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Abstract

A method for the search of exact solutions for equation of a nonlocal scalar field in a
non-flat metric is considered. In the Friedmann–Robertson–Walker metric the proposed
method can be used in the case of an arbitrary potential, with the exception of linear
and quadratic potentials, and allows to get in quadratures solutions, which depend on two
arbitrary parameters. Exact solutions have been found for an arbitrary cubic potential,
which consideration is motivated by the string field theory, as well as for exponential,
logarithmic and power potentials. It has been shown that one can add the k-essence field
to the model to get exact solutions for all Einstein equations.

1 GRAVITATIONAL MODELS WITH A NONLOCAL

SCALAR FIELD

Nonlocal cosmological models, based on the string field theory (SFT) [1, 2] and p-adic string
theory [3] are actively developed [4]–[22]. Characteristic properties of nonlocal models are the null
energy condition violation and arising of phantom fields, which is connected with high derivative
terms. Local models with phantom fields are considered as physically unacceptable ones because
of a problem quantum instability [23, 24]. In papers [25, 26] the instability problem is reduced
to such choosing of effective theory parameters that the instability turns out to be essential only
at times that are not described in the framework of the effective theory approximation. It is
mathematically expressed in that the terms, which result to instability, are treated as corrections
essential only at small energies below the physical cutoff. The given approach allows considering
such effective theories as physically acceptable with the presumption that an effective theory
admits immersion in a fundamental theory, for example, the string field theory.

The interest in cosmological models related to open string field theory [4] is provoked by the
possibility of obtaining solutions describing transitions from a perturbed vacuum to the true
vacuum (the so-called rolling solutions). After all massive fields (or some of the lower massive
fields) are integrated out using the equations of motion, the open string tachyon gets a potential
with a nontrivial vacuum corresponding to the minimal value of energy. In the dark energy
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model [4] (see also [27, 28, 29, 30]) it is implied that the Universe is a slowly decomposing
D3–brane, whose decay is described by an open string tachyon mode. According to the Sen
conjugation [1], the tachyon motion from an unstable vacuum to the stable vacuum describes
the D-brane transition to the true vacuum. In fact one obtains a nonlocal potential with a
nonlocality parameter determined by the string scale. Using a suitable redefinition of the fields,
one can make the potential local, at that the kinetic term becomes nonlocal. This nonstandard
kinetic term leads to a behavior similar to the behavior of a phantom field, and it can be
approximated with a phantom kinetic term. Hence, the behavior of an open string tachyon can
be effectively simulated by a scalar field with a negative kinetic term [31].

The string field theory also gives asymptotic conditions on the solutions [27, 28, 29, 30].
Special interest is represented with solutions, which are bounded on the whole of real axis and
have a nonzero asymptotic at t → +∞. In this paper such solutions of the field equation in the
Friedmann–Robertson–Walker metric have been found for cubic and logarithmic potentials.

Let us consider the gravitational model with a nonlocal scalar field φ, which is described by
the following action:

S =

∫
d4x

√
−gα′

(
R

16πGN
+

1

g2o

(
1

2
φF(�g)φ− V (φ)

)
− Λ

)
, (1)

where GN is the Newtonian gravitational constant (8πGN = 1/M2
P, MP is the Planck mass),

α′ is the string length squared, go is the open string coupling constant. We use the signature
(−,+,+,+), the matrix gµν is the metric tensor, g is the determinant of gµν , R is the scalar
curvature. The potential V (φ) is a twice continuously differentiable function, the cosmological
constant is considered as a part of the potential V (φ). The d’Alembert operator �g is applied
to scalar functions and can be written as follows:

�g =
1√−g

∂µ
√
−ggµν∂ν . (2)

The scalar field φ is dimensionless, while [α′] = cm2 and [go] = cm. It is convenient to
introduce dimensionless coordinates x̄µ = xµ/

√
α′, the dimensionless gravitational constant

GN = GN/α
′, and the dimensionless coupling constant ḡo = go/

√
α′. The curvature scalar

calculated in dimensionless coordinates is denoted as R̄, the corresponding d’Alembert operator
is marked as �g. We get action (1) in the following form:

S =

∫
d4x̄

√
−g

(
R̄

16πGN

+
1

ḡ2o

(
1

2
φF(�g)φ− V (φ)

))
,

In the following formulae we always use dimensionless coordinates and parameters and omit bars
over them.

