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Phage /29 is a virulent phage of Bacillus subtilis with no

known lysogenic cycle. Indeed, lysis occurs rapidly follow-

ing infection of vegetative cells. Here, we show that /29
possesses a powerful strategy that enables it to adapt its

infection strategy to the physiological conditions of the

infected host to optimize its survival and proliferation.

Thus, the lytic cycle is suppressed when the infected cell

has initiated the process of sporulation and the infecting

phage genome is directed into the highly resistant spore to

remain dormant until germination of the spore. We have

also identified two host-encoded factors that are key

players in this adaptive infection strategy. We present

evidence that chromosome segregation protein Spo0J is

involved in spore entrapment of the infected /29 genome.

In addition, we demonstrate that Spo0A, the master reg-

ulator for initiation of sporulation, suppresses /29 devel-

opment by repressing the main early /29 promoters via

different and novel mechanisms and also by preventing

activation of the single late /29 promoter.
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Introduction

Bacteriophages have developed a broad range of infection

strategies (Calendar, 1988) that may permit them to maintain

lysogeny for many generations or to complete their life cycle

within a rather short period of time. As viruses are believed to

have coevolved with their hosts, it would be surprising if they

had not developed the capability to take advantage of special

features of their hosts’ life style. Bacillus subtilis is a member

of a large family of bacteria that respond to nutritional stress

by forming highly resistant endospores that can remain

dormant for long periods of time before germinating to

resume growth. The endospore is formed by modified, ex-

tremely polar cell division, which generates a tiny prespore

compartment near one cell pole and a much larger mother

cell. The prespore develops with the cooperation of the

mother cell, which eventually lyses to release the completed

spore (recently reviewed by Errington, 2003). When certain

lytic phages infect B. subtilis cells that are in their initial

stages of sporulation, they do not cause cell lysis but instead

the injected phage genome remains effectively dormant and

becomes entrapped in the spore (Sonenshein, 1970). When

favorable host growth conditions return, germination of the

spore releases the trapped phage genome, which then enters

its lytic phase, resulting in lysis of the cell and liberation of

phage progeny. Proper execution of this alternative strategy,

which allows the phage to take advantage of the remarkable

resistance and dormant properties of the spore, presumably

requires (i) suppression of phage development and (ii) seg-

regation of the infected phage genome into the small polar

prespore compartment. However, the molecular mechanisms

responsible for this powerful survival strategy are largely

unknown.

One of the B. subtilis phages capable of this strategy is

phage f29 (Moreno, 1979), whose genome consists of a

linear double-stranded DNA (dsDNA) with a terminal protein

(TP) covalently linked at each 50 end (Salas, 1991). This

structure precludes integration of the f29 genome into the

bacterial chromosome, which would be one obvious way to

ensure entrapment in the prespore.

A genetic and transcriptional map of the f29 genome is

shown in Figure 1. Phage f29 transcription is divided into

early and late stages (for review, see Rojo et al, 1998; Meijer

et al, 2001). All late genes, including those involved in lysis of

the infected cell, are clustered in a single, centrally located,

operon that is transcribed from the late promoter A3. The

early-expressed genes are present in two operons. One,

located at the right side of the genome, is under the control

of the strong C2 promoter, and the other, located at the left

side, is expressed from two strong, tandemly organized

promoters named A2b and A2c. The vegetative RNA poly-

merase containing sA (RNAP) recognizes the early promoters

and, with the aid of the transcriptional regulator protein p4,

the late A3 promoter, which lacks a typical �35 box. The

region, comprising promoters A2c, A2b and A3, contains

three main protein p4-binding sites. Binding sites 1 and 2

are involved in repression of the early A2c promoter. Binding

site 3 is located upstream of the late A3 promoter and partly

overlaps the divergently oriented early A2b promoter.

Binding of protein p4 to this site simultaneously activates

the A3 and represses the A2b promoter.

Segregation of bacterial chromosomes and plasmids is

an active process (for review, see Gordon and Wright,

2000; Hiraga, 2000; Wu, 2004). In B. subtilis, the Spo0J
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protein plays an important role in chromosomal segregation,

both in vegetative and sporulating cells (for review, see

Draper and Gober, 2002; Wu, 2004). The spo0J gene

forms an operon with soj. Soj and Spo0J are DNA-binding

proteins that are related to the ParA/ParB family of proteins,

which are required for the stable maintenance of plasmids

(reviewed by Gerdes et al, 2000). The preferential Spo0J-

binding site, parS, is the 16 bp imperfectly inverted repeat

sequence 50-TGTTCCACGTGAAACA-30, which is located with-

in the spo0J gene near oriC. The B. subtilis chromosome

contains seven additional Spo0J-binding sites, scattered over

the B1Mbp oriC region, which have 1 or 2 bp differences

with respect to the parS site in the spo0J gene (Lin and

Grossman, 1998). Although Soj does not appear to be

required for chromosome segregation in vegetative cells of

B. subtilis, the combination of soj, spo0J and parS can

stabilize otherwise unstable plasmids in both B. subtilis

(Lin and Grossman, 1998) and Escherichia coli (Yamaichi

and Niki, 2000). Furthermore, the combination of soj and

spo0J is involved in segregation of the prespore chromosome

during sporulation, together with at least two other proteins,

RacA and DivIVA (Ben-Yehuda et al, 2003; Wu and Errington,

2003).

