
Noname manuscript No.
(will be inserted by the editor)

A Virtual World Grammar for Automatic Generation of
Virtual Worlds

Tomas Trescak · Marc Esteva · Inmaculada Rodriguez

Received: date / Accepted: date

Abstract Hybrid systems such as those that combine
3D virtual worlds and organization based multiagent
systems add new visual and communication features
for multi-user applications. The design of such hybrid
and dynamic systems is a challenging task. In this pa-
per we propose a system that can automatically gen-
erate a 3D virtual world (VW) from an organization
based multiagent system (MAS) specification that es-
tablishes the activities participants can engage on. Both
shape grammar and virtual world paradigms inspired us
to propose a Virtual World Grammar (VWG) to sup-
port the generation process of a virtual world design. A
VWG includes semantic information about both MAS
specification and shape grammar elements. This infor-
mation, along with heuristics and validations, guides
the VW generation producing functional designs. To
support the definition and execution of a Virtual World
Grammar, we have developed a so named Virtual World
Builder Toolkit (VWBT). We illustrate this process by
generating a 3D visualization of a virtual institution
from its specification.

Tomas Trescak
Artificial Intelligence Research Institute

Spanish Council for Scientific Research

Barcelona, Spain
E-mail: ttrescak@iiia.csic.es

Marc Esteva
Artificial Intelligence Research Institute
Spanish Council for Scientific Research
Barcelona, Spain

E-mail: marc@iiia.csic.es

Inmaculada Rodriguez
Applied Mathematics Department

University of Barcelona

Barcelona, Spain
E-mail: inma@maia.ub.es

Keywords Shape Grammars · Virtual Institutions ·
3D Virtual Worlds · Multi-Agent Systems · CAD

1 Introduction

Nowadays e-* applications, where * stands either for e-
commerce, e-learning or e-government, are mostly web-
based applications where stakeholders have no visual
clues helping them to carry out their interactions. These
applications have limited possibility to deal with user
interaction. This lack of multiuser and visual awareness
in web-based systems can be handled by the 3D vir-
tual world (VW) technology. Virtual worlds are graph-
ical environments that provide effective communication
among participants and let them focus their attention
on the who, where, or when of events.

Our belief is that 3D virtual worlds in combination
with organization based multiagent systems [5] (i.e a
computational version of traditional human organiza-
tions or institutions) may provide at least three new
possibilities to e-* applications:

– Thanks to the regulation imposed by the multiagent
system (MAS), the 3D environment becomes a nor-
mative virtual world where norms are enforced at
runtime instead of by the terms of service contract.

– A 3D real-time representation of the multiagent sys-
tem facilitates a better understanding of what is
happening at both agent and the entire system lev-
els.

– Virtual world participants can be both humans and
software agents facilitating human direct participa-
tion in MAS and intelligent agents participation in
VW.

The construction of such a 3D virtual world using
an authoring system i) is a time consuming task for

2

designers and ii) makes it almost impossible to man-
age the dynamic update of the virtual world design at
runtime. The latter issue is crucial for us as we are in-
terested in the dynamic nature of VWs. Then, we need
a powerful method to generate 3D virtual scenes in an
automatic way.

In this paper, we propose a system that can au-
tomatically generate a 3D virtual world from a MAS
specification, that is, from a formal description of ac-
tivities taking place in the system modeled by the orga-
nization based MAS. Both shape grammars and virtual
worlds paradigms inspired us to define the concept of
Virtual World Grammar (VWG) that supports the gen-
eration of such 3D virtual worlds. A shape grammar is
a method of generating designs which uses primitive
shapes and rules of interaction among them [11][13].
While a shape grammar only conveys geometrical data,
a VWG overcomes this lack of semantic data. It in-
cludes a shape grammar, semantic information about
both MAS specification and shape grammar elements.
Moreover, it includes heuristics and validations that
guide the VW generation producing functional designs.
We have developed a framework named Virtual World
Builder Toolkit (VWBT) for the definition and execu-
tion of VWGs.

Section 2 provides a motivation example and an
overview of our system. Section 3 presents the related
work. Section 4 introduces the VWG and formally de-
fines all of its components. Section 5 presents the toolkit
developed to exploit VWGs. Section 6 presents results.
Finally, Section 7 gives conclusions and ideas for future
works.

