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Abstract

We present and study a new chain of 10-dimensional T duality related solutions
and their 11-dimensional parents whose existence had been predicted in the literature
based in U duality requirements in 4 dimensions. The first link in this chain is the
S dual of the D7-brane. The next link has 6 spatial worldvolume dimensions, it is
charged w.r.t. the RR 7-form but depends only on 2 transverse dimensions since the
third has to be compactified in a circle and is isometric and hence is similar in this
respect to the KK monopole. The next link has 5 spatial worldvolume dimensions, it
is charged w.r.t. the RR 6-form but, again, depends only on 2 transverse dimensions
since the third and fourth have to be compactified in circles and are isometric and
so on for the following links.

All these solutions are identical when reduced over the p spatial worldvolume di-
mensions and preserve a half on the available supersymmetries. Their masses depend
on the square of the radii of the isometric directions, just as it happens for the KK
monopole. We give a general map of these branes and their duality relations and
show how they must appear in the supersymmetry algebra.
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Introduction

In the last few years there has been a lot of interest in discovering classical solutions of
effective superstring theories (supergravity theories) with such properties that one could
argue that they represent the fields produced by solitonic objects present in the superstring
spectrum. The interplay between the knowledge of the superstring spectrum and the
knowledge of classical solutions has been very fruitful since each of them has contributed
to the increase of the other. The two most important tools used in this field have been
supersymmetry and duality. Unbroken supersymmetry ensures in many cases the absence
of corrections of the classical solutions and the lack of quantum corrections to the mass
of the corresponding objects in the string theory spectrum. Hence, more effort has been
put in finding supersymmetric (i.e. admitting Killing spinors) solutions, associated to BPS
string states. Duality transformations preserve in general supersymmetry, relating different
states in dual theories. In general [1], but not always [2] duality relations between different
higher-dimensional theories manifest themselves as non-compact global symmetries of the
compactified supergravity theory that leave invariant its equations of motion so one can
use them to transform known solutions into new solutions, preserving their supersymmetry
properties.

Thus, it so happens that most classical solutions of superstring effective field theories
belong to chains or families of solutions related by duality transformations. The best known
chain of solutions is that of the Dp-branes, with p = 0, . . . , 8 in 10 dimensions. They belong
to two different theories: 10-dimensional type IIA for p even and 10-dimensional type IIB
for p odd. All of them preserve 1/2 of the supersymmetries available, represent objects
with p spatial worldvolume dimensions and 9− p transverse dimensions (Dirichlet branes),
carrying charge associated to the RR (p + 1)-form Ĉ(p+1) whose existence was discovered
by Polchinski [3], and are related by generalized Buscher type II T duality transformations
[2, 4].

Sometimes it is possible to find families of solutions that are, by themselves, represen-
tations of the duality group in the sense that they are invariant, as families, under the full
duality group. This is the case, for instance, of the SWIP solutions of N = 4, d = 4 super-
gravity constructed in Ref. [5, 6]. In that case one can argue that all the solitonic objects
of a given type (charged, stationary, black holes) and preserving a certain amount of super-
symmetry are described by particular solutions, with particular values of the parameters of
that general family. More interesting cases are N = 8, N = 4 with 22 vector multiplets and
general N = 2 theories, all in d = 4, but fully general solutions in their duality-invariant
form are not available. A great deal is, however, known of the solitonic spectrum of the
4-dimensional theories due to our knowledge of their duality groups (the so-called U duality
group in the N = 8 case). All these theories can be obtained from 10-dimensional theories
by compactification (toroidal or more general) and the compactification of the solitonic
10-dimensional objects gives rise to 4-dimensional solitonic objects of different kinds, de-
pending on how the 10-dimensional objects are wrapped in the internal dimensions and
one can study if these objects fill 4-dimensional duality multiplets. It has been realized
that this is not the case if one considers only the standard 10-dimensional solitons: the
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Dp-branes, KK monopole, gravitational wave (W), fundamental string (F1) and solitonic
5-brane (S5) [7, 8, 9, 10]. More 10-dimensional solitons are needed to give rise to all the
4-dimensional solitons predicted by duality and some of the properties they should exhibit,
in particular the dependence of the mass in the radii of the internal dimensions and the
coupling constant, have been deduced.

In this paper we present candidates for some of the missing 10-dimensional solitons and
study them. The key to their construction is the realization that there are 4-dimensional
duality symmetries which are neither present in 10 dimensions nor are a simple consequence
of reparametrization invariance in the internal coordinates. These are, in general, S duality
(i.e. electric-magnetic) transformations which only exist in certain dimensions and that
enable us to use the mechanism reduction-S dualization-oxidation to generate new solutions
in higher dimensions.

Let us consider a familiar example: 5 dimensional gravity compactified in a circle. The
4-dimensional theory has electric-magnetic duality and one expects an S duality symmetric
spectrum. However, if we only considered the 5-dimensional plane wave solution we would
only find electrically charged 4-dimensional solitons. To find the magnetically charged
ones we S dualize these and, oxidizing the solutions to 5 dimensions we find the Kaluza-
Klein (KK) monopole [11, 12]. In principle, this is a solution one would not expect in 5
dimensions since it has one dimension necessarily compactified in a circle.

At this point it is useful to remember why the KK monopole has necessarily one compact
dimension. First of all, it is known that only if the special isometric direction is compact
with the right periodicity the solution is free from string singularities. Secondly, the mass
(tension per unit (world-) volume) of the KK monopole depends quadratically on the radius
of that direction. The masses of standard branes are always proportional to the volume
of the internal manifold in which they are compactified and tend to infinity when those
volumes tend to infinity. Thus, when considering uncompactified standard branes (all D-
branes, the fundamental string and the solitonic 5-brane) the quantity of interest is not the
mass, but the brane tension which is finite. In the KK monopole case, though, due to the
qudratic dependence of the mass on the radius of the special isometric direction, the tension
is proportional to the radius of that direction and diverges in the decompactification limit.

The solutions we present here can also be generated by a mechanismo similar to the
one we have explained for the KK monopole, exploiting S dualities present in dimensions
lower than 10 and 11 and also have properties similar to those of the KK monopole: there
are dimensions that cannot be decompactified because the masses of these objects depend
quadratically on the radii of those dimensions. Somehow this is consistent with the fact that
they are generated using dualities that only exist if some of the dimensions are compact.

One of the problems raised by the need to consider new 10- and 11-dimensional solutions
was that fact that the 10- and 11-dimensional supersymmetry algebras did not contain
central charges associated to those possible new objects. In our opinion the predictive
power of the supersymmetry algebras has been overestimated and we will propose a way
to include in them these new objects.

