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Abstract 1 

The Oregon Wolfe Barley mapping population is a resource for genetics research and instruction. 2 

Prior reports are based on a population of doubled haploid (DH) lines developed by the Hordeum 3 

bulbosum (H.b.) method, which samples female gametes. We developed new DH lines from the 4 

same cross using anther culture (A.C.), which samples male gametes. Linkage maps were 5 

generated in each of the two subpopulations using the same 1,328 single nucleotide 6 

polymorphism (SNP) markers. The linkage maps based on DH lines derived from the products of 7 

megasporogeneis and microsporogenesis revealed minor differences in terms of estimated 8 

recombination rates. There were no differences in locus ordering. There was greater segregation 9 

distortion in the A.C.-derived subpopulation than in the H.b.-derived subpopulation, but in the 10 

region showing the greatest distortion, the cause was more likely allelic variation at the ZEO1 11 

plant height locus rather than to DH production method. The effects of segregation distortion and 12 

pleiotropy had greater impacts on estimates of QTL effect than population size for reproductive 13 

fitness traits assayed under greenhouse conditions. The OWB population and data are 14 

community resources. Seed is available from three distribution centers located in North America, 15 

Europe, and Asia. Details on ordering seed sets, as well as complete genotype and phenotype 16 

data files, are available at (http://wheat.pw.usda.gov/ggpages/maps/OWB/).   17 
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Introduction 1 

Doubled haploid (DH) techniques, by accelerating the approach to homozygosity, are a useful 2 

tool for conventional and molecular plant breeding (Thomas 2003; Forster et al. 2007).  In the 3 

case of barley, DH populations have been widely used for constructing the linkage maps that 4 

underlie Quantitative Trait Locus (QTL) mapping and marker assisted selection (MAS) 5 

(Karakousis et al. 2003; Wenzl et al. 2006; Stein et al. 2007; Hearden et al. 2007; Varshney et al. 6 

2007; Szücs et al. 2009; Close et al. 2009; and http://wheat.pw.usda.gov/GG2/index.shtml). 7 

Barley DH populations can be produced using female or male gametes. The former involves the 8 

interspecific crossing of an F1 (as the female) with Hordeum bulbosum, followed by embryo 9 

rescue, plant regeneration and artificial chromosome doubling (Kasha and Kao 1970). The latter 10 

involves using the F1 (as the male) followed by anther or microspore culture (Maluszynski et al. 11 

2003). The potential efficiencies of androgenetic systems are much greater than those of 12 

gynogenetic systems because each inflorescence produces more pollen than eggs.  13 

The principal issues related to the use of DH populations for linkage map construction relate to 14 

segregation and recombination. Segregation distortion - the deviation of observed genotypic 15 

frequencies from their expected values - complicates the application of genetic theory and 16 

analysis (Lu et al. 2002). The allele transmission and gamete survival frequencies that cause 17 

segregation distortion can be caused by exogenous factors such as temperature (Xu et al. 1997) 18 

and  in vitro culture conditions (Graner et al. 1991; Foisset and Delourne 1996; Manninen 2000). 19 

Distortion can also be caused by genetic factors (Lambrides et al. 2004; Törjék et al. 2006) and 20 

may be more prevalent in some species than in others (Lu et al. 2002; Marshall et al. 2007).  The 21 

implications of segregation distortion for genetic analyses and breeding are reviewed by Xian-22 

Liang et al. (2006). To generalize - in the case of androgenetic systems in wheat, barley and rice 23 

- it appears that selection for genes favoring microspore growth and development in culture 24 

media may not have negative effects on agronomic traits in the derived populations (Ma et al. 25 

1999; Guzy-Wrobelska and Szarejo 2003; Cistué et al. 2005; Lapitan et al. 2009).  26 

Representative linkage maps require “normal” rates of recombination between homologous 27 

chromosomes (Lenormand and Dutheil 2005). The levels of recombination observed in DH 28 

populations derived by the Hordeum bulbosum technique (hereafter referred to as H.b.) and 29 
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anther culture (hereafter referred to as A.C.) reveal the crossover frequencies in the megaspore 1 

and microspore mother cells. For barley, Devaux et al. (1995) found 1.047 and 0.912 2 

recombination events per chromosome in A.C.- and H.b.- derived DH populations, respectively. 3 

Recent studies have demonstrated the effects of various factors on rates of recombination and the 4 

distribution of recombination breakpoints in plants (Li et al. 2007). Genome regions where 5 

recombination rates are significantly higher or lower than the genome average are termed 6 

recombination hot- and cold-spots, respectively (Mezard 2006) and in barley the relationship 7 

between genetic and physical maps was explored in depth by Kuenzel et al. (2000).  8 

Of the many barley linkage mapping populations available (summarized in GrainGenes; 9 

http://wheat.pw.usda.gov/GG2/index.shtml), one of the most widely-used is the Oregon Wolfe 10 

