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Abstract. We re–investigate the construction of half–supersymmetric seven–brane
solutions of IIB supergavity. In contrast to previous approaches we allow the occurrence of
objects with monodromy Tr Λ 6= 2. We obtain non-trivial information from the requirement
of a globally well–defined Killing spinor and by including SL(2,Z)–invariant source terms.

1. Introduction

The construction of half–supersymmetric seven–brane solutions goes back to the classic work
of [1] where they were presented as cosmic string solutions of a D=4 gravity dilaton/axion
system. Later, after the invention of D–branes [2], these solutions were oxidized to D=10
dimensions and re–interpreted as D7–brane solutions [3]. Since then D7–branes, in particular
in the form of D3–D7 brane systems, have found important applications in model building,
see e.g. [4–6], and cosmology [7, 8].

The original motivation of [1] was not the construction of cosmic string solutions as such,
but the investigation of supersymmetric String Theory backgrounds more general than the
direct product of 4-dimensional Minkowski spacetime and a Calabi-Yau 3-fold. In this context
the gravity plus dilaton/axion system of [1] arises from compactification on a torus T 2, the
complex axion-dilaton field τ being its modular parameter. Within the context of D=10 IIB
supergravity one must for this purpose rely on a 12-dimensional F-theory. It is the purpose
of this work to re–analyze half–supersymmetric seven–brane solutions of IIB supergravity
without invoking the compactification of a higher–dimensional theory. Instead, we obtain
non-trivial information by the requirement that there exists a globally well-defined Killing
spinor.

In general, D7–branes do not come alone since this leads to singularities at a finite distance
of the D7–brane. To obtain a globally well–defined solution one must add other seven–brane
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objects whose monodromy is not necessarily related to the monodromy of a D7–brane by
a SL(2,Z)–transformation. In the case they are not related, we will call these objects, for
reasons that will become clear soon, det Q > 0 branes. In the multiple D7–brane solutions
of [1] these det Q > 0 branes occur in multiples such that their masses and monodromies
cancel amongst each other and one is left with multiple D7–branes only. We will present
new half–supersymmetric configurations where these cancellations do not occur and we will
discuss the properties of these solutions. In particular we will show that they can be used
as the basic building blocks for constructing general seven–brane solutions, including the
multiple D7–branes of [1]

Another distinguishing feature of our analysis is that we add SL(2,Z)–invariant source
terms to the equations of motion. Strictly speaking they are SL(2,Z)–invariant provided we
also transform the constants that occur in these source terms, see eq. (1). The source terms
both represent the embedding of a probe D7–brane as well as det Q > 0 objects into the IIB
supergravity background. They enable us to derive an expression for both the seven–brane
solution close to the position of the brane as well as the monodromy of the brane in terms of
the charges describing the source term.

2. Seven-brane Source Terms

We begin by analyzing the source terms. The addition of probe 7-branes to a gravity-axion-
dilaton background is described by the following action:

S =

∫

d10x
√−g

(

R− ∂µτ∂
µτ̄

2 (Imτ)2
−

∫

Σ
d8σ

√
−g(8)

δ(x−X(σ))√−g
1

Imτ

(

p+ q|τ |2 + r
τ + τ̄

2

))

,

(1)
where p, q, r are real numbers and τ = χ + ie−φ with χ the axion and φ the dilaton. The
world-volume, Σ, is parameterized by {σi, i = 0, 1, . . . , 7}. The metric on the world-volume
is g(8)ij which is the pull-back of the target-space Einstein frame metric gµν . The embedding
coordinates of the brane are denoted by Xµ(σ), and so the pull-back is given by

g(8)ij(σ) =
∂Xµ

∂σi
∂Xν

∂σj
gµν(X) . (2)

We will only consider objects for which in the static gauge X8 = X9 = 0, i.e. we do not
consider fluctuations of the world-volume. The source term in (1) should be interpreted
as adding a purely static object to the theory. Note that the source term is linear in p, q
and r. This is related to the fact that, unlike strings, all seven–branes have the same half–
supersymmetry projection operator which is SL(2,Z)–invariant.