The rest of this paper is organized as follows: in Section 1 we present our family of
T duality-related solutions whose construction via the reduction-S dualization-oxidation
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mechanism is explained in Section 2. In Section 3 we find other duality-related solutions
in 10 and 11 dimensions. In Section 4 we calculate the dependence of the masses of these
objects on compactification radii and coupling constants and in Section 5 we calculate the
Killing spinors of all the solutions we have presented. Our conclusions are in Section 6.
In Appendix B we derive the SL(2,R)/SO(2) sigma model from toroidal compactification
and explain how SL(2,R) is broken to SL(2,Z) and in Appendix A we briefly review
holomorphic (d− 3)-brane solutions of the SL(2,R)/SO(2) sigma model to clarify certain
points.

1 The Basic Family of Solutions

The basic family of solutions are solutions of the type II supergravity theories in d = 10
and are a sort of deformation of the family of Dp-brane solutions for 0 ≤ p ≤ 7. As
such, they have p + 1 worldvolume coordinates t, ~yp = (y1, . . . , yp) and 9 − p transverse
coordinates. We combine two of them into the complex coordinate ω and the remaining
7− p we denote by ~x7−p = (x1, . . . , x7−p). The solutions can collectively be written in the
string-frame metric in the form3



dŝ2
s =

(
H

HH̄

)−1/2 (
dt2 − d~y 2

p

)
−
(
HHH̄

)1/2
dωdω̄ −

(
H

HH̄

)1/2

d~x 2
7−p ,

Ĉ(p+1)
ty1···yp = (−1)[

(p+1)
2 ]
(
H

HH̄

)−1

,

Ĉ(7−p)
x1...x7−p = − A

HH̄
,

eφ̂ =

(
H

HH̄

) 3−p
4

,

(1.1)

where we function H = H(ω) is a complex, holomorphic, (multivalued) function of ω,
i.e. ∂ω̄H = 0 with the behavior H ∼ 1

2πi
logω around ω = 0, where we assume the object

is placed4. Its real and imaginary parts are

3For convenience, we give the form of the potential to which the p-brane naturally couples Ĉ(p+1) and
the dual one Ĉ(7−p). In the p = 3 case, these are the two non-vanishing sets of components of the 4-form
potential with self-dual field strength. (Our conventions are those of Ref. [4] whose type II T duality rules,
generalizing those of Ref. [2], we use.) Since the solutions we will be dealing with are not asymptotically

flat, we do not write explicitly the asymptotic values of the scalars (for example, φ̂0 for the dilaton).
4The analytic extension of H to the whole ω space (for which the above expression is clearly not valid)

is a non-trivial problem that depends, among other things, on the topology assumed for the ω space. In
general, it requires the introduction of other singularities around which H is also multivalued so that one
gets a consistent monodromy. This problem was first considered in Ref. [21].
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H = A+ iH . (1.2)

These solutions have the same form as the standard Dp-brane solutions if we delete
everywhere the combination HH̄, but they are clearly different. In particular we can
understand them as having 7 − p extra isometric directions that should be considered
compact5. Our goal will be to understand how they arise, their M theoretic origin and
their supersymmetry properties and explore the implications of it all. We will also find
other solutions related by dualities with them or belonging to the same class. Since we
will find that all these solutions preserve a half of the symmetries, we are going to argue
that they describe the long range fields of elementary, non-perturbative objects of string
theory and we will calculate their masses.

2 Construction of the Solutions

The solutions (1.1) can be obtained by successive T duality transformations in worldvolume
directions of the p = 7 solution. The p = 7 solution is nothing but the type IIB solitonic
7-brane (S7) that was obtained by S duality from the D7-brane and called Q7-brane in
Ref. [4]. The worldvolume directions are transformed into transverse isometric directions
that should be considered compact6. Thus, we obtain a chain of T dual solutions of both
type II theories.

There is an alternative way of constructing these solutions that also helps to understand
them. Let us consider a piece of the 10-dimensional type II supergravity theories in which
we only keep the metric, the dilaton and the field strength Ĝ(8−p) of the RR (7− p)-form
Ĉ(7−p). The action is

Ŝ =

∫
d10x̂

√
|ĝ|
{
e−2φ̂

[
R̂− 4(∂φ̂)2

]
+ (−1)7−p

2·(8−p)!

(
Ĝ(8−p)

)2
}
. (2.1)

Now, let us compactify it over a (7 − p)-torus using a simplified Kaluza-Klein Ansatz
that only takes into account the volume modulus of the internal torus, the dilaton (both
rewritten in terms of two convenient scalars ϕ and η), the internal volume mode of the RR
(7− p)-form, a and the (3 + p)-dimensional Einstein metric gµν :

5It seems difficult (it is perhaps impossible) to extend the dependence of the function H to those co-
ordinates. Furthermore, the construction procedure reduction-S dualization-oxidation and the dependence
of the masses on the radii of those dimensions that we are going to calculate later on suggest that those
coordinates should be compactified on a torus.

6This is somewhat analogous to what happens in the well-known duality between the solitonic fivebrane
S5 and the KK monopole in which a transverse direction of the S5 is T dualized into an isometric, compact,
direction of the KK monopole.
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dŝ2 = e
1
2
ϕ+ 1

2

√
7−p
p+1

η
gµνdx

µdxν − e−
1
2
ϕ+ 1

2

√
p+1
7−p

η
d~x 2

7−p ,

Ĉ(7−p)
x1...x7−p = a ,

eφ̂ = e
p−3
4
ϕ+ 7−p

4

√
p+1
7−p

η
.

(2.2)

After some straightforward calculations one obtains, in all cases, the reduced action

S =

∫
dp+3x

√
|g|
{
R + 1

2

∂τ∂τ̄

(=mτ)2
+ 1

2
(∂η)2

}
, (2.3)

where

τ = a+ ie−ϕ , (2.4)

i.e. gravity coupled to an SL(2,R)/SO(2) sigma model parametrized in the standard form
by the complex scalar (sometimes known as axidilaton although here this name could be
misleading since in some cases (p = 3) the string dilaton simply does not contribute to
it) τ and another scalar, η, decoupled from τ . In the p = 7 case (d = 10) this is the
well-known piece of the type IIB supergravity action. In lower dimensions, it is integrated
in much bigger sigma models associated to much bigger U-duality groups7 but it is a most
interesting part of it.

There is a very general solution of this model
ds2 = dt2 − d~y 2

p −Hdωdω̄ ,

τ = H ,

η = 0 ,

(2.5)

with ∂ω̄H = 0. In d = 10 (p = 7) this is just the general D7-brane solution. Choosing
H ∼ logω we get the single D7-brane solution. In lower dimensions, these solutions are just
compactifications of the standard general Dp-brane solution in which we have assumed that
the harmonic function only depends on two transverse directions (ω) and we have dualized
the RR (p + 1)-potential, giving rise to the real part of H. Thus, this is a well-known
solution.