2 Motivation example and overview of the
system

Our motivation example is an auction system which
allows both in-house users (bidders present in a real
auction room) and internet users to participate in real
auctions happening all around the world.

However, how to accomplish the presence in all these
places and achieve an effective and comfortable commu-
nication between in-house and internet users? Our an-
swer is a hybrid environment which combines 3D virtual
worlds and multi-agent system technologies. All these
auctions are generated as some virtual space, either as
a room in a big auction building or as a separate build-
ing in the virtual world. All the users are displayed as
avatars. Internet users move around the building and
visit different auctions by entering auction rooms. In-
house users are tracked either by cameras or some com-
munication device and their act is constantly updated
in the 3D representation.

Figure 1 gives an overview of our approach, that
facilitates the generation of such type of hybrid en-
vironments out of a formal specification. In particu-
lar we focus on the generation of a Virtual Institution
(VI), from its specification (performative structure). A
VI is a 3D virtual world with normative regulation of
interactions [2]. A specification of the Auction House
virtual institution is depicted in the top rectangle of
Figure 1. Rounded rectangles represent activities (also
called scenes). In this performative structure we see the
following scenes: Admission, Item Registration, Auc-
tion and Auction Info. The initial and final scenes rep-
resent the institution entrance and exit points which
are mapped to the entry and exit of the generated 3D
VW. In our proposed auction house scenario, there are
many “Auction” scenes, the number depends on cur-
rently active real-world auctions.

Fig. 1: System overview

As indicated by dotted arrows in Figure 1, the defi-
nition of objects (from both the specification and shape
grammar) along with the list of their properties forms
a general vocabulary, that is the ontology of the VW
grammar. For each object of the specification and shape
grammar (SG) we create an instance of the related on-
tology object. The system also needs to specify objects’
mappings that define which shape grammar object can
represent which specification element. In VI we are fo-
cusing on activities which are mapped to the spaces,
such as stand-alone buildings or rooms in an institu-
tion building.

When we have successfully defined our ontology and
created all instances of specification and shape gram-
mar objects, we can proceed to the generation of a VW.

3

In what order we process the objects and where are they
placed according to the position of previously placed
object? This is where heuristics take an important role.
They decide the next specification element to process
and the applicable rule of the shape grammar for the
selected specification element.

To make sure that we are generating functional and
correct designs, we use validations during every step of
the generation. We can also evaluate the final design.
For example we do not want designs where rooms inter-
sect each other or rooms which have no entry or exit.
As shown in the bottom of Figure 1, the automatic gen-
eration of a virtual institution is done in 2 steps. First,
a 2D floor plan of the institution is generated. Then
a 3D transformation mechanism transforms this floor
plan into a final 3D scene.

3 State-of-the-art

There are several approaches that have worked in the
generation of VW designs from conceptual specifica-
tions. Bogdanovych [1][2] generated a 2D floor plan of a
virtual institution from the conceptual model described
in its performative structure. This approach used rect-
angular dualization of biconnected planar graphs. For
this purpose OCoRD software was developed. This ap-
proach brings some challenges for the scaling of the sizes
of the different rooms. It also does not let the virtual
world designer freely create different designs for the in-
stitution. In this paper, we provide an alternative to this
approach using shape grammars, allowing much more
freedom in the VI design and generating many differ-
ent functional designs with limited additional cost. We
do not generate transitions as separate rooms (as in
OCoRD) but we map all transitions to a hallway. In
this way we can generate floor plans of buildings with
much simpler navigation for the user. Our system con-
templates not only a generation of the 2D layout but a
complete 3D scene.

Our approach is similar to the one of Duarte, where
shape grammars are used to generate Siza’s Malagueira
houses [4] using an online application that rendered
such houses depending on user preferences. Duarte in-
troduced the concept of discursive grammars that con-
tain a shape grammar, a description grammar and a
set of heuristics. We also contemplate semantic data
to enrich pure shape grammars. Duarte generated 2D
designs from user preferences and we generate virtual
worlds from a formal specification taking into account
the activities participants can engage on.