Barley (OWB). This population of DH lines was developed by the H.b. technique from the F1 of 11 

the cross between the dominant and recessive morphological marker stocks developed by R. 12 

Wolfe (Wolfe 1972). The alternative alleles at the morphological traits loci determining the 13 

major germplasm groups of barley are represented  in this population (Costa et al. 2001) and the 14 

sequential addition of new generations of markers (e.g. restriction fragment length 15 

polymorphisms (RFLP), amplified length fragment polymorphisms (AFLPs), simple sequence 16 

repeats (SSRs), diversity array technologies (DArTs), single nucleotide polymorphisms (SNPs), 17 

and restriction site associated DNAs (RADs) has allowed the population to serve as a resource 18 

for linkage map and QTL integration. Szücs et al. (2009) integrated prior marker data with 1,472 19 

SNPs represented in the three barley PilotOPAs (Oligonucleotide Pooled Assay) (POPA1, 2 and 20 

3) and Chutimanitsakun et al. (submitted) added over 450 RAD loci to the Szücs et al. (2009) 21 

map. Qualitative and quantitative loci determining morphological, phenological, and disease 22 

resistance traits of importance to barley improvement have been mapped in the OWB (Börner et 23 

al. 2002; Costa et al. 2001; Jafary et al. 2008; Rostocks et al. 2005; Stein et al. 2007).  However, 24 

as empirically demonstrated by Vales et al. (2005), limited population size can lead to 25 

underestimation of QTL number, overestimation of QTL effects, and failure to quantify QTL 26 

interactions.  27 

The goal of this project was to increase the size of the OWB mapping population in order to 28 

improve it as a resource for genetic mapping and QTL detection. Since the A.C. technique was 29 

used to develop the new DH plants, we were able to compare linkage maps based on A.C. and 30 
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H.b.-derived subpopulations genotyped with the same high-throughput SNP assays. This allowed 1 

for direct comparisons of segregation distortion and linkage distance with the each of the two 2 

linkage maps and empirical assessment of improvements in QTL detection afforded by doubling 3 

the size of the mapping population.  4 

 5 

Materials and methods 6 

 7 

Plant materials 8 

Complete information on the “Oregon Wolfe Barley” population can be found at 9 

http://barleyworld.org/oregonwolfe.php. Briefly, the mapping of the original set of 94 H.b.-10 

derived plants was described by Costa et al. (2001), a population of 93 was mapped by Szücs et 11 

al. (2009) due to incomplete data on one line, and 82 were mapped by Chutimanitsakun et al. 12 

(submitted) after the discovery of nine sets of identical DH lines.  The reduction in population 13 

size has not affected estimates of locus order, distance, nor estimate of QTL number and effect 14 

(see “OWB population size” at (http://wheat.pw.usda.gov/ggpages/maps/OWB/). The discovery 15 

of the identical sets of lines was not made until after the research described in this paper was 16 

undertaken; as a consequence, this report was intended to compare maps based on 93 H.b.-17 

derived lines and 93 A.C.-derived lines. However, in order not to confound comparisons by the 18 

possible effects of identical genotypes, in this report we compare the H.b. (n = 82), A.C. (n = 93) 19 

subpopulations and combined populations (n = 175). The 93 A.C.-derived lines were produced 20 

from the F1 of the cross between the recessive (OWB-R) and dominant (OWB-D) morphological 21 

marker spring barley genetic stocks (Wolfe 1972; Wolfe and Franckowiak 1991) as described by 22 

Cistué et al. (2003). This method includes a stress pretreatment of the anthers with 0.7 M 23 

mannitol for four days at 24oC followed by 25 days on a modified FHG culture medium (Hunter 24 

1988). Embryos were transplanted to FHG regeneration medium. DH lines were obtained by 25 

spontaneous doubling of the chromosome number of each haploid plant.  26 

For measuring reproductive fitness traits (see “Phenotypes”, below) the two sets of DH lines 27 

(H.b.-derived and A.C.-derived) were grown in separate greenhouse experiments at Oregon State 28 
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University, Corvallis, Oregon, USA. For both experiments, greenhouse temperatures were 1 

18±1.5ºC (day and night) with a photoperiod of 16 h day/8 h night provided by supplemental 2 

illumination from Sylvania Lumalux-Eco ET18 400 w lights suspended 1.5 meters over the 3 

bench surface.  Each DH line was replicated twice.  The parents were replicated four times.  4 

Markers 5 

The process of developing the high confidence SNP markers has been described in detail by 6 

Close et al. (2009). Briefly, SNPs observed in ESTs and sequenced amplicons were used to 7 

design three Illumina 1536-plex pilot Oligonucleotide Pool Assays (pilot OPAs; POPA1, 8 