The function F is assumed to be an analytic function on whole complex plane (i.e. an entire
function), therefore, one can represent it by the convergent series expansion:

F(�g) =

∞∑

n=0

fn�
n
g . (3)
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From action (1) we obtain the following equations

Gµν = 8πGNTµν − 8πGNΛgµν , (4)

F(�g)φ =
dV

dφ
, (5)

where Gµν is the Einstein tensor.
The energy–momentum (stress) tensor Tµν is calculated by the standard formula

Tµν = − 2√−g

δS

δgµν
=

1

g2o

(
Eµν + Eνµ − gµν (g

ρσEρσ +W )
)
, (6)

where

Eµν ≡ 1

2

∞∑

n=1

fn

n−1∑

l=0

∂µ�
l
gφ∂ν�

n−1−l
g φ, W ≡ 1

2

∞∑

n=2

fn

n−1∑

l=1

�
l
gφ�

n−l
g φ− f0

2
φ2 + V (φ). (7)

The case of a quadratic potential has been studied in papers [14, 15, 17, 19]. In paper [14] the
algorithm of localization of the Einstein equations has been proposed and exact solutions in the
spatially flat Friedmann–Robertson–Walker metric have been found. This algorithm can be used
only in the cases of linear and quadratic potentials. At the same time from the string theory one
gets cubic and the fourth degree potentials, so, a quadratic potential can be considered only as
an approximation [17]. In this connection the search of solutions for equation (5) with a cubic
potential in the Friedmann–Robertson–Walker metric is actively conducted [16, 18].

In this paper we propose the method of the search of solutions for (5) in the Friedmann–
Robertson–Walker metric, which gives exact two-parameter solutions in the close form or in
quadratures. This method allows to find solutions for an arbitrary potential V (φ), with the
exception of the cases of linear and quadratic potentials. In the paper we consider the case
of cubic potential, which is connected with the string theory (Section 3), as well as cases of
logarithmic, exponential and power potentials (Section 4).

Note that in distinguish to the localization method [19], which allows to localize all Einstein
equations, this method solves only equation (5), whereas equations (4), after the substitution
of the obtained solution, are inconsistent in the general case. In Section 5 we show that the
supplement of a scalar k-essence field gives an exact solution of the system of all nonlocal
Einstein equations. The question about possible types of the additional matter and ability to
obtain an exact solution for all Einstein equations in modified gravitation models, for example,
in f(R) gravitational model, without additional matter requires distinct investigations.

For cubic and exponential potentials approximate solutions for equation (5) with the string
field theory inspired form of F(�) have been found by G. Calcagni and G. Nardelli [18] as a
generalization of their solutions in the Minkowski space [32]. In distinguish from [18] in this
paper we obtain the exact solutions for equation (5), in addition, the Hubble parameter H(t) is
a solution of equation, it is not given a priori.

2 SOLUTIONS FOR EQUATIONS OF MOTION

Let us consider nonlocal Klein–Gordon equation in the case of an arbitrary potential:

F(�g)φ = V ′(φ), (8)
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where a prime denotes the derivative with respect to φ. A particular solution of (8) is a solution
of the following system of local equations:

N−1∑

n=0

fn�
n
g φ = V ′(φ)− C, fN�

N
g φ = C, (9)

where N − 1 is a natural number, C is an arbitrary constant.
In the case f1 6= 0 we can choose N = 2. In the spatially flat Friedmann–Robertson–Walker

metric with the interval:

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
, (10)

where a(t) is the scale factor, we obtain from (9) the following system:

f1�gφ = − f1

(
φ̈+ 3Hφ̇

)
= V ′(φ)− f0φ− C, f2�

2
g φ = C. (11)

The functionH(t) is the Hubble parameter: H ≡ ȧ(t)/a(t), and a dot denotes the time derivative.
It is easy to see that at f2 = 0 solutions can exist only for C = 0. Let us consider the case
f2 6= 0. The first equation of (11) can be rewritten in the following form:

H = − 1

3φ̇

(
φ̈+ Ṽ ′(φ)− C

f1

)
, (12)

where

Ṽ ′(φ) ≡ 1

f1
(V ′(φ)− f0φ) . (13)