VRID (Virtual Reality Interface Design) [12] and
VEDS (Virtual Environment Development Structure)[7]
have been methodologies that have tried to facilitate

the designer task either by dividing the design in high-
and low-level phases or guiding him in taking design
decisions to get an usable virtual environment. A con-
ceptual model of a virtual environment was presented
by Ossa [10], the model considered conceptual graphs
and rule based systems that were really complex to be
managed by designers. i4D was another methodology
based on the representation of conceptual models but
this methodology contributed with a thin abstraction
layer taking into account only an small space of the do-
main knowledge [6]. Compared to these approaches, our
system provides a high level abstraction layer by means
of the virtual world grammar which enclosed both data
and processes related to the 2D and 3D generation of
designs.

VR-WISE system and Ontoworld tool have focused
on the gap between the abstract model and the imple-
mentation prototype and have proposed an approach
to generate VW from high-level descriptions given by
ontologies [14][8]. Objects in the domain and their rela-
tionships have been described in a so called domain on-
tology. The domain ontology is converted into a repre-
sentable domain ontology which describes how objects
in the domain can be represented in the virtual environ-
ment. As a main difference with our approach, the do-
main ontology does not have all the information needed
to generate the 3D virtual world whereas the VWG has
it. Our approach generates the virtual world layout and
situates 3D objects there and VR-WISE system situates
objects in an already generated virtual scene.

4 Virtual World Grammar

In this section, we introduce the concept of Virtual
World Grammars. First, we formalize all the necessary
elements, such as ontology, validation and heuristics, to
conclude the section by giving a formal definition of a
VWG. For each of the VWG parts we present a solution
related to the motivation example.

4.1 Ontology

An ontology is a formal definition of the relevant con-
cepts of a domain. In the context of a Virtual World
Grammar the ontology contains two different kinds of
concepts. On the one hand, those related to the descrip-
tion of the activities that will take place in the virtual
world. They define how activities are conceptualized,
the relationships among them and in combination with
a shape grammar determine the layout of the virtual
world. On the other hand, there are the concepts that
define the properties of the virtual world elements. That

4

is, the properties of the shapes in the virtual world de-
sign. Notice that a shape grammar contains geometrical
information about shapes but it does not contain any
semantic information about them. Hence, an ontology
defines the properties containing semantic information,
such as texture or size, about those shapes that are later
used during the generation process and to validate the
obtained design.

In order to define an ontology, we take an object
oriented approach. The different concepts are defined
by classes and there exists a hierarchical relationship
among them. We define B = {integer, real, boolean,
string} as the set of basic data types and IC as a set
of indexes.

Definition 1 We define an ontology as a tuple o =
(C,≺) where:

– C = {(ci, Ai, σci)}i∈IC
is a set of class definitions

(concepts), each one defined as a tuple, where ci
stands for the class identifier, Ai is a set of attribute
identifiers, and σci : Ai −→ T maps each attribute
to its type, where T is recursively defined by the
following rules:
– (B ∪ {ci}i∈IC

) ⊂ T
– if ti, tj ∈ T then ti × tj ∈ T
– if ti ∈ T then ti list ∈ T
– Nothing else belongs to T .

– ≺ is a class hierarchy such that if ci ≺ cj then Aj ⊆
Ai.

We distinguish between the concepts describing the
activities and their relationships related to the MAS
specification (CSpec), and those related to properties of
shapes from shape grammar (CSG). Hence, C = CSpec∪
CSG.

While the previous definition establishes how the
domain concepts are formalized, by termso we denote
the actual instances of the concepts defined in an on-
tology o. Furthermore, by terms

CSpec
o we denote the

instances of concepts in CSpec, while by termsCSG
o the

instances of concepts CSG.

4.1.1 Auction House Ontology

From the specification of the Auction House institu-
tion, only scenes that define activities are used in the
generation (see blue rounded rectangles in Figure 1).
Hence, the specification concepts (CSpec) just contain
the scene (activity) class. Attributes of this class come
from the virtual institution specification. For instance,
attributes defining maximum number of participants of
an activity. The specification elements for a concrete
virtual institution are obtained by searching within the
specification document.