Interestingly, the genome of f29 contains five parS-like

sites, four of which have a sequence identical to the one

present in the spo0J gene (Murthy et al, 1998; see Figure 1).

Here, we present evidence indicating that the host-encoded

chromosomal segregation machinery is involved in segrega-

tion of the f29 genome into the prespore.

The master regulator for initiation of sporulation is the

B. subtilis Spo0A protein (Hoch, 1993). A multicomponent

phosphorelay consisting of five histidine autokinases and two

phosphorelay proteins (Spo0F and Spo0B) controls the activ-

ity of Spo0A. The activated form, Spo0ABP, binds to DNA

sequences containing a so-called ‘0A box’, where it exerts its

role as a transcriptional regulator by activating the expression

of certain genes, while repressing others (for review, see

Grossman, 1995; Sonenshein, 2000; Perego and Hoch, 2002;

Piggot and Losick, 2002).

We present several lines of in vitro and in vivo evidence

that Spo0A (i) directly inhibits transcription from the early

f29 promoters by different mechanisms and (ii) prevents

activation of the single late A3 promoter. The phage is there-

fore sensitized to the critical signal transduction system

regulating the entry into sporulation. Under appropriate

conditions, the phage uses this device to postpone its normal

lytic cycle, and arranges to be trapped in the endospore,

surviving along with its host until conditions favorable for its

lytic cycle prevail.

Results

The /29 parS sites are involved in spore entrapment

It seemed possible that the parS sites in f29 DNA might

function by exploiting the host-encoded Spo0J chromosome

segregation machinery to enhance spore entrapment of the

f29 genome. To study whether Spo0J binds in vivo to the

parS sites present on the f29 genome, we performed chro-

matin immunoprecipitation (CHIP) assays (see Materials and

methods). In brief, formaldehyde was added to f29-infected
cells to crosslink protein and DNA, cells were lysed and the

DNA sheared to an average size of B750bp. The Spo0J–DNA

complexes were then immunoprecipitated using polyclonal

antibodies against Spo0J, the crosslinks were reversed and

the precipitated DNA was analyzed by quantitative real-time

PCR. Seven sets of primers were used in the PCR assays; five

of these were designed to amplify the f29 parS site-contain-

ing regions, and two to amplify regions of f29 DNA that do

not contain a parS site. Binding of Spo0J to the different f29
DNA regions is expressed as immunoprecipitation coefficient

(IC) in which the value obtained with antibodies against

Spo0J is normalized to the total amount of DNA of that

region. Figure 2 shows that the f29 DNA regions containing

the parS sites were 10- to 23-fold more abundant in immuno-

precipitates compared to the non-parS site DNA regions.

Low ICs (o180) were obtained for all the f29 DNA regions

tested when CHIP experiments were performed using an

isogenic Dsoj-spo0J strain (Figure 2). Together, these results
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Figure 1 Genetic and transcriptional map of the f29 genome. The direction of transcription and length of the transcripts are indicated by
arrows. The positions of the 0A boxes and parS sites are indicated with red and green triangles, respectively. The parS site having two
additional bp with respect to the other ones is hatched. The positions of the various genes are indicated by numbers. The bidirectional
transcriptional terminator TD1 is indicated by a hairpin structure. Black circles represent the TP. A black box indicates the region spanning the
early promoters A2b and A2c, and the late A3 promoter. Blow-ups of the A2c-A3 and C2 promoter regions are shown in the lower part.
Transcription start sites are indicated with bent arrows. The �35 and �10 boxes are indicated with blue filled boxes. Note that the late A3
promoter lacks a consensus �35 sequence. The positions of the main protein p4-binding sites are indicated with green boxes.
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demonstrate that Spo0J binds preferentially to the f29
regions containing a parS site in vivo.

Next, experiments were performed to analyze whether the

f29 parS sites are functionally important for spore entrap-

ment. The linear genome of f29 is not amenable to standard

genetic manipulation because of the covalent attachment

of TP at both DNA ends, which is essential for f29 DNA

replication, excluding the possibility to mutagenize the parS

sites in the phage genome. As a first approach, we cloned a

f29 parS site onto a derivative of the low-copy-number

B. subtilis plasmid pLS20 (Meijer et al, 1995) and analyzed

the efficiency of spore entrapment of the plasmid with or

without the parS site in wild-type B. subtilis cells. Table I

shows that more than 88% of the spores harbored the

plasmid when it contained the parS site (pParSa/b), versus

28% when it lacked the site (pNeg). When carried out in an

isogenic Dsoj-spo0J mutant background, B30% of the spores

harbored a plasmid, independent of whether or not it con-

tained the parS site (spo0J mutants make very few spores

because of the negative transcriptional regulator soj (Ireton

et al, 1994), hence the use of a soj-spo0J double mutant).

