the frame,
whereas p is the position vector of an end-effector point P in the
same Cartesian reference. � ji for j=1, . . . ,4 is a joint variable
denoting a rotation angle around the joint axis defined by w ji for
j=1, . . . ,4, and positive if counterclockwise with respect to w ji.
The length of the i-th limb is equal to �bi−ai�, and it will be
denoted li. Moreover, the unit vector of the limb axis gi and the
unit vector hi�ri� normal to the plane located by the U-joint’s
revolute pair axes �by the roller axis together with the sphere
center in the nS joint� satisfy the following relationships:

ligi = bi − ai, hi = w3i � w4i, ri = w1i � w2i �1�

The time differentiation of the first of the relationships �1� yields

l̇igi + liġi = ḃi �2�

Since ġi= ��̇1iw1i+ �̇2iw2i��gi and ḃi= ṗ+�� �bi−p�, where �
denotes the end-effector angular velocity, Eq. �2� can be rewritten
as

l̇igi + li��̇1i�w1i � gi� + �̇2i�w2i � gi�� = ṗ + � � �bi − p� �3�

The dot products of Eq. �3� by w1i and w2i yield the following two
scalar equations:

4Each U joint is constituted by two revolute pairs: one adjacent to the end effector,

Fig. 5 i-th limb of type nSPU: notations
and the other not adjacent to the end effector.
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l̇i�gi · w1i� + li�̇2i�w2i � gi · w1i� = ṗ · w1i + � � �bi − p� · w1i

�4�

l̇i�gi · w2i� + li�̇1i�w1i � gi · w2i� = ṗ · w2i + � � �bi − p� · w2i

�5�

n the other hand �see Fig. 5�, the end-effector angular velocity is

qual to � j=1,4�̇ jiw ji, whose dot product by hi gives the following
xpression:

� · hi = �̇1i�w1i · hi� + �̇2i�w2i · hi� .

olving Eqs. �4� and �5� for �̇2i and �̇1i, respectively, and replacing
he result in the above equation, yields

� · hi = � ṗ · w2i + � � �bi − p� · w2i − l̇igi · w2i

li�w1i � gi · w2i�
��w1i · hi�

+ � ṗ · w1i + � � �bi − p� · w1i − l̇igi · w1i

li�w2i � gi · w1i�
��w2i · hi�

�6�

aking into account the identities

hi � ri = hi � �w1i � w2i� = �w2i · hi�w1i − �w1i · hi�w2i

ri · gi = w1i � w2i · gi = − w1i � gi · w2i = w2i � gi · w1i

elationship �6� can be rewritten as

l̇igi · �hi � ri� = ṗ · �hi � ri� + � · ��bi − p� � �hi � ri�

− li�ri · gi�hi� �7�

ince l̇i can also be obtained as the projection of ḃi on gi �see Eq.
2��, the following expression holds:

l̇i = ḃi · gi = ṗ · gi + � · ��bi − p� � gi� �8�

eplacing expression �8� for l̇i in Eq. �7�, gives

ṗ · si + � · ��bi − p� � si − li�ri · gi�hi� = 0 �9�

here

si = hi � ri − �gi · �hi � ri��gi �10�

s the component of hi�ri perpendicular to gi.
Eventually, rewriting Eqs. �8� and �9� for i=1,2 ,3 in matrix

orm, yields

	13�3

03�3

 l̇ = 	G3�3 K3�3

S3�3 J3�3

	 ṗ

�

 �11�

here 13�3 and 03�3 are the 3�3 identity and zero matrix, re-

pectively, l̇= �l̇1 , l̇2 , l̇3�T is the vector collecting the joint rates of
he actuated joints, and

KT�i, :� = �bi − p� � gi �12�

GT�i; :� = gi �13�

JT�i, :� = �bi − p� � si − li�ri · gi�hi �14�

ST�i, :� = si �15�

ith the notation AT�i , :� to mean the i-th column of matrix A3�3
T .

Matrix relationship �11� is the sought-after input-output instan-
aneous relationship necessary to implement the control algo-
ithms of the 3-nSPU.

3.2 Static Analysis. The only input-output static relationship
an be immediately deduced from Eq. �11� through the principle

f virtual work. Nevertheless, in order to highlight how the loads

11005-4 / Vol. 2, FEBRUARY 2010
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act upon the limbs and are transmitted through the joints, the
complete static analysis of the 3-nSPU will be developed here
independently of Eq. �11�.