To guide the 3D transformation of a 2D floor plan
we need data such as a texture, size, or information if
some 2D object will be substituted by some 3D model
or procedurally generated. An example of such procedu-
rally generated structure is a wall. Walls can be ren-
dered as solid walls with texture, or walls with opening
for windows. We introduce the following shape gram-
mar concepts (CSG) and their properties:

– Design wall is the basic design element which forms
higher level objects. It represents an actual separa-
tion wall between some virtual spaces. Every wall
holds a basic set of geometrical properties such as
position, length and more importantly a wall type.
The wall type defines how the wall is rendered. used,
such as wall texture, wall witdh and wall height.

– Design space represents an area that will be sub-
stituted by a functional or non-functional (see office-
layout in Figure 9 a)) 3D model. It serves exclusively
this issue. Design space holds information about the
3D model, such as path, texture or size and this
information is used during the 3D transformation
phase.

– Design block is a collection of walls and design
spaces that creates one “shape” of our shape gram-
mar. We can look at our grammar execution as a
lego-like building process, where different blocks are
spatially placed together to create the final design.
This placement is validated using validation rules.

4.2 Shape Grammar

Shape grammar is a method of generating designs by us-
ing primitive shapes and the rules of interaction among
them. One of the shapes is marked as the starting shape.
Shape grammar rules are composed of left-side shapes
and right-side shapes, where right-side shape replaces
the left-side shape. Designs are generated from the shape
grammar by starting with the initial shape and recur-
sively applying its rules.

Definition 2 A shape grammar [11] (SG) is a 4-tuple:
SG = (VT , VM , R, I) where

1. VT is a finite set of terminal shapes. V ∗T is a set
of shapes formed by the finite arrangement of an
element or elements of VT in which any element of
VT may be used multiple number of times with any
scale, rotation or resize operation.

2. VM is a set of shapes used as markers, such that V ∗T ∩
VM = ∅. Markers permit to control how rules are
applied to the left-side shape. Rules with markers
are called labeled rules.

5

Fig. 2: Shape grammar derivation process

3. R is a finite set of rules, that are ordered pairs (u, v)
such that u is a left-side shape consisting of an ele-
ment of VT ∗ possibly combined with an element of
VM and v is a right-side shape consisting of an:
i element of V ∗T contained in u or
ii element of V ∗T contained in u combined with an

element of VM or
iii element of V ∗T contained in u combined with an

additional element of V ∗T and an element of VM

4. I is the starting shape consisting of elements of V ∗T
and VM .

A rule and the steps of a shape grammar derivation
process are displayed in Figure 2. The shape grammar
rule is marked with a black square. This rule simply
adds a rotated copy of a rectangle to its origin.

4.2.1 Auction House Shape Grammar

We define two different shape grammars to present pos-
sibilities of our system. The first grammar, displayed in
Figure 8 creates one institution building and for each
activity it creates a room within this building. The sec-
ond grammar, depicted by Figure 10, creates a separate
building for each activity. Shapes of a shape grammar
represent different blocks (rooms) of the building and
placeholders (spaces) for the 3D models. Different activ-
ities from specification are associated with these spaces
and they are automatically resized to fit to the number
of activity participants. Auction House shape grammar
uses two different rule types. The first one, an addition
rule, positions rooms into different locations within the
outline (init rule) and the second one, also an addition
rule, distributes the rooms depending on the position
of the previous one (distrib rule).

4.3 Validations

Validations provide a mechanism for testing and eval-
uating the execution of a shape grammar. We define a
validation language that will serve as a basic represen-
tation for the validation terms. First, we define the set
of binary operators Ω = {<,≤,=, >,≥}. Second, we
define an open set of functions Φ = {range, in, not}.
This set can be extended by designers by adding new
functions.

Definition 3 Given an ontology o = (C,≺), a set of
basic operators Ω and a set of functions Φ, we define
the validation language LV as the language generated
by the following grammar with starting symbol E:

E ::= E opE with op ∈ Ω
| fun(M) with fun ∈ Φ
| p.P with p ∈ CSpec

| q.Q with q ∈ CSG

| c with c ∈ termso

M ::= E | M,M

P ::= a | P.a with a ∈ ACSpec

Q ::= a | Q.a with a ∈ ACSG

where Ai stands for the set of attributes of concepts
of type i.