We can now perform an SL(2,R) duality rotation of this solution8 τ → −1/τ , since

7In d = 6 dimensions, this model was studied in Ref. [13] and in d = 8 it was studied in Ref. [14].
8Continuous duality symmetries are usually broken to their discrete subgroups, for instance SL(2,R)

is usually broken to SL(2,Z). This can be clearly seen in the case in which the SL(2,R)/SO(2) sigma
model originates in a toroidal compactification and is explained in Appendix B. In other cases one has to
study the quantization of charges to arrive to the same conclusion. We will loosely use the continuous of
the discrete form of the duality group in the understanding that in some contexts only the discrete one is
really a symmetry of the theory.
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this is a symmetry of the dimensionally reduced action9 that leaves the Einstein metric
invariant. This is not a symmetry of the 10-dimensional action and one really needs extra
compact dimensions to establish it. The resulting solutions10

ds2 = dt2 − d~y 2
p −Hdωdω̄ ,

τ = −1/H ,

η = 0 ,

(2.6)

are nothing but the solutions Eqs. (1.1) reduced according to the above KK Ansatz
What we are doing here is similar to what one does in standard KK theory: reducing

to 4 dimensions the 5-dimensional pp wave one obtains the electric, extreme KK black
hole. Since the d = 4 theory has electric-magnetic duality as a symmetry, one can find the
magnetic, extreme KK black hole and then uplift it to d = 5 to find the KK monopole
[11, 12] that has a special isometric direction that cannot be decompactified. The symmetry
between the pp wave and the KK monopole cannot be established without assuming one
compact direction. It is only natural, by analogy, to consider here that the dimensions
that we have compactified cannot be decompactified after the duality transformations. We
will support this assumption not by geometrical arguments but calculating the masses of
these objects and finding its dependence on the radii of those dimensions.

3 Duality-related Solutions and M-theoretic Origin

Since we are dealing with many new solutions, we first propose to denote them by “Dpi”
where “p+ 1” is the worldvolume and “i” is the number of isometric directions. According
to this notation, the solutions described by Eq. (1.1) are in the p = 7 case D70 (the type IIB
S dual of the D7-brane, called Q7 in Ref. [4]), D61 for p = 6, and D52, D43, D34, D25,
D16, D07 for the remaining cases.

For all the type IIB solutions in the class (1.1) we can find an S dual using the 10-
dimensional type IIB S duality symmetry. While in the p = 7 case the S dual solution is
just the well-known D7-brane, and in the p = 3 case the solution is self-dual, in the p = 5, 1
cases we find genuinely new solutions. For D52 we get a solution which is a deformation
of the solitonic fivebrane, and we call S52

9In general, it is only a symmetry of the equations of motion of the complete, untruncated, type II
theory.

10In Appendix A we discuss these general solutions and in which sense they are new. We stress that we
are considering only the choice holomorphic function H ∼ 1

2πi logω.
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S52



dŝ2
s = dt2 − d~y 2

5 −Hdωdω̄ −
H

HH̄
d~x 2

2 ,

B̂x1x2 = − A

HH̄
,

ˆ̃B ty1···y5 =

(
H

HH̄

)−1

,

eφ̂ =

(
H

HH̄

) 1
2

,

(3.1)

and for D16, we get a sort of deformation of the fundamental string solution that we call
F16

F16



dŝ2
s =

(
H

HH̄

)−1

(dt2 − dy2 −Hdωdω̄)− d~x 2
6 ,

B̂ty = −
(
H

HH̄

)−1

,

ˆ̃B x1···x6 =
A

HH̄
,

eφ̂ =

(
H

HH̄

)− 1
2

.

(3.2)

These two solutions only have non-trivial common sector NSNS fields and therefore
they are also solutions of the heterotic string effective field theory. We can also understand
these solutions by appealing to the existence in both cases of a reduced action of the form
Eq. (2.3) that arises from the 10-dimensional actions

Ŝ =

∫
d10x̂

√
|ĝ| e−2φ̂

[
R̂− 4(∂φ̂)2 + 1

2·3!
Ĥ2
]
, (3.3)

and

Ŝ =

∫
d10x̂

√
|ĝ|
{
e−2φ̂

[
R̂− 4(∂φ̂)2

]
+ 1

2·7!
e2φ̂ ˆ̃H2

}
, (3.4)

where Ĥ is the NSNS 3-form field strength and ˆ̃H = e2φ̂ ?Ĥ is the dual 7-form field
strength. Reducing the first action to 8 dimensions with the Ansatz

8




dŝ2 = e

1√
3
η
gµνdx

µdxν − e−ϕd~x 2
2 ,

B̂x1x2 = a ,

eφ̂ = e
√

3
2
η− 1

2
ϕ ,

(3.5)

and the second action down to 4 dimensions with the Ansatz

dŝ2 = eϕgµνdx
µdxν − e

1√
3
η
d~x 2

6 ,

ˆ̃B x1···x6 = −a ,

eφ̂ = e
1
2
ϕ+
√
3

2
η ,

(3.6)

we get in both cases Eq. (2.3) in 8 and 4 dimensions.
As for the M-theoretic origin of the type IIA solutions, they can be derived from the

following 11-dimensional solutions through compactification of the 11th dimension (z): a
pp wave with 7 extra isometries

WM7 dˆ̂s2 = −2dtdz − H

HH̄
dz2 −HH̄dωdω̄ − d~x 2

7 , (3.7)

a deformation of the M2-brane

M26



dˆ̂s2 =

(
H

HH̄

)−2/3

(dt2 − d~y 2
2 )−H1/3

(
HH̄

)2/3
dωdω̄ −

(
H

HH̄

)1/3

d~x 2
6 ,

ˆ̂
C ty1y2 = −

(
H

HH̄

)−1

,

ˆ̃̂
C x1···x6 =

A

HH̄
,

(3.8)
a deformation of the M5-brane
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M53



dˆ̂s2 =

(
H

HH̄

)−1/3

(dt2 − d~y 2
5 )−H2/3

(
HH̄

)1/3
dωdω̄ −

(
H

HH̄

)2/3

d~x 2
3 ,

ˆ̃̂
C ty1···y5 = −

(
H

HH̄

)−1

,

ˆ̂
C x1x2x3 = − A

HH̄
,

(3.9)
and the KK monopole (with no dependence on the 11th dimension)

KK7M dˆ̂s2 = dt2 − d~y 2
6 −H(dωdω̄ + dz2)−H−1

(
dy7 − Adz

)2
. (3.10)

In these four cases we can also trace the origin of the solution to the existence of a sector
like that in Eq. (2.3) in the reduced action of 11-dimensional supergravity. In the purely
gravitational cases, the action Eq. (2.3) can be derived from the dimensional reduction of
the Einstein term alone as shown in detail in Appendix B. In the second and third cases,
one needs the 6-form or the 3-form dual potential respectively.

In some cases the dimensional reduction of these 11-dimensional solutions in isometric
directions different from z produce new 10-dimensional solutions. In particular, we get two
purely gravitational solutions

W6 dŝ2 = −2dtdz − H

HH̄
dz2 −HH̄dωdω̄ − d~x 2

6 , (3.11)

and the Kaluza-Klein monopole with no dependence in z

KK6 dŝ2 = dt2 − d~y 2
5 −H(dωdω̄ + dz2)−H−1

(
dy7 − Adz

)2
. (3.12)

In all cases (see Figure 1) we see that whenever we reduce the same 11-dimensional
solution over 2 directions to 9 dimensions and we do it in different order, we get a pair of
9-dimensional solutions that form an SL(2,R) (SL(2,Z)) doublet and also originate from
a type IIB SL(2,R) (SL(2,Z)) doublet as it must [2].