Equation

(∂2
t + 3H∂t)

(
φ̈+ 3Hφ̇

)
=

C

f2
, (14)

transfigures to the following form

(∂2
t + 3H∂t)Ṽ

′ = Ṽ ′′′φ̇2 + Ṽ ′′(φ̈+ 3Hφ̇) = − C

f2
. (15)

We eliminate H and obtain

φ̇2 =
1

Ṽ ′′′

(
Ṽ ′′Ṽ ′ − C

f1
Ṽ ′′ − C

f2

)
. (16)

Equation (16) can be solved in quadratures. The obtained solution depends on two arbitrary
parameters C and t0, the latter papameter corresponds to the time shift.

At C = 0 we get the following equation

φ̇2 =
Ṽ ′Ṽ ′′

Ṽ ′′′

≡ (V ′ − f0φ)(V
′′ − f0)

f1V ′′′
, (17)

using which one can get solutions at f2 = 0 as well.
Remark that, the proposed method can not be used in the cases of linear and quadratic

potentials, since for them Ṽ ′′′ ≡ 0. Consequently this way of the search of solutions is suited
only for nonlinear in φ equation (8). In the case of linear in φ equation (8) the search of solutions
is possible due to the localization method [14, 15, 19].
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3 CUBIC POTENTIAL

The case of cubic potential is actively studied, since it is connected with the bosonic string field
theory [16, 18]. Let us find solutions for equation (8) at

V (φ) = B3φ
3 +B2φ

2 +B1φ+B0, (18)

where B0, B1, B2, and B3 are arbitrary constants, but B3 6= 0. We get (16) in the following
form

φ̇2 = 4C3φ
3 + 6C2φ

2 + 4C1φ+ C0, (19)

where

C0 =
(B1 − C)(2B2 − f0)

6f1B3
− Cf 2

1

6f1f2B3
, C2 =

2B2 − f0
4f1

, (20)

C1 =
6B3(B1 − C) + (2B2 − f0)

2

24f1B3
, C3 =

3B3

4f1
. (21)

Note, that C3 6= 0 since B3 6= 0. Constants B2 and f0 appear in equation (19) only in the
combination 2B2 − f0. Using the transformation

φ =
1

2C3
(2ξ − C2), (22)

we get the following equation
ξ̇2 = 4ξ3 − g2ξ − g3, (23)

where

g2 = 3C2
2 − 4C1C3 =

(2B2 − f0)
2 − 12B3(B1 − C)

16f 2
1

, (24)

g3 = 2C1C2C3 − C3
2 − C0C

2
3 = − 3B3C

32f2f1
. (25)

A solution of equation (23) is either the Weierstrass elliptic function

ξ(t) = ℘(t− t0, g2, g3), (26)

where t0 is an arbitrary number, or a degenerate elliptic function. As known [33], the Weierstrass
elliptic function is a double periodic meromorphic function, which has one double pole in the
fundamental parallelogram of periods. If φ(t) is an elliptic function, then the Hubble parameter
H(t) is an elliptic function as well.

Let us consider degenerated cases. At g2 = 0 and g3 = 0 the general solution for equation
(23) is

ξ =
1

(t− t0)2
, (27)

therefore,

φ1 =
1

C3(t− t0)2
− C2

2C3
=

4f1
3B3(t− t0)2

− 2B2 − f0
6B3

. (28)
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Substituting φ1 into (12), we get

H1 =
5

3(t− t0)
. (29)

From conditions g2 = 0 and g3 = 0 it follows that

C = 0, B1 =
(2B2 − f0)

2

12B3

. (30)

Solutions, which are bounded on the whole real axis and tends to a finite limit at t → ∞,
attract the special interest. Such a solution is the following function

φ2 = D2 tanh(β(t− t0))
2 +D0, (31)

D2 =
4

3B3
f1β

2, D0 =
1

18B3

(
3(f0 − 2B2)− 16f1β

2
)
, (32)

where β is a root of the following equation

1024f2f1β
6 + 576f 2

1β
4 + 324B3B1 − 27(2B2 − f0)

2 = 0. (33)

