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ABSTRACT

Near future cosmology will see the advent of wide area photometric galaxy surveys,
like the Dark Energy Survey (DES), that extent to high redshifts (z ∼ 1− 2) but with
poor radial distance resolution. In such cases splitting the data into redshift bins and
using the angular correlation function w(θ), or the Cℓ power spectrum, will become
the standard approach to extract cosmological information or to study the nature
of dark energy through the Baryon Acoustic Oscillations (BAO) probe. In this work
we present a detailed model for w(θ) at large scales as a function of redshift and
bin width, including all relevant effects, namely nonlinear gravitational clustering,
bias, redshift space distortions and photo-z uncertainties. We also present a model for
the full covariance matrix characterizing the angular correlation measurements, that
takes into account the same effects as for w(θ) and also the possibility of a shot-noise
component and partial sky coverage. Provided with a large volume N-body simulation
from the MICE collaboration we built several ensembles of mock redshift bins with a
sky coverage and depth typical of forthcoming photometric surveys. The model for the
angular correlation and the one for the covariance matrix agree remarkably well with
the mock measurements in all configurations. The prospects for a full shape analysis
of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very
encouraging.

1 INTRODUCTION

The statistical analysis of the distribution of structure at
large astronomical scales has played a key role in advancing
the field of Cosmology over the last 20 years. From shap-
ing our understanding of complex processes driving galaxy
formation and evolution to constraining the energy density
content of the Universe.

The completion of large extra-galactic surveys such at
the Sloan Digital Sky Survey (SDSS, York et al. 2000)
and the 2dF Galaxy Redshift Survey (2dFGRS, Colless
et al. 2003) have bolstered our general knowledge in the
field. Particularly more so when combined with the precise
measurements of the Cosmic Microwave Background or the
increasingly reach data from Supernova data (Sánchez et
al. 2009; Percival et al. 2010; Reid et al. 2010; Komatsu
et al. 2010) . One of the most promising, and eventually
rewarding, challenges for the field of large scale structure to-
day is the prospect for determining what drives the late time
acceleration of the Universe (Riess et al. 1998; Perlmutter
et al. 1999). This is probed by the presence, in the cluster-
ing pattern of galaxies, of remanent features from the cou-

pling of baryon and photons prior to recombination known
as the Baryon Acoustic Oscillations (BAO). The BAO have
already been detected in the spectroscopic samples of Lumi-
nous Red Galaxies (LRGs) in both SDSS and 2dFGRS (Cole
et al. 2005; Eisenstein et al. 2005), and studied in the early
imagining data of SDSS (Padmanabhan et al. 2007).

But the observational quest has only started. Several of
the next-generation surveys will gain in area and depth, in
exchange for a poorer determination of radial positions. In
turn this imposes the need for angular clustering analysis in
redshift bins of width few times larger that of the photomet-
ric error uncertainty at the given redshifts. The difficulty lies
in that the projection in redshift bins lowers the clustering
amplitude, erasing any particular feature and increasing the
noise-to-signal ratio. The achievable precision of our pho-
tometrically estimated redshift will play a crucial role. We
thus need to understand what affects the angular clustering
pattern more severely.

The aim of our work is to tackle this problem, pro-
viding a well calibrated model for the clustering signal at
large-scales as a function of angle, radial distance and bin
width, deepening the available literature in the subject (e.g.
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Padmanabhan et al. 2007, Blake et al. 2007 and refer-
ences therein). We put particular effort in stressing the most
relevant effects and their interplay, redshift distortions and
photo-z uncertainties.

An equally important problem is to have the capability
of estimating the full errors of the measurements. We thus
provide a well tested description of the complex error matrix
characterizing the measurements of the correlation function
in real situations, i.e. including effects of partial sky cover-
age, photo-z, redshift distortions, bias and shot-noise.

Both, the model for the correlation and the one for the
error matrix, will be extensively tested against a very rich
set of mocks redshift bins. This work should therefore be
relevant for ongoing projects that use photometric redshift
estimates like the Dark Energy Survey1 (DES), the Physics
of the Accelerating Universe collaboration2 (PAU) and the
the Panoramic Survey Telescope and Rapid Response Sys-
tem3 (PanStarrs). But also for upcoming imaging proposals
such as the Large Synoptic Survey Telescope4 (LSST) and
the ESA/Euclid5 survey.

This paper is organized as follows. In Sec. 2 and Sec. 3
we discuss the models proposed in this work for the angular
correlation function and its full error matrix respectively. In
Sec. 4 we describe the rich set of mock redshift bins ensem-
bles implemented using a large volume N-body simulation.
In Sec. 5 and 6 we test the models against the mocks, un-
der different regimes and assumptions. Section 7 contains
our conclusions and future lines of research. We also include
several appendixes. In Appendix A we give a description of
our model for the 3-d nonlinear matter correlation function.
In Appendix B we study the limitations of the widely used
Limber approximation. Finally, Appendix C gives a brief
note on the covariance of the angular power spectrum in-
duced by partial sky coverage.

2 A MODEL FOR THE ANGULAR

CORRELATION FUNCTION

Let us start by considering the projection of the spatial fluc-
tuations δ(x, z) along a given direction in the sky n̂

δ(n̂) =

∫

dz φ(z) δ(n̂, z), (1)

where φ is the radial selection function. The angular corre-
lation function is then obtained as a simple projection of the
3-d correlation function ξ (Peebles 1973),

w(θ) ≡ 〈δ(n̂)δ(n̂+ θ̂)〉 =

=

∫

dz1 φ(z1)

∫

dz2 φ(z2) ξ(r1, r2, θ) (2)

1 www.darkenergysurvey.org
2 www.pausurvey.org
3 pan-stars.ifa.hawaii.edu
4 www.lsst.org
5 www.euclid-imaging.net

where θ is the angle between directions n̂ and n̂+ θ̂, related
to the pair-separation through

r12(θ) =
{

r(z1)
2 + r(z2)

2 − 2r(z1)r(z2) cos(θ)
}1/2

(3)

and r(z) is the co-moving distance to redshift z given by

r(z) =

∫ z

0

c

H(u)
du, (4)

where H(z)/H0 =
√

Ωm(1 + z)3 + ΩDE(1 + z)3(1+w) is the
Hubble parameter, Ωm and ΩDE = 1 − Ωm are the matter
and dark energy densities respectively, and w is the dark
energy equation of state 6.

Since we are interested in redshift bins and not in ex-
tended selections we can neglect the growth evolution and
simply evaluate the 3-d correlation in some fiducial redshift
(e.g. the mean redshift of the bin, weighted by φ). Alterna-
tively, one can consider weighting the correlation by a linear
growth D(z) defined with respect to the fiducial value z̄.

In addition, we will assume a local and linear bias re-
lation between fluctuations in the tracer (e.g. galaxies) and
matter density field, δg = b(z)δ. Under these assumptions
Eq. (2) is trivially converted to

w(θ) =

∫

dz1 f(z1)

∫

dz2 f(z2) ξ(r1, r2, θ, z̄) (5)

where f(z) = D(z) b(z)φ(z) and ξ is the matter 3-d corre-
lation function.

Hence, in order to predict w(θ) we need a model for the
spatial clustering accurate in a sufficiently large range of
scales to allow the projection in Eq. (5), in particular when
photo-z errors broadens the extent of the radial distribution.

In what follows we discuss how to include photo-z ef-
fects and the model for spatial clustering that we will use
throughout this paper.

2.1 Photo-z

We incorporate the way uncertainties in the true redshift po-
sitions obtained from photometric estimates affect angular
clustering by means of the radial selection function, follow-
ing Budavari et al. 2003 (see also Ma et al. 2006).

The radial selection φ is the probability to include a
galaxy in our redshift bin. If the selection of objects is done
according to their true redshifts, then φ is equal to the true
number of galaxies per unit redshift times a window function
W encoding selection characteristics (e.g. redshift cuts),

φ(z) =
dNg

dz
W (z). (6)

Instead, if the selection is done according to photomet-
ric redshift estimates, one must incorporate the probability
P (z|zp) for the true redshift to be z when the photomet-
ric one is zp. The ending result is the product (Budavari et
al. 2003),

φ(z) =
dNg

dz

∫

dzpP (z|zp)W (zp), (7)

6 These expressions explicitly assume a flat cosmology and con-
stant w, for more general cases see (Matsubara 2004) and refer-
ences therein
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where W (zp) is the photometric redshift window function.
Throughout this paper we will only consider top-hat win-
dow functions both in true and photometric redshifts (i.e.
W = 1 within a given redshift range, and 0 otherwise). In
addition we will only consider the idealized case where the
photometric estimate is Gaussianly distributed around the
true redshift (e.g. Ma et al. 2006). Although this might
be far from reality, it serves as an interesting starting point
for more realistic scenarios (Hearin et al. 2010; Bernstein &
Huterer 2010). Lastly, we recall that φ should be normalized
to unity within the redshift range of interest.

2.2 Spatial clustering and redshift evolution

We now turn into the discussion of the 3-d matter corre-
lation model accounting for nonlinear gravitational effects,
redshift space distortions, and the way we evolve it with red-
shift. We postpone to Appendix A the testing of this model
against measurements of 3-d matter clustering in N-body
simulations.