Definition 4 Validation term TLV
also called valida-

tor is a term created using validation language TLV
∈

LV

Validations can be evaluated at two different stages
of the generation process. Specifically, they can be eval-
uated after each generation step (step validations) or
at the end of the generation process (final validations).
Step validations provide control mechanisms for shape
grammar execution so that no invalid path of execution
is selected (e.g. test for correct placement of rooms so
the walls do not cross). Final validations serve for eval-
uating the final design and we can regard them as goals
or objectives of the generation process.

4.3.1 Auction House Validations

We define a new validator intersect, that is executed
after each execution step, and checks that (i) design
blocks do not intersect, but they can touch and that
(ii) blocks do not touch by walls marked as outer (O)
or outer entry (OE) (this value comes from the wall
type parameter).

4.4 Heuristics

Heuristics guide the process of world generation. They
have two important roles. First, to decide in which order
to process the elements from the specification. Second,
how to find possible execution nodes in the execution
tree for currently selected specification element. The
generation process stores information in a tree struc-
ture where each node holds specific informations about
the state of generation. This tree structure holds the
execution states, which are defined either by a shape

6

Fig. 3: An example of execution tree using tree-search protocol

or a rule. If defined by a shape, it has as many chil-
dren nodes as there exist rules with this shape on the
left side. If defined by a rule, it holds the reference to
actual shape and the rule to apply. Figure 3 shows an
example of such a tree. Rectangles represent execution
states defined by shapes, while ovals represent states
defined by rules. The black nodes of this tree have been
already expanded. We can see that rule-based nodes
have 0 or 1 children, depending if they have been ex-
panded or not. The child of a rule represents the right
side shape of the rule.

Definition 5 W e define heuristic next as a function
hnext : termCSpec

o × 2term
CSpec
o × 2term

CSpec
o → term

CSpec
o ,

which for any x ∈ termCSpec
o , a set of already processed

specification elements and a set of all specification ele-
ments returns element y ∈ termCSpec

o , which will be the
next processed element. Function hnext(nil, ∅, SE), re-
turns an initial element.

Definition 6 W e define heuristic exec as a function
hexec : VT ×treeexec → ntree, that given a shape x ∈ VT

and an execution tree t ∈ treeexec returns the next node
to expand y ∈ ntree.

Definition 7 W e define heuristics as a tupleH= (hnext,
hexec) where hnext is a heuristic next function and hexec

is a heuristic exec function.

In other words function hnext is responsible for defin-
ing the order in which specification elements are pro-
cessed. On the other hand, function hexec is responsible
for finding correct node in the execution tree represent-
ing possible rule that can be executed. If more than one
node is returned we can randomly decide which one to
choose.

4.4.1 Auction House Heuristics

In the Auction House example hnext is a simple func-
tion that returns the next element in the list of specifi-
cation elements given the last processed one. The hexec

function searches for the non-expanded nodes of the
execution tree that can be used to place the current
element. Notice that in the virtual world grammar is
defined which shapes can be used to represent a specifi-
cation element. Thus the function searches for the rule
nodes whose right side shape is one of these shapes.
When several candidate nodes are found the function
just randomly selects one of them.

4.5 Virtual World Grammar

After all previous definitions we can now define a Vir-
tual World Grammar. It includes an ontology specifying
all the concepts and the definition of the specification
instances of the concrete elements that have to be used
to generate the virtual world. It also includes a shape
grammar, that contains the different shapes and the
rules used to generate the final design. Each specifi-
cation element is mapped to a set of shapes that can
represent it in the generated virtual world. During the
generation process it is decided which one will repre-
sent the element in the generated design. Each terminal
shape is associated to a class defining the properties of
that shape. VWG also includes a set of heuristics that
guide the generation process and validations that bring
possibility to control and evaluate this process. At last,
it includes function that for each validation term defines
its execution time.

Definition 8 We define a virtual world grammar (VWG)
as a tuple: VWG = (o, SG, SE, fSE , fs,V, ft,H) where

1. o is an ontology that defines the relevant concepts
for the generation process; that is multi-agent sys-
tem specification elements, and shape properties.