Figure 6 shows the free-body diagram of the i-th limb. With
reference to Fig. 6, the force fbi

�fai
� applied on Bi �Ai�, together

with the torque mhi
hi�mri

ri�, are the resultants of constraint forces
exerted by the end effector �frame� on the i-th limb through the U
joint �the nS joint�. Moreover, the force −fext applied on the end-
effector point P, together with the torque −mext, will denote the
resultants of the interaction forces exerted on the end effector. The
force �igi will denote the axial force exerted on the upper part of
the i-th limb by the actuator in the prismatic pair. It is worth
noting that the force equilibrium along the limb axis of the upper
part of the i-th limb yields the following relationship: �i=−fbi ·gi.

With these notations, the equilibrium of the forces applied on
the i-th limb yields fbi

+ fai
=0; whereas, taking Ai as reference

point, the equilibrium of the moments applied on the same limb is

mhi
hi + mri

ri + ligi � fbi
= 0 �16�

The dot product of Eq. �16� by gi, yields the relationship

mri
= − mhi

hi · gi

ri · gi
�17�

whose substitution for mri
in Eq. �16� leads to

mhi

ri . gi
�gi � �hi � ri�� + ligi � fbi

= 0 �18�

where the vector identity gi� �hi�ri�= �ri ·gi�hi− �hi ·gi�ri has
been used.

The dot product of Eq. �18� by hi�ri yields the relationship
�gi� fbi� · �hi�ri�=0. Such relationship is satisfied if, and only if,
fbi

is a linear combination of gi and hi�ri. Subtracting from hi

�ri its component along gi, the vector si is obtained. Since gi and
si are two orthogonal vectors that span the same subspace as gi
and hi�ri, fbi can be expressed as follows:

fbi
= − �igi − �i

�si �19�

Equation �19� can be interpreted as the equilibrium of the forces
applied on the upper part of the i-th limb. In fact, the two forces
�igi and �i

�si are, respectively, the active axial and the passive
shear forces applied through the actuated prismatic pair.

Replacing expression �19� for fbi
in Eq. �18�, and taking into

Fig. 6 i-th limb of type nSPU: free-body diagram
account that gi� �hi�ri�=gi�si, yields
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	 mhi

ri · gi
− li�i

�
�gi � si� = 0

hich is satisfied if

mhi
= li�i

��ri · gi� �20�

sing Eq. �17�, Eq. �20� can be rewritten as

mri
= − li�i

��hi · gi� �21�

egarding the end-effector equilibrium, the equilibrium of the
orces is

fext = − �
i=1

3

fbi
= �

i=1

3

�igi + �
i=1

3

�i
�si �22�

nd, taking the end-effector point P as reference point, the equi-
ibrium of the moments is

mext = − �
i=1

3

mhi
hi − �

i=1

3

�bi − p� � fbi
�23�

he substitution of fbi
, according to Eq. �19�, and of mhi

, accord-
ng to Eq. �20�, into Eq. �23� yields

mext = �
i=1

3

�i�bi − p� � gi + �
i=1

3

�i
���bi − p� � si − li�ri · gi�hi�

�24�

inally, Eqs. �22� and �24� can be rewritten in matrix form as
ollows:

	 fext

mext

 = 	G3�3 K3�3

S3�3 J3�3

T	 �

�� 
 �25�

here �= ��1 ,�2 ,�3�T is a vector collecting the signed magnitudes
f the forces applied by the actuators in the prismatic pairs, and
�= ��1

� ,�2
� ,�3

��T.
Matrix relationship �25� is the input-output static relationship of

he 3-nSPU. It is worth noting that, as expected, Eqs. �11� and

25� satisfy the instantaneous power balance fext · ṗ+mext ·�=� · l̇.

3.3 Singularity Analysis. Singularities are manipulator con-
gurations where the relationship �input-output instantaneous re-

ationship� between the rates of the actuated joint variables and
he end-effector twist �ṗ ,�� fails �23–25�. Three types of singu-
arities can be distinguished �23�: �I� singularities of the inverse
inematic problem, �II� singularities of the direct kinematic prob-
em, and �III� singularities both of the inverse and of the direct
inematic problems. Type-I singularities occur when the actuated
oint rates cannot be uniquely computed for an assigned end-
ffector twist. Vice versa, type-II singularities occur when the
nd-effector twist cannot be uniquely determined for assigned ac-
uated joint rates.