4 Masses

The mass of the Dpi solutions can be calculated using S and T duality rules from the
standard D7-brane and can be written in a general formula:

MDpi =
R3 . . . Rp+2(Rp+3 . . . R9)2

g3`p+2i+1
s

. (4.1)

The masses of the NSNS solutions found by S duality from the D52 and the D16 are
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MS52 =
R3 . . . R7(R8R9)2

g2`10
s

,

MF16 =
R3(R4 . . . R9)2

g4`14
s

.

(4.2)

The masses of the 11-dimensional objects from which the type IIA objects can be
derived can be calculated using the relations between the 11-dimensional Planck length
`

(11)
Planck and the radius of the 11th dimension11 R10 and the type IIA string coupling constant

gA and the string length `s `Planck
(11) = 2π`sg

1/3
A and R10 = `sgA:

MM26 =
R3R4(R5 . . . R10)2

(−̀
(11)
Planck)15

,

MM53 =
R3 . . . R6(R7R8R9)2R10

(−̀
(11)
Planck)12

.

(4.3)

where −̀
(11)
Planck is the reduced 11-dimensional Planck length −̀

(11)
Planck = `

(11)
Planck/2π.

These expressions should be compared with the well-known expression of the mass of
the 11-dimensional KK monopole KK7M when the special isometric direction is x10

MKK7M =
R4 . . . R9R

2
10

(−̀
(11)
Planck)9

, (4.4)

or the 10-dimensional KK monopole KK6 (A or B) when the special isometric direction
is x9

MKK6 =
R4 . . . R8R

2
9

g2`8
s

. (4.5)

In both cases the mass is not simply proportional to the volume of the brane which is as-
sumed wrapped on a torus but depends quadratically on the radius of the special isometric
direction. The same happens to the masses of all the Dpi branes: they depend quadrati-
cally on the radii of the directions that we have argued are isometric, which supports our
assumption.

Apart from the dependence on the radii we see that in general these objects are highly
non-perturbative since their masses are proportional to g−3 and g−4 except for S52, whose
mass goes like g−2, as for any standard solitonic object.

The momentum of the WM7 solution is

MWM7 =
(R3 . . . R9)2R3

10

(−̀
(11)
Planck)18

. (4.6)

11R11 is the conventional name in the literature. Here we use Rm for the radius of the coordinate xm.
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5 Killing Spinors and Unbroken Supersymmetries

It is important to find the amount of supersymmetry preserved by our solutions since, if
they preserve less than one half of the total supersymmetry available, one could argue that
they correspond to composite objects. Since all these solutions are related by S and T du-
ality transformations to the D7-brane, which preserves exactly 1/2 of the supersymmetries,
it is to be expected that they will do so as well. Nevertheless, a direct calculation of the
Killing spinors should always be performed since it will confirm our expectations and it
will also provide us with projectors that will help us to associate the solutions to central
charges in the supersymmetry algebra and therefore to identify them with supersymmetric
states in the string spectrum.

We first calculate the Killing spinors of the Dpi family of solutions with the obvious
choice for the Vielbein basis12

e i
i =

(
HH̄
H

)1/4

, e m
m =

(
HH̄
H

)−1/4

, e 8
8 = e 9

9 =

(
HH̄
H

)1/4

H1/2 . (5.1)

For the Type IIA solutions we use the supersymmetry transformation rules for the
gravitino and dilatino which, in the purely bosonic background we are considering, take
the form13 

δε̂ψ̂µ̂ =
[
∂µ̂ − 1

4
6 ω̂µ̂ + i

8
1

(8−p)!e
φ̂ 6Ĝ(8−p)Γ̂µ̂(−Γ̂11)

8−p
2

]
ε̂ ,

δε̂τ̂ =
[
6∂φ̂+ i

4
p−3

(8−p)!e
φ̂ 6Ĝ(8−p)(−Γ̂11)

8−p
2

]
ε̂ ,

(5.2)

Imposing the vanishing of dilatino transformation rule we obtain the following constraint
in the Killing spinor: [

1− iΓ̂p+1 · · · Γ̂8Γ̂9(−Γ̂11)
8−p
2

]
ε̂ = 0 , (5.3)

or, equivalently [
1− (−1)[p/2]iΓ̂0 · · · Γ̂p(−Γ̂11)

10−p
2

]
ε̂ = 0 . (5.4)

This constraint automatically sets to zero the worldvolume (t, yi) and transverse, isomet-
ric (xm) components of the supersymmetry variation of the gravitino. The remaining
transverse components (x8, x9) give in all cases, the following coupled partial differential
equations

12Underlined indices are world indices and non-underlined indices are tangent space indices. They take
values in the ranges i = 0, 1, . . . , p , m = p+ 1, . . . , 7.

13Our type IIA spinors are full 32-component Majorana spinors.

12




δε̂ψ̂8 =

[
∂8 − 1

4
Γ̂8Γ̂9 ∂9 log(HH̄) + 1

8
∂8log

(
H

HH̄

)]
ε̂ = 0 ,

δε̂ψ̂9 =

[
∂9 − 1

4
Γ̂9Γ̂8 ∂8 log(HH̄) + 1

8
∂9log

(
H

HH̄

)]
ε̂ = 0 .

(5.5)

Now, using the Cauchy-Riemann equations for the holomorphic function H, i.e.:

∂8A = +∂9H , ∂9A = −∂8H , (5.6)

we can express ∂8 log(HH̄) and ∂9 log(HH̄) in the following way:

∂9 log(HH̄) = −2∂8(argH) , ∂8 log(HH̄) = +2∂9(argH) , (5.7)

and the Killing spinor equations are easily seen to be solved by
[
1− (−1)[p/2]iΓ̂0 · · · Γ̂p(−Γ̂11)

10−p
2

]
ε̂0 = 0 ,

ε̂ = e−
1
2

arg(H) Γ̂8Γ̂9

(
HH̄
H

)1/8

ε̂0 .

(5.8)

ε̂0 being any constant spinor satisfying the above constraint.
In the type IIB cases we use the relevant supersymmetry transformation laws14

δε̂ζ̂µ̂ =
[
∂µ̂ − 1

4
6 ω̂µ̂ + 1

8
1

(8−p)!e
ϕ̂ 6Ĝ(8−p)Γ̂µ̂P 9−p

2

]
ε̂ ,

δε̂χ̂ =
[
6∂ϕ̂+ 1

4
3−p

(8−p)!e
ϕ̂ 6Ĝ(8−p)P 9−p

2

]
ε̂ ,

(5.9)

where Pn is

Pn


σ1 , n even ,

iσ2 , n odd .