2. SG = (VT , VM , R, I) is shape grammar describing
shapes and rules.

3. SE ⊆ terms
CSpec
o is a set of instances of specifica-

tion elements.
4. fSE : SE → V +

T returns for an specification ele-
ment the set of shapes that can represent it in the
generated design.

5. fs : VT → CSG maps each shape to the ontology
class defining its properties.

6. V is a set of validators
7. ft : TLV

→ {STEP , END} is a function that as-
signs a value STEP to the validator if it has to be
evaluated after each step of shape grammar execu-
tion, or value END if it is evaluated at the end of
generation.

8. H is a set of heuristics

7

5 Virtual World Builder Toolkit

The Virtual World Builder Toolkit (VWBT) provides
visual interfaces and mechanisms to define and execute
virtual world grammars. The toolkit loads the specifica-
tion of a multi-agent system and combines it with infor-
mations stored in the Virtual World Grammar to pro-
duce the final output. Furthermore, its graphical user
interface provides a friendly way to define all parts of
VWG. It is integrated in our Shape Grammar Inter-
preter (SGI) [13], Figure 4 shows the interface of SGI.
An intermediate output of the generation process is a
2D draft of the virtual world (floor plan). Using a 3D
transformation engine (jMonkeyEngine), this draft is
later transformed into a 3D model. The tool allows to
implement different renderers that export the 3D model
into different virtual worlds (e.g. Second Life, Project
Wonderland). Furthermore this solution allows to:

– dynamically react to changes in the specification
and simply regenerate the adapted virtual world

– separate artistic (graphical) design of the institution
from the functional implementation

– make generation process transparent to institution
designer and 3D virtual world designer

– browse design space and easily explore possible de-
signs

Fig. 4: SGI interface with WVBT extensions

5.1 Design Generation Process

Algorithm 1 is used to generate a 2D floor plan and it
summarizes the use of all defined parts of VWG. The al-
gorithm first initializes variables. Function initTree ini-
tializes an execution tree by inserting a starting shape
as the root node. Then, using function hnext searches

Algorithm 1: Virtual World Builder Algorithm
Input: Specification, Virtual World Grammar
Output: 2D draft (floor plan) of the virtual world

begin
// initialize variables

a← nil; specElems ← ∅; texec ← initTree(); n← ∅
while (size(specElems) ! = size(SE)) do

// get element from specification

a← hnext(a, specElems, SE)
// put this element in control set specElems

specElems ← a

// search for valid design
valid← false

// find associated shapes

S ← fSE(a)
foreach (s ∈ S) do

while (not(valid) ∨ n = ∅) do
// find unexecuted node in the exec. tree

n← hexec(s, texec)

// execute rule and store right shape
c← Execute(n, texec)

// validate

valid← Validate (c)

if valid then break
if valid then appendChild(texec, n, c)
else return ∅

return texec

end

for the next specification element to process, assigning
it to variable a, and adds it into the list of executed el-
ements SpecElems. Using function fSE it finds the set
of shapes that can be used to represent this element.
It loops over this whole set till it finds a valid design.
In this loop it searches for the execution tree node us-
ing heuristic function hexec and executes it by calling
function Execute creating new shape. It validates the
result of execution. If the result is valid, it proceeds to
the next iteration. The process finishes when it has pro-
cessed all nodes from the SE (SpecificationElements).
The process fails and returns nothing if no valid design
was found.

5.2 Workflow for definition and execution of VWG

Virtual World Builder Toolkit brings many creative pos-
sibilities into virtual world design process. Designers
may explore many different designs based on a shape
grammar. Shape grammar elements (SGE) serve as a
visual style sheet for a generation process. Trying dif-
ferent values for parameters, or even having prepared
multiple sets of instances brings possibilities of them-
ing or skinning of virtual worlds. Figure 5 describes
the workflow process for the definition and execution of
a virtual world grammar. Depending on the results of
draft or final generation we can readapt the grammar.

8

Grammar designer can either browse possible de-
signs or modify existing parts of the shape grammar to
obtain satisfiable results. The workflow is divided into
three main parts. First, in the preliminary definition, he
defines the ontology and the shape grammar. Second, in
the instance definition, he loads the specification, cre-
ates and defines all specification and shape grammar
elements and specifies mappings between them. Then
validations and heuristics are introduced. Finally, in the
execution part, he browses random designs and modi-
fies instance parameters to produce the 2D draft and
at last, transforms this draft to 3D.