Bounded real solutions for equation (19) correspond to real roots of equation (33). Pure
imaginary roots of equation (33) correspond to unbounded real solutions for equation (19),
because tanh(βt)2 = − tan(iβt)2. The solution φ2 exists at

C =
1

36B3

(
64f 2

1β
4 − 3(2B2 − f0)

2 + 36B3B1

)
. (34)

The Hubble parameter has the following form:

H2 =
β(2 cosh(βt)2 − 3)

3 cosh(βt) sinh(βt)
−

− 3B3(D2 tanh(βt)
2 +D0)

2 + (2B2 − f0)(D2 tanh(βt)
2 +D0) +B1

6f1D2β tanh(βt)(1− tanh(βt)2)
.

The parameter t0 is an arbitrary complex number, so, using the equality tanh(t + iπ/2) =
coth(t), one gets the following real solutions

φ̃2 = D2 coth(β(t− t0))
2 +D0. (35)

Note that solutions in terms of hyperbolic functions exist only at C 6= 0, since g3 = 0 at
C = 0, and solution (28) is the unique solution in terms of elementary functions.

4 EXACT SOLUTIONS FOR OTHER TYPES OF PO-

TENTIAL

4.1 Logarithmic Potential

Note that one can get equation (16) in the form (19), staring from a nonpolynomial potential
as well. Indeed, let

V (φ) = C1 ln(αφ), (36)
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where C1 and α are arbitrary constants. The parameter α does not enter into equation (16):

φ̇2 =
f 2
0

2f1C1
φ4 +

C(f2f0 − f 2
1 )

2f1f2C1
φ3 +

C

2f1
φ− C1

2f1
. (37)

At f0 6= 0 in the general case the Jacobi elliptic functions are solutions for (37). At f0 = 0 and
C 6= 0 equation (37) is a particular case of equation (19), which solutions are the Weierstrass
elliptic functions.

Let us analyse real solutions in terms of the elementary functions. Such solutions have been
found only at f0 = 0.

At C = 0 one gets the following solutions

φ0(t) = −
√
−2C1f1
2f1

(t− t0), H0 =
2

3(t− t0)
+

f0
3f1

(t− t0). (38)

At C 6= 0 the following solution exists

φln = D̃2 tanh
2(A(t− t0)) + D̃0, (39)

where A is an arbitrary number,

D̃2 = − C1(32f2A
2 − 9f1)

18Af1(16f2A2 − 3f1)ς
, D̃0 =

C1

12Af1ς
, ς = ±

√
C1

144f2A2 − 27f1
,

at that C = 64A3f2ς. The Hubble parameter

Hln =
A(2 cosh(At)2 − 3)

3 cosh(At) sinh(At)
− C1 cosh(At)

2

6Af1D̃2((D̃2 tanh(At)2 + D̃0) tanh(At)
. (40)

corresponds to this solution.

4.2 Exponential Potential

In paper [18] the exponential potential has been consider in addition to the cubic potential and
approximate solutions for equation (8) have been obtained.

Let V (φ) = C1e
αφ. At f0 = 0 and C = 0 solutions for (9) are elementary functions and have

the following form:

φexp(t) =
1

α
ln

(
4f1

C1α2(t− t0)2

)
, Hexp(t) =

1

t− t0
. (41)

Note that the obtained Hubble parameter Hexp(t) is proportional to the Hubble parameter,
which has been used in paper [18], and to the Hubble parameter, obtained in the case of cubic
potential (formula (29)).
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4.3 Power Potential

Let us consider solutions in the case of the potential V (φ) = C1φ
n. At f0 = 0 equation (16) is

as follows:

φ̇2 =
C2

1f2n
2(n− 1)φn − C1Cf2n(n− 1)φ− Cf 2

1φ
3−n

f1f2C1n(n− 1)(n− 2)
(42)

At C = 0 this equation is equivalent to

φ̇2 =
C1nφ

n

f1(n− 2)
(43)

and has a solution in the form of the elementary function:

φn(t) = 22/(n−2)

(
f1

C1n(n− 2)(t− t0)2

)1/(n−2)

. (44)

The corresponding Hubble parameter is equal to

Hn(t) =
3n− 4

3(n− 2)(t− t0)
. (45)

At n = 4/3 we get a particular solution to equation (8) in the Minkowski space:

φm(t) = ± 2C1

√
−2f1C1

27f 2
1

(t− t0)
3. (46)

Note that in the Minkowski space exact bounded at all values of t solutions for nonlocal equations
with power potentials have been found in paper [28].