POPA2, POPA3). Based on the technical performance and other criteria, 3,072 SNPs were 9 

selected from three POPAs to generate two production barley OPAs (BOPA1 and BOPA2).  The 10 

H.b.-derived OWB population was genotyped with three POPAs, whereas the A.C.-derived 11 

population was genotyped with two BOPAs. The common SNPs mapped on both H.b- and A.C-12 

derived populations were used for analysis in this study. The SNP genotyping assays were 13 

conducted using the Illumina GoldenGate BeadArray SNP detection platform. The POPA assays 14 

were conducted at the Southern California Genotyping Consortium at the University of 15 

California, Los Angeles. Genomic DNA extractions for A.C.-derived population and BOPA SNP 16 

assays were performed at USDA-ARS Small Grains Genotyping Center in Fargo, ND. The 17 

naming convention for SNP loci appearing on the maps shown in this report is by the POPA 18 

numbers (e.g. 1_1311), where 1 = the POPA number (POPA1 in this case) and the subsequent 19 

four digits correspond to the SNP order in the corresponding POPA. 20 

Mapping  21 

JoinMap 4 (Van Ooijen 2006) was used for map construction.  SNP-only maps were constructed 22 

for the 82 H.b.-derived DH lines and the 93 A.C.-derived DH lines. The two data sets were then 23 

merged and a combined map made based on 175 DH lines. For each of the data sets, at linkage 24 

LOD score 5, the 1,328 polymorphic markers formed seven linkage groups. The Monte Carlo 25 

maximum likelihood (ML) mapping algorithm was used to determine the marker order in each of 26 

the seven linkage groups. Recombination frequencies were converted to centiMorgans (cM) 27 

using Haldane’s mapping function. The positions of ten morphological loci (VRS1, ZEO1, WST1, 28 
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ALM, HSH, SRH, ROB, GBSS1 (WX), NUD, and LKS2) are shown on the A.C.-derived and 1 

combined map based on the flanking SNPs reported by Szücs et al. (2009).   2 

Segregation distortion and recombination events 3 

A full genome assessment of segregation distortion involves a series of chi-square tests for 4 

equality of allelic frequencies for every individual locus. This requires a multiple test correction 5 

of the level for assessing significance of each individual test. A very conservative Bonferroni 6 

correction would simply take the significance level for individual markers as the genome-wide 7 

level divided by the total number of polymorphic markers, (1,328 in this study) Thus, for 0.05, 8 

the required significance level for assessing significance of each test would be 9 

BON=0.05/1328≈0.00004. However this approach wrongly assumes independence of markers. 10 

Less conservative corrections make an effort to consider dependence between markers, as will be 11 

the case with markers within a linkage group. One such method estimates the effective number 12 

of independent tests across the genome by dividing the total map length in cM by 20-30 cM, 13 

which is an arbitrarily taken distance between any two marker pairs for relative independence 14 

(van Eeuwijk, personal communication). In this study the number of effective independent test 15 

would be approximately equal to 50, that is the ratio between 1,250 cM, reported roughly map 16 

length of barley, and 25 cM arbitrarily taken for relative independence. The significance level for 17 

individual tests would be equal to the genome-wide significance level divided by 50, the number 18 

of putative independent tests. This criterion would lead to an, α’0.05=0.001, α’0.01=0.0002 and 19 

α’0.001 = 0.00002. Allelic frequencies giving rise to these significance levels are shown in Fig. 3 20 

by differential dotted lines.  21 

The number of apparent single crossovers (CO) was counted in each linkage group of each of the 22 

175 DH. These values underestimate the actual number due to undetected CO in regions of 23 

monomorphic markers. An analysis of variance was performed, using GenStat (Payne 2006), to 24 

test for significant differences between DH production method and between chromosomes.  25 

Phenotypes   26 

Phenology and reproductive fitness (yield component) traits were measured on each DH line as 27 

follows. Heading date (HD) was recorded as the number of days from seedling emergence until 28 

the first appearance of awns (or hoods). The number of fertile tillers per plant (spike number; 29 
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SN) was counted and the spikes were harvested from each fertile tiller. Three fertile spikes were 1 

selected at random and used to determine: spike length (SL) in cm; number of florets per spike 2 

(floret number; FN); number of grains per spike (grain number; GN); hundred grain weight 3 

(HGW) in g; and plant height (PH) in cm.  4 

QTL mapping  5 

QTL analyses for each of the phenotypic characters were conducted for each of the data sets (82 6 

DH-H.b.; 93 DH-A.C.; 175 DH-H.b.+A.C.) using the Composite Interval Mapping (CIM) 7 

procedure (Zeng 1994) implemented in Windows QTL Cartographer 2.5 (Wang et al. 2001–8 