The linear evolution of the clustering pattern preserves
its shape but increases the overall amplitude. The main ef-
fects due to nonlinear gravitational clustering at large scales
are a smoothing of the BAO wiggles and a rise in clustering
amplitude above linear values towards smaller scales due to
mode-coupling effects (Seo & Eisenstein 2005; Eisenstein et
al. 2007; Crocce and Scoccimarro 2008). Although these
processes can be modeled from first principles (Crocce and
Scoccimarro 2006a; Matarrese & Pietroni 2008; Matsub-
ara 2008; Taruya et al. 2009), it is also possible and de-
sirable to find simpler parametric approximations. In the
correlation function these two effects can be parameterized
as (Crocce and Scoccimarro 2008),

ξ(r) = [ξLin(r)⊗ e−(r/sbao)
2

](r) + Amc ξ
(1)
Lin(r) ξ

′
Lin(r) (8)

where sbao and Amc are fitting parameters, ξLin is the linear
correlation function at the given redshift, ξ′Lin its derivative
and

ξ
(1)
Lin ≡ r̂ · ∇−1ξLin(r) = 4π

∫

PLin(k, z) j1(k r)k dk. (9)

This model have been already used in the analysis of matter,
halo and galaxy clustering (Sánchez et al. 2008; Sánchez et
al. 2009).

However the standard approach for analyzing cluster-
ing data in a photometric redshift survey covering from low
(z ∼ 0.2) to high redshift (z ∼ 1.4) is to divide the data into
several redshift bins (whose minimum width are ultimately
determined by the photo-z accuracy, e.g. Padmanabhan et
al. 2007). If one then performs a joint analysis of all these
bins it is desirable to have the least number of nuisance pa-
rameters possible in order to optimize constraints on derived
cosmological parameters. From this point of view it is inter-
esting to investigate to what extent a single set of best-fit
parameters can be used to describe the 3-d clustering from
low to high redshift, and hence the angular clustering after
the projection in Eq. (5).

We implement this as follows. The first term in Eq. (8) is
proportional to the linear correlation, therefore it scales with

the growth factor squared ∼ D2(z). The second term arises
from leading order mode-mode coupling and thus scales as
∼ D4(z). In turn the damping of BAO is proportional to
the amplitude of large-scale velocity flows, Eq. (A1), and so
sbao ∼ D(z). Putting these considerations together we scale
our parametric model with redshift as,

ξ(r, z) = D(z) [ ξLin,0(r)⊗ e−(r/D(z)sbao)
2

] (r)

+ Amc D
4(z) ξ

(1)
Lin,0(r) ξ

′
Lin,0(r) (10)

where sub-script 0 means (linear) quantities evaluated at
z = 0. The values for sbao and Amc can be taken from a
best-fit analysis to ξ(r) at any given redshift (or to w(θ)
in any given redshift bin, after the projection in Eq. (5)).
In our case will be those from the best-fit at z = 0.3,
sbao = 6.37 h−1 Mpc and Amc = 1.55. This is detailed in
Appendix A, where we present a detailed comparison of our
model against numerical simulations, with particular em-
phasis on the scaling introduced in Eq. (10).

Lastly, we move to the inclusion of redshift space dis-
tortions. The true distance to a galaxy differs from the one
derived from its redshift through the Hubble law because of
the radial peculiar velocity of the galaxy on top of the Hub-
ble flow (Kaiser 1987). At large scales, the coherent infall of
galaxies into large overdensities, such as clusters, make their
observed radial separation smaller, squashing the structure
along the line-of-sight and boosting the amplitude of the 3-
d two point correlation. In this way for separations along
the line of sight π <∼ 40h−1 Mpc the correlation (or number
of pairs) increases dramatically, while for larger separations
the correlation becomes negative in such a way that the to-
tal number of pairs along the l.o.s is preserved (e.g. Fig. A1
in Gaztañaga et al. 2009). This implies that, by dividing
the data in redshift bins, one is discarding the leverage of
large radial separations effectively increasing the (angular)
correlation within the bin (see Nock et al. 2010 for a recent
and detailed discussion of this effect).

The linear redshift distortions discussed above, namely
the Kaiser effect, can be easily described assuming the
plane-parallel approximation. We will incorporate it into
our modeling of the angular correlation function by writ-
ing ξ(r1, r2) = ξ(σ, π) in Eq. (2), with (Hamilton 1992),

ξ(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (11)

where π = r2−r1 and σ2 = 2r1r2(1−cos θ) (to yield s = r12)
are the pair-separation along and transverse to the line-of-
sight, µ = π/s and Pℓ are the Legendre polynomials. The
double integrals in Eq. (2) are still performed in the r1, r2,
variables leaving the evaluation of the radial selection func-
tions unchanged. The monopoles of the anisotropic correla-
tion ξi(s) are given in Eqs. (B9,B10,B11) in terms of the
3-d monopole correlation ξ(s), that we will take as the one
including nonlinear gravitational effects given by Eq. (10).
In Appendix B we discuss this effect in more detail, also in
the context of the Limber approximation.

c© 0000 RAS, MNRAS 000, 000–000
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3 MODELING THE COVARIANCE MATRIX

An equally important aspect to the understanding of the sig-
nal in clustering analysis of galaxy surveys is the capability
to estimate the corresponding errors in the measurements.
This is of particular importance for analysis that use cor-
relation functions in Configuration space because the mea-
surements are highly correlated.

Notably there is scarce work in the literature aiming at
developing analytical estimates of the covariance matrix of
angular correlation functions besides the early work of Bern-
stein 1994, who developed an error estimate for the Landy
& Szalay estimator in terms of higher order correlations.

Most “data analysis” papers have relied on sub-
sampling techniques of the data itself , such as jack-knife,
bootstrap and field-to-field variations (e.g. Ross et al. 2007;
Meneux et al. 2009; Sawangwit et at. 2009). However as
noted in the comprehensive work of Norberg et al. 2009
all these approaches have failings, at least in 3-d clustering,
depending on the way they are implemented and the regime
of scales of interest. On the other hand, projection along
the line-of-sight alleviates this tension leading to a good
agreement with theoretical estimates, as shown by Cabré et
al. 2007 in the context of cross-correlations between galaxy
and CMB maps.

In what follows we try to revert the lack of analytical
work provided that we are interested on large angular scales,
where nonlinear (i.e. non-Gaussian) effects are weaker and
that we know how to model the signal itself. We thus concen-
trate in discussing how to model expected errors in angular
clustering, including the effects of sampling variance, shot-
noise, partial sky coverage, photo-z and redshift distortions.
We put particular emphasis on the description of the full
error matrix, and not only the diagonal components, and
leave for further work the assessment of possible systematic
effects.

Let us start by decomposing the fluctuations in the
number of objects “per pixel” in the sky into spherical co-
ordinates (Peebles 1973),

δ(n̂) =
∑

ℓ≥0

ℓ
∑

m=−ℓ

aℓmYℓm(n̂), (12)

where n̂ is the line-of-sight direction and Yℓm the spheri-
cal harmonics. The coefficients in this expansion form the
angular power spectrum,

〈aℓmaℓ′m′〉 ≡ δℓℓ′δmm′Cℓ (13)

that can be related to the angular correlation function using
the Addition theorem 7 yielding,

w(θ) =
∑

ℓ≥0

(

2ℓ+ 1

4π

)

Pℓ(cosθ)Cℓ (14)

where Pℓ are the Legendre polynomials of degree ℓ. The
covariance in the measurements of w(θ) can then be related

7 Pℓ(n̂ · n̂′) = 4π
2ℓ+1

∑ℓ
m=−ℓ = Yℓm(n̂)Y ⋆

ℓm(n̂)

to those in Cℓ as,

Covθθ′ =
∑

ℓ,ℓ′≥0

(

2l + 1

4π

)2

Pℓ(cos θ)Pℓ′(cos θ
′) Covℓℓ′ (15)

where

Covθθ′ ≡ 〈w̃(θ)w̃(θ′)〉, Covℓℓ′ ≡ 〈C̃ℓC̃ℓ′〉, (16)

and w̃(θ) and C̃ℓ denote the estimators used for w(θ) and Cℓ

respectively. In a full sky situation, and assuming the aℓm

spectra are Gaussianly distributed, the C̃ℓ measurements
are uncorrelated, Covℓℓ′ = Var(Cℓ)δℓℓ′ . In addition, one can
estimate each ℓ power using the 2ℓ+ 1 available modes,

C̃ℓ ≡
1

2ℓ+ 1

ℓ
∑

m=−ℓ

a2
ℓm (17)

thus, Var(Cℓ) = 2C2
ℓ /(2ℓ + 1).

However a more realistic and interesting scenario is one
in which the sky coverage is partial. In Cabré et al. 2007 it
was shown, using Gaussian realizations of the aℓm spectra,
that errors in configurations space scale as 1/

√

fsky (which,
in turn, is the scaling of the available number of harmonic
modes). In what follows we will assume this scaling, and
compute the covariance matrix as (Dodelson 2003; Cabré
et al. 2007)

Covθθ′ =
2

fsky

∑

ℓ≥0

2ℓ+ 1

(4π)2
Pℓ(cos θ)Pℓ(cos θ

′) (Cℓ + 1/n̄)2

(18)
where we have also included the standard shot-noise con-
tribution arising in the variance of the Cℓ estimates (Pee-
bles 1973) (n̄ is the number of objects per squared stera-
dians). We remark that the assumption leading to Eq. (18)
is not that the Cℓ covariance remains diagonal in a partial
sky survey but instead that Cov(θ, θ′) can be obtained from
its full sky expression by the scaling 1/fsky . We discuss this
further in Appendix C.

To proceed further we thus need a model for the angu-
lar spectra. In real space the Cℓ spectra are given by (see
Appendix A)

Cℓ,Exact =
1

2π2

∫

4πk2dkP (k)Ψ2
ℓ(k) (19)

with,

Ψℓ(k) =

∫

dzφ(z)D(z)jℓ(kr(z)) (20)

Redshift space distortions are accounted for by follow-
ing the same procedure that leads to the Cℓ expression in
Eq. (19) but starting from a power spectrum that includes
the Kaiser effect discussed in Sec. 2.2 and Eq. B7. The final
result is simply the following additive contribution to the
kernel in Eq. (20) (?),

Ψr
ℓ(k) = β

∫

dzφ(z)D(z)

[

(2ℓ2 + 2ℓ− 1)

(2ℓ+ 3)(2ℓ − 1)
jℓ(kr)

− ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ + 1)
jℓ−2(kr)−

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
jℓ+2(kr)

]

(21)

c© 0000 RAS, MNRAS 000, 000–000
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where r = r(z). In turn, photo-z effects are included through
the radial selection function φ(z), as discussed in Sec. 2.1.