5 COSMOLOGICAL MODEL WITH A NONLOCAL

SCALAR FIELD AND A k-ESSENCE FIELD

The goal of this Section is to show, that the supplement of the k-essence scalar field Ψ allows
to obtain a system of the Einstein equations, which has an exact solution, at that the Hubble
parameter and the nonlocal field are given by formulae (12) and (16) respectively. The k-essence
models are considered in cosmology both as inflation models [34, 35, 36], and as dark energy
models [37, 38, 39, 40, 26], (see also [41] and references therein).

Let us consider the following action

S2 =

∫
d4x

√
−g

(
R

16πGN
+

1

g2o

(
1

2
φF(�g)φ− V (φ)

)
−P(Ψ, X)

)
, (47)

where X ≡ −gµν∂µΨ∂νΨ. In the Friedmann–Robertson–Walker metric the function Ψ depends
only on time, so X = Ψ̇2.

Following paper [26], we select the pressure in the following form

P(Ψ, X) =
1

2
(pq(Ψ)− ̺q(Ψ)) +

1

2
(pq(Ψ) + ̺q(Ψ))X +

1

2
M4(Ψ)(X − 1)2. (48)
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We consider functions pq(Ψ), ̺q(Ψ), and M4(Ψ) as arbitrary differentiable functions. The
energy density of the k-essence field is equal to

E(Ψ, X) = (pq(Ψ) + ̺q(Ψ))X + 2M4(Ψ)(X2 −X)−P(Ψ, X). (49)

The Einstein equations, which have been obtained using the variation of S2, have the following
form:

3H2 = 8πGN(̺+ E),
2Ḣ + 3H2 = −8πGN(p + P).

(50)

Varying the action S2, we also get equation (8) and equation for the k-essence scalar field Ψ

Ė = − 3H(E + P). (51)

In the Friedmann–Robertson–Walker metric the energy–momentum tensor (6) has the fol-
lowing form

Tµν = gµνdiag(−̺, p, p, p), (52)

where

̺ =
1

g2o

( ∞∑

n=1

fn
2

(n−1∑

l=0

∂t�
lφ∂t�

n−1−lφ+
n−1∑

l=1

�
lφ�n−lφ

)
− f0

2
φ2 + V (φ)

)
,

p =
1

g2o

( ∞∑

n=1

fn
2

(n−1∑

l=0

∂t�
lφ∂t�

n−1−lφ−
n−1∑

l=1

�
lφ�n−lφ

)
+

f0
2
φ2 − V (φ)

)
.

Let φ2 is a solution to system (9) at N = 2. Using �
2
gφ2 = C/f2, we get

̺(φ2) = E00(φ2) +W (φ2), p(φ2) = E00(φ2)−W (φ2), (53)

where

E00(φ2) =
1

2g2o

(
f1(∂tφ2)

2 + 2f2∂tφ2∂t�gφ2 + f3(∂t�gφ2)
2
)
,

W (φ2) =
1

g2o

(
f2
2
(�gφ2)

2 +
f3C

f2
�gφ2 +

f4C
2

2f 2
2

− f0
2
φ2
2 + V (φ2)

)
.

The k-essence models (without additional fields) have one useful property. For any real differ-
entiable function H0(t) there exist such differentiable functions ̺q(Ψ) and pq(Ψ), that functions
H0(t − t0) and Ψ(t) = t − t0 are a particular solution to system (50)–(51). This property can
be generalized on the case of the models with an additional nonlocal scalar field, which are
described by action (47). Indeed, at Ψ(t) = t− t0 we obtain

E = ̺q(Ψ) = ̺q(t− t0), P = pq(Ψ) = pq(t− t0). (54)

Substituting into (50) expression of ̺q and pq, we get

̺q(Ψ) = ̺q(t− t0) =
3

8πGN

H2(t− t0)− ̺(t− t0),

pq(Ψ) = pq(t− t0) = −̺q(t− t0)− ̺(t− t0)− p(t− t0)−
1

4πGN
Ḣ(t− t0).