Thus, the presence of a f29 parS site enhances the segrega-

tion efficiency of a heterologous replicon into the prespore

in a soj-spo0J-dependent manner. As a second approach, we

compared the ratio of spore entrapment of the f29 genome

between a wild-type and an isogenic Dsoj-spo0J strain. Spore
entrapment of f29 genome is limited to a narrow window

after the onset of sporulation (Moreno, 1979). In our experi-

mental setup, maximum spore entrapment levels were

obtained when cells were infected around 40min after re-

suspension in sporulation medium (SM). Spore entrapment

efficiencies of the f29 genome were consistently higher in the

wild-type than in the Dsoj-spo0J strain. The ratios between

the efficiencies of the 16 values obtained fluctuated, however,

between 4- and 13-fold (mean difference 6.5). Probably, these

fluctuations are due to differences in the progress of devel-

opment between the cultures. The data of both approaches

strongly indicate that the parS sites on the f29 genome are

important for spore entrapment.

Sporulation causes repression of the early /29
promoters and prevents activation of its late promoter

Early reports described that f29 forms large plaques on

certain early blocked sporulation mutants but not on the

B. subtilis wild-type strain 168 (Ito and Spizizen, 1972). To

study whether the impairment of phage f29 development in

solid medium depends on spo0A, we analyzed plaque for-

mation on wild-type B. subtilis strain 168, an isogenic spo0A

deletion strain and a spo0B mutant strain (which is blocked

for Spo0A activation). Phage f29 formed large plaques on the

spo0A and spo0B mutant strains but not on the wild-type

strain (not shown), indicating that activated Spo0A causes

impairment of phage f29 development. Spo0A activity is not

affected in the absence of both soj and spo0J (Ireton et al,

1994). In accordance with this, f29 did not form large

plaques on the Dsoj-spo0J strain (not shown).

To study whether suppression of f29 development is

because of repression of f29 transcription, we analyzed its

expression profile in cells infected at different times after

synchronized initiation of sporulation. As shown in Figure 3,

relatively high levels of transcripts derived from the main

early promoters and of the late A3 promoter were detected

when cells were infected immediately after they were resus-

pended in SM. Much lower or hardly detectable levels of the

early A2c and A2b transcripts were observed in samples

infected 15, 30 or 45min after resuspension in SM. A decrease

of the early promoter C2 transcription level was also

observed when cells were infected 30 or 45min after resus-

pension. Moreover, promoter A3-derived transcripts were no

longer detected when cells were infected 15min or later after

sporulation induction. The different repression levels suggest

that the effects are promoter specific and do not represent a

general loss of transcription of nonsporulation promoters.

These results together with those of the analyses of transcrip-

tional lacZ fusions (see below) indicate that the early f29
promoters become repressed during sporulation.

The /29 genome contains six 0A boxes

Examination of the f29 genome revealed that it contains six

0A boxes, as originally defined by Strauch et al (1990). One of

them, 0A box 4 (0A-4), is present within gene 8.5 encoding

the phage head fiber. Interestingly, the other five 0A boxes are

all located in the vicinity of promoters; three of them (0A-1,

0A-2 and 0A-3) are present in the intergenic A2c-A3 promoter

region and two (0A-5 and 0A-6) are located upstream of

Figure 2 In vivo binding of Spo0J to the parS sites present in the
f29 genome. Wild-type B. subtilis 168 (168) or isogenic soj-spo0J
deletion (Dsoj-spo0J) cultures were infected with phage f29 (m.o.i.
10) and subjected 20min later to formaldehyde crosslinking. After
processing (see Materials and methods), the total and immunopre-
cipitated DNA samples were analyzed by quantitative real-time PCR
using seven sets of primers. Five primer sets were designed to
amplify the different f29 parS site regions (S1–S5) and two control
primer sets to amplify f29 DNA regions not containing a parS site
(C1 and C2, f29 regions 64–523 and 1022–1548, respectively). The
mean values of the ICs7the standard deviation of two independent
experiments are presented.

Table I Spore entrapment efficiencies of plasmids with or without
parS in wild-type 168 and an isogenic soj-spo0J deletion strain

Plasmid % plasmid containing sporesa

168 Dsoj-spo0J

pNeg 28 26
pParSa 89 31
pParSb 93 29

aAverage of three independent experiments that, among themselves,
differed less than 10%.
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promoter C2 (see Figure 1). All five promoter-associated 0A

boxes, but not the one present within gene 8.5, have a

sequence that is identical to the extended 0A box as defined

by Liu et al (2003) (see Supplementary Table SI).

Early /29 promoters are repressed in vivo

in a spo0A-dependent manner

Single-copy chromosomal transcriptional lacZ fusions were

constructed and used to study the temporal expression

of each early f29 promoter with its associated 0A boxes in

the wild-type 168 and the isogenic spo0A background. The

results (Supplementary Table SII) showed that the b-galacto-
sidase activities driven by these f29 promoters started to

decline as soon as the cultures entered sporulation (defined

as t¼ 0) when the lacZ fusions were in the wild-type but not

in the spo0A background. These results, together with the

fact that Spo0A becomes overexpressed and activated shortly

before t¼ 0 (Strauch et al, 1992), suggested that Spo0A

represses the f29 promoters in vivo. The apparent lower

repression levels observed by this approach compared to

those observed by primer extension (see above) are most

likely owing to the higher stability of the b-galactosidase
enzyme with respect to the phage mRNA.

The /29 early promoter-associated 0A boxes are bona

fide Spo0A-binding sites

DNase I footprinting was used to test whether the f29
promoter-associated 0A boxes are Spo0A-binding sites. The

functionality of the Spo0A protein used was inferred from

the fact that (i) it produced highly similar footprints on the

B. subtilis spoIIG-associated 0A boxes to those published

(Satola et al, 1992) (not shown) and (ii) that it was able to

activate the spoIIG promoter in vitro (see below).