2003). Skeleton maps - constructed from a set of 622 evenly-distributed and non-cosegregating 9 

markers were used for QTL analysis (Supplemental Fig. 2). A forward-selection backward-10 

elimination stepwise regression procedure was used to identify co-factors for CIM. The 11 

maximum number of cofactors used was seven. A 30-cM scan window was used for all analyses. 12 

Experiment-wise significance likelihood ratio (LR) test statistic thresholds (P<0.05) for QTL 13 

identification were determined with 1,000 permutations and expressed as LOD (LOD = 14 

0.217LR).  For every significant QTL, we calculated individual R2 (proportion of phenotypic 15 

variance explained by the individual QTL) and additive effect (expressed as one half of the 16 

difference between the two allelic classes). Negative values indicate that the parent line 17 

contributing the allele with the highest value was OWB-R. Epistatic interactions between QTL 18 

were tested by means of Multiple Interval Mapping (MIM, Kao et al. 1999) using Windows QTL 19 

Cartographer 2.5 and a score statistic test with significance level of 0.05. Using MIM we also 20 

calculated for each trait the R2 of the multilocus model that included the QTL detected in the 21 

CIM analysis (main and interaction effects). All genotype and phenotype data are available at 22 

http://wheat.pw.usda.gov/ggpages/maps/OWB/. 23 

 24 

 Results 25 

The numbers of SNPs mapping to each chromosome are shown in Table 1. Of the 3,072 SNPs 26 

represented on BOPA1 and BOPA2, a total of 1,328 (43%) were mapped in the H.b.- and A.C.-27 

derived sub-populations. The lengths (in Haldane cM) for five of the seven chromosomes (for 28 

the sake of brevity, the term “chromosome” will be considered synonymous with “linkage 29 
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group”) were longer for the A.C.-derived than they were for the H.b-derived population (Figure 1 

2 and Supplemental Figure 1). However, these differences were only significant for 5H (Figure 2 

1). For this chromosome, the H.b. map is significantly longer.  In the map based on the combined 3 

data from the H.b.- and A.C.-derived populations (hereafter referred to as the combined 4 

population and/or combined map) cM values are intermediate between those for the two sub-5 

populations. The average number of apparent crossovers (hereafter referred to as crossovers) per 6 

chromosome for each of the two subpopulations are shown graphically in Fig. 1; the significant 7 

differences between chromosomes (averaged across methods) are apparent, as are the significant 8 

interactions between method and chromosome (Supplemental Table 1).      9 

Marker orders are consistent between the A.C. and the H.b. maps, although markers co-10 

segregating in one map sometimes showed recombination in the other map. On average, there is 11 

one SNP/cM. However, there are regions of monomorphism (e.g. gaps) in both the H.b. and A.C. 12 

maps. The largest such gap is on the short arm of chromosome 2H (22.8 and 22.7 cM, 13 

respectively) and large gaps were also observed on 6HS and 7HL. These three gaps persist in the 14 

combined map. For the purposes of illustration, the chromosome 2H maps for the H.b., A.C., and 15 

combined populations are shown in Fig. 2.  Linkage maps for the other six chromosomes are 16 

shown in Supplemental Fig. 1.  17 

The long arm of chromosome 2H was associated with significant segregation distortion in the 18 

A.C. population and in the combined population (Fig. 3). The ZEO-1 locus is associated with the 19 

most significant distortion in each case. For example, in the A.C. subpopulation there were 25 20 

and 68 plants in each of the allele classes. The region of significant distortion extends from VRS-21 

1 to WST-1.  Genome-wide allele frequencies for OWB-D (dominant parent) alleles in the H.b.- 22 

and A.C.-derived populations are shown in the Figs. 3A and 3B. For the H.b. population, based 23 

on the significance threshold calculated by the modified Bonferroni system, there is significant 24 

distortion only on chromosome 3H. The distortion was in favor of the OWB-R (recessive parent) 25 

alleles. For the A.C. population, there was significant segregation distortion on 2H, 3H, 5H, 6H, 26 

and 7H. For 2H, 3H, 6H and 7H, the distortion was in favor of the OWB-R alleles and on 5H it 27 

was in favor of the OWB-D allele. In the combined population (Fig. 3C) there was significant 28 

distortion on 2H, 3H, and 5H.  29 
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Considering all seven traits, 22 QTLs were detected in the H.b. subpopulation, 19 in the A.C. 1 

subpopulation and 22 in the combined data set (Table 2 and Supplemental Tables 2 and 3).  2 

QTLs for all traits, except for HD, were detected on 2H in the two subpopulations and in the 3 

combined population (Figs. 4A – C).  Based on all three datasets, QTLs for SL and PH were 4 

coincident with ZEO-1. QTLs for GN, FN, HGW, and SN were coincident with VRS-1 in the 5 

three populations. A QTL for HGW (coincident with NUD) on 7H was detected in the three 6 

populations. Six QTL (three for number of seeds on 1H, 2H and 6H, one for number of florets on 7 