Notice however that the expressions in Eqs. (19,20,21)
are numerically expensive to evaluate due to the oscillatory
behavior of jℓ(x) for x ≫ 1. In Appendix B we discuss our
own approach to perform these integrals, valid at large scales
and involving the natural cut-off sbao in Eq. (8).

4 SIMULATIONS AND MOCK SURVEY

This work aims at developing and testing analytical expres-
sions for the signal, variance and co-variance of the angular
correlation function w(θ) against measurements in mock cat-
alogues of forthcoming photo-z surveys built upon N-body
simulations.

Without loss of generality we thus imagine a survey
covering a continuous 5000 deg2 of sky (i.e. a sky fraction
fsky = 1/8), and redshift 0.2 < z < 1.4 with a radial distri-
bution given by,

dN/dz ∝ (z/0.5)2 exp
[

−(z/0.5)1.5
]

. (22)

We incorporate the fact that redshifts are estimated pho-
tometrically, with a mean photo-z error σz(z), by studying
angular clustering in redshift bins. The survey photo-z im-
poses a characteristic width for the bins, with the narrower
value a few times larger than σz (e.g. Simpson et al. 2009).
To remain general we take DES photo-z as a reference start-
ing point (see Fig. 1) for defining our bins, and consider a
range of different width for every given mean redshift. In
addition, for some of these configurations we also introduce
explicitly photometric errors and redshift space distortions.
In this way, we cover a broad spectrum of scenarios, such
that different surveys can be accommodated within our con-
clusions

In order to have a robust statistics but at the same time
be representative of the above specifications we used parti-
tions of a very large N-body simulation, named MICE7680,
provided by the MICE collaboration8 . The simulation
tracked the gravitational evolution of 20483 dark-matter
particles within a very large comoving volume of Lbox =
7680 h−1 Mpc using the Gadget-2 code (Springel 2005). Ini-
tial conditions were set at zi = 150 using the Zeldovich
dynamics and assuming a flat LCDM cosmology with pa-
rameters Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044 and h = 0.7. In
addition, the spectral tilt was set to ns = 0.95 and the initial
amplitude of fluctuations set to yield σ8 = 0.8 at z = 0. The
resulting particle mass was 3.65× 1012 h−1 M⊙ (see Fosalba
et al. 2008 and Crocce et al. 2010 for further details).

To fairly sample the range 0.2 < z < 1.4 we select
comoving outputs at the redshifts z̄ = 0.3, 0.5, 0.73 and 1.1.
In each output we extract the matter and/or halo density
field within spherical shells of radius equal to the comoving
distance to the given redshift. In turn, to be representative
of typical photo-z errors we set 4 different bin width for each
z̄, namely ∆z/(1 + z) = 0.03, 0.05, 0.1, 0.15. Translated to
comoving distance these bins range from 100 to 500 h−1 Mpc

8 http://www.ice.cat/mice

z̄ ∆z/(1 + z) r̄ (Mpch−1) ∆r (Mpch−1) Mocks

0.3 0.03 845.7 102.65 1344
0.3 0.10 843.3 342.14 441
0.3 0.15 839.8 513.20 392

0.5 0.05 1345.8 178.23 324
0.5 0.10 1343.2 356.50 175
0.5 0.15 1338.7 534.83 150

0.73 0.05 1859.7 181.50 104
0.73 0.10 1856.5 363.10 96
0.73 0.15 1851.1 544.88 80

1.1 0.10 2558.2 360.07 36
1.1 0.15 2551.9 540.56 36

Table 1. Mock catalogues. Using comoving snapshots of a very-
large N-body simulation we built several ensembles of mock red-
shift shells subtending a continuous 1/8 of the sky at a radial
comoving distance and width given in the Table (we only list
some configurations, see Fig. 1 for a full account). Notably, the
statistics recovered (5th column) allows to test robustly not only
the clustering signal but also the full measurement covariance.

in width. These spherical shells are restricted to have right
ascension and declination in 0◦−90◦, therefore covering 1/8
of sky. Lastly, we impose the radial distribution of objects
given in Eq. (22) by randomly selecting particles within each
bin.

We put particular care in the way we place the shells
within the cubic volume in order to have none or minimal
spatial overlap between different mocks. The resulting num-
ber of mocks depends on z̄ and ∆z/(1 + z), but it ranges
from tens to thousands, making these set of ensembles very
suitable for error studies as well as for testing models and
systematics. Table 1 includes the main characteristics for 11
of these bins, which are the ones that for concreteness we
focus on in this paper (although our conclusions extend to
the full set). The comparison of our 16 mock configurations
with the approximate σz(z) expected for DES (Banerji et
al. 2008) is shown in Fig. 1.

Once the particles (or halos) are selected we build an-
gular number density maps in the Healpix format with
Nside = 256 (Górski et al. 1999)9. This Nside corresponds
to 98304 pixels in 1/8 of sky with an angular resolution of
13.75 arc-min. In this way, and given our mass resolution
mp = 3.65× 1012 h−1 M⊙, we obtain mocks with ∼ 20− 100
galaxies per pixel (depending on the bin-width) in the low
redshift bins (z = 0.3) and ∼ 200− 800 galaxies per pixel at
high redshift (z = 1.1).

Before moving on we want to highlight the impor-
tance and uniqueness of the N-body run used throughout
this work, which is confered by the combination of such a

9 http://healpix.jpl.nasa.gov

c© 0000 RAS, MNRAS 000, 000–000
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6 Crocce et al.

Figure 1. Mocks configurations We built several ensembles of
mock redshift bins covering 1/8 of sky (5000 sq deg) and with
mean redshifts z̄ = 0.3, 0.5, 0.73, 1.1 (shown by the inset ver-
tical arrows). For each z̄ we set four different redshift width
∆z/(1 + z) = 0.03, 0.05, 0.1, 0.15 (dashed lines, bottom to top
respectively). The number of mocks for each configuration is given
in Table I. The aim is to resemble with high statistical accuracy
the geometry of large area and deep photometry galaxy surveys,
such as the Dark Energy Survey (DES). The expected photo-z
error in DES (using griz bands) is shown by the long dashed line,

while the solid line shows the resulting photo-z after adding the
JHKs filters from the Vista Hemisphere Survey (from Banerji et
al. 2008).

large volume and adequate mass resolution. For instance,
the comoving distance to z ∼ 0.5 is ∼ 1500 h−1 Mpc for
a concordance cosmology. Therefore, the simulation box-
size needed for making just one mock at z > 0.5 exceeds
Lbox ≈ 1500 h−1 Mpc. This is a serious limitation for accu-
rate and robust statistical studies of wide and deep photo-
z surveys. In our case, the simulated volume available al-
lowed us to tackle this problem and design a mock “pipeline”
that has a large potential for a number of different scientific
projects other than the particular one of this paper.

5 MODEL VS. MOCKS I : THE

CORRELATION SIGNAL

In Sec. 2 we discussed in detail our model for the angular
correlation function. We now proceed to show how it per-
forms against clustering measurements in the ensembles of
mock redshift bins described in Sec. 4, that include the in-
terplay of nonlinear gravitational clustering and projection
effects. In addition we built some ensembles of mock z-bins
using different halo samples to test the linear bias assump-
tion for this type of tracer, as well as dark-matter mocks in
photo-z and redshift space. We describe them in the sections
below, together with the corresponding model comparison.

5.1 Nonlinear Gravity and evolution

Using the model for ξ(r, z) in Eq. (10) we now project into
redshift bins according to Eq. (5) to find the angular cor-
relation function. The resulting correlations are shown in
Fig. (2) compared with measurements in the mocks at the 4
different mean redshifts, z = 0.3, 0.5, 0.73, 1.1 (top to bot-
tom). In each case for a bin width of the size of the typical
photometric error achievable at the given redshift in a survey
like DES (Banerji et al. 2008).

The agreement between our theoretical model and the
mean of the measurements is excellent for all configurations
tested, see Table 1, in particular those shown in Fig. (2). And
we recall that we are using only two parameters obtained
from a best-fit to ξ at z = 0.3 10. The evolution with redshift
is a component of the model. In each case displayed error
bars correspond to the error on the mean of the ensemble
(i.e. σ/

√
Nmocks), that given the large number of ensemble

member we count on is remarkably small.
The importance of nonlinear effects in front of projec-

tion ones are minor if we consider the large error bars achiev-
able in one single mock measurement. It is however encour-
aging that one is able to model accurately a large range of
angular scales, given the mixing of all the distance scales
involved in the redshift bin projection.

The smaller comoving scale rs involved in the projection
of a galaxy pair subtending an angle θ within a redshift bin
is given by,

rc = rmin(z)(2− 2 cos θ)1/2 (23)

where rmin(z) is the lower limit of the redshift range under
consideration. A conservative approach to investigate the
limitations of the model would be then to match this rs
with the minimum scale one is capable of modeling in the
3-d clustering. Interestingly we have found that, if we define
rnl as the scale where the model departs from the data by
some fixed percentage, then our minimum scale satisfies,

rnl(z) ∼ rnl(z = 0)×D(z) (24)

and rnl(0) ∼ 20h−1 Mpc for a 15% error in ξ. This en-
sures the following minimal angles above which the model
should perform well for the 4 cases shown in Fig. 2, θmin =
1.3◦, 0.7◦, 0.5◦, 0.4◦, in agreement with Fig. 2. But again,
this is a conservative limit because the relative contribution
of scales ∼ rs to the full redshift bin projection is minor.