Representative footprints of Spo0A binding to the A2c-A2b

and the C2 promoter regions are shown in Figures 4 and 5,

respectively. The schematic overviews of the various Spo0A-

protected regions on either strand (Figures 4C and 5B) show

that binding of Spo0A is not limited to the 0A-box sequence.

Inspection of the protected sequences revealed that each 0A

box analyzed is flanked by a 3 bp spacer by an imperfect 0A-

box sequence that is located either upstream (0A boxes 1 and

2) or downstream (0A boxes 3, 5 and 6) of the consensus

heptamer 0A-box sequence. The dual 0A boxes 1 and 5

overlap partly the A2c and C2 promoter, respectively.

Spo0A represses the early /29 promoters by different

mechanisms

In vitro transcription assays (Figure 6) were performed to

study if Spo0A is directly responsible for repression of the

early f29 promoters. The B. subtilis sA-RNAP-dependent

spoIIG promoter is activated by Spo0A (Satola et al, 1992).

Contrary to the Spo0A-induced activation of the spoIIG pro-

moter, a Spo0A-dependent decrease of promoter activity was

observed for the early f29 promoters, demonstrating that

Spo0A represses these promoters directly.

The possibility that Spo0A interferes with binding of RNAP

to the early f29 promoters was tested by DNase I footprinting

(Figures 4 and 5). RNAP binds efficiently to the A2c promo-

ter, generating a footprint on the template strand that spans

Figure 4 Footprint analyses of the binding of Spo0Awith or without RNAP to the A2c (A) and A2b (B) promoter. DNA fragments labeled at the
30 end at the template strand for early transcription were incubated with the proteins as indicated above the footprints. The numbering used in
panels A and B is according to the transcriptional start sites of promoters A2c and A2b, respectively. The promoters and their directionality are
indicated in blue; the filled and striped boxes depict the �35 and �10 hexamers and the UP element, respectively. Filled and hatched red boxes
indicate the positions of the originally defined consensus 0A-box sequence and that of the flanking imperfect 0A box (see text), respectively.
When indicated, 70 nM of RNAP was added 10min after Spo0A addition, and Spo0A concentrations ranged from 1.6 nM to 27 mM (four-fold
dilution steps). A summary of the Spo0A-protected DNA regions is presented in (C). Spo0A-protected regions are bracketed. The consensus
heptamer 0A-box sequences and the flanking imperfect 0A-box sequences are given in red and boldface and in red, respectively. Transcription
initiation sites are indicated with bent arrows. The core promoter sequences are indicated with blue rectangles; the �35 and �10 hexamers are
indicated with blue boxes. Positions relative to the transcription start site are indicated below (promoter A3) or above (promoters A2b and A2c)
the DNA sequence. f29 DNA sequences are given in uppercase letters; lowercase letters correspond to vector sequences. Strong hypersensitive
sites, observed at low and medium Spo0A concentrations, are indicated with thick arrows. The template used in panels A and B contains f29
sequences up to position �87 relative to the A2b transcription start site; the fragment containing the additional f29 sequences shown here up
to position þ 21 relative to the A3 transcription start site was used in footprint assays presented in Figure 7.

Figure 3 Analysis of in vivo phage f29 transcripts produced as a
function of cell development. Total RNA was purified 25min post-
infection (m.o.i. 5) from cells that were infected with f29 directly or
at different times (15, 30 or 45min) after resuspension of a mid-
logarithmically grown culture in SM. Next, f29 transcripts were
analyzed by primer extension and resolved in denaturing polyacry-
lamide gels. The primers were selected to give a cDNA of different
length for each promoter (indicated at the right). Mean values of the
relative abundance of the transcripts at the indicated times were as
follows: C2, 100 (75.8), 83.8 (76.7), 18 (74.2), 5.2 (72.8); A2b,
100 (77.9), 26 (75.6), 20 (76.3),o2; A2c, 100 (72.1), 19 (72.9),
4 (72.3), o2; and A3, 100 (74.5), o2, o2, o2.
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CCATTTCCCCATTGACCGACTATCTTCGACAAGAATCTAACAACTAAATCACGACTATATACCTATACTATTTATTAT
GGTAAAGGGGTAACTGGCTGATAGAAGCTGTTCTTAGATTGTTGATTTAGTGCTGATATATGGATATGATAAATAATA