1H and two for heading date on 4H and 6H) were detected in the H.b. and the combined 8 

populations but not in the A.C. population. Two QTL (one for number of florets on 3H and one 9 

plant height on 4H) were detected in the A.C. and combined populations but not in the H.b. 10 

population (Table 2, Supplemental Tables 2 and 3). Four QTL (one for number of seeds on 4H, 11 

two for number of florets on 4H and 6H and one for hundred grain weight on 6H) were detected 12 

only in the H.b. population (Supplemental Table 2). Five QTL (one for spike length on 7H, one 13 

for hundred grain weight on 4H one for plant height on 7H and two for heading date on 3H and 14 

7H) were detected only in the A.C. population (Supplemental Table 3). Two QTL for spike 15 

length (6H and 7H) were detected only in the combined population (Table 2). Twelve QTL, 16 

usually those with the highest effects, were detected for the seven traits in the three populations. 17 

For these, LOD scores were always highest in the combined population and lowest in the H.b. 18 

population (Table 2 and Supplemental Tables 2 and 3). Based on the score test, no significant 19 

epistatic interaction was detected at a significance level of 0.05. 20 

 21 

Discussion 22 

The Oregon Wolfe Barley population provides a highly polymorphic and connective mapping 23 

resource (Costa et al. 2001; Rostocks et al. 2005; Stein et al. 2007; Szücs et al. 2009; Close et al. 24 

2010; Chutimanitsakun et al. submitted) and a unique genetic background for mapping 25 

determinants of certain phenotypes (Börner et al. 2002; Jafary et al. 2008). In order to further 26 

improve this resource for the genetics community, we increased the size of the mapping 27 

population. Larger populations allow for higher resolution linkage maps and better estimates of 28 

QTL number, location, effect, and interaction (Melchinger et al. 1998; Vales et al. 2005). One 29 

hundred seventy five DH lines (82 previously developed by the Hordeum bulbosum technique 30 
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and 93 by anther culture) are now available. The 175 lines are mapped with the same 1,328 1 

SNPs.  2 

The development of 93 lines by anther culture afforded an opportunity to empirically assess the 3 

effects of DH derivation method on estimates of recombination and linkage map quality.  4 

Devaux et al. (1995) reported recombination rates of 1.05 and 0.91 events per chromosome for 5 

anther culture and Hordeum bulbosum-derived DH lines. Our estimates were 1.78 and 1.72, 6 

respectively, for the two techniques. The differences between the two reports may be due to the 7 

germplasm (Steptoe x Morex vs. Wolfe dominant marker stock x Wolfe recessive marker stock) 8 

and marker density (much higher in our case). In these two barley mapping populations, there are 9 

only slightly higher average rates of recombination in barley microsporogenesis vs. 10 

megasporogeneis. In contrast, Guzy-Wrobelska et al. (2007) compared recombination 11 

frequencies in wheat DH populations obtained via maize pollination and anther culture and 12 

reported that there was significantly higher recombination in pollen mother cells. Interestingly, 13 

we did find significant differences in recombination rates between chromosomes and an 14 

interaction of chromosome and method (Supplemental Table 1). Even if map lengths differ, key 15 

issues in linkage map quality are locus order and segregation distortion.   16 

There were no differences in locus orders between the A.C. and H.b. maps. We did observe more 17 

cases of significant segregation distortion in the A.C.-derived lines.  The key question is whether 18 

this distortion is due to method or to germplasm. A lack of common markers between 19 

populations, and differences in anther/microspore culture protocols between labs, complicates 20 

the identification of genome regions associated with doubled haploid production capacity.  The 21 

region of distortion we observed on 3H is coincident with a QTL for in vitro shoot regeneration 22 

on 3H (Manninen 2000) and the distorted region on 5H is coincident with a QTL for green plant 23 

regeneration (Muñoz-Amatriain et al. 2008).  The distortion observed in the A.C.-derived 24 

subpopulation may be due to these QTLs. However, the region with the greatest segregation 25 

distortion (on chromosome 2H) was observed in the A.C.- derived and the combined populations 26 

and this is most likely due to the specific alleles segregating at the Zeocriton 1 (ZEO1) locus in 27 

the OWB. The dominant X-ray induced mutant allele at this locus causes extreme dwarfism 28 

(Lundqvist and Lundqvist 1998). We hypothesize that the Zeo1 (dominant dwarfing) allele has a 29 

negative pleiotropic effect on in vitro growth and regeneration. A similar situation, related to 30 
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negative effects on shoot regeneration in barley, was reported for the dwarfing allele at the UZU 1 

locus (Rikiishi et al. 2008). Androgenetic doubled haploid production systems are more efficient 2 

than gynogenetic methods (Maluszynski et al. 2003; Forster et al. 2007) and our results support 3 

that localized segregation distortion is a small price to pay for doubled haploid efficiency. 4 