Lastly, we note that our mocks are not built from a
light-cone, but rather from comoving outputs at the corre-
sponding mean redshift z̄, hence we do not integrate the rel-
ative growth factor as discussed prior to Eq. (5) but rather
evaluate it at the given z̄.

5.2 Biased tracers

We now revisit to what extent the possible presence of scale
dependent bias in the spatial correlation function of tracers

10 The level of matching does not change if we use instead the
theoretical expectations for these parameter discussed in Sec. 2.2
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Figure 2. Angular Correlation Function measured in 4 ensem-
bles of mocks z-bins compared with our nonlinear model (solid
blue) and linear theory (red dashed line). Error bars correspond
to the uncertainty in the mean of the ensemble, the actual r.m.s.

is N
1/2
mock larger (which is specified in the inset label). For each

case, the width in comoving length units is given in Table 1. For
concreteness we only show 4 configurations, but the agreement
extends to all 16 cases. The fact that linear and nonlinear corre-
lations coincide to the left of the bump is due to the inclusion of
the mode-coupling term in our model.

(Smith et al. 2008; Manera and Gazatanãga 2009; Des-
jacques and Sheth 2010) translates into the angular corre-
lation function, depending on the bin-width and mean red-
shift. Or equivalently, what extent the assumption of linear
bias holds in the angular clustering of halos.

This test is particularly hard to implement from the
numerical point of view if one desires to maintain a very
good statistics as we are doing in this paper. This is because
is very hard to resolve halos of 1012−13 h−1 M⊙ in a volume
as large as the one we are considering here, ∼ 450 cubic
Gpc/h, that allows the implementation of hundreds of mock
catalogues as detailed in Sec. 4.

We concentrate in two characteristic redshifts. At z =
0.3 we consider groups of M > 1013 h−1 M⊙ (i.e. 5 or more
particles) and bin width ∆z/(1 + z) = 0.15. The spatial
abundance of these halos is n̄ = 1.7 × 10−4 h3 Mpc−3. At
z = 0.5 we consider halos with M > 2 × 1013 h−1 M⊙ (8 or
more particles) with n̄ = 1.5 × 10−4 h3 Mpc−3. With these
selections we try to mimic LRG halos of M ≥ 1013 h−1 M⊙.
At z = 0.5 we also consider cluster mass-scale halos of M >
1014 h−1 M⊙ (35 particles or more), their abundance given
by n̄ = 0.64 × 10−5 h3 Mpc−3. We do not consider bins at
higher redshifts, as the galaxy bias is expected to be closer
to linear and local.

The top panel of Fig. 3 shows the ratio of correlation
functions (i.e. the bias) measured in the 392 mocks of z̄ = 0.3
and ∆z/(1 + z) = 0.15 for halos M > 1013 h−1 M⊙. Middle
and bottom panels shows the same ratio but from the 175
mocks bins at z = 0.5 and ∆z/(1 + z) = 0.1 for masses
M > 2 × 1013 h−1 M⊙ and M > 1014 h−1 M⊙ respectively.
For reference the vertical blue arrow shows the position of
the BAO peak in each case.

In all cases the bias is scale independent well within er-
ror bars (corresponding to the mean on the ensemble) and
at the 2−3% level for the cases mimicking galaxy clustering
(M ∼ 1013 h−1 M⊙). For cluster mass-scale the shot-noise of
the sample is much larger and consequently the error bars.
Nonetheless, there is not clear tendency with scale. The er-
ror bars displayed in Fig. (3) are computed propagating the
r.m.s. ensemble errors in the halo angular auto-correlation
whh and the matter angular auto-correlation w as,

δb/b = (1/2)
[

(δwhh/whh)
2 + (δw/w)2

]1/2
(25)

and converting to errors on the mean by δb → δb/
√
Nmocks.

We opted for this error estimate because the ratio of halo to
matter correlation in each individual mock realization is not
always positive definite, what complicates the biasing and
error interpretation.

We find no evidence of scale dependence bias within the
error bars.

5.3 Redshift Distortions and Photo-z

In addition to the mock ensembles described in Sec. 4 and
studied in the previous section we built dedicated cases (for
two of those configurations) in order to test the modeling of
photo-z and redshift space distortions .

We used the comoving output of MICE7680 at z = 0.5
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Figure 3. Large Scale Halo Bias, in the angular correlation func-
tion for bins at z = 0.3 (top panel) and z = 0.5 (middle and
bottom). The bias is linear within few percent, and well within
error bars. Except perhaps in the lower panel, that corresponds
to cluster-escale mass halos with large errors fully dominated by
their low abundance. See text for more details (e.g. on displayed
error bars).

since this redshift is the typical mean z for upcoming photo-
metric surveys (e.g. DES and PanStarrs). We then built en-
sembles of bins using top-hat selections of width ∆/(1+z) =
0.05 (thin) and ∆/(1 + z) = 0.15 (thick), starting from ei-
ther redshift or photo-z space. It total, we built 150 mocks
for each of the four cases, that we discussed below.

The mapping from real r to Redshift Space positions s

is given by the transformation

s = r+ vr(1 + z)/H(z) r̂ (26)

where H is the Hubble parameter and vr the peculiar veloc-
ity of the object along the line of sight from the observer.
Therefore given the observer at position r0 we first find the
particle’s projected velocity along the l.o.s. to the observer,

vr =
v · (r− r0)

|r− r0|
, (27)

then displace it by δr = vr(1 + z)/H(z) along the l.o.s.,

δr = δr
(r− r0)

|r− r0|
(28)

and finally do the top-hat selection. We repeat this

Figure 4. True Selection Functions in our Photo-z Mocks. Solid
lines are the radial distribution of particles for a top-hat selec-
tion in true redshift of width ∆z/(1 + z) = 0.15 (left panel) and
∆z/(1 + z) = 0.05 (right panel), both centered at z = 0.5 and
assuming a constant spatial density. Dashed lines show the true
redshift distribution after a Gaussian photometric redshift error
of σz = 0.06 is introduced in the mocks and the same selection is
done, now using photometric redshift.

procedure for each of the 150 observers within the
(7680 h−1 Mpc)3 volume of our run.

Mocks including (Gaussian) Photo-z errors are pro-
duced in almost the same manner, except that the displace-
ment along the l.o.s is random with a probability

f(δr) =
1√
2πσr

exp

[

− δr2

2σ2
r

]

(29)

where σr = σzc/H(z) and σz is the survey photometric un-
certainty at the given z. We only considered σz = 0.06,
which is the nominal value for DES at z = 0.5 using the griz
photometric bands (Banerji et al. 2008) as reproduced our
in Fig. 1. This is also the expected photo-z accuracy for the
3π all-sky survey of the Pan-Starrs collaboration (Cai et.
al 2009) at this redshift using grizy bands alone. In addi-
tion, it is the approximately photo-z precision obtained for
the optical sample of LRGs selected from the SDSS imaging
data (Padmanabhan et al. 2005; Padmanabhan et al. 2007).
This is thus a very representative value for σz. For our cos-
mology it translates to an uncertainty in the radial distance
of ∼ 140 h−1 Mpc.

Dashed line in Fig. 4 shows the real distribution of ob-
jects that entered the photo-z top-hat bins of ∆/(1 + z) =
0.15 (left panel) and ∆/(1+z) = 0.05 (right panel) as a func-
tion of their true redshifts. This radial selection functions
were obtained from Eq. (7) using the underlying distribu-
tion from Eq. (22) (shown by the solid line) and a Gaussian
P (z|zp) of width σz = 0.06, Eq. (29). Notice that the chosen
bin widths, that will be used in Figs. 5 and 7, correspond to
either ∆ ∼ σz or ∆ ∼ 4σz.

Fig. 5 corresponds to the angular correlation func-
tion measured in the mock z-bins in configuration space
(middle symbols), redshif space (top symbols) and photo-
z space (low symbols). In solid green, red and blue lines
we show the corresponding analytical predictions obtained
from Eqs. (5,7,10,B7). For redshift distortions we used that
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Figure 5. Redshift Distortions and Photo-z effects: model vs.

mocks. Measurements and model of w(θ) in configuration (middle
green line and symbols), redshift space (top red line and symbols)
and photo-z space (low blue line and symbols). Redshift distor-
tions (RD) depend on the parameter β = f/b = 0.7047 in this
case. Photo-z errors were set to σz = 0.06. RD induces a strong
and scale dependent enhancement of correlation, counteracted by
the smearing due to the photo-z uncertainties. The final w(θ)
accounting for all these effects is shown by the dashed line.

β = f(z = 0.5) = 0.7047 for our cosmology (since b = 1)
while for photo-z we used the selection functions shown in
Fig. 4. As clearly shown by Fig. 5, the model described in
this paper performs remarkably well for both thin and thick
bins, in configuration, redshift, and photo-z spaces.

Redshift space distortions produce a strong enhance-
ment of the clustering signal (see (Nock et al. 2010) who
find similar results for the projected correlation). This effect
is also a strong function of scale, becoming more important
for larger separations. Indeed, it increases the amplitude of
the BAO bump by as much as a factor of 2.3 for the thin

bin of ∆ = 0.05(1 + z) ∼ 180 h−1 Mpc (top panel of Fig. 5)
and 1.5 for the thick one of ∆ = 0.15(1 + z) ∼ 530 h−1 Mpc
(bottom panel of Fig. 5).

In turn, photo-z errors have the opposite effect to that
of redshift distortions, decreasing the overall amplitude of
angular correlations. This is simply because the projection
in Eq. (5) extends over a much larger range of scales (e.g.
see Fig. 4). Notably, this effect is not far from being scale
independent. For the thin bin the impact is a bit stronger
(top panel of Fig. 5). If we only consider photo-z effects, the
amplitude of w(θ) decreases by ∼ 60% when going from true
to photometric redshifts (green to blue lines in the figure). In
the case of a wide bin (bottom panel in Fig. 5), although its
width is approximately 4 times the photo-z and satisfies the
half-width half-maximum relation with the true distribution
11, there is still a reduction in amplitude of ∼ 30%.