Proceeding as in the type IIA case, we find the Killing spinors
[
1 + (−1)[p/2]Γ̂0 · · · Γ̂pP p+1

2

]
ε̂0 = 0 ,

ε̂ = e−
1
2

arg(H) Γ̂8Γ̂9

(
HH̄
H

)1/8

ε̂0 ,

(5.10)

where, now, ε̂0 is any pair of constant positive-chirality Majorana-Weyl spinors satisfying
the above constraint.

14Our type IIB spinors are pairs (whose indices 1,2 are not explicitly shown of 32-component, positive
chirality, Majorana-Weyl spinors. Pauli matrices act on the indices not shown.
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The Killing spinors of the S52 and the F16 can be found in a similar fashion and are,
respectively 

[
1− Γ̂6Γ̂7Γ̂8Γ̂9σ3

]
ε̂0 = 0 ,

ε̂ = e−
1
2

arg(H) Γ̂8Γ̂9
ε̂0 ,

and 
[
1 + Γ̂0Γ̂1σ3

]
ε̂0 = 0 ,

ε̂ = e−
1
2

arg(H) Γ̂8Γ̂9

(
HH̄
H

)1/4

ε̂0 ,

Before discussing these results it is worth finding the Killing spinors of the 11-dimensional
solutions. The only relevant supersymmetry transformation rule is that of the gravitino,
which with our conventions is:

δˆ̂ε
ˆ̂
ψ ˆ̂µ =

[
2∂ˆ̂µ −

1
2
6 ˆ̂ω ˆ̂µ + i

144

(
ˆ̂
Γ

ˆ̂α
ˆ̂
β ˆ̂γ

ˆ̂
δ
ˆ̂µ
− 8

ˆ̂
Γ

ˆ̂
β ˆ̂γ

ˆ̂
δ ˆ̂η ˆ̂µ

ˆ̂α

)
ˆ̂
Gˆ̂α

ˆ̂
β ˆ̂γ

ˆ̂
δ

]
ˆ̂ε . (5.11)

In the obvious Vielbein basis we find, for the WM7 solution
[
1− ˆ̂

Γ0 ˆ̂
Γ10
]

ˆ̂ε0 = 0 ,

ˆ̂ε = e−
1
2

arg(H)
ˆ̂
Γ8 ˆ̂

Γ9

(
HH̄
H

)1/4

ˆ̂ε0 .

(5.12)

for the M26 solution 
[
1 + i

ˆ̂
Γ0 ˆ̂

Γ1 ˆ̂
Γ2
]

ˆ̂ε0 = 0 ,

ˆ̂ε = e−
1
2

arg(H)
ˆ̂
Γ8 ˆ̂

Γ9

(
HH̄
H

)1/6

ˆ̂ε0 ,

(5.13)

for the M53 solution 
[
1− ˆ̂

Γ0 · · · ˆ̂Γ4 ˆ̂
Γ10
]

ˆ̂ε0 = 0 ,

ˆ̂ε = e−
1
2

arg(H)
ˆ̂
Γ8 ˆ̂

Γ9

(
HH̄
H

)1/12

ˆ̂ε0 ,

(5.14)

and for the KK7M solution, as it is well known, the Killing spinor is any constant spinor
ˆ̂ε0 satisfying the constraint
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[
1 + i

ˆ̂
Γ0 · · · ˆ̂Γ6

]
ˆ̂ε0 = 0 . (5.15)

In all cases one can see that these solutions preserve one half of the supersymmetries.

6 Conclusions

In this paper we have presented new 10-dimensional solutions of the type IIB theories
that can be thought of as having a certain number of isometric, compact, dimensions, that
cannot be decompactified (one could say that these are really solutions of lower-dimensional
theories) and which we have referred generically to as “KK-branes”. We have described
how they can be obtained via the reduction-S dualization-oxidation which could explain
why some of the directions have to be compactified in circles since S duality only exists in
the compactified theory. Furthermore, we have computed the masses of these solutions and
we have found that they depend on the square of the radii of the directions that we have
identified as compact, just as it happens in the KK monopole case, which is consistent with
our identification. The mass formula are also coincident with what is needed to complete
the U duality invariant spectrum of N = 8, d = 4 supergravity [8, 9, 10]. It has also been
recently argued that the presence of certain KK-branes is necessary to explain from the
M theory point of view the existence of some massive/gauged type II supergravities in
lower dimensions [15].

Perhaps the only element that does not seem to fit in the picture we are putting forward
is the supersymmetry algebra since there seems to be no place in it for the new objects.
For the sake of concreteness we will focus in the 11-dimensional supersymmetry algebra
(“M algebra”) but the problems and the solutions we propose can be applied in the obvious
way to other cases.

The M algebra is usually written, up to convention-dependent numerical factors c, cn,
in the form15

{
Qα, Qβ

}
= c

(
ΓaC−1

)αβ
Pa + c2

2

(
Γa1a2C−1

)αβ Z(2)
a1a2

+ c5
5!

(
Γa1···a5C−1

)αβ Z(5)
a1···a5 . (6.1)

A lightlike component of the momentum is then associated to the gravitational waves
moving in that direction, the spatial components of Z(2) and Z(5) are associated respectively
to M2- and M5-branes wraped in those directions. The timelike components have more
complicated interpretations: in the Z(5) case, they are associated to the KK monopole in
a complicated way and in the Z(2) case they are associated to an object that we would call
the KK9-brane of which we only know that it should give the D8-brane upon dimensional
reduction. All these objects break (preserve) a half of the available supersymmetries and
strict relations between their masses and charges can be derived from the algebra.

Clearly the M algebra contains a good deal of information about the solitons of the
theory that realizes it (11-dimensional supergravity or M theory). However, it is clear that

15See e.g. [16].
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it does not contain all the information about them. To start with, it does not tell us why
some branes are fundamental and some are solitonic, it does not tell us why some objects
exist in the uncompactified theory (the wave, M2 and M5) while other objects only exist
when one dimension is compactified in a circle (the KK monopole and the KK9-brane).
Furthermore, all solitonic objects should be associated to spacelike components of central
charges: that is the result we would always get if we performed the calculation. All this
is not so surprising: the M algebra is not derived from the theory and their solutions but
just by imposing consistency of the possible central charges. If we were able to derive the
algebra from M theory and its solitonic solutions, the central charges would be associated
to specific objects and we would know whether they have compact dimensions or not. Since
we do know many things about the solitonic solutions, we can try to reflect what we know
in a form of the M algebra mathematically consistent and then we can check if the results
are consistent with dualities.

To start with, we consider the M algebra with the most general central extensions
allowed: {

Qα, Qβ
}

= c
(
ΓaC−1

)αβ
Pa +

∑
n=2,5,6,9,10

cn
n!