Continued progress in techniques has reduced the incidence of albinism (Torp and Andersen 5 

2009; Jacquard et al. 2009), led to the direct regeneration of well-developed embryos (Supena et 6 

al. 2008; Cistué et al. 2009), and the isolation of plants from the embryogenic phase rather than 7 

the callus phase (Maluszynski et al. 2003). Continued improvements in technique should further 8 

reduce the incidence of segregation distortion in A.C.-derived populations. 9 

One of the objectives of developing linkage maps is to locate genes determining qualitative and 10 

quantitative phenotypes. One of the unique attributes of the OWB is that many of the genes 11 

determining the principal germplasm groups of barley are segregating in a single population. On 12 

the one hand, this allows for simultaneous mapping of these genes and multiple marker loci. On 13 

the other hand, some of these genes are likely to have pleiotropic effects on other phenotypes. 14 

This was certainly the case for the reproductive fitness traits measured under greenhouse 15 

conditions. Clearly, controlled environment conditions cannot reflect the complexity of 16 

conditions encountered under field conditions and it is not appropriate to equate yield component 17 

QTLs detected in an exotic cross such as the OWB under greenhouse conditions to 18 

agronomically relevant germplasm assayed under field conditions. This is certainly the case for 19 

ZEO1, which, as shown in Table 2, was coincident with highly significant QTLs for spike length, 20 

grain number and plant height (with LODs of 93.4, 5.6 and 53.4, respectively). Dwarfing genes, 21 

such as the sdw1/denso gene in barley (Jia et al. 2009) and the Rht genes of wheat (Febrer et al. 22 

2009) are of tremendous agronomic value. In its current background, the dwarfing allele at ZEO1 23 

has too extreme an effect on plant height and negative pleiotropic effects on spike length and 24 

grain number to be of immediate agronomic interest. Furthermore, the pleiotropic effects of the 25 

ZEO1 locus altered the expected pattern of favorable allele effects at the VRS1 locus, which is 26 

the principal determinant of the two-row and six-row germplasm groups of barley.  27 

Two-row and six-row refer to the number of fertile florets per rachis node. Although most barley 28 

breeders prefer to work within and inflorescence group type, crosses between groups are not 29 

uncommon and several important biparental QTL mapping populations have been derived from 30 
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two-row x six-row crosses (e.g. Cali sib x Bowman (Chen et al. 1994), Gobernadora x CMB643 1 

(Zhu et al. 1999), Harrington x Morex (Marquez-Cedillo et al. 2000), and Morex x Barke (Kota 2 

et al. 2001). Typically, two-row genotypes have fewer kernels/spike (lower grain number), 3 

higher kernel weight and more spikes per plant. In the case of the OWBs, the pleiotropic effects 4 

of the ZEO1 locus on spike length reversed this pattern for grain number. However, the effects in 5 

this exotic cross, under greenhouse conditions, were consistent with those reported from 6 

agronomically relevant crosses assessed under field conditions for hundred grain weight and 7 

spike number (Table 2). Although QTL mapping of reproductive fitness traits in this exotic cross 8 

under greenhouse conditions may be of limited practical utility, there is value in the OWB 9 

population as a model for QTL analysis and instruction.   10 

For example, the full set of 175 lines should be useful for obtaining better estimates of QTL 11 

number, effect, and interaction than either of the smaller subpopulations. In the case of the traits 12 

reported herein, however, pleiotropy and segregation distortion – attributed to ZEO1 – may be 13 

more responsible for the higher LODs observed for most traits on chromosome 2H in the n= 175 14 

population vs. the original population of n= 82 (Fig. 4). The same figure provides an illustrative 15 

example of two large-effect QTLs, both with candidate genes, which are on the same 16 

chromosome determining the same traits. We expected to optimize estimates of epistatic 17 

interaction with the larger population. However, no significant epistasis was detected.  18 

In conclusion, the comparisons of linkage maps derived from DH population derived from the 19 

products of megasporogeneis and microsporogenesis revealed minor differences in terms of 20 

estimated recombination rates and were made possible by the very high quality and repeatability 21 

of the SNP data generated by the Illumina Golden Gate assay.  For example, the OWB H.b. 22 

subpopulation was genotyped with three Pilot OPAS in one laboratory (Close et al.  2009) and 23 

the A.C. subpopulation was genotyped in another laboratory using Barley OPAS 1 and 2 (this 24 

report) and yet the two data sets were integrated seamlessly. There was greater segregation 25 

distortion in the A.C.-derived subpopulation than in the H.b.-derived population, but in the 26 

region showing the greatest distortion, the cause was more likely a unique allele at a plant height 27 

locus rather than an effect of the DH production method. The effects of segregation distortion 28 