The total angular correlation, including redshift distor-
tions, photo-z, nonlinear evolution and bin projection effects
is depicted by the dashed line in Fig. 5. In the case of bin
width comparable to the photo-z error the effect of photo-z
dominates over redshift distortions (even though the impact
of redshift distortions is larger for thinner bins). For a wider
bin (bottom panel) the conjunction of effects leaves the am-
plitude of correlation at the BAO peak almost unchanged,
but it does introduce a strong scale dependent bias with re-
spect to the real space clustering of matter. Notably, the
inclusion of redshift distortions to the w(θ) in photo-z space
enhances the amplitude by up to 50% at the peak position.
Clearly, the appropriate inclusion of these contributions can
be crucial in the analysis of real data.

We note that the above conclusions assume an unbiased
tracer. For biased ones the impact of redshift distortions,
sensitive to f/b, is smaller. For instance, if we take b = 1.7
at z = 0.5, that is a characteristic value for optically selected
LRGs (Padmanabhan et al. 2007; Ross et al. 2007), but
keep the same σz we find the amplitude of w(θ) at the BAO
peak position (θ ∼ 4◦) reduced by ∼ 10% with respect to
the b = 1 case, for a bin ∆ ∼ 4 × σz (but still gives 30%
boost with respect to the case where redshift distortions is
neglected all together).

6 MODEL VS. MOCKS II : THE ERROR

MATRIX

We now move to test the performance of Eq. (18) in evalu-
ating the full covariance matrix in w(θ) measurements. We
first discuss the diagonal component, or variance, in Sec. 6.1
and then the reduced covariance in Sec. 6.2.

6.1 Comparing the w(θ) variance

In Fig. 6 we show the r.m.s dispersion resulting from w(θ)
measurements in several ensembles of mock redshift bins
(top panels corresponds to narrow bin cases, bottom to their
wide counterpart). The total number of measurements in

11 that is, the top-hat redshift limits corresponding to the values
where the true distribution drops by 1/2
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each ensemble depends on the particular value of mean red-
shift and width of the bin (as detailed in Table 1), but they
lay in the 100 − 1000 range, thus giving a unique statisti-
cal framework for our analysis. We stress that these mocks
are obtained from comoving outputs of an N-body simula-
tion and thus contain all correlations induced by non-linear
gravitational evolution and projection effects, in addition to
partial sky coverage and survey selection function. The bin
selection was top-hat in true redshift in all cases (see below
for photo-z and redshift space considerations) Solid lines in
Fig. 6 corresponds to the prediction for the error,

∆w(θ) ≡ Cov(θ, θ)1/2, (30)

from Eq. (14) using either Cℓ,Exact (solid blue) or Cℓ,Limber

(solid red). The agreement between the theory and mocks is
remarkably good for all the range in θ of interest for large
scale structure studies, in particular BAO, and all bin con-
figurations. As we move to higher redshifts / wider bins
the statistics becomes slightly poorer, but the agreement
is still evident. In turn, the Limber approximation over-
estimates the error by as much 30% for thin bins but it
rapidly converges to the exact result for bins wider than
∼ 200 h−1 Mpc (e.g. the cases z̄ = 0.3 −∆z/(1 + z) = 0.15
or z̄ = 0.5−∆z/(1 + z) = 0.15, at the bottom left panels).

We next discuss the prediction of errors including
photo-z effects and redshift space distortions.

The top panel of Fig. 7 shows the r.m.s error in the 125
mocks that incorporate photometric redshift uncertainties
as described in Sec. 2.1. The mean redshift was z̄ = 0.5
and the photo-z error assumed was σz = 0.06 (Gaussianly
distributed). The true redshift distribution of objects used
in modeling of Cℓ, Eq. (19), is given in Fig. 4.

We considered two characteristic bin widths, one com-
parable to the photo-z (∆ = 0.075), and one almost 4 times
larger (∆ = 0.225). In both cases the prediction in Eqs. (19-
20), shown by solid blue and dashed red lines, is in very good
agreement with the mock measurements (in empty and filled
symbols).

The bottom panel of Fig. 7 shows instead the r.m.s error
obtained from the same bins in redshift space. The predic-
tion, in Eqs. (19-20-21), works to high accuracy in this case
as well, for both wide and thin redshift widths. Notice that
in the cases shown in this section the error is “sampling vari-
ance” dominated (i.e. negligible shot-noise), and therefore is
expected to scale with the signal itself. This is reflected in
Figs. 6 and 7 where in photo-z space the r.m.s error is smaller
than in real space, and viceversa for redshift space.

6.2 Comparing the w(θ) reduced covariance

Once the diagonal error is well modeled we can turn to the
prediction of the full (reduced) covariance matrix. For con-
creteness we only considered the case of dark-matter and
halo mocks in configuration space, i.e. neither photo-z or red-
shift distortions effects. We fundament this decision in that
for a “sampling variance” dominated error, one expects the
error to scale roughly with the signal. And we have already
shown that we are able to model the signal and the variance
in all realistic scenarios. The case of “shot-noise” dominated

Figure 7. Errors for w(θ) in photo-z and redshift spaces. Top
panel shows the r.m.s error in measurements of the angular cor-
relation function in two redshift bins in photo-z space, centered
at z̄ = 0.5, with empty and filled squares respectively (assuming
a photo-z of σz = 0.06). The corresponding analytic prediction
is given by the solid and dashed lines. Bottom panel shows the
comparison of r.m.s errors in mock measurements to the analyt-
ical model when redshift space distortions are included (but no
photo-z).

error is discussed in detail in Sec. 6.3 and is complementary
to redshift distortions or photo-z.

Figure 8 shows the reduced covariance matrix, defined
as CovReduced(θ, θ

′) = Cov(θ, θ′)/∆w(θ)∆w(θ′), measured
from the 324 mocks (left panel) at z̄ = 0.5 −∆z/(1 + z) =
0.05 or computed from the expression in Eq. (18) (right
panel). They look remarkably similar.

However, a closer look reveals that for a full accord
of theory and simulations one needs to include the mode-
coupling spectrum (or the one-halo term in the language
of the halo-model) and restore some of the high-ℓ tail sup-
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Figure 6. Error the in Angular Correlation Function. Predictions for ∆w(θ) ≡ Cov(θ, θ)1/2 from Eq. (18) using either the exact
integration for Cℓ (blue solid line) or the Limber approximation (red solid line). Symbols are the r.m.s dispersion in measurements of
w(θ) in our ensembles of mock redshift bins. Top panels show thin bins and bottom their wide counter-case. Notice that even as many
as 100 mocks can still show sample variance fluctuations in the determination of the error.

pressed by the BAO exponential damping (see Fig. B1). In
order to maintain the gains in numerical evaluation of the
exact Cℓ, we do this as follows. We write the linear spatial
power spectrum as,

P (k) = PLin exp(−k2s2bao) + PLin(1− exp(−k2s2bao)), (31)

and now proceed to evaluate the Cℓ spectra in two pieces.
The low-ℓ contribution using the first term in Eq. (31) with
the exact evaluation in Eq. (19) (thus, it does not differ from
our proceeding so far). The high-ℓ contribution is obtained
inserting the second term in Eq. (31) into the Limber for-
mula, Eq. (B4). In all, we have

Cℓ = Cℓ,Exact(PLin ×G) + Cℓ,Limber(PLin × (1−G)) (32)

with G = exp(−k2s2bao). The second term in Eq. (32) has
a negligible impact in the estimate of ∆w(θ) and will also
have in the covariance in cases where the shot-noise of the
galaxy sample is not negligible (see Sec. 6.3).

To deepen into the testing of our analytical expres-
sions we plot in Fig. 9 three rows of the reduced covari-
ance matrix, that is, the correlation between w(θ) and w(θ′)
as a function of θ′ (at fixed values of θ, as labeled in
the plot). We have chosen to do this at our four mean
redshits, z = 0.3, 0.5, 0.73, 1.1 and characteristics widths
0.15, 0.1, 0.1, 0.15 respectively (from top to bottom). This
election reflects the fact that the calibration of photomet-
ric redshifts (mimicked here by the bin width) are better
at intermediate redshift, and worse towards low and high
z. Solid lines in Fig. 9 are the predictions from Eq. (18)
using Cℓ from Eq. (32). This figure reflects the high degree
of correlation between θ-bins even when widely separated,
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Figure 8. Reduced Covariance Matrix for the bin centered at
z̄ = 0.5 and width ∆z/(1 + z) = 0.05. Left panel shows the mea-
surement over 324 mock red-shift bins (see text) while Right Panel

shows the prediction for this matrix from Eq. (18).

which is characteristics of Configuration space. Nonetheless
the theoretical estimates accounts for the whole shape, par-
ticularly close to the diagonal. In all cases, the right-most
angle corresponds approximately the angular position of the
BAO peak. In turn, Fig. 10 shows the off-diagonal elements
of the error matrix Cov(θ, θ + ∆θ). Again, the predictions
perform very well.

