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An explicit model of F (R) gravity with realizing a crossing of the phantom divide
is reconstructed. In particular, it is shown that the Big Rip singularity may appear in
the reconstructed model of F (R) gravity. Such a Big Rip singularity could be avoided
by adding R2 term or non-singular viable F (R) theory1 to the model because phantom
behavior becomes transient.
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1. Introduction

It is observationally supported that the current expansion of the universe is

accelerating.2,3,4,5,6,7,8,9 A number of scenarios to account for the current accel-

erated expansion of the universe have been proposed (for reviews, see Refs. 10, 11,

12, 13, 14, 15, 16, 17, 18, 19).

Approaches to explain the current accelerated expansion of the universe fall

into two broad categories. One is the introduction of some unknown matter, which
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is called “dark energy” in the framework of general relativity. The other is the

modification of the gravitational theory, e.g., “F (R) gravity”, where F (R) is an

arbitrary function of the scalar curvature R (for reviews, see Refs. 14, 15, 16, 17,

18, 19).

Recent various observational data20,21,22,23 imply that the effective equation

of state (EoS), which is the ratio of the effective pressure of the universe to the

effective energy density of it, may evolve from larger than −1 (non-phantom phase)

to less than −1 (phantom one), namely, cross −1 (the phantom divide).

Various investigations to realize the crossing of the phantom divide have been

executed in the framework of general relativity: Scalar-tensor theories with the non-

minimal gravitational coupling between a scalar field and the scalar curvature or

that between a scalar field and the Gauss-Bonnet term, one scalar field model with

non-linear kinetic terms or a non-linear higher-derivative one, phantom coupled to

dark matter with an appropriate coupling, the thermodynamical inhomogeneous

dark energy model, multiple kinetic k-essence, multi-field models (two scalar fields

model, “quintom” consisting of phantom and canonical scalar fields), and the de-

scription of those models through the Parameterized Post-Friedmann approach, or

a classical Dirac field or string-inspired models, non-local gravity, a model in loop

quantum cosmology and a general consideration of the crossing of the phantom

divide (for a detailed review, see Ref. 13). However, explicit models of modified

gravity realizing the crossing of the phantom divide have hardly been examined,

although there were suggestive and interesting related works.14,24,25

In the present paper, we review our results in Ref. 26 and reconstruct an explicit

model of F (R) gravity in which a crossing of the phantom divide can be realized

by using the reconstruction method proposed in Refs. 27, 28 (for more detailed

references, see references in Refs. 26, 29, 30, 31, 32). It is demonstrated that the

Big Rip singularity may appear in the reconstructed model of F (R) gravity.

2. Reconstruction of a F (R) gravity model with realizing a

crossing of the phantom divide

2.1. Reconstruction method

To begin with, we briefly review the reconstruction method of modified gravity.27,28

The action of F (R) gravity with general matter is given by

S =

∫

d4x
√
−g

[

F (R)

2κ2
+ Lmatter

]

, (1)

where g is the determinant of the metric tensor gµν and Lmatter is the matter

Lagrangian.

By using proper functions P (φ) and Q(φ) of a scalar field φ, the action in Eq. (1)

can be rewritten to the following form:

S =

∫

d4x
√
−g

{

1

2κ2
[P (φ)R +Q(φ)] + Lmatter

}

. (2)
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The scalar field φ may be regarded as an auxiliary scalar field because φ has no

kinetic term. From the action in Eq. (1), the equation of motion of φ is derived as

0 =
dP (φ)

dφ
R+

dQ(φ)

dφ
, (3)

which may be solved with respect to φ as φ = φ(R). Substituting φ = φ(R) into

the action (2), we find that the expression of F (R) in the action of F (R) gravity in

Eq. (1) is given by

F (R) = P (φ(R))R +Q(φ(R)) . (4)

From the action in Eq. (2), the gravitational field equation is given by

1

2
gµν [P (φ)R +Q(φ)]−RµνP (φ)− gµν�P (φ)+∇µ∇νP (φ)+ κ2T (matter)

µν = 0 , (5)

where ∇µ is the covariant derivative operator associated with gµν , � ≡ gµν∇µ∇ν

is the covariant d’Alembertian for a scalar field, and T
(matter)
µν is the contribution to

the matter energy-momentum tensor.