Fig. 5: Workflow for definition and execution of VWG

6 Results

In this section we present different results of the gen-
eration and we measure generation performance. As an
input we take the auction house virtual institution and
we vary the number and size of the auction rooms. We
also define two different shape grammars. We use sim-
plified display of rules presented in Figure 7 where left-
side of the rule is shown in black and right-side in red.

First shape grammar, depicted in Figure 8, gener-
ates an institution building and positions all rooms in-
side this building. The initial shape of this grammar
is the outline shape and then it distributes the rooms

Fig. 6: Performance measurements of VWG

(a) Normal (b) Simplified

Fig. 7: Rule display simplification

within this outline. A floor plan and a 3D render for the
five auction rooms (we have selected five rooms for a
demo example of a small institution) and three remain-
ing rooms (Admission, Item Register, Auction Info) is
displayed in Figure 9. This output was produced using
three shapes (outline, rectangle room and iso-room) and
four rules (two rules place the rooms within this outline
and two rules distribute the rooms within this outline).
The drawback of this grammar is that it is very simple
and the design space it can generate is rather small.

The second shape grammar for the auction house
institution is not limited by the initial outline and it
generates large design spaces. Figure 10 displays an ex-
cerpt from this grammar. We can see four shapes that
represent three possible room designs and an initial
shape. In the right part we see examples of rules which
place rooms according to the position of the previous
shape. Rooms in this grammar are generated as stand-
alone buildings. Figure 11 shows two generated floor
plans and the corresponding 3D models for five auction
rooms. The small rectangles and the rectangles within
the shape grammar shapes represent the placeholders
(office-layout in Figure 9) for the 3D models that will
be substituted during the 3D transformation phase.

Figure 6 shows a graph of the measurements for a
given amount of activities. We have scaled the institu-
tion up to 30 scenes and in these scenes we have used
some complex models to measure the possibilities of the
jMonkeyEngine. The generation of the floor plan for a
large institution was under one second. The 3D ren-
der grew from two seconds for five rooms to 30 seconds
for 25 rooms. The reason for increased time is the use

9

(a) Shapes (b) Rules

Fig. 8: Shape grammar 1 for the Auction House institution

(a) Floor plan (b) 3D render

Fig. 9: An output of the Virtual World Grammar using shape grammar 1

(a) Shapes (left one is the initial shape) (b) Rules

Fig. 10: An excerpt from the shape grammar 2 for the Auction House institution

Fig. 11: Two different outputs of the Virtual World Grammar using shape grammar 2

10

of complex models, such as trees, which in total made
more that 1.4 million of faces for 30 rooms.

An Auction House institution is a typical example
of the use of the virtual institutions. Our approach al-
lows comfortable separation of the parts of the virtual
institution into design subsets. This allows to produce
designs for large institutions or confederations of insti-
tutions.

7 Conclusions

We have presented a virtual world grammar for the au-
tomatic generation of 3D virtual worlds in which in-
habitants can be both humans and agents. The VWG
holds semantic information about a multiagent system
specification, describing activities and relationship be-
tween them, a shape grammar, introducing design ele-
ments and their characteristics, and a list of validations
and heuristics guiding the generation process. The vir-
tual world generation is done in two steps, a first one
in which the output is a 2D floor plan, and a second
one which generates a 3D representation of the virtual
world.

Contributions of our research are i) the introduction
of the virtual world grammar concept and its compo-
nents, ii) the algorithm which defines how to navigate
between the specification and the shape grammar exe-
cution tree using heuristics and validations and iii) the
Virtual World Builder Toollkit that provides a user-
friendly interface allowing a comfortable definition and
execution of virtual world grammars.

An important feature of the VWG workflow is that
the user can explore many different designs or modify
existing parts of the shape grammar to explore new de-
signs. We have demonstrated the VWG applicability in
the generation of a 3D visualization of a virtual institu-
tion. The definition of the virtual world grammar can
be applied generally for any multi-agent system where
it has meaning to visualize its activities in a 3D virtual
world. Current approach allows to map one activity per
one space. Mapping more activities to one space brings
challenges to their execution as it is difficult to control
the concurrent execution or simply identify which of
these action needs to be executed upon arrival to this
virtual space.