We finish this section comparing theory and mocks at
the level of the Singular Value Decomposition, that is many
times the only available path to analyze observational data
in cases where the covariance matrix is not robustly deter-
mined. The top panel of Fig. 11 shows the Singular values for
the ensemble of 392 mock-bins with z̄ = 0.5−∆z/(1 + z) =
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Figure 9. Rows of the Reduced Covariance Matrix. Reduced co-
variance between ŵ(θ) and ŵ(θ′) for a fixed value of θ′ and as
a function of θ. From top to bottom we show bin configurations
with larger width at low and high redshifts and smaller at in-
termediate values (resembling the characteristic performance of
photo-z estimates). Solid lines are the predictions from Eq. (18).
Notice that close to 200 mocks are necessary for a robust estima-
tion of the covariance. The right-most angle corresponds to the
angular BAO scale

Figure 10. Off-diagonal Reduced Covariance Matrix. Reduced
covariance between w(θ) and w(θ + ∆θ) for a fixed value of ∆θ
and as a function of θ. Mean red-shift and width of each bin
configuration are labeled in the plot. Dots correspond to mea-
surements in the 324 or 96 mocks respectively. Solid lines are the
predictions from Eq. (18).

0.15. The analytical model, using the linear power spectrum
(solid blue line), describe accurately 10 to 15 singular val-
ues. We have tested that using more than 10 or 15 singular
values the estimate of cosmological parameters have neg-
ligible impact in the outcome (see also (Eisenstein & Zal-
darriaga 2001)), as they describe very short-range correla-
tions (see bottom panel). These results will be presented in
a forthcoming paper (Cabré et al. 2010). There is however,
a simple way to improve on the agreement. In dashed line
we show the results when using the “measured” Cℓ spectra
in Eq. (18). This indicates that the recovery of these high
singular values is affected by the high ℓ tail of Cℓ where non-
linear effects increase the power over their linear value. On
the one hand this will have little importance in practical sit-
uations where this regime will be most probably dominated
by shot-noise. On the other hand it can be easily modeled
using fits to the nonlinear power spectrum, such as halofit,
into the Limber formula. In the bottom panel of Fig. 11 we
show the singular vectors corresponding to singular values
1, 3 and 6.

So far we have not tested our model against measure-
ments of w(θ) covariance between different redshift bins.
However the full covariance matrix in this case can be
easily obtained with exactly the same formalism as de-
scribed in Sec. 3, but using the Cℓ spectra between the
different redshift bins. This is obtained by simply replac-
ing Ψ2

ℓ → Ψi,ℓΨj,ℓ in Eq. (19), where Ψi is given by Eq. (20)
with the radial selection corresponding to the i z-bin.

6.3 The impact of shot-noise

Previous sections showed that the expression in Eq. (18) can
describe remarkably well the error due to sampling variance

in the measurement of the angular correlation function in
redshift bins.

We now turn into the problem of describing the error
due to shot-noise. To this end we will concentrate on differ-
ent halo samples as tracers (from Sec. 5.2) and test whether
the standard Poisson shot-noise term in Eq. (18) can account
for the increase in errors due to their low number density.
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Figure 11. Singular Value Decomposition of the Error Matrix
measured in 392 mocks at z = 0.5−∆z/(1+ z) = 0.15. Using the
linear power spectrum is possible to reproduce very accurately ∼

15 singular values (top panel) and their singular vectors (bottom
panel). Including nonlinear clustering effects into Cℓ leads to a
good match for all singular values. The case shown corresponds
to unbiased tracers and negligible shot-noise.

For concreteness we focus on two characteristic z-bin
configurations. Figure 12 corresponds to halos with M ≥
1013 h−1 M⊙ in the bin at z̄ = 0.3 and width ∆z/(1 + z) =
0.15. This sample has a bias b(z = 0.3) = 2.36 (see Fig. 3),
what corresponds to b ∼ 2 if linearly evolved to z = 0
(Fry 1996). The sample has an angular abundance of
N/Ω ∼ 17 halos/deg2 what gives a shot-noise contribution,
Ω/N, of order 2× 10−7sr2. This corresponds to n̄ b2 Cℓ ∼ 1
at ℓ ∼ 200.

Top panel of Fig. 12 shows the r.m.s. error measured
in the ensemble of 392 mock redshift bins while lines are
the predictions from Eq. (18) using the exact Cℓ integration
and including Poisson shot-noise (solid blue) or neglecting it
(dashed blue). As we see the presence of shot-noise increases
the error by 20% (in this case), but this can be very well
modeled by the addition of the simple Poisson shot-noise 1/n̄
contribution to Cℓ. Bottom panel shows the singular values
of the covariance matrix SVD. Almost none of the singular
values is well recovered when shot-noise is neglected.

In turn, Fig. 13 corresponds to halos with M ≥ 2 ×
1013 h−1 M⊙ at higher redshift, in the bin z̄ = 0.5−∆z/(1+
z) = 0.1 (the halo mass-cut was chosen slightly higher at
higher redshift to resemble a flux-limited survey). In this
case the bias is b(z = 0.5) = 2.93 (b ∼ 2.3 at z = 0) with
an angular abundance of N/Ω ∼ 11 halos/deg2 (n̄ b2 Cℓ ∼ 1
at ℓ ∼ 200). The shot-noise increases the error by ∼ 30% on
top of the sampling variance (solid vs. dashed lines in the
top panel) and plays a crucial role in the SVD eigenvalues
(bottom panel).

Figure 12. The effect of shot-noise at z = 0.3. Diagonal error
(top panel) and Singular Value Decomposition of the Covariance
Matrix (bottom panel) for the bin z = 0.3 and ∆z/(1+ z) = 0.15
for a sample of halos with M > ×1013 h−1 M⊙. The (Poisson)
shot-noise term increases the error by ∼ 20% on top of sampling
variance (solid and dashed lines are the model with and with-
out the 1/n̄ term) and is critical to recover the correct singular
eigenvalues. We used 392 mocks for this case.

Remarkably, in both cases (Figs. 12 and 13), the inclu-
sion of the simple Poisson white-noise on top of the sampling
variance in Eq. (18) accounts very well for all singular values
as well as the diagonal error (solid lines).

Arguably, the halo samples used in this test are too
much dominated by shot-noise. We have also done the exer-
cise of gradually increasing the relative contribution of shot-
noise in front of sampling variance by increasingly under-
sampling the dark matter field. As expected, the error is
always recovered by the model just by increasing the Pois-
son term in Eq. (18) accordingly.

7 CONCLUSIONS

The field of large scale cosmological structure will undergo
an unprecedented era in the immediate future with several
large observational campaigns proposed or under implemen-
tation. Many of these surveys, such as DES, PanStarrs and
LSST, will use photometric techniques to estimate the radial
position of galaxies instead of measuring their full spectra,
which is more time-demanding . This gain allows to sur-
vey wider areas and fainter objects, but at the exchange of
increasing the uncertainties in the true redshifts and degrad-
ing the radial clustering amplitude. The proposal is then to
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Figure 13. The effect of shot-noise at z = 0.5. Diagonal error
(top panel) and Singular Value Decomposition of the Covariance
Matrix (bottom panel) for the bin z = 0.5 and ∆z/(1 + z) = 0.1
for halos with M > 2 × 1013 h−1 M⊙. Conclusions shared with
Fig. 12. We used 175 mocks for this test.

split the data into redshift bins and exploit the information
available from angular correlation functions, provided with
an accurate determination of the measurement errors. Yet,
this goal can only be accomplished if we develop accurate
models for the signal and its errors that take into account
all relevant effects and are robustly tested in realistic scenar-
ios. In this paper we addressed this issue in a comprehensive
way.

We first developed an extensive set of mock catalogues
(in the form of redshift bins) reproducing the angular cover-
age, photo-z and radial distribution of a photometric survey
like DES. For this we used a large N-body simulation (of ∼
450 h−3 Gpc3 simulated volume) provided by the MICE col-
laboration (http://www.ice.cat/mice). These mocks can
be regarded as independent realizations as their volume
overlap is minimal and therefore provide a unique statistical
framework for model testing (see Table 1). They are also
equivalent to a light-cone analysis as we are doing redshift
bins.

We next developed a model for the angular correlation
function w(θ) accounting for all the relevant effects, namely
bin projection, nonlinear gravitational evolution, linear bias,
redshift space distortions and photo-z errors.

An exhaustive comparison of our model for w(θ) against
the mock measurements showed a remarkably good agree-
ment for a wide range of θ, validating the treatment of the
different effects and opening the door of the use of this probe
for real data analysis. Nonlinear gravitational evolution pro-

duces minor distortions in the correlation pattern after the
bin projection. In turn, analysis of halo angular clustering
showed a very good consistency with a linear bias assump-
tion. The interplay of photo-z and redshift distortions is the
most important consideration regarding the shape of w(θ).

Redshift space distortions introduces a large and scale
dependent enhancement of w(θ), that can reach a factor of
a few at BAO scales (see Fig. 5). For our widest bin (where
the effect should be least important) it still rises the ampli-
tude of w(θ) by ∼ 50% at θBAO (with respect to the true
redshifts case). Conversely, photo-z effects lower the cluster-
ing amplitude by extending the effective bin projection. For
example, for the widest bin mentioned before we find that
the two effects counter-act each other at θBAO, but leave a
scale dependent signal towards smaller angles.

In turn, we showed that the Limber approximation
should not be used in precision analysis of large scale clus-
tering as it leads to the incorrect shape of w(θ) in the full
range of interesting scales, and severely misestimates the
amplitude of the Cℓ spectra for ℓ <∼ 40−50. This is convinc-
ingly shown in Figs. B1, B2 and B3.

We would like to highlight that, in the process of de-
scribing w(θ), we have also investigated a model for the 3-
d matter correlation function that is able to reproduce the
clustering signal in a broad range of scales and redshifts with
only 2 parameters. This, discussed in detail in Appendix A,
can be of grand interest for future spectroscopic surveys such
as BOSS, Hetdex and WiggleZ.

We have made an equally exhaustive effort in modeling
and testing the full error matrix characterizing the mea-
surements of w(θ). The covariance matrix is often estimated
from the data itself, using internal or re-sampling methods
such as Jack-knife or bootstraping. However, their limitation
is still a matter of some debate (Norberg et al. 2009). Hav-
ing a full theoretical model is thus very suitable for present
and future analysis.