We assume the flat Friedmann-Robertson-Walker (FRW) space-time with the

metric,

ds2 = −dt2 + a2(t)dx2 , (6)

where a(t) is the scale factor.

In the flat FRW background (6), the (µ, ν) = (0, 0) component and the trace

part of the (µ, ν) = (i, j) component of Eq. (5), where i and j run from 1 to 3,

become

− 6H2P (φ(t)) −Q(φ(t))− 6H
dP (φ(t))

dt
+ 2κ2ρ = 0 , (7)

and

2
d2P (φ(t))

dt2
+ 4H

dP (φ(t))

dt
+
(

4Ḣ + 6H2
)

P (φ(t)) +Q(φ(t)) + 2κ2p = 0 , (8)

respectively, where H = ȧ/a is the Hubble parameter and a dot denotes a time

derivative, ˙ = ∂/∂t. Here, ρ and p are the sum of the energy density and pressure

of matters with a constant EoS parameter wi, respectively, where i denotes some

component of the matters.

By eliminating Q(φ) from Eqs. (7) and (8), we obtain

d2P (φ(t))

dt2
−H

dP (φ(t))

dt
+ 2ḢP (φ(t)) + κ2 (ρ+ p) = 0 . (9)

We note that the scalar field φ may be taken as φ = t because φ can be redefined

properly.

We consider that a(t) is expressed as

a(t) = ā exp (g̃(t)) , (10)
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where ā is a constant and g̃(t) is a proper function. In this case, Eq. (9) is reduced

to

d2P (φ)

dφ2
− dg̃(φ)

dφ

dP (φ)

dφ
+ 2

d2g̃(φ)

dφ2
P (φ)

+ κ2
∑

i

(1 + wi) ρ̄iā
−3(1+wi) exp [−3 (1 + wi) g̃(φ)] = 0 , (11)

where ρ̄i is a constant and we have used H = dg̃(φ)/ (dφ). Moreover, it follows from

Eq. (7) that Q(φ) is given by

Q(φ)=−6

[

dg̃(φ)

dφ

]2

P (φ)− 6
dg̃(φ)

dφ

dP (φ)

dφ

+ 2κ2
∑

i

ρ̄iā
−3(1+wi) exp [−3 (1 + wi) g̃(φ)] . (12)

Hence, if the solution of Eq. (11) with respect to P (φ) is obtained, we can find Q(φ).

2.2. Explicit F (R) gravity model with realizing a crossing of the

phantom divide

Next, we reconstruct an explicit model of F (R) gravity in which a crossing of the

phantom divide can be realized by using the reconstruction method explained in

the preceding subsection.

A solution of Eq. (11) without matter is given by

P (φ)=eg̃(φ)/2p̃(φ) , (13)

g̃(φ)=−10 ln

[

(

φ

t0

)−γ

− C

(

φ

t0

)γ+1
]

, (14)

p̃(φ)= p̃+φ
β+ + p̃−φ

β
− , (15)

β±=
1±

√

1 + 100γ(γ + 1)

2
, (16)

where γ and C are positive constants, t0 is the present time, and p̃± are arbitrary

constants.

From Eq. (14), we see that g̃(φ) diverges at finite φ when

φ = ts ≡ t0C
−1/(2γ+1) , (17)

which implies that there could be the Big Rip singularity at t = ts.

We consider only the period 0 < t < ts because g̃(φ) should be real number.