and pleitropy had greater impacts on estimates of QTL effect than population size for the traits 29 

studied. The OWB population and data are community resources. Seed is available from three 30 
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distribution centers located in North America, Europe, and Asia. Details on ordering seed sets, as 1 

well as complete genotype and phenotype data files, are available at 2 

(http://wheat.pw.usda.gov/ggpages/maps/OWB/).  3 
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Table 1. Number of SNP loci used for mapping each of the seven chromosomes of barley in 
Hordeum bulbosum-derived (H.b.) and anther culture-derived (A.C.) doubled haploid (DH) 
populations of barley, as well as in the combined (H.b.+A.C.) population and the total length of 
each linkage group, and all linkage groups, in Haldane cM.   

 

Chrom. 
Number 
of SNP 

H.b. 
82 DH 

A.C. 
93 DH 

H.b.+A.C. 
175 DH 

1H 148 157.3 186.2 171.2 

2H 199 188.8 193.8 190.4 

3H 211 205.8 208.7 205.4 

4H 187 127.4 156.9 141.9 

5H 236 240.2 200.4 216.7 

6H 182 159.1 146.3 151.0 

7H 173 206.6 225.8 215.6 

Total 1,328 1,285.2 1,318.1 1,292.2 

 

 



Table 2.  Summary of reproductive fitness trait QTL detected in the Oregon Wolfe Barley 
mapping population (175 DH lines). 

 

Trait QTL No. Chrom. 
Peak Position 

(2-LOD conf. Interval) 
Closest 
Marker LOD R2 

Additive 
effect 

LOD 
Threshold 

MIM 
R2 

Spike Length 
  

 
 
 

 
 

 
    

3.0 0.90 
 1 1H 170.7 (166.1-171.3) 2_0840 8.2 0.02 -0.48   
 2 2H 161.8 (160.6-163.3) 3_0396 93.4 0.83 -3.26   
 3 6H 92.2 (89.9-93.3) 3_0573 3.9 0.01 0.32   
 4 7H 124.6 (108.1-135.1) 2_1201 3.4 0.01 -0.32   

Grain Number 
  

 
 
 

    
2.9 0.69 

 1 1H 170.7 (103.4-106.3) 2_0840 4.0 0.03 -3.70   
 2 2H 104.8 (103.4-106.3) 1_1100 37.8 0.52 -14.61   
 3 2H 161.8 (154.0-168.8) 3_0396 5.6 0.05 -4.83   
 4 6H 82.8 (80.5-87.5) 2_0468 4.1 0.03 3.74   

Floret Number 
  

 
 
 

    
3.0 0.89 

 1 1H 169.0 (163.2-170.6) 1_0041 5.8 0.02 -3.24   
 2 2H 105.8 (104.1-106.8) 3_0897 87.3 0.81 -21.81   
 3 3H 62.4 (57.7-67.1) 3_0721 4.0 0.01 -2.64   

Hundred Grain Weight 
  

 
 
 

    
3.0 0.67 

 1 2H 104.8 (102.9-106.9) 1_1100 38.0 0.54 0.61   
 2 7H 117.6 (113.3-127.3) 2_0685 10.5 0.09 0.25   

Plant Height 
  

 
 
 

    
3.1 0.75 

 1 1H 79.3 (78.7-88.9) 2_0696 5.4 0.03 -4.25   
 2 2H 160.8 (159.8-162.8) 3_0396 53.4 0.64 -20.84   
 3 3H 57.7 (48.6-68.1) 2_1189 5.3 0.03 4.23   
 4 4H 138.1 (134.8-140.1) 3_1422 5.6 0.04 4.50   
 5 6H 86.9 (81.7-91) 2_0673 5.7 0.03 4.39   

Spike Number 
  

 
 
 

    
3.0 0.29 

 1 2H 105.8 (99.0-109.6) 3_0897 12.9 0.24 3.03   

Heading Date 
  

 
 
 

    
2.9 0.30 

 1 1H 170.7 (163.1-171.3) 2_0840 4.9 0.08 -2.41   
 2 4H 134.1 (129.4-140.1) 2_0272 5.4 0.10 2.64   
 3 6H 88.5 (82.8-91) 2_0577 4.6 0.08 2.41   



Figure 1.   Number of apparent crossovers for each of the seven chromosomes of barley 
in Hordeum bulbosum-derived (H.b.) and anther culture-derived (A.C.) doubled haploid 
populations of the Oregon Wolfe Barley. Numbers on the X axis below chromosome 
numbers represent p-values for the statistical contrasts between doubled haploid 
production methods, using square root-transformed data. 