• • • • • • •

–60–70–80–90–100–110–120–130

CATCAATTTGTCGAAAAGGGTAGACAAACTATCGTTTAACATGTTATACTATAATAGAAGTAAGGTAATAAGACAACC
GTAGTTAAACAGCTTTTCCCATCTGTTTGATAGCAAATTGTACAATATGATATTATCTTCATTCCATTATTCTGTTGG
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Figure 5 Footprint analyses of the binding of Spo0A in the absence or presence of RNAP at the f29 C2 promoter. (A) The C2 promoter-
containing DNA fragment, end-labeled at the nontemplate strand, was analyzed for binding of Spo0A (lanes 2–6), sA-RNAP containing either
the wild type (wt; lanes 8–13) or the aD15 mutant (aD15; lanes 15–20) without (lanes 8 and 15) or with (lanes 9–13 and 16–20) preincubation
of the fragment with Spo0A. The numbering used is according to the transcriptional start site of promoter C2. Color schemes indicating the
positions of the 0A boxes and promoter elements are according to those described in Figure 4A and B. Fixed amounts of RNAP (70nM) were
used and Spo0A concentrations (four-fold dilution steps) ranged from 26.4 nM to 6.7mM. (B) Summary of the DNA regions protected by Spo0A
from DNase I digestion. Color schemes and symbols are the same as those used in Figure 4C. (C) The C2 promoter-encompassing DNA
fragment, preincubated without or with increasing amounts of Spo0A, was incubated at 371C with RNAP (140 nM) (no initiating nucleotides),
and DNA melting was probed by KMnO4 footprinting. The indicated positions that became hypersensitive to KMnO4 are relative to the C2
promoter transcription start site. Spo0A concentrations, four-fold dilution steps, ranged from 26.4 nM to 6.7mM.
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the region from þ 16 to �57 and inducing a hypersensitivity

at position �37 relative to its transcription start site

(Monsalve et al, 1996; Figure 4A, lane 11). However, RNAP

was unable to bind to the A2c promoter when Spo0A

was bound to the 0A-box regions 1 and 2 (Figure 4A, lanes

17–20).

Although the A2b promoter is strong, RNAP binds weakly

to it. One of the most characteristic changes upon RNAP

binding is the generation of a strong hypersensitive site at

position �41 of the template strand relative to the promoter

A2b transcription start site (Meijer and Salas, 2004;

Figure 4B, lane 21). Binding of RNAP to this promoter was

inversely related to the binding of Spo0A at the 0A-box 3

region (Figure 4B, lanes 12–19).

The same approach was used for the C2 promoter. RNAP

binds efficiently to the C2 promoter generating a footprint

at the nontemplate strand spanning positions �50 to þ 19

relative to its transcription start site. In addition, RNAP

binding induces two strong hypersensitivities at positions

�20 and �21 and leads to a partial protection of position

�60 (Meijer and Salas, 2004; Figure 5A, lane 8). Interestingly,

Spo0A bound to 0A-box regions 5 and 6 did not prevent

RNAP from binding to the C2 promoter (Figure 5A, lanes 9–

13), despite the fact that the upstream part of the C2 core

promoter is protected by Spo0A (Figure 5A, lanes 4–6).

Simultaneous binding of Spo0A and RNAP caused some

alterations in the RNAP binding characteristics, though.

Thus, it led to (i) increased hypersensitivity of position

�32, (ii) incomplete protection of position �7 and (iii) full

protection of position �60. Binding of Spo0A to the 0A-box 5

region is responsible for these alterations, as these were also

observed using a shorter DNA fragment that lacked the 0A

box 6 (not shown).

The C2 promoter contains a UP element and binding of the

C-terminal domain (CTD) of the RNAP a subunit to the UP

element is responsible for full protection of the �46 to �50

region and partial protection of position �60 (Meijer and

Salas, 2004). Hence, the 0A-box 5 region not only overlaps

with part of the C2 core promoter but also with part of its UP

element. To test whether binding of Spo0A to the 0A-box 5

region causes the enhanced binding of aCTD to position �60,

DNase I footprinting was performed with RNAP holoenzyme

containing a mutant a subunit lacking its 15 C-terminal

amino acids (aD15-RNAP; Mencı́a et al, 1996). Binding of

aD15-RNAP is limited to the C2 core promoter (Figure 5A,

lane 15; Meijer and Salas, 2004). When Spo0A and aD15-
RNAP are both present, position �46 is protected by Spo0A

but position �60 remains unprotected (Figure 5A, lanes 18–

20), indicating that aCTD is responsible for full protection of

this position by wild-type RNAP when Spo0A is bound to the

0A-box 5 region. Moreover, comparison of the footprints

generated by the simultaneous binding of Spo0A with either

wild-type RNAP or aD15-RNAP to the C2 promoter revealed

that (i) in both situations, position �32 became hypersensi-

tive, and (ii) whereas, except for position �7, the C2 core

promoter region was fully protected by wild-type RNAP over

the entire Spo0A concentration range tested, it was only

partially protected by aD15-RNAP in the presence of high

Spo0A concentrations (compare Figure 5A, lanes 12 and 13

with 19 and 20). These results indicate that the Spo0A-

mediated hypersensitivity of position �32 does not require

aCTD and that binding of aCTD to position �60 is required

for stable binding of RNAP to the C2 promoter in the presence

of Spo0A.

As binding of Spo0A to its associated 0A boxes does not

prevent RNAP from binding to the C2 promoter, the Spo0A-

mediated repression of this promoter should be exerted at a

step after formation of the closed complex. Indeed, Spo0A,

added either before or after RNAP, affected the amount of

open complexes at the C2 promoter as assessed by potassium

permanganate footprinting (Figure 5C shows the results

obtained when Spo0A was added before RNAP; similar

results were obtained when the proteins were added in

reverse order (not shown)).

Spo0A prevents activation of the late A3 promoter

The f29 late A3 promoter was not activated when cells were

infected 15min or later after resuspension in SM (Figure 3).

Activation of promoter A3, which lacks a typical �35 box,

occurs through p4-mediated recruitment of RNAP to the A3

promoter via contacts between protein p4 and the CTD of the

RNAP a subunit (Mencı́a et al, 1996). The p4-binding site 3,

needed for promoter A3 activation, is located from positions

�69 to �95 with respect to its transcription start site.