We took into account partial sky coverage by assuming
that Cov(θ, θ′) scales as f−1

sky . The full sky situation is then
easily treated by translating errors from harmonic space,
where the covariance matrix is diagonal and proportional to
Cℓ. Through the angular power spectra we included the same
effects considered for w(θ) into Cov(θ, θ′) (photo-z, redshift
distortions, bias) for a typical survey with fsky = 1/8.

Our modeling of errors recovers the correct variance in
w(θ) as measured in the mocks for a wide range of bin config-
urations , from low to high redshift (z ∼ 0.3−1.1) and from
thin to thick bins (100 h−1 Mpc − 550 h−1 Mpc). And this
conclusion extend to the more realistic cases where we in-
cluded photo-z effects and redshift space distortions. In addi-
tion we used different halo samples to study cases where the
shot-noise was comparable or larger than the sample vari-
ance component of the error. This regime was also nicely
described analytically by adding a standard Poisson shot-
noise contribution to the variance of the Cℓ spectra.

Moreover, and thanks to the large number of mocks con-
structed, we measured the full covariance matrix with high
precision in different configurations. We find that at least
150 − 200 mocks are necessary for a well defined reduced
covariance, but this is discussed more properly in Cabré et
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al. 2010. Remarkably in all cases tested, the modeling re-
covers very accurately the true error matrix.

In a parallel line of research we have tested the recovery
of cosmological parameters using our model for w(θ) and the
theoretical expression of the covariance matrix. And com-
pared this with the same analysis but using the true covari-

ance as measured in the mock ensembles. Indeed, the best-
fit values and errors contours coincide for both approaches
(Cabré et al. 2010) giving very encouraging prospects for
the use of our analytical expressions in real data analysis or
in realistic forecasts of upcoming photometric surveys.

The code implementing the models pre-
sented in this paper will be publicly available at
sites.google.com/site/martincrocce/public-codes
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APPENDIX A: SPATIAL CLUSTERING

In Sec. 2.2 we presented a parametric model for the spatial
correlation function and argued that a single set of best-fit
parameters could be used to describe the clustering from low
to high redshift. In this appendix we show how this model
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performs against measurements of 3-d clustering in N-body
simulations, in particular as a function of redshift.

A0.1 Nonlinear Gravitational Clustering

The top panel of Fig. A1 shows the spatial correlation func-
tion measured in MICE7680 at z = 0.3 compared with the
parametric model given in Eq. (10) for best-fit parameters
sbao = 5.54 h−1 Mpc and Amc = 1.55. To simplify the mea-
surement we only used a cubic sub-volume of the full comov-
ing output, of length Lbox = 2560 h−1 Mpc. Error bars were
obtained from the scatter among 125 Jack-knife volumes of
the full box. We see that the model performs very well down
to scales ∼ 20h−1 Mpc at this redshift. Notice how the con-
volution of linear theory with a Gaussian smoothing (dot
dashed line) leads to a slight increase in amplitude above
the measurements for r <∼ 60h−1 Mpc. Measurements follow
linear theory at these scales. The effect of the mode-coupling
term in Eqs. (8,10) is mainly to correct for this mismatch.

From theoretical grounds we expect the smoothing
length to be determined by the amplitude of large-scale
velocity flows and therefore given by ((Crocce and Scoc-
cimarro 2006b; Matsubara 2008),

sbao ∼ [(1/3)

∫

d3qPLin(q)/q
2]1/2 = 5.42Mpc h−1 (A1)

which is within 3% agreement with the recovered best-fit
value. In turn, the lowest order estimation for Amc using
perturbation theory yields 34/21 ∼ 1.62 independently of
cosmology and redshift (Crocce and Scoccimarro 2008),
which is also very close to our best-fit value 1.55.

Hence, it is possible to use these theoretical estimates
as a starting point in the modeling instead of using fitting
parameters. Notice however that, if one extrapolates this
model to describe the clustering of tracers, the actual val-
ues for sbao and Amc might depend on the particular tracer
under study (e.g. on halo mass) (Sánchez et al. 2008). In
addition, the rather large error bars obtained from present
day data do not put severe constraints on the values of sbao
and Amc (Sánchez et al. 2009; Percival et al. 2010).

The standard approach for analyzing clustering data
in a photometric redshift survey covering from low (z ∼
0.2) to high redshift (z ∼ 1.4) is to divide the data into
several redshift bins (whose minimum width are ultimately
determined by the photo-z accuracy). If one then performs a
joint analysis of all these bins it is desirable to have the least
number of nuisance parameters possible in order to optimize
constraints on derived cosmological parameters. With this
approach in mind we now show to what extent a single set of
best-fit parameters can be used to describe the 3-d clustering
from low to high redshift, and hence the angular clustering
after the projection in Eq. (5).

The bottom panel of Fig. A1 shows our model in
Eq. (10) against measurements of ξ in the comoving out-
puts of MICE7680 at z = 0.5, 0.73 and 1.1. The values for
sbao and Amc were taken from a best-fit analysis to ξ(r) at
z = 0.3. In all cases the agreement is very good, similar to
that at z = 0.3.

Notice that conclusion in this appendix relate to 3-d

Figure A1. Spatial Correlation Function: measured in the z =
0.3 comoving output of a large volume N-body run (MICE7680)

compared with the parametric model given in Eq. (8) with best-
fit parameters sbao = 5.54h−1 Mpc and Amc = 1.55 (Top panel).
The length scale used in the y-axis is rBAO = 110 h−1 Mpc. Bot-
tom panels display the ratio of the measured correlation function
(at the given redshift) to our model correlation, obtained after
scaling with redshift the z = 0.3 best-fit values.

clustering in general, regardless of photo-z, hence are also
relevant for spectroscopic surveys such as BOSS 12, Hetdex
13 and WiggleZ 14.

APPENDIX B: THE LIMBER

APPROXIMATION

B1 Cℓ power spectrum : exact evaluation and

Limber formula

In this appendix we discuss the way we implement the nu-
merical integrations that lead to the exact Cℓ spectra in
Eqs. (19,20), and how this exact results compare with the
widely used Limber approximation (Limber 1953).

12 http://www.sdss3.org/
13 http://hetdex.org/
14 http://wigglez.swin.edu.au/
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Let us first recall the derivation of the exact expression
of the angular power spectrum in terms of the spatial one.
This is done by expanding the density field in Eq. (1) in
Fourier Series and subsequently expanding the plane wave
into spherical harmonics 15. After some straightforward ma-
nipulation this leads to,

aℓm = 4πiℓ
∫

dz φ(z)

∫

d3k

(2π)3
δ(k, z)jℓ(k r(z))Y

⋆
ℓm(k̂),

(B1)
where jℓ are the spherical Bessel functions of order ℓ. Insert-
ing Eq. (B1) into Eq. (13) gives Eqs. (19,20),

Cℓ,Exact =
1

2π2

∫

4πk2dkP (k)Ψ2
ℓ(k)

Ψℓ(k) =

∫

dzφ(z)D(z)jℓ(kr(z))

These integral expressions are numerically expensive to
compute due to the oscillatory behavior of the spherical
Bessel functions jl(x) for x ≫ 1. It is then desirable to seek
for ways to improve their convergence.

Since we are interested in large scales we proceeded as
follows. The degradation of the BAO bump due to non-linear
effects can be modeled to a large extent by simply introduc-
ing an exponential damping to the large-scale power spec-
trum, i.e.

PNonLin(k, z) = PLin(k, z) exp(−k2σ2
vD

2(z)) (B2)

with σv ≈ 7Mpch−1, depending on cosmology (this is the
parameter we called sbao in Sec. 2.2). This natural cut-off in
Fourier space leads to the correct shape of the 3-d correla-
tion function in a broad range of scales, e.g. Fig A1. In the
same way, one can then speed-up the evaluation of the exact
integrals in Eqs. (19,20) by adopting an exponentially sup-
pressed spectrum and integrate only up to an upper bound
kmax σv ∼ 4 − 5, since our goal is the description of large-
scale angular correlation function. In what follows we will
always adopt this approach to evaluate Cℓ,Exact.

In turn, the most popular short-cut to evaluate
Eqs. (19,20) is the so-called Limber approximation (Lim-
ber 1953; Kaiser 1992; Kaiser 1998) that follows from the
orthogonality relation of the spherical Bessel functions (e.g.
see Loverde and Afshordi 2008),
∫

dkk2jl(kr1)jl(kr2)P (k) (B3)

≈ π

2

δD(r1 − r2)

r21
P (k =

l + 1/2

r
),

that leads to the well-known expression,

Cℓ,Limber =

∫

dzφ2(z)D2(z)P ((ℓ+ 1/2)/r(z))
H(z)

r(z)2
. (B4)

Strictly speaking this is valid for ℓ ≫ 1 (that is, small
angles) therefore it is appropriate to discuss the limits of
applicability of this approximation to very large-scales, as
those probed by BAO.

In the top panel of Fig. B1 we show the measured Cℓ

15 eikrk̂·n̂ = 4π
∑

ℓ≥0

∑ℓ
m=−ℓ i

ℓjℓ(kr)Yℓm(k̂)Y ⋆
ℓm(n̂)

Figure B1. Angular Power Spectrum measured in the 324 mock
catalogues of mean redshift z̄ = 0.5 and width ∆z/(1+ z) = 0.05
(see Table I), compared with the theoretical prediction from the
exact integration in Eq. (19) (solid blue line) and the Limber
approximation in Eq. (B4) (solid red). The Limber approxima-
tion leads to a severe under-estimation of the large angle power
(l ≤ 30) that critically impact the computation of the angular
correlation function at large BAO scales.