(
Γa1···anC−1

)αβ Z(n)
a1···an . (6.2)

We know the wave is associated to P , the M2-brane to Z(2) and the M5-brane to Z(5).
We also know [17] that the KK monopole is a sort of 6-brane with one of the 4 possible
transverse dimensions wrapped in a circle. We are going to reflect this fact by writing,
instead of just the Z(6) term as above, the term

c6
6!

(
Γa1···a6C−1

)αβ Z(7)
a1···a6a7k

a7 , (6.3)

where ka is a vector pointing in the compact direction.
We also know that the KK9-brane (or M9-brane) [18] has 9 spacelike worldvolume

dimensions one of which is always wrapped on a circle. We reflect this fact by writing,
instead of just the Z(9) term as above, the term

c9
9!

(
Γa1···a9C−1

)αβ Z(8)
a1···a8la9 , (6.4)

where la is a vector pointing in the direction around which the KK9-brane is wrapped.
We do not know of any brane associated to Z(10) and so we will not consider it in the

M algebra, which takes the form

{
Qα, Qβ

}
= c (ΓaC−1)

αβ
Pa + c2

2
(Γa1a2C−1)

αβ Z(2)
a1a2 + c5

5!
(Γa1···a5C−1)

αβ Z(5)
a1···a5

+ c6
6!

(Γa1···a6C−1)
αβ Z(7)

a1···a6a7k
a7 + c9

9!
(Γa1···a9C−1)

αβ Z(8)
a1···a8la9 .

(6.5)

We could certainly write more general central charges by allowing more vectors to be
present in the algebra, meaning allowing objects with more isometric directions such as
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the M26 or the M53 branes presented in this paper. However, considering objects with
just one special isometry will be enough to present our ideas.

Let us now reduce this algebra in one dimension. From each of the standard central
charges we get two central charges in one dimension less, namely P,Z(0) from P , Z(1),Z(2)

from Z(2) and Z(4),Z(5) from Z(5), corresponding to the known reductions of M theory
solitons: wave and D0-brane from the wave, F1 and D2-brane from the M2-brane and D4-
and S5-brane from the M5-brane. From each of the new charges we have introduced we get
instead three lower dimensional central charges: from the contraction Z(7)k associated to
the KK monopole we get a Z(6) associated to the D6-brane when k points in the direction
we are reducing, we get a contraction Z(6)k associated to the type IIA KK monopole
(KK6A) if we reduce on the KK monopole worldvolume and we get a Z(7)k associated to
the D61 (called KK7A in Ref. [4], also studied in Ref. [19] ) if we reduce in a transverse
direction. From the product Z(8)l we get a Z(8), associated to the D8-brane when we reduce
the KK9-brane in the isometric direction l points to, we get a product Z(7)l associated to
an object with the same features of the M theory KK9-brane but in one dimension less
and a product Z(8)l associated to a type IIA spacetime filling KK9-brane referred to as
NS−9A-brane in Ref. [20]. The result is the following form of the type IIA supersymmetry
algebra:

{
Qα, Qβ

}
= c (ΓaC−1)

αβ
Pa +

∑
n=0,1,4,8

cn
n!

(Γa1···anΓ11C−1)
αβ Z(n)

a1···an

+
∑

n=2,5,6
cn
n!

(Γa1···anC−1)
αβ Z(n)

a1···an

+ c5
5!

(Γa1···a5Γ11C−1)
αβ Z(6)

a1···a5a6k
a6 + c6

6!
(Γa1···a6C−1)

αβ Z(7)
a1···a6a7l

a7

+ c8
8!

(Γa1···a8C−1)
αβ Z(7)

a1···a7ma8 + c9
9!

(Γa1···a9C−1)
αβ Z(8)

a1···a8na9 .

(6.6)

Every known solitonic solution of the type IIA supergravity theory has an associated
charge in this algebra. If we now reduce again to nine dimensions we will get the algebra
of the massive 9-dimensional theories presented in Ref. [4] with SL(2,Z) covariance. This
is possible only because we have allowed for charges corresponding to KK-branes in 11
dimensions. To get the same algebra from the type IIB side a charge has to be introduced
for the S7 brane which, even though it does not carry any SO(2) R-symmetry indices,
is not invariant but is interchanged with the D7-brane charge under S duality. We will
present these results elsewhere.
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A Holomorphic (d− 3)-Branes

In this Appendix we briefly discuss holomorphic (d−3)-brane solutions of the d-dimensional
SL(2,R)/SO(2) sigma model

S =

∫
ddx
√
|g|
{
R + 1

2

∂τ∂τ̄

(=mτ)2

}
, (A.1)

where τ lives in the complex upper half plane and is defined up to modular PSL(2,Z)
transformations, so multivalued solutions are allowed if the value of τ changes by a modular
transformation.

(d − 3)-brane-type solutions of this model were first considered in Ref. [21] in d = 4.
In these dimensions (d − 3)-branes are strings. In that reference, the following general
solution of the above model was found16

ds2 = dt2 − d~y 2
(d−3) −Hdωdω̄ ,

τ = H ,
(A.2)

where H is, in principle, any complex holomorphic or antiholomorphic function of the
complex variable ω (i.e. either ∂ω̄H = 0 or ∂ωH = 0) and H = =m(H). H is, therefore, a
real harmonic function of the 2-dimensional Euclidean spacetime transverse to the (d− 2)-
dimensional worldvolume directions. Only functions with H ≥ 0 are admissible.

A few remarks are in order here: although gωω̄ = H is in this solution equal to the
imaginary part of τ , it does not transform under PSL(2,Z). Modular invariance of the
metric is, therefore, not an issue. We could have wrongly concluded that in this solution,
the metric is not modular invariant because gωω̄ = =m(τ) but, by definition, it is, since
the metric does not transform under PSL(2,Z). Then, the l.h.s. if that equation does not
transform, and the r.h.s. does, and we get a new solution (denoted by primes) with

τ ′(ω) =
aτ(ω) + b

cτ(ω) + d
=
aH + b

cH + d
≡ H′ ,

g′ωω̄ = gωω̄ = =m(τ) =
=m(τ ′)

| − cτ ′ + a|2
=

=m(H′)
| − cH′ + a|2

.

(A.3)

We could remove if we wished the extra factor by a conformal reparametrization:

dω′ =
dω

−cH′(ω) + a
, (A.4)

and we then could write again the new solution in a form similar to that of the original
one Eq. (A.2) but with a new holomorphic function H′[ω(ω′)]. Thus, as in Ref. [21] we
could have written from the beginning the general solution in the form

16Here we write the obvious generalization to any dimension d (see also Refs. [22, 4]).
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ds2 = dt2 − d~y 2

(d−3) −H|f(ω)|2dωdω̄ ,

τ = H ,
(A.5)

where f(ω) is any holomorphic function of ω, but this function can always be reabsorbed
into a holomorphic coordinate change ω′ = F (ω) , dF/dω = f and τ(ω′) = τ [F−1(ω′)].

All this said, it must be acknowledged that, even though modular invariance of the
metric is not an issue, its single-valuedness is. Since H will in general be a multivalued
function with monodromies in G, its imaginary part will also be multivalued and it might
be necessary to multiply it by |f(ω)|2, with f(ω) multivalued to make gωω̄ single valued.