Interestingly, 0A box 3 is positioned in between the A3

promoter and the p4-binding site 3 (see Figure 1). Binding

of Spo0A to the 0A-box 3 region might therefore interfere with

activation of the late A3 promoter. In vitro run-off assays

(Figure 6) indeed showed that activation of the late A3

promoter is prevented in a Spo0A-dependent way.

The Spo0A-mediated prevention of promoter A3 activation

was studied by DNase I footprinting using a DNA fragment

encompassing the late A3 promoter and upstream sequences

containing 0A box 3, p4-binding site 3 and the A2b promoter

(Figure 7). Surprisingly, using this DNA fragment, it was

found that Spo0A not only binds to the 0A-box 3-containing

region determined above (Figure 4B), but also to a juxtaposed

Figure 6 Spo0A represses the f29 early promoters A2c, A2b and
C2 and prevents activation of the late A3 promoter in vitro. The
activities of the f29 early promoters A2b, A2c and C2, the late A3
promoter and the B. subtilis spoIIG promoter were measured as a
function of Spo0A concentration in in vitro run-off assays. Reaction
mixtures contained 4nM of the appropriate template DNA contain-
ing the promoter(s) and associated 0A boxes, 40 nM of purified
B. subtilis RNAP and the indicated amount of Spo0A. Promoter
activities are given relative to their maximum activity observed in
the absence (f29 promoters) or presence (spoIIG promoter) of
Spo0A. The fragment containing the spoIIG promoter included the
0A-binding sites 1 and 2 (Satola et al, 1991). Presented percentages
correspond to the mean value of at least three independent experi-
ments that, among themselves, differed less than 10%.
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region lacking an obvious 0A-box-like sequence encompass-

ing positions �44 to �26 relative to the A3 promoter tran-

scription start site (Figure 7, lanes 2, 12 and 13). As expected,

RNAP bound to the A3 promoter in the presence but not in

the absence of protein p4 (compare lanes 9 and 10). In the

former situation, the hypersensitive bands that characterize

the binding of p4 to its cognate site upstream of the A3

promoter are more pronounced as compared with those

generated by protein p4 alone (compare lanes 9 and 11),

reflecting cooperative binding of both proteins (Rojo et al,

1998). RNAP recruitment was lost, however, under condi-

tions in which binding of Spo0A to the extended 0A-3-

containing region became evident (lanes 6–8). Some of the

characteristic footprint features of protein p4 were still ob-

served under these latter conditions, indicating that p4 and

Spo0A can bind simultaneously to their flanking cognate

binding sites. Highly similar footprints were observed when

Spo0A was added after the DNA was preincubated with p4

and RNAP (not shown).

Discussion

The mechanisms that (i) suppress in vivo f29 phage devel-

opment and (ii) are involved in segregation of the f29
genome into the B. subtilis developing prespore are described

in this work. Together, they form the basis for the adaptive

f29 infection strategy that (i) permits the phage genome to

survive in the highly resistant spore and (ii) restricts phage

development to the stage in which conditions are best suited

for the production of large numbers of phage progeny.

Spore entrapment

Moreno (1979) showed that a single f29 genome is sufficient

for spore entrapment and that viral DNA synthesis is not

required for trapping, indicating that spore entrapment of the

phage genome involves an active process. Results presented

in this work suggest that the parS sites present on the f29
genome probably play a role in spore entrapment. Thus, (i)

spore entrapment efficiency of f29 genome is lower in a soj-

spo0J deletion strain as compared to the wild-type strain and

(ii) the presence of a f29 parS site enhanced the efficiency

of spore entrapment of a low-copy plasmid in a soj-spo0J

dependent way. Moreover, CHIP experiments showed that

Spo0J binds specifically to the f29 parS site regions in vivo.

Together, these results indicate that part of the chromosome

segregation machinery is employed to partition the f29
genome in the prespore.

Spo0A represses /29 early promoters by different

mechanisms

Using in vivo and in vitro approaches, we have shown here

that the main early f29 promoters are directly repressed by

Spo0A via different and novel mechanisms. The A2c promo-

ter is repressed by steric hindrance due to binding of Spo0A to

the 0A-box 1 region, which overlaps with the core promoter.

Binding of RNAP to the A2b promoter is prevented when

Spo0A is bound to the 0A-box 3 region. This dual 0A box is

located upstream of the core A2b promoter (positions from

�54 to �70 relative to the A2b transcription start site).

Activity of the A2b promoter depends almost completely on

the presence of a UP element (Meijer and Salas, 2004).