 

1H       2H      3H      4H      5H       6H      7H
( 0.065) (0.743) (0.812) (0.099) (0.022) (0.221) (0.274)        

1.00

1.50

2.00

2.50

 



Fig. 2. Chromosome 2H linkage maps from two subpopulations of doubled haploid lines (H.b. = 
Hordeum bulbosum-derived and A.C. = anther culture-derived) and the combined population 
(H.b. + A.C.) All maps were constructed using the same 199 SNPs. The map positions of three 
loci determining key morphological traits (VRS1, ZEO1, and WST1) are shown in large font. The 
single locus p-values of the χ2 test for segregation distortion are denoted by * p <0.05; ** 
p<0.01; and *** p<0.001 
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1_109693.4
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1_1402 2_0667 3_13942_052896.7
3_0178100.0
1_1388 1_0859 3_1445104.5
1_0786105.6
1_1100108.9

VRS1110.0
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1_1533116.9
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1_1307 1_1285128.2
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3_0480 3_0095 1_1466134.9
3_0049* 3_0555* 1_1323*138.3
1_1094*139.4
2_0064*145.1
1_0990**1_1043** 2_1238**1_0989**
3_1402**147.3

3_0459**1_1236** 2_0989**1_0429**148.3
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1_0739***150.5
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3_0152***1_1365***2_1315***148.5
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1_0446***3_0310***151.4
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1_0472***2_1125***156.1

1_1227***159.0
3_0106***3_0396***160.8

ZEO1 162.0

3_0248***164.3
2_0590***165.5
1_0315***1_0566***171.5
1_1023***173.3
2_0943**177.4
3_0823**178.6
3_1300**1_0937**180.9

WST1 182.0

1_1050* 1_0085*185.7
2_1496188.7
3_0102190.4

H.b.+A.C.

1_09700.0
3_14460.6

1_07184.7
2_14155.3

1_10308.9

1_0230 1_105911.8

3_0775 3_01553_0631 3_040215.4

2_072417.7

1_104020.0
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2_059344.6
2_0368 1_08911_030745.7
2_104946.3
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1_084748.0
1_0525 1_017850.4
3_042050.9
1_0919 2_03261_0296 1_0837
1_0342 3_065752.1
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1_149355.6
1_071556.2
3_0379 3_002957.3
1_0486 3_049158.5
2_0281 1_134060.2
1_150562.6
1_049863.1
1_1428 1_015663.7
3_0691 2_06883_0604 2_0674
2_100564.3

1_1302 2_09291_042266.0
1_0638 1_113166.6
3_1474 1_14001_152267.8
2_038769.5
1_0147 2_023470.7
2_0235 3_02512_0748 1_0927
2_0917 3_019571.2

3_020972.4
1_0558 3_05573_048773.0
1_0948 1_03302_0500 1_048573.6
1_1155 3_06343_0772 3_0853
2_0181 2_128675.3

3_0068 2_13373_1218 1_1288
3_0206 2_00322_0458 2_0417
1_1211 3_11891_0947 1_0474
2_0039 1_00992_0196

76.5

1_0883 1_01541_136977.0
1_138477.6
2_033578.8
1_064081.1
1_0632 1_043681.7
1_1430 1_13162_0374 3_125682.2
3_1252 2_147682.8
1_134783.4
2_1094 1_107284.0
1_109685.7
1_0407 3_02053_1021 2_083388.7
2_0528 2_066789.8
1_140290.4
3_139491.0
3_017893.9
3_1445 1_138898.1
1_085999.2
1_078699.8
1_1100102.7

VRS1 104.0

3_0900 3_08972_0340 3_0901106.9
1_1533107.5
1_0936109.8
2_1351 1_0969111.0
2_0793111.6
2_1007*119.6
3_0216**120.2
1_1307* 1_1285*120.8
2_0923***1_0398***3_0200***125.5
2_1527**1_0900**126.1
1_1466**126.7
3_0095**3_0480**127.3



Fig. 3.  Allelic frequencies for the OWB-Dominant parental alleles across 1328 loci sorted by 
map position. Genome-wide segregation distortion thresholds are calculated according to a 
modified Bonferroni correction, considering 50 effective independent tests. Panel A shows 
results based on 82 DH lines derived by the Hordeum bulbosum (H.b.) technique. Panel B shows 
results based on 93 DH lines derived by anther culture (A.C.). Panel C shows results based on 
175 DH lines (82 H.b.-derived lines and 93 A.C-derived lines) 
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Fig. 4. LOD plots for reproductive fitness trait QTL on chromosome 2H mapped in the doubled 
haploid (DH) Oregon Wolfe Barley population. Panel A shows results based on 82 DH lines 
derived by the Hordeum bulbosum (H.b.) technique. Panel B shows results based on 93 DH lines 
derived by anther culture (A.C.). Panel C shows results based on 175 DH lines (82 H.b.-derived 
lines and 93 A.C-derived lines). Positions of two morphological trait loci – VRS1 and ZEO1 are 
shown.  
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