(55)
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It is easy to see that system (50)–(51) and equation (8) have the exact particular solution, at
that functions H(t− t0) and φ(t− t0) are the obtained solution of equation (8) and Ψ(t) = t− t0.

So, the algorithm to obtain exact solutions is as follows: for the given potential V (φ) we
find H(t) and φ(t), calculate the energy–momentum tensor and substitute the obtained values
into (55). The obtained values of ̺q and pq give the exact solvable model with a nonlocal scalar
field and the k-essence field. The function M(Ψ) can be selected arbitrarily.

Let us illustrate this scheme on the simplest example, connected with a cubic potential, and
consider solution (28)–(29). Conditions (30) of existence of this solution leave constants B3

and B2 arbitrary. Using the arbitrariness of B2, we can, without loss of generality, put f0 = 0.
Also, for compactness of the record we put t0 = 0. For solution (28)–(29) we get

�gφ1 =
16f1
3B3t4

, (56)

therefore,

E00 =
32f 2

1 (f1t
4 + 16f2t

2 + 64f3)

9B2
3t

10
, W =

128f2f
2
1

9g2oB
2
3t

8
+

1

g2o
V (φ1). (57)

Consequently we get

̺q(Ψ) =
B3

2 − 27B0B
2
3

27g2oB
2
3

+
25

24πGNΨ2
− 160f 3

1

27g2oB
2
3Ψ

6
− 640f2f

2
1

9g2oB
2
3Ψ

8
− 2048f3f

2
1

9g2oB
2
3Ψ

10
,

pq(Ψ) = −B3
2 − 27B0B

2
3

27g2oB
2
3

− 5

8πGNΨ2
− 32f 3

1

27g2oB
2
3Ψ

6
− 128f2f

2
1

3g2oB
2
3Ψ

8
− 2048f3f

2
1

9g2oB
2
3Ψ

10
.

Thus, we can make a conclusion that the adding of the k-essence field allows to construct a
self-consistent system of the Einstein equations for the obtained solution to equation (8). The
choice of the k-essence scalar field as an additional field is reasoned by the goal to get a self-
consistent system of the Einstein equations with no restriction on the type of the potential and
solutions.

6 CONCLUSIONS

In this paper the method of the search of exact solutions to the nonlocal field equation (8) in
the Friedmann–Robertson–Walker metric has been proposed. It has been demonstrated that for
an arbitrary potential besides of linear or quadratic ones there exists a particular two-parameter
solution, which can be found in quadratures.

The string field theory inspired case of a cubic potential has been consider in detail. It is
shown that solutions are either Weierstrass elliptic functions or degenerate elliptic functions, for
example, solutions in terms of hyperbolic tangent have been obtained. Exact solutions in terms
of elementary functions have been found for logarithmic, exponential and power potentials as
well.

Note that the proposed method allows to find a solution only for the field equation, but not
for the whole system of the Einstein equations. It has been shown that the supplement of the
k-essence scalar field allows to construct a self-consistent system of the Einstein equations for
the obtained solution to equation (8). The localization of the Einstein equations in cosmological
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models with a nonlocal scalar field and an arbitrary potential is an actual problem, which
studying requires distinct investigations1.

Acknowledgements

The author is grateful to the organizers of the International Bogolyubov conference ”Prob-
lems of Theoretical and Mathematical Physics” (Moscow–Dubna, Russia, August 20–26, 2009)
for the possibility to present results of my work and financial support. I wish to express my
thanks to I.Ya. Aref’eva and N. Nunes for useful and stimulating discussions. This research is
supported in part by RFBR grant 08-01-00798, grant of Russian Ministry of Education and Sci-
ence NSh-4142.2010.2, and by Federal Agency for Science and Innovation under state contracts
02.740.11.5057 and 02.740.11.0244.