Interestingly, the position of this UP element coincides with

the dual 0A-box 3 region. Thus, binding of Spo0A to the UP

element of the A2b promoter prevents docking of the CTD of

the RNAP a subunit, which is crucial for its activity. To our

knowledge, repression by occupation of a promoter UP

element has not been reported previously. In the case of the

C2 promoter, Spo0A-mediated repression occurs at a step

after RNAP binding.

aCTD is connected to the N-terminal domain by a long

flexible linker, permitting a remarkable positional plasticity of

aCTD, which can fluctuate in the presence of transcriptional

regulators (Blatter et al, 1994; Jeon et al, 1997). Here, we

showed that aCTD completely protects position �60, located

upstream of the 0A-box 5 region, when Spo0A and RNAP are

bound simultaneously at the C2 promoter. We also showed

that binding of aCTD to this position is important for

the Spo0A-mediated repression by holding RNAP at the C2
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Figure 7 Binding of Spo0A to the 0A-box 3 region prevents recruit-
ment of RNAP to the f29 late A3 promoter. The DNA fragment
used, end-labeled at the late strand, includes the A3 promoter and
the upstream 0A box 3, p4-binding site 3 as well as the early A2b
promoter. The numbering used is relative to the promoter A3
transcription start site. The positions that become hypersensitive
to DNase I in the presence of Spo0A or protein p4 are indicated with
red and green arrows, respectively, and the regions that become
protected upon binding of these proteins are indicated by rectangles
using the same color scheme. The inverted repeated sequences
of the p4-binding site are boxed. The additional region protected
by Spo0A is indicated with an open red box. The upstream A3
promoter region that becomes partially protected upon binding of
RNAP to the A3 promoter is striped. Other color schemes are
according to those described in Figure 4A and B. Fixed amounts
of RNAP (35nM) and p4 (2.3 mM) were used. Spo0A concentrations,
four-fold dilution steps, ranged from 6.6 nM to 6.7 mM. Lanes 2 and
13 contained 6.7mM and lane 12 contained 1.7mM Spo0A.
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promoter. Binding of aCTD increases the initial equilibrium

constant between RNAP and DNA (Rao et al, 1994), which

probably explains the effect on binding of aD15-RNAP at the

C2 promoter in the presence of Spo0A. However, as aCTD can

also contact various transcriptional regulators (for a recent

review, see Browning and Busby, 2004), it is possible that

aCTD bound to position �60 interacts with Spo0A, thereby

contributing to the binding of RNAP at the C2 promoter.

The B. subtilis sA-dependent spoIIE and spoIIG promoters,

which have an unusual large spacing of 21 and 22 bp,

respectively, between their �35 and �10 promoter boxes,

are activated by Spo0A. As for the f29 C2 promoter, a Spo0A-

binding site overlaps the upstream part of these B. subtilis

promoters (Satola et al, 1992; York et al, 1992). Evidence has

been provided that activation of these promoters involves

direct contacts between a-helix E of the Spo0AC domain and

region 4.2 of the RNAP sA subunit (reviewed by Seredick and

Spiegelman, 2001). Based on a similar organization, it is

possible that Spo0A contacts the RNAP sA subunit when

bound to the C2 promoter. Thus, the Spo0A-mediated repres-

sion of the C2 promoter may result from overstabilization

of the closed complex due to interaction of Spo0A with

the RNAP sA subunit together with binding of aCTD at

position �60.

Spo0A prevents activation of late /29 transcription

In vivo and in vitro approaches showed that Spo0A also

prevents activation of the late A3 promoter. Binding of

Spo0A to the 0A-box 3 region prevented p4-mediated recruit-

ment of RNAP to the promoter. RNAP recruitment at the A3

promoter occurs through direct interaction of aCTD with

protein p4 bound to its binding site 3 (Mencı́a et al, 1996).

This so-called class I type of activation not only involves a

surface domain of aCTD that interacts with the transcrip-

tional activator, but also another aCTD surface domain that

interacts with the DNA flanking the activator DNA-binding

site. Interactions of aCTD with both the activator and the

DNA are generally required for class I promoter activation

(for reviews, see Busby and Ebright, 1999; Browning and

Busby, 2004). The late f29 A3 promoter seems to be no

exception, as DNase I footprint analyses of the protein p4–a
complex showed that aCTD binds adjacent to the p4-binding

site 3 (positions �58 and �65 relative to the A3 promoter

transcription start site; Mencı́a et al, 1996). Interestingly, the

aCTD binding site of the A3 promoter coincides with the 0A-

box 3 region. As described above, the 0A-3 box region also

constitutes the docking site of aCTD crucial for binding of

RNAP to the divergently oriented early A2b promoter (Meijer

and Salas, 2004; Figure 4B). Thus, binding of Spo0A to 0A-

box region 3 prevents activation of the late A3 promoter and

represses the early A2b promoter by occupying, in both cases,

the aCTD-binding site.

In summary, f29 appears to have evolved at least two

mechanisms that enable it to adapt and exploit the ability of

its host to survive through the formation of endospores. By

repressing transcription of genes required for the lytic cycle

and providing cis-acting sites for segregation into the pre-

spore compartment, the phage encapsulates its genome into

one of the most resistant and durable structures in biology.

It thereby postpones its replication and the destruction of its

host until spore germination occurs, when conditions are

likely to be much more favorable for its continued prolifera-

tion and spread.

Materials and methods

Strains, plasmids and growth conditions
Strains, plasmids and oligonucleotides (Isogen Bioscience BV, The
Netherlands) are listed in Supplementary Tables SIII, SIV and SV,
respectively. Standard procedures were used for transformations.
Plasmid and strain constructions are described in Supplementary
data. Kanamycin and chloramphenicol were added to B. subtilis
cultures and plates at final concentrations of 30 and 5mg/ml,
respectively. Ampicillin (100mg/ml) was used for selection in E. coli.