Until now our main efforts have been concentrated
in the design generation step, our next endeavour is to
focus on issues happening at run time such as users/agents
enrollment and the dynamic update of the hybrid sys-
tem. We will also study the integration of our previous
work on 3D objects’ behaviour in virtual environments
[9][3]. We also plan to apply our methodology in com-

puter games domain, namely in MMORPG, where elec-
tronic institutions control the norm enforcement and
VWG takes care of the visualization process.

Acknowledgements: This work is partially funded
by EVE (TIN2009-14702-C02-01 / TIN2009-14702-C02-
02) and AT (CONSOLIDER CSD2007-0022) projects,
EU-FEDER funds, the Catalan Gov. (Grant 2005-SGR-
00093) and Marc Esteva’s Ramon y Cajal contract.

References

1. M. Ancona, A. Bogdanovytch, S. Drago, and G. Quercini.

Rectangular dualization of biconnected plane graphs in linear
time and related applications. VIII Congress of Simai (So-

cietà Italiana di Matematica Applicata e Industriale), 2006.
2. A. Bogdanovych. Virtual Institutions. PhD thesis, University

of Technology, Sydney, Australia, 2007.
3. D.Brota, I. Rodriguez, A. Puig, and M. Esteva. A generic

framework to exploit virtual worlds as normative and dy-
namic interactive spaces. In Computer Graphics and Virtual

Reality, pages 151–157, 2009.
4. J. P. Duarte. Customizing mass housing : A discursive gram-

mar for Siza’s Malagueira houses. PhD thesis, Cambridge

(MA): Massachusetts Institute of Technology, 2001.
5. M. Esteva, B. Rosell, J. A. Rodrguez-Aguilar, and J. L. Ar-

cos. Ameli: An agent-based middleware for electronic insti-

tutions. Autonomous Agents and Multiagent Systems, In-

ternational Joint Conference on, 1:236–243, 2004.
6. C. Geiger, V. Paelke, C. Reimann, and W. Rosenbach. A

framework for the structured design of vr/ar content. In

VRST ’00: Proceedings of the ACM symposium on Virtual
reality software and technology, pages 75–82, New York, NY,

USA, 2000. ACM.
7. W. J.R., E. R.M, and D. M. Structured development of

virtual environments. In Handbook of Virtual Environments:

Design, implementation and applications, pages 353–378. K.

Stanney, 2002.
8. H. Mansouri, F. Kleinermann, and O. De Troyer. Detecting

inconsistencies in the design of virtual environments over the

web using domain specific rules. In Web3D ’09: Proceedings
of the 14th International Conference on 3D Web Technology,

pages 101–109, New York, NY, USA, 2009. ACM.
9. I. Rodriguez, A. Puig, M. Esteva, C. Sierra, A. Bogdanovych,

and S. Simoff. Intelligent objects to facilitate human partic-

ipation in virtual institutions. In Web Intelligence, pages
196–199, 2008.

10. F. Southey and J. G. Linders. Ossa - a conceptual mod-

elling system for virtual realities. In ICCS ’01: Proceedings
of the 9th International Conference on Conceptual Struc-

tures, pages 333–345, London, UK, 2001. Springer-Verlag.
11. G. Stiny and J. Gips. Shape grammars and the generative

specification of painting and sculpture. In C. V. Friedman,

editor, Information Processing ’71, pages 1460–1465, Ams-

terdam, 1972.
12. V. Tanriverdi and R. J. K. Jacob. Vrid: A design model

and methodology for developing virtual reality interfaces. In

Proc. ACM VRST 2001 Symposium on Virtual Reality Soft-
ware and Technology, ACM, pages 175–182. Press, 2001.

13. T. Trescak, I. Rodriguez, and M. Esteva. General shape

grammar interpreter for intelligent designs generations.
CGIV’09, 2009.

14. O. D. Troyer, W. Bille, R. Romero, and P. Stuer. On gener-
ating virtual worlds from domain ontologies. In MMM, pages
279–294, 2003.