References

[1] K. Ohmori, A Review on Tachyon Condensation in Open String Field Theories,
hep-th/0102085
I.Ya. Arefeva, D.M. Belov, A.A. Giryavets, A.S. Koshelev, and P.B. Medvedev, Noncom-
mutative field theories and (super)string field theories, hep-th/0111208
W. Taylor, Lectures on D-branes, tachyon condensation, and string field theory,
hep-th/0301094

[2] I.Ya. Arefeva, Theor. Math. Phys. 163 (2010) 697–704 [Teor. Mat. Fiz. 163 (2010) 355–365]

[3] L. Brekke, P.G.O. Freund, M. Olson, and E. Witten, Nucl. Phys. B 302 (1988) 365–402
P.H. Frampton and Y. Okada, Phys. Rev. D 37 (1988) 3077–3079
V.S. Vladimirov, I.V. Volovich, and E.I. Zelenov, p-adic Analysis and Mathematical Physics,
Ser. Sov. East European Math. V. 10, World Sci., Singapore, 1994
B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, and I.V. Volovich, Anal. Appl. 1 (2009)
1–17, arXiv:0904.4205

[4] I.Ya. Aref’eva, AIP Conf. Proc. 826, p-Adic Mathematical Physics, eds. A.Yu. Khrennikov,
Z. Rakic, I.V. Volovich, AIP, Melville, NY, 2006, pp. 301–311, astro-ph/0410443
I.Ya. Aref’eva, AIP Conf. Proc. 957, Particles, Strings, and Cosmology, eds. A. Rajantie,
P. Dauncey, C. Contaldi, H. Stoica, AIP, Melville, NY, 2007, pp. 297–300, arXiv:0710.3017

[5] G. Calcagni, JHEP 0605 (2006) 012, hep-th/0512259

[6] N. Barnaby, T. Biswas, and J.M. Cline, JHEP 0704 (2007) 056, hep-th/0612230
N. Barnaby and J.M. Cline, JCAP 0707 (2007) 017, arXiv:0704.3426
N. Barnaby, Can. J. Phys. 87 (2009) 189–194, arXiv:0811.0814

[7] A.S. Koshelev, JHEP 0704 (2007) 029, hep-th/0701103

1The localization method has been constructed only in the case of linear or quadratic potential [19].

11

http://arxiv.org/abs/hep-th/0102085
http://arxiv.org/abs/hep-th/0111208
http://arxiv.org/abs/hep-th/0301094
http://arxiv.org/abs/astro-ph/0410443
http://arxiv.org/abs/0710.3017
http://arxiv.org/abs/hep-th/0512259
http://arxiv.org/abs/hep-th/0612230
http://arxiv.org/abs/0704.3426
http://arxiv.org/abs/0811.0814
http://arxiv.org/abs/hep-th/0701103


[8] I.Ya. Aref’eva, L.V. Joukovskaya, and S.Yu. Vernov, JHEP 0707 (2007) 087,
hep-th/0701184

[9] I.Ya. Aref’eva and I.V. Volovich, Int. J. of Geom. Meth. Mod. Phys. 4 (2007) 881–895,
hep-th/0701284

[10] J.E. Lidsey, Phys. Rev. D 76 (2007) 043511, hep-th/0703007

[11] G. Calcagni, M. Montobbio, and G. Nardelli, Phys. Rev. D 76 (2007) 126001,
arXiv:0705.3043
G. Calcagni and G. Nardelli, Phys. Rev. D 78 (2008) 126010, arXiv:0708.0366
G. Calcagni, M. Montobbio, and G. Nardelli, Phys. Lett. B 662 (2008) 285–289,
arXiv:0712.2237
G. Calcagni and G. Nardelli, Phys. Lett. B 669 (2008) 102–112, arXiv:0802.4395

[12] L.V. Joukovskaya, Phys. Rev. D 76 (2007) 105007, arXiv:0707.1545;
L.V. Joukovskaya, Rolling Tachyon in nonlocal cosmology, AIP Conf. Proc. 957, Particles,
Strings, and Cosmology, eds. A. Rajantie, P. Dauncey, C. Contaldi, H. Stoica, AIP, Melville,
NY, 2007, pp. 325–328, arXiv:0710.0404

[13] N. Barnaby and N. Kamran, JHEP 0802 (2008) 008, arXiv:0709.3968
N. Barnaby and N. Kamran, JHEP 0812 (2008) 022, arXiv:0809.4513

[14] I.Ya. Aref’eva, L.V. Joukovskaya, and S.Yu. Vernov, J. Phys. A: Math. Theor. 41 (2008)
304003, arXiv:0711.1364