/29 genome and plasmid spore entrapment assays
These assays were based on the resuspension method to induce
synchronized sporulation (Partridge and Errington, 1993). Thus,
for both assays, freshly diluted cultures were grown in casein
hydrolysate medium (complemented with kanamycin or 5mM
MgSO4 in the plasmid and f29 genome entrapment assays,
respectively) at 371C until an OD600 of 0.7 was reached. Then,
cells were centrifuged and resuspended in prewarmed SM. In the
case of the plasmid assays, growth was continued for 9 h to allow
the sporulation process to be completed. Next, aliquots were
incubated for 15min at 801C to kill nonsporulated cells after which
appropriate dilutions were plated on LB plates without antibiotic.
Finally, 200 of the outgrown colonies were transferred to
kanamycin-containing plates from which the percentage of plas-
mid-containing spores was determined. In the case of the f29
genome entrapment assays, the cultures were infected with wild-
type phage f29 at different times after infection (20, 30, 40 or
50min) and further processed as described by Moreno (1979) with
the following modifications. After lysozyme and heat treatment
(15min at 801C), the spores were washed five times with sterile
water. Then, the spores were resuspended in PBS containing 50-fold
diluted anti-phage f29 serum (determined to neutralize at least
99.9% of the phage particles) and incubated for 30min at room
temperature. Next, the spores were resuspended in sterile water and
appropriate dilutions were plated either directly on LB plates or
mixed with B. subtilis 110NA indicator strain to determine the
number of noninfected and infected spores, respectively. Control
experiments showed that the supernatants of the centrifuged spore
samples gave less than 0.01% plaques with respect to the spore
suspension.

In vivo protein–DNA crosslinking, immunoprecipitation
and real-time PCR
In vivo crosslinking, immunoprecipitation and real-time PCR
were essentially as described (González-Huici et al, 2004) with
slight modifications. Bacteria, grown at 371C up to B108 cells/ml,
were infected with f29 at a multiplicity of 10 and subjected to
formaldehyde crosslinking 20min after infection. After crosslink-
ing, cell lysis, sonication and centrifugation, 1/20 of each sample
was kept for total DNA analysis and the remaining was used for
immunoprecipitation with polyclonal antibodies against Spo0J.
Analysis of DNA samples was performed by real-time PCR in a
Light-Cycler (primers used are listed in Supplementary Table SV).
The data obtained for each region of the total and immunopreci-
pitated DNA sample were interpolated to a standard curve
constructed with known amounts of purified, full-length f29
DNA. The results were expressed as pg of DNA per ml of culture.
Binding values are expressed as IC (¼ [immunoprecipitated DNA/
total DNA]� 106). Specific amplification of DNA regions by each
primer set was checked by PCR reactions using the following
purified DNAs as template: full-length f29, f29-infected and
noninfected cells. Moreover, a melting analysis was performed at
the end of each PCR by continuous fluorescence measurement from
65 to 951C to ensure that a single product was amplified.

Analysis of in vivo phage transcripts produced as a function
of cell development
The resuspension assay (see above) was used to induce synchro-
nized induction of the sporulation process. Thus, after resuspension
in SM complemented with 5mM MgCl2, the culture was divided
into four aliquots and incubated at 371C. One aliquot was infected
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with f29 directly after resuspension. The other aliquots were
infected 15, 30 or 45min after resuspension. Infection was allowed
to proceed for 25min after which the cells were harvested and
processed to isolate their total RNA and subsequently subjected to
primer extension as described before (Monsalve et al, 1995). The
resulting cDNAs were resolved by electrophoresis in denaturing 6%
polyacrylamide gels. Mean values of the relative abundance of the
transcripts at the different times were obtained by densitometry of
the signals of three independent experiments and were normalized
to t¼ 0.

b-Galactosidase assays
B. subtilis strains containing lacZ fusions were grown in Schaeffer’s
medium and samples withdrawn at 45min intervals. Levels of
b-galactosidase activity were determined as described (Daniel et al,
1996).

Spo0A purification
Spo0A was purified essentially as described (Muchová et al, 2004).
Similar to published results (Ladds et al, 2003), B40% of the
purified Spo0A protein was in its dimeric active form as assessed by
gel filtration.

In vitro transcription and footprinting assays
In vitro run-off transcription and DNase I and potassium perman-
ganate footprinting were performed as described (Rojo and Salas,
1995). Plasmid pDM1_A2bc DNA containing the 205 bp f29 region
spanning promoters A2c and A2b was used in PCR reactions with
primer sets seq2–seq4 or seq5–seq1 to obtain DNA templates used

in Figure 4A and B, respectively. The PCR products were labeled by
filling-in the protruding ends, generated by EcoRI (seq2–seq4)
or BamHI (seq1–seq5) digestion, using Klenow enzyme. Similar
strategies were used for templates used in Figures 5 and 7. Thus, the
PCR products obtained with plasmid pDM1_C2A and primer set
seq3–seq4 (Figure 5), and with plasmid pDM_A3 and primer set
seq5–A2bL2 (Figure 7), were labeled by filling-in the HindIII and
BamHI restriction site, respectively. The C2 promoter fragment used
in the KMnO4 footprint assay was obtained by PCR with primer set
seq3–seq8 and plasmid pDM1_C2A as template DNA. The PCR
product was labeled by filling-in the BamHI-digested PCR product.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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