For the 3-nSPU, the input-output instantaneous relationship is
q. �11�, where the actuated joint rates are collected in the vector

. This relationship highlights that the 3-nSPU has only three in-
tantaneous DOF. Therefore, its singularity analysis can be ad-
ressed by using the scheme proposed in Ref. �26�.

Regarding type-I singularities, provided that the assigned twist
ṗ ,�� satisfies the last three equation of system �11�, the inverse
inematic problem can be always solved5.
Regarding type-II singularities, the equation of the singularity

ocus is

5System �11� does not model the mobility limitations due to the physical consti-
ution of the real joints and to the real sizes of the links. Such limitations bound the

orkspace and, when correctly modeled, yield type-I singularities.

ournal of Mechanisms and Robotics
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det	G3�3 K3�3

S3�3 J3�3

 = 0 �26�

The geometric interpretation of the above algebraic condition is
not straightforward.

Nevertheless, the last three equations of system �11� allows the
elimination of ṗ, provided that det�S3�3�=s1 ·s2�s3 is different
from zero. In this case, system �11� becomes

l̇ = Q� �27�

where Q is the 3�3 matrix �K3�3−G3�3S3�3
−1 J3�3�. Thus, the

analytic expression of the singularity locus becomes

det�Q� = q1 · q2 � q3 �28�

where the vectors qi for i=1,2 ,3, are the column vectors of ma-
trix Q. In conclusion, if the mixed product s1 ·s2�s3 is different
from zero �i.e., the three vectors si, for i=1,2 ,3, are neither co-
planar nor null vectors�, the type-II singularities are geometrically
identified by either the coplanarity of the three vectors qi for i
=1,2 ,3, or by the fact that at least one of the qi vectors is a null
vector.

If the mixed product s1 ·s2�s3 is zero, the determinant of the
whole 6�6 matrix appearing in Eq. �26� must be considered, and
geometric interpretations of Eq. �26� are much more difficult to
provide.

The zeroing of s1 ·s2�s3 can be geometrically identified since
it occurs when either �a� at least one of the si vectors is a null
vector, or �b� the three si vectors are coplanar. Vector si �see defi-
nition in Eq. �10�� is related to the configuration of the i-th limb,
and it is the component of hi�ri perpendicular to gi �i.e., to the
limb axis�.

As a consequence, condition �a� occurs when, in at least one
limb, either �a.1� the two unit vectors hi and ri are parallel �i.e.,
when, in a limb, the revolute pair axes in the U joint are both
parallel to the plane defined by the roller axis and the sphere
center in the nS pair�, or �a.2� the limb axis is the intersection line
between the plane defined by the roller axis and the sphere center
in the nS pair, and the plane defined by the revolute pair axes of
the U joint. Condition �a.2� is forbidden in practice by the actual
sizes of joints and links. Regarding condition �a.1�, a very special
case occurs when hi and ri are parallel in all the limbs. This
occurrence makes the matrix S3�3 a null matrix and allows the
determinant at the left-hand side of Eq. �26� to be factorized as
det�G3�3�det�J3�3�, where det�G3�3� is equal to g1 ·g2�g3,
whereas, in this case, det�J3�3� is equal to −l1l2l3�r1 ·g1��r2
·g2��r3 ·g3�h1 ·h2�h3. Thus, in this case, a type-II singularity oc-
curs when either the limb axes are all parallel to a unique plane, or
the hi vectors are coplanar, or, finally, in at least one limb, the
limb axis lies on the plane defined by the roller axis and the
sphere center of the nS pair. Moreover, it is worth noting that, in
this case, the end effector performs an instantaneous translation if
neither det�G3�3� nor det�J3�3� are equal to zero �i.e., out of
singularity�.

Regarding condition �b� �i.e., the coplanarity of the si vectors�,
it occurs when the limb axes are all parallel, and in other configu-
rations, more difficult to visualize.

3.4 Local and Global Controllability. Each end-effector
configuration �pose� can be modeled as a point in R3�SO�3�,
which is locally diffeomorphic to R6, equipped with a proper set
of local coordinates: x��pT ,�T�T, where � is a three-dimensional
vector collecting the values of the three orientation parameters
chosen to locate the end-effector’s orientation.