From Eq. (14), we obtain the following Hubble rate H(t):

H(t) =
dg̃(φ)

dφ
=

(

10

t0

)







γ
(

φ
t0

)−γ−1

+ (γ + 1)C
(

φ
t0

)γ

(

φ
t0

)−γ

− C
(

φ
t0

)γ+1






, (18)

where it is taken φ = t.
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In the flat FRW background (6), even for F (R) gravity described by the action

in Eq. (1), the effective energy-density and pressure of the universe are given by

ρeff = 3H2/κ2 and peff = −
(

2Ḣ + 3H2
)

/κ2, respectively. The effective EoS weff =

peff/ρeff is defined as14

weff ≡ −1− 2Ḣ

3H2
. (19)

For the case of H(t) in Eq. (18), from Eq. (19) we find that weff is expressed as

weff = −1 + U(t) , (20)

where

U(t) ≡ − 2Ḣ

3H2
= −

−γ + 4γ (γ + 1)
(

t
ts

)2γ+1

+ (γ + 1)
(

t
ts

)2(2γ+1)

15

[

γ + (γ + 1)
(

t
ts

)2γ+1
]2 . (21)

Furthermore, the scalar curvature is given by R = 6
(

Ḣ + 2H2
)

. For the case of

Eq. (18), R is described as

R =

60

[

γ (20γ − 1) + 44γ (γ + 1)
(

t
ts

)2γ+1

+ (γ + 1) (20γ + 21)
(

t
ts

)2(2γ+1)
]

t2
[

1−
(

t
ts

)2γ+1
]2 .

(22)

In deriving Eqs. (21) and (22), we have used Eq. (17).

When t → 0, i.e., t ≪ ts, H(t) behaves as

H(t) ∼ 10γ

t
. (23)

In this limit, it follows from Eq. (19) that the effective EoS parameter is given by

weff = −1 +
1

15γ
. (24)

This behavior is identical with that in the Einstein gravity with matter whose EoS

is greater than −1.

On the other hand, when t → ts, we find

H(t) ∼ 10

ts − t
. (25)

In this case, the scale factor is given by a(t) ∼ ā (ts − t)
−10

. When t → ts, therefore,

a → ∞, namely, the Big Rip singularity appears. In this limit, the effective EoS

parameter is given by

weff = −1− 1

15
= −16

15
. (26)
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This behavior is identical with the case in which there is a phantom matter with

its EoS being smaller than −1. As a consequence, we have reconstructed an explicit

model with realizing a crossing of the phantom divide.

From Eq. (19), we see that the effective EoS weff becomes −1 when Ḣ = 0. By

solving weff = −1 with respect to t by using Eq. (20), namely, U(t) = 0, we find

that the effective EoS parameter crosses the phantom divide at t = tc, given by

tc = ts

(

−2γ +

√

4γ2 +
γ

γ + 1

)1/(2γ+1)

. (27)

It follows from Eq. (21) that when t < tc, U(t) > 0 because γ > 0. Moreover, the

time derivative of U(t) is given by

dU(t)

dt
= − 2γ (γ + 1) (2γ + 1)

2

15

[

γ + (γ + 1)
(

t
ts

)2γ+1
]3

(

1

ts

)(

t

ts

)2γ
[

1−
(

t

ts

)2γ+1
]

. (28)

Eq. (28) implies that the relation dU(t)/ (dt) < 0 is always satisfied because we

consider only the period 0 < t < ts as mentioned above. This means that U(t)

decreases monotonously. Thus, the value of U(t) evolves from positive to negative.

From Eq. (20), we see that the value of weff crosses −1. Once the universe enters the

phantom phase, it stays in this phase, namely, the value of weff remains less than −1,

and finally the Big Rip singularity appears because U(t) decreases monotonically.

We note that there could be other types of the finite-time future singularities in

modified gravity as shown in Refs. 33, 34.