A second remark we can make here is that there exists another form of the general
solution which is manifestly SL(2,R) invariant without having to invoke coordinate changes
to show it: 

ds2 = dt2 − d~y 2
p − e−2Udωdω̄ ,

τ = H1/H2 ,

e−2U = =m
(
H1H̄2

)
,

(A.6)

where H1,2 are two arbitrary complex functions of the complex variable ω transforming as
a doublet under SL(2,R), i.e. H′1

H′2

 =

 a b

c d

 H1

H2

 , (A.7)

both in τ and in the metric (but e−2U is invariant, as it must). The structure of this
family is similar to that of the duality-invariant families of black-hole solutions of pure
N = 4, d = 4 supergravity presented in Refs. [23, 5, 6], closely related to special geometry
objects as discovered in [24]. We can relate this general solution either to the solution
Eq. (A.2) as the particular case H1 = H , H2 = 1 or to the solution Eq. (A.5) as the
particular case H1/H2 = H , f = H2 since =m(H1H̄2) = |H2|2=m(H1/H2).

All this means that we cannot generate new solutions not in this classes via SL(2,R)
transformations.

Since all these solutions are equivalent, up to coordinate transformations, we take now
Eq. (A.2) and now consider the choice of function H. First, we have to choose between
holomorphic and anti-holomorphic H. This choice is related to the choice between (d− 3)-
branes and anti-(d − 3)-branes with opposite charge with respect to the (d − 2)-form
potential dual to a. The impossibility of having H depending on both ω and ω̄ is due
to the impossibility of having objects with opposite charges in equilibrium. We opt for
holomorphy.

Which holomorphic function should one choose? As usual, the choice has to be based
on local and global conditions. Local conditions are essentially related to the existence of
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extended sources (with (d− 3) spatial dimensions) at given points in transverse (ω) space
manifold. Global conditions are essentially related to the choice of global transverse space.
Not all local conditions are possible for a given choice of transverse space. For instance,
there is no holomorphic function for a single (d− 3)-brane in the Riemann sphere17.

To clarify these issues, let us consider the simplest solution in this class: let us couple the
action Eq. (A.1) to a charged (d−3)-brane source. We first have to dualize the pseudoscalar
a into a (d − 2)-form potential A(d−2) with field strength F(d−1) = (d − 1)∂A(d−2): ∂a =
e−2ϕ ?F(d−1). The bulk plus brane action is

S = 1

16πG
(d)
N

∫
ddx
√
|g|
{
R + 1

2
(∂ϕ)2 + 1

2·(d−1)!
F 2

(d−1)

}
−T

2

∫
dd−2ξ

√
|γ|
{
e

2
(d−2)

ϕγijgij − (d− 4)
}

−α T
(d−2)!

∫
dd−2ξA(d−2) i1···i(d−2)

εi1···i(d−2) ,

(A.8)

where gij and A(d−2) i1···i(d−2)
are the pullbacks through the embedding coordinates Xµ(ξ)

of the metric and (d− 2)-form potential. T is the tension (in principle, a positive number)
and α = ±1 gives the sign of the charge (which is evidently proportional to the tension).
The coupling to ϕ is the only one that allows for solutions of the form we want.

A solution is provided by

ds2 = dt2 − d~y 2
(d−3) −Hd~x 2

2 ,

e−ϕ = H ,

A(d−2) ty1···y(d−3) = αH−1 ,

Y i = ξi , ~X2 = 0 ,

(A.9)

where H satisfies the equation

∂2H = −16πG
(d)
N Tδ(2)(~x2) , (A.10)

i.e. it is a harmonic function with a pole at ~x2 = 0, where the brane is placed. The above
equation is solved by a function H that behaves near ~x2 = 0

H ∼ −8G
(d)
N T log |~x2| . (A.11)

17of course, one meets the same situation for other branes. However, for smaller branes one can always
find harmonic functions with a single pole (describing a single brane) that lead to spaces asymptotically
flat in transverse directions. This is not true for higher ((d− 3)- and (d− 2)-) branes).
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It is clear that this solution cannot be globally correct as H becomes negative for |~x2| > 1,
but the local behavior of the global solution has to be the same. Any solution behaving in
this way at any given point will describe a (d− 3)-brane placed there.

Let us now compute the charge. This is defined by

p =

∮
γ

e−2ϕ ?F(d−1) =

∮
γ

da , (A.12)

where γ is a closed loop around the origin. a is given by

∂na = αεnm∂mH , (A.13)

i.e. combining x1 + ix2 ≡ ω 
∂ω̄τ = 0 , α = +1 ,

∂ω̄ τ̄ = 0 , α = −1 ,
(A.14)

that is: a is the real part of a holomorphic or antiholomorphic function of ω, whose
imaginary part is the above function H. We find a = α8G

(d)
N T Arg(ω) and p = α 1

16πG
(d)
N

T .

The choice α = +1 then, corresponds to a single (d− 3)-brane with charge p = + 1

16πG
(d)
N

T

placed at the origin and corresponds to a holomorphic function τ = H(ω) that close to the
origin is given by

H ∼ −8G
(d)
N Ti logω . (A.15)

Observe that the charge is given by the multivaluedness of τ around the source, which
goes from τ to τ + 16πG

(d)
N T which should be identified with τ . The charge is usually

quantized due to quantum-mechanical reasons in multiples of the unit of charge (e, say)
which implies the identification τ ≡ τ + ne and the breaking of SL(2,R). If e = 1

(i.e. 16πG
(d)
N T = 1 which we can always get by rescaling τ) then SL(2,Z) is the unbroken

symmetry of the theory and the above (d− 3)-branes are associated to the modular group
element T 18.

We see that in this context solutions (and charges) can be characterized by the non-
trivial monodromies around singular points which, by hypothesis, are elements of the
modular group.

We can clearly generate via modular (duality) transformations of this solution with T
monodromy other solutions with different monodromies. it is easy to see that if we perform
a transformation τ → M(τ) M ∈ PSL(2Z) on the above solution, the monodromy of the
new solution around the origin will be MTM−1. The most interesting modular transfor-
mation is S(τ) = −1/τ which in other contexts relates electric and magnetic (“S dual”)
objects. Then, the S dual of the above solution will have monodromy STS around the

18For 10-dimensional type IIB D7-branes 16πG
(10)
N = (2π)7`8sg

2 and T = (2π)−7`−8
s g, and, thus, H ∼

− gi
2π logω. On the other hand, C

(8)
ty1···y7 = g−1H−1 (α = +1) and we get p = 1 in a most natural way.
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origin and will be given either by H = − 2πi
logω

using the general solution in the form of

Eq. (A.2) or with H = 1
2πi

logω and the form (2.6) of the solution. This is the form we
have used in the main text to stress that we are dealing with a solution different from the
one with monodromy T , the difference being in the choice of holomorphic function since, as
we have stressed at the beginning of this Appendix all homomorphic solutions can always
be written in the form (A.2), no matter if the monodromy is T or STS.