Figure B2. Angular Correlation Function measured in the 324
mock bins compared with the theoretical predictions obtained
from Eq. (5) (dashed line), or from Cℓ-space through the Legendre
polynomials and Eq. (14). Using the Limber approximation to
compute the Cℓ leads an incorrect shape for w(θ) (solid red line).
In turn, the exact Cℓ integration agrees as expected with Eq. (5)
(solid blue line).
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power spectrum averaged over 324 mocks red-shift bins cen-
tered at z̄ = 0.5 with ∆z/(1 + z) = 0.05. The solid blue
line corresponds to the exact integration and the solid red
line to the Limber approximation in Eq. B4 (in both cases
with P (k) from Eq. B2 and the best-fit value for sbao from
Sec. 2.2). Clearly, the Limber approximation fails by a large
factor at low-l (see bottom panel). This is in agreement with
the recent work by Loverde and Afshordi 2008, who circum-
vents this short-coming by including 2-nd order corrections
to the Limber formula. We have not explored this possibil-
ity as the numerical evaluation of the exact Cℓ expression
as proposed above is fast enough for our purposes. Yet, no-
tice how by l ≥ 100 the exponential damping of the linear
power spectrum P (k) suppresses the amplitude of harmonic
space power. This shows that our approach for a fast evalu-
ation of the spherical Bessel functions is not appropriate for
modeling the shape of Cℓ at weakly non-linear scales where
one would need to add the boost of power due to mode-
coupling effects (Crocce and Scoccimarro 2008). A simple
way to implement this is discussed in more detail in Sec. 6.2,
Eqs. (31,32).

B2 Correlation Function : results in Real and

Redshift Space

The inaccuracy of the Limber approximation also affects the
calculations in configuration space. For instance, the way
in which the disagreement in Fig B1 translates into Real
Configuration Space is depicted in Fig. B2. Solid red and
solid blue lines were obtained using Eq. (14) and Cℓ from
the Limber or the Exact evaluation respectively. Dashed line
follows from projecting the 3-d correlation function, as in
Eq. (5). Here, the failure of the Limber approximation to
describe the BAO bump is even more evident. The exact Cℓ

integration yields almost the same result as the one from
Eq. (5), as expected.

These limitations are even more severe when redshift
distortions are taken into account. Without lost of generality
we will use a top-hat selection in the following equations to
illustrate the problem:

w(θ) =
1

∆2
χ

∫ χmax

χmin

dχ1

∫ χmax

χmin

dχ2 ξ(r1, r2) (B5)

where ∆χ ≡ χmax − χmin. The correlation ξ(r1, r2) is only
a function of the relative separation between r1 and r2. Be-
cause of redshift distortions, this is in fact a function of π
and σ, the light-of-sight and transverse separation. For small
angles and distance observer, i.e. the Limber approximation,
we can take π = χ2 − χ1 and σ2 = χ1χ2θ

2 16. We can then
change variables in the above integrals from χ1 and χ2 to π
and σ

w(θ) =
2

θ∆2
χ

∫ σ=χmaxθ

σ=χminθ

dσ

∫ π=∆χ

π=0

dπ ξ(π, σ) (B6)

This result is valid both in real and redshift space. In
real space, ξ(π, σ) is replaced by the isotropic correlation

16 For a non-flat cosmology we need to replace χ by the comoving
angular diameter D(χ) distance here: σ2 = D(χ1)D(χ2)θ2

ξ(r) with r2 = π2 + σ2. In redshift space we use the linear
theory prediction (Kaiser 1987; Hamilton 1992):

ξ(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (B7)

where π and σ represent the separation along and transverse
to the line-of-sight (l.o.s) and ξℓ are the multi-poles of the
correlation function in terms of Legendre polynomials Pℓ,

ξℓ(s) =
2ℓ+ 1

2

∫ +1

−1

ξ(π, σ)Pℓ(µ)dµ, (B8)

with s =
√
σ2 + π2 and µ is the cosine angle with the l.o.s.

For the Kaiser model one has (Hamilton 1992),

ξ0(s) = b2
(

1 +
2β

3
+

β2

5

)

ξ(s) (B9)

ξ2(s) = b2
(

4β

3
+

4β2

7

)

[

ξ(s)− ¯ξ(s)
]

(B10)

ξ4(s) = b2
8β2

35

[

ξ(s) +
5

2
ξ̄(s)− 7

2
¯̄ξ(s)

]

(B11)

where b is the bias of the sample (assumed linear and local),
β = f/b, f = ∂ lnD/∂ ln a is the growth rate factor and

¯ξ(r) =
3

r3

∫ r

0

ξ(r′)r′
2
dr′, (B12)

¯̄ξ(r) =
5

r5

∫ r

0

ξ(r′)r′
4
dr′. (B13)

We will show next that Eq. (B6) turns out to be a bad
approximation to model BAO scales. But it provides a good
way to illustrate why redshift space distortions are so impor-
tant for the BAO detection for small (to moderate) photo-z
bin widths ∆χ. For large values of ∆χ the integral repro-
duces the real space correlation (because the total number
of pairs are preserved by redshift space distortions), while
for ∆χ < 500 h−1 Mpc the π integral is truncated by the
radial boundary of the top-hat window. Line-of-sight pairs
separated by π > ∆χ do not enter in the redshift bin and
are therefore not integrated. Smaller pairs are also affected
because many of them are missing at the boundaries. This
missing pairs produce a distortion in the measured w(θ) as
compared to real space correlation (see Fisher et al. 1994,
Padmanabhan et al. 2007 and Nock et al. 2010).

Both real and redshift results are quite inaccurate under
the Limber approximations. This is illustrated in Fig. B3,
which compares the calculation of the above integral in real
and redshift space in the Limber approximation (dashed
lines) with the corresponding exact results (continuous line)
by integrating Eq. (B5). Note how the results in real space
are very similar to the corresponding calculation in Fig. B2,
based on power spectrum calculation. The results in red-
shift space for the Limber approximations show even larger
deviations than in real space. The BAO peak, which shows
around θ ≃ 4◦ is clearly distorted by the Limber approxi-
mation. We conclude that the Limber approximation is not
good enough for precision BAO modeling and we use the
exact integration throughout this paper.
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Figure B3. Angular correlation in the Limber approximation
(dashed line) in Eq. (B6) in both real (bottom dashed line) and
redshift space (top dashed line). Continuous lines show the cor-
responding exact calculations using Eq. (B5).

APPENDIX C: ERRORS IN HARMONIC

SPACE

In this appendix we comment briefly on the correlation be-
tween different modes in Harmonic Space induce by a partial
sky coverage. We leave a more detailed discussion of this im-
portant issue for future work.

Equation (18) can be naively interpreted as if, in the
presence of a partial sky coverage, the errors in Cℓ increase
by a factor 1/

√

fsky with the co-variance matrix remaining
diagonal, that is

(∆Cℓ)
2 ≈ 1

fsky

2

2ℓ+ 1
C2

ℓ (C1)

This is not the case in reality, the presence of boundaries
does increase the error but it also introduces co-variance
between different ℓ modes (e.g. Cabré et al. 2007 and ref-
erences therein). Figure C1 shows the covariance in Har-
monic space between Cℓ measurements using 392 mocks with
z̄ = 0.5 and ∆z/(1 + z) = 0.1. As we can see in the bottom
panel the error is not diagonal but distributed in a range of
ℓ values approximately given by ±1/fsky . Remarkably, for a
given value of ℓ′ the integral,

∫

dℓCov(ℓ′, ℓ) ≈ 2

fsky(2ℓ′ + 1)
C2

ℓ′ (C2)

what leads to the simple interpretation that, when the sur-
vey is reduced from a full-sky limit by a fraction fsky , the
diagonal covariance rises from its value 2/(2l + 1) by a fac-
tor 1/fsky and “leaks” towards other ℓ modes resulting in a
non-diagonal error matrix. The final diagonal error is smaller
that its “full-sky” value (e.g. as shown in the top panel of
Fig. C1) but is the off-diagonal elements of Cov(ℓ, ℓ′) what
determine Cov(θ, θ′). Yet, we circumvent the problem of
computing non-diagonal components of Cov(ℓ, ℓ′) by assum-

Figure C1. Correlations of Cl spectra induced by partial sky

coverage. The total error budget in a partial sky survey increases
(roughly by a factor 1/fsky) compared to the full sky case. The
covariance matrix is no longer diagonal (bottom panel) with the
variance error smaller than its full sky value, by 30% in this par-
ticular case, as shown in the top panel (see text for details).

ing the scaling of the covariance in Configuration space as
1/fsky .

A possible way to overcome the complex covariance in
Harmonic Space is to bin the measured Cℓ spectra in such
a way to make the covariance matrix block-diagonal (e.g.
Cabré et al. 2007). A simple rule of thumb discussed in
Cabré et al. 2007 is to choose ∆ℓ fsky ∼ 2, which is in very
nice agreement with the width of the Cov(ℓ, ℓ′) distribu-
tion in Fig. C1. It remains to be studied whether this have
an impact in methods like BAO where one is after short-
wavelength features on top of the broad band Cℓ shape.

c© 0000 RAS, MNRAS 000, 000–000


	1 Introduction
	2 A model for the angular correlation function
	2.1 Photo-z
	2.2 Spatial clustering and redshift evolution

	3 Modeling the Covariance Matrix
	4 Simulations and Mock survey
	5 model vs. mocks I : the correlation signal
	5.1 Nonlinear Gravity and evolution
	5.2 Biased tracers
	5.3 Redshift Distortions and Photo-z

	6 model vs. mocks II : the error matrix
	6.1 Comparing the w() variance
	6.2 Comparing the w() reduced covariance
	6.3 The impact of shot-noise

	7 Conclusions
	A Spatial clustering
	B The Limber approximation
	B1 C power spectrum : exact evaluation and Limber formula
	B2 Correlation Function : results in Real and Redshift Space

	C Errors in Harmonic Space