By using the orientation parameters’ rates �̇, the end-effector’s
angular velocity � can be expressed as

� = H3�3�̇ �29�
Relationship �29� allows system �11� to be rewritten in the form
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ẋ = V6�6	 l̇

03�1

 �30�

ith

V6�6 � �v1,v2,v3,v4,v5,v6� = 	13�3 03�3

03�3 H3�3
−1 
	G3�3 K3�3

S3�3 J3�3

−1

�31�

here vi is the i-th six-dimensional column vector of matrix V6�6.
he vectors vi depend only on x; so, they are vector fields defined
n end-effector’s configuration space.

Definition �31� allows Eq. �30� to be further simplified as fol-
ows:

ẋ = v1l̇1 + v2l̇2 + v3l̇3 �32�

elationship �32� states that, in the neighborhood of a generic
onfiguration x0, all the configurations x reachable without ma-
euvering �i.e., without a sequence of coordinated actions of the
ctuators� are so located that �x−x0��span�v1 ,v2 ,v3�.

Equation �32� is the relationship to be considered for discussing
he end-effector’s ability to reach any configuration in the neigh-
orhood of a generic configuration x0 �27,28�. The presence of
onholonomic constraints in the 3-nSPU manipulator might allow
ll neighboring configurations be reachable possibly by maneuver-
ng. If this happened, the system would be “locally controllable”
27� at the configuration x0.

It can be shown �see pp. 323–324 in Ref. �28�� that, if a system,
atisfying Eq. �32� and at the configuration x0, first follows vi, i

�1,2 ,3
, for a small time �, then follows v j, j� �1,2 ,3 � j� i
,
or the same time �, then −vi for �, and finally −v j for �, it will
each the following configuration of x0’s neighborhood

lim
�→0

x�4�� = x0 + �2�vi,v j�x=x0
�33�

here �vi ,v j� is the six-dimensional vector field named Lie prod-
ct of vi and v j, defined as follows:

�vi,v j� =
�v j

�x
vi −

�vi

�x
v j �34�

nd the trailing subscript x=x0 indicates the point where the two
ector fields, vi and v j, are evaluated at.

By reiterating the same reasoning �first, on pairs of vector fields
f type vi and �v j ,vk�, i , j ,k� �1,2 ,3 � i� j�k
, and, successively,
n pairs of vector fields belonging to the set, which collects all the
ector fields that, in the previous iterations, were demonstrated to
oint from x0 toward reachable configurations�, it can be demon-
trated that all the vector fields obtained through Lie products of
ny degree of elements of the set �v1 ,v2 ,v3
 point toward con-
gurations that are reachable by maneuvering from x0 �27�. In
ther words, for any reachable configuration, say x, the vector
x−x0� belongs to the Lie algebra6 of �v1 ,v2 ,v3
.

In our case, demonstrating that the dimension of the linear
pace span�v1 ,v2 ,v3 , �v1 ,v2� , �v1 ,v3� , �v1 ,v2�� is six7 is sufficient
or concluding that the manipulator is locally controllable at a
iven configuration, since the end-effector’s configuration space is
ix-dimensional �Chow’s theorem �see, for instance, Ref. �28���.

oreover, showing that the set of configurations where the system
s locally controllable is a simply connected region is sufficient to
emonstrate the existence of finite regions of the end-effector’s
onfiguration space where, for any two configurations belonging

6The “Lie algebra” of a set of vector fields is the linear span of all Lie products of
ll degrees of vector fields belonging to that set �27�.

7It is worth noting that, if the dimension of span�v1 ,v2 ,v3 , �v1 ,v2� , �v1 ,v3� ,
v2 ,v3�� is six, all the Lie products of any degree in �v1 ,v2 ,v3
 must belong to
pan�v1 ,v2 ,v3 , �v1 ,v2� , �v1 ,v3� , �v2 ,v3��; thus, all the reachable configurations x sat-

sfy the condition �x−x0��Span�v1 ,v2 ,v3 , �v1 ,v2� , �v1 ,v3� , �v2 ,v3��.
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to that region, at least one path exists, which the system can fol-
low for moving from one configuration to the other �i.e., the sys-
tem is “globally controllable” in that region�.