[15] D.J. Mulryne and N.J. Nunes, Phys. Rev. D 78 (2008) 063519, arXiv:0805.0449
D.J. Mulryne and N.J. Nunes, Non-linear non-local Cosmology, AIP Conf. Proc. 1115,
The Dark Side of the Universe, ed. Kh. Shaaban, Spriger, Berlin, 2009, pp. 329–334,
arXiv:0810.5471

[16] L.V. Joukovskaya, JHEP 0902 (2009) 045, arXiv:0807.2065

[17] A.S. Koshelev and S.Yu. Vernov, Cosmological perturbations in SFT inspired non-local scalar
field models, arXiv:0903.5176

[18] G. Calcagni and G. Nardelli, Int. J. Mod. Phys. D 19 (2010) 329, arXiv:0904.4245

[19] S.Yu. Vernov, Class. Quant. Grav. 27 (2010) 035006, arXiv:0907.0468
S.Yu. Vernov, Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions,
arXiv:1005.0372

[20] G. Calcagni and G. Nardelli, Phys. Rev. D 82 (2010) 123518, arXiv:1004.5144

[21] A.S. Koshelev and S.Yu. Vernov, Analysis of scalar perturbations in cosmological models
with a non-local scalar field, arXiv:1009.0746

[22] F. Galli and A.S. Koshelev, Theor. Math. Phys. 164 (2010) 1169–1175 [Teor. Mat. Fiz. 164
(2010) 401–409], arXiv:1010.1773

12

http://arxiv.org/abs/hep-th/0701184
http://arxiv.org/abs/hep-th/0701284
http://arxiv.org/abs/hep-th/0703007
http://arxiv.org/abs/0705.3043
http://arxiv.org/abs/0708.0366
http://arxiv.org/abs/0712.2237
http://arxiv.org/abs/0802.4395
http://arxiv.org/abs/0707.1545
http://arxiv.org/abs/0710.0404
http://arxiv.org/abs/0709.3968
http://arxiv.org/abs/0809.4513
http://arxiv.org/abs/0711.1364
http://arxiv.org/abs/0805.0449
http://arxiv.org/abs/0810.5471
http://arxiv.org/abs/0807.2065
http://arxiv.org/abs/0903.5176
http://arxiv.org/abs/0904.4245
http://arxiv.org/abs/0907.0468
http://arxiv.org/abs/1005.0372
http://arxiv.org/abs/1004.5144
http://arxiv.org/abs/1009.0746
http://arxiv.org/abs/1010.1773


[23] I.Ya. Aref’eva and I.V. Volovich, Theor. Math. Phys. 155 (2008) 503–511 [Teor. Mat. Fiz.
155 (2008) 3–12], hep-th/0612098

[24] R. Kallosh, J.U. Kang, A. Linde, V. Mukhanov, J. Cosmol. Astropart. Phys., 0804 (2008)
018; arXiv:0712.2040

[25] S. Weinberg, Phys. Rev. D 77 (2008) 123541, arXiv:0804.4291
J.Z. Simon, Phys. Rev. D 41 (1990) 3720–3733

[26] P. Creminelli, G. D’Amico, J. Norena, and F. Vernizzi, JCAP 0902 (2009) 018,
arXiv:0811.0827

[27] I.Ya. Aref’eva, S.Yu. Vernov, and A.S. Koshelev, Theor. Math. Phys., 148 (2006) 895–909
[Teor. Mat. Fiz. 148 (2006) 23–41], astro-ph/0412619,
I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Phys. Lett. B 628 (2005) 1–10,
astro-ph/0505605

[28] I.Ya. Aref’eva and L.V. Joukovskaya, JHEP 0510 (2005) 087, hep-th/0504200

[29] I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Phys. Rev. D 72 (2005) 064017,
astro-ph/0507067

[30] S.Yu. Vernov, Theor. Math. Phys. 155 (2008) 544–556 [Teor. Mat. Fiz. 155 (2008) 47–61],
astro-ph/0612487

[31] I.Ya. Aref’eva, L.V. Joukovskaya, and A.S. Koshelev, JHEP 0309 (2003) 012,
hep-th/0301137

[32] G. Calcagni and G. Nardelli, Nucl. Phys. B 823 (2009) 234–253, arXiv:0904.3744
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