B The KK Origin of the SL(2,R)/SO(2) Model

We are going to see how the modular group PSL(2,Z) = SL(2,Z)/{±I2×2} and the
SL(2,Z)/SO(2) sigma model arise in standard Kaluza-Klein compactification on a 2-torus
T 2.

B.1 The Modular Group

As usual in KK compactifications, we use two periodic coordinates xm m = 1, 2 whose
periodicity is fixed to 2π` where ` is some fundamental length. This means that we make
the identifications

~x ∼ ~x+ 2π`~n , ~x =

(
x1

x2

)
, ~n ∈ Z2 . (B.1)

The information on relative sizes and angles of the periods and the size of the torus is
codified in the internal metric Gmn,

ds2
Int = d~xTGd~x , (B.2)

which is, by hypothesis, independent on the torus coordinates ~x, (but may depend on the
remaining coordinates).

The KK Ansatz is invariant under global diffeomorphisms in the internal manifold.
These are, generically, of the form

~x′ = R−1~x+ ~a , R ∈ GL(2,R)~a ∈ R2 . (B.3)

~a simply shifts the coordinate origin and does not affect the metric. R acts on the
internal metric according to

G′ = RTGR , (Gmn = Rp
mGpqR

q
n) . (B.4)

We want to separate the volume part of the metric from the rest19. Thus, we define20

K ≡ |detGmn| , Gmn ≡ −K1/2Mmn . (B.5)

19This is necessary, for instance, when we are interested in conformal classes of equivalence of metrics,
as in string path integrals, but convenient in general.

20Remember that G has signature (−−).
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M has determinant +1 and, therefore, it is a symmetric SL(2,R) matrix and, in fact, it
can be understood as an element of the coset SL(2,R)/SO(2) with only two independent
entries. If we factor out the determinant of the GL(2,R) transformations too,

R ≡ |detRm
n| , s = sign(detRm

n) , Rm
n ≡ sR1/2Smn , (B.6)

then the volume element K and the matrix M transform according to

M′ = STMS ,

K ′ = RK .
(B.7)

|K| is an element of the multiplicative group R+ and S is an element of SL(2,R). This
decomposition reflects the decomposition GL(2,R) = SL(2,R)× R+ × Z2. s does not act
neither on K nor on M.

We have not yet taken into account the periodic boundary conditions of the coordinates,
that have to be preserved by the diffeomorphisms in the KK setting. Clearly the rescalings
R do not respect the torus boundary conditions, but they rescale `. The rotations S respect
the boundary conditions only if S−1~n ∈ Z2 the matrix entries are integer, i.e. S ∈ SL(2,Z).
Up to a reflection S = −I2×2, these diffeomorphisms are known as Dehn twists and are
not connected with the identity (in fact, they constitute the mapping class group of torus
diffeomorphisms) and they constitute the modular group PSL(2,Z) = SL(2,Z)/{±I2×2}.
This is the group that acts on M.

We are going to write the modular group matrices in the slightly unconventional form

S =

 α γ

β δ

 , (B.8)

to get the conventional form of the transformation of the modular parameter Eq. (B.15).

B.2 The Modular Parameter τ

We can define a complex modular-invariant coordinate ω on T 2 by

ω = 1
2π`

~ωT · ~x , ~ω = C2 , (B.9)

where, under modular transformations, we assume that the complex vector ~ω transforms
according to

~ω′ = ST~ω . (B.10)

The periodicity of ω is

ω ∼ ω + ~ω T · ~n , ~n ∈ Z2 . (B.11)
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What we have done is to transfer the information contained in the metric (more pre-
cisely, in M) into the complex periods ~ω. The relation between these two is

M =
1

=m(ω1ω̄2)

 |ω1|2 <e(ω1ω̄2)

<e(ω1ω̄2) |ω2|2

 . (B.12)

We can check that the transformation rules for the complex periods Eq. (B.10) and for
the matrix M Eq. (B.7) are perfectly compatible.

In terms of the modular-invariant complex coordinate, the torus metric element takes
the form

ds2
Int = K1/2 1

=mω1ω̄2

dωdω̄ . (B.13)

Observe that =m(ω1ω̄2) is modular-invariant (and a quite important one).
It should be clear that not all pairs of complex periods characterize different tori. Recall

that M only has 2 independent entries while ~ω contains 4 real independent quantities. In
particular, we can see that multiplying ~ω by any complex number leaves the matrix M
invariant. It is customary to multiply by ω−1

2 both the coordinate ω and define

ξ = ω/ω2 , τ = ω1/ω2 , (B.14)

that can always be chosen to belong to the upper half complex plane H =m(τ) ≥ 0 (−ω1

defines the same torus as ω1).
Under a modular transformation with S given by Eq. (B.8), the modular parameter

undergoes a fractional-linear transformation

τ ′ =
ατ + β

γτ + δ
. (B.15)

and the torus coordinate ξ transforms

ξ′ =
ξ

(cτ + d)
. (B.16)

Finally, in terms of τ , the matrix M reads

M =
1

=m(τ)

 |τ |2 <e(τ)

<e(τ) 1

 . (B.17)

B.3 The SL(2,R)/SO(2) Sigma-Model

In pure KK theory (with no higher-dimensional fields apart from the metric), the toroidal
compactification of the Einstein-Hilbert action from d̂ to d dimensions with the KK Ansatz
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(
êµ̂
â
)

=

 eµ
a em

iAmµ

0 em
i

 , (B.18)

where the internal metric

Gmn = em
ien j = −emienjδij . (B.19)

gives, upon the rescaling

gE µν = K
2

(d−2) gµν , (B.20)

S =

∫
dd̂x̂
√
|ĝ| R̂

=

∫
ddx
√
|gE|

[
RE + (d̂−2)(d̂−d)

4(d−2)
(∂ logK)2 + 1

4
Tr (∂MM−1)

2

−1
4
K

(d̂−2)
(d−2)MmnF

mµνF n
µν

]
.

(B.21)

The kinetic term for the scalar matrixM is manifestly invariant under SL(2,R) transfor-
mations (the action we started from is diffeomorphism-invariant). Using the parametriza-
tion Eq. (B.17), it takes the standard form

1
2

∂τ∂τ̄

(=m(τ))2
. (B.22)
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Figure 1: Duality relations between KK branes. The numbers in parenthesis represent the worldvolume dimension,

isometric and transverse directions. The arrows indicate dimensional reduction in the corresponding kind of direction. In the

upper row we represent M-theory KK branes, below 10-dimensional type IIA branes and below them 9-dimensional branes.

Type IIB KK branes are in the bottom row. Pairs of branes in boxes are S duality doublets. They are always related to

reductions from 11 to 9 dimensions of the same object in two different orders. Sometimes there is an third object with the

same numbers as those in a doublet, but transforming as a singlet and we denote it with (s).
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