By using Eqs. (13), (14), (15) and (17), P (t) is obtained as

P (t) =







(

t
t0

)γ

1−
(

t
ts

)2γ+1







5

∑

j=±
p̃jt

βj . (29)

It follows from Eqs. (12) and (29) that Q(t) is given by

Q(t) = −6H







(

t
t0

)γ

1−
(

t
ts

)2γ+1







5

∑

j=±

(

3

2
H +

βj

t

)

p̃jt
βj . (30)

If Eq. (22) can be solved with respect to t as t = t(R), in principle we can find the

form of F (R) by using this solution and Eqs. (4), (29) and (30). However, for the

general case it is difficult to solve Eq. (22) as t = t(R). Therefore, as an solvable

example, we illustrate the behavior of t2sF (R̃) as a function of R̃ ≡ t2sR in Fig. 1 for

γ = 1/2, p̃+ = −1/t
β+

s , p̃− = 0, β+ =
(

1 + 2
√
19
)

/2 and ts = 2t0. The quantities

in Fig. 1 are described in dimensionless quantities. The horizontal and vertical axes

show R̃ and t2sF , respectively. (Here, R̃ = t2sR = 4R/R0, where R0 is the current

curvature. In deriving this relation, we have used ts = 2t0, t0 ≈ H−1
0 , where H0 is

the present Hubble parameter.) From Fig. 1, we see that the value of F (R) increases

as that of R becomes larger.
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Fig. 1. Behavior of t2sF (R̃) as a function of R̃ for γ = 1/2, p̃+ = −1/t
β+
s , p̃− = 0, β+ =

(

1 + 2
√
19

)

/2 and ts = 2t0.

To explore the analytic form of F (R) for the general case, we examine the

behavior of F (R) in the limits t → 0 and t → ts. When t → 0, from Eq. (23) we get

t ∼
√

60γ (20γ − 1)

R
. (31)

In this limit, it follows from Eqs. (4), (23), (29), (30) and (31) that the form of

F (R) is given by

F (R)∼











[

1
t0

√

60γ (20γ − 1)R−1/2
]γ

1−
[

1
ts

√

60γ (20γ − 1)R−1/2
]2γ+1











5

R

×
∑

j=±

{(

5γ − 1− βj

20γ − 1

)

p̃j [60γ (20γ − 1)]
βj/2 R−βj/2

}

. (32)

Note that such action belongs to general class of actions with positive and neg-

ative powers of curvature introduced in Ref. 35.

On the other hand, when t → ts, from Eq. (25) we obtain

t ∼ ts − 3

√

140

R
. (33)
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In this limit, it follows from Eqs. (4), (25), (29), (30) and (33) that the form of

F (R) is given by

F (R)∼







{

1
t0

[

ts − 3
√
140R−1/2

]

}γ

1−
[

1− 3
√
140
ts

R−1/2
]2γ+1







5

R
∑

j=±
p̃j

[

ts − 3
√
140R−1/2

]βj

×
{

1−
√

20

7

[

√

15

84
ts + (βj − 15)R−1/2

]

1

ts − 3
√
140R−1/2

}

. (34)

For large R, namely, t2sR ≫ 1, the expression of F (R) in (34) can be approximately

written as

F (R) ≈ 2

7

[

1

3
√
140 (2γ + 1)

(

ts
t0

)γ]5




∑

j=±
p̃jt

βj

s



 t5sR
7/2 . (35)

3. Summary

We have studied a crossing of the phantom divide in F (R) gravity. We have re-

constructed an explicit model of F (R) gravity in which a crossing of the phantom

divide can occur by using the reconstruction method.27,28 As a result, we have

shown that the Big Rip singularity may appear in the reconstructed model of F (R)

gravity. We finally mention that by adding R2 term (as it was first proposed in

Ref. 24) to the model or by adding non-singular theory,1 R2 (Rn + c1) / (R
n + c2),

where n, c1 and c2 are constants, Big Rip singularities could be avoided because

phantom behavior becomes transient.33,34
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