According to the above discussion, the configurations where the
local controllability of our manipulator is not guaranteed are the
geometric locus of the roots of the following equation:

det�L6�6� = 0 �35�

Fig. 7 Singularity locus „Eq. „26…… for the 3-nSPU geometry of
the numerical example and end-effector orientation fixed to
XZX Euler angles’ values „0, 1, 0… radians: „a… 3D view and „b…
top view
where
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L6�6 � �v1,v2,v3,�v1,v2�,�v1,v3�,�v2,v3�� �36�
he locus of the roots of Eq. �35�, in general, is a five-dimensional
ariety; thus, a finite region where our manipulator is globally
ontrollable, in general, exists. This statement will be verified
hrough the numerical example reported below.

3.5 Numerical Example. With reference to the notation de-
ned in Figs. 5 and 6, a 3-nSPU is considered where the points
i�Bi� for i=1,2 ,3 are at the vertices of an equilateral triangle
xed to the frame �to the end effector�. The Cartesian reference

ig. 8 Locus of the Eq. „35… roots for the 3-nSPU geometry of
he numerical example and end-effector orientation fixed to
ZX Euler angles’ values „0, 1, 0… radians: „a… 3D view and „b…

op view
ystem fixed to the frame �to the end effector� has the origin O�P�

ournal of Mechanisms and Robotics
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at the centroid of the equilateral triangle, z axis perpendicular to
the plane of the triangle, x axis passing through A3�B3� with di-
rection from A3�B3� toward O�P�, and y axis accordingly chosen.
In an arbitrary unit of length �AUL�, the distance of the triangle
vertices Ai�Bi� from its centroid is 39.7 AUL �11.76 AUL�. In the
same unit, the geometry of the frame and of the end effector are
defined by the following data �the vector without any leading
superscript are measured in the frame reference, whereas the vec-
tors with the leading superscript e are measured in the end-
effector reference�: a1= �19.85,−34.3812,0�T, a2= �19.85,
34.3812,0�T, a3= �39.7,0 ,0�T, r1= �0.7887,−0.2113,0.5774�T, r2
= �−0.2113,0.7887,0.5774�T, r3= �−0.5774,0.5774,0.5774�T,
e�b1−p�= �5.88,−10.1845,0�T, e�b2−p�= �5.88,10.1845,0�T,
e�b3−p�= �11.76,0 ,0�T, ew41= �0.3536,−0.6124,0.7071�T, ew42

= �0.3536,0.6124,0.7071�T, and ew43= �−0.7071,0 ,0.7071�T.
With this manipulator geometry, the singularity locus defined

by Eq. �26� and the root locus of Eq. �35� have been computed for
a fixed orientation of the end effector with respect to the frame.
The results of these two computations are shown in the Figs. 7
and 8, respectively. By comparing the singularity locus �Fig. 7�
and the root locus of Eq. �35� �Fig. 8�, a wide free-from-
singularity region that is globally controllable can be easily iden-
tified.

4 Conclusions
If a number of nonholonomic spherical pairs replaces as many

spherical pairs in a manipulator, the same number of actuators can
be eliminated. The resulting manipulator will keep the same work-
space of the generating manipulator, but it will be underactuated.

This technique for generating underactuated manipulators can
be applied to fully parallel manipulators, where many spherical
pairs are present, and the elimination of an actuator in an UPS
limb can be accompanied with the elimination of the whole UPS
limb.

Through this pair substitution, an underactuated manipulator,
previously proposed by one of the authors, has been generated
from an inversion of the 6-3 FPM. The kinetostatic analysis of this
manipulator has been reconsidered to obtain a simple and compact
formulation. This reformulated analysis can be used both in the
design of the underactuated manipulator and in its control. Further
works on this manipulator will present an exhaustive singularity
analysis, and will provide design criteria for increasing its useful
workspace.
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Nomenclature
DOF � degrees-of-freedom
DPA � direct position analysis
FPM � fully parallel manipulator

nS � nonholonomic spherical pair
nSPU � �nonholonomic spherical�-prismatic-universal

kinematic chain �limb�
P � prismatic pair

RB � rigid body
S � spherical pair

SPU � spherical-prismatic-universal kinematic chain
�limb�
U � universal joint
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