Seven-branes couple electrically to 8-forms. It is special to 7-branes that the scalar degrees
of freedom which describe the tension of the brane and the 8-form degrees of freedom which
describe the electric coupling are dual degrees of freedom. In the action (1) the bulk part only
consists of scalars and gravity. Note that the Wess-Zumino term of the world-volume theory
is absent in the coupling. This is related to the following. In order to properly derive (1) one
needs to be able to describe scalars and 8-forms as independent fields of one and the same
action. This can be realized using the Pasti-Sorokin-Tonin (PST) method [9, 10]. The PST
method allows one to work with potentials and their duals as independent fields in one action.
For the particular case of scalars and 8-forms such a bulk action has been constructed [11].



The details of adding the 7-brane world-volume action to the bulk action of [11] and how one
arrives at the action (1) will be reported elsewhere.
SL(2,Z)–invariant 7-brane world-volume actions were considered in [12] and were shown

to preserve N = 1 supersymmetry for all possible values of p, q, r. The world-volume action
describing a single D7 brane or any SL(2,Z) transform thereof has values p, q, r which satisfy
the condition −r2/4 + pq = 0, or

det Q = 0 , Q =

(
r
2 p
−q − r

2

)

. (3)

For this set of seven-brane actions one can introduce a single Born-Infeld vector in a target–
space gauge–invariant and SL(2,Z) invariant manner [13]. This confirms the identification of
these objects as Dirichlet branes.

We will allow for objects which are not related to the D7 brane by some SL(2,Z)
transformation. Such objects have

det Q 6= 0 . (4)

It turns out that in making solutions with a D7 brane globally well-defined, objects with
det Q > 0 play a crucial role. These objects cannot be described by brane actions containing
a single Born-Infeld vector. They are therefore not Dirichlet branes.

3. The Equations of Motion

3.1. Supersymmetry and holonomy of the Killing spinor
We require that the following Killing spinor equations are satisfied:

δǫλ =
i

τ − τ̄
(γµ∂µτ̄) ǫC = 0 , (5)

δǫψµ =

(

∂µ +
1

4
ω ab
µ γab +

1

4

1

τ − τ̄
∂µ(τ + τ̄)

)

ǫ = 0 . (6)

The equations (5) and (6) are invariant under the following SL(2,Z) transformations

τ → aτ + b

cτ + d
, λ→ e3iϕλ , ψµ → eiϕψµ , ǫ → eiϕǫ , (7)

where ϕ is given by

ϕ =
1

2
arg(cτ + d) , −π < ϕ ≤ π . (8)

One can organize the numbers a, b, c, d in an SL(2,Z) matrix, Λ say, and write the τ
transformation as

τ → Λτ where Λ =

(
a b
c d

)

∈ PSL(2,Z) = SL(2,Z)/{±I} . (9)

The Killing spinor ǫ does transform under Λ = −I2 as ǫ→ iǫ.



The SL(2,Z)–invariant supersymmetry projection operator on the 7-brane is given by

Pǫ =
1

2

(
1− iγ0...7

)
ǫ =

1

2

(
1 + iγ8γ9

)
ǫ = 0 . (10)

Equation (5) tells us that (∂8 − i∂9) τ̄ = 0. In deriving this result we have gauge fixed the
transverse part of the metric to be manifestly conformally flat and assumed that τ only
depends on the transverse space coordinates. We define the complex coordinate z to be
z = x8 + ix9 so that we now have ∂z τ̄ = 0, that is, τ is a holomorphic function. Given the
supersymmetry projection operator (10) the most general 7-brane solution to equations (5)
and (6) is given by [3, 14]

ds2 = −dt2 + d~x 2
7 + (Imτ)|f|2dzdz̄ , (11)

τ = τ(z) , f = f(z) , (12)

ǫ =

(
f

f̄

)1/4

ǫ0 , (13)

where ǫ0 is a constant spinor which satisfies γz∗ǫ0 = 0. The functions τ and f are defined on
the Riemann sphere. The form of the solution, equations (11) to (13), is therefore fixed up
to SL(2,C) transformations

z → az + b

cz + d
, (14)

where a, b, c, d are arbitrary complex numbers. These are the global general coordinate
transformations that do not change the structure of the branch cuts in the complex z-plane.

By parallel transporting the Killing spinor around a closed loop in the transverse space
using the connection in (6), evaluated on the metric (11), it can be shown that the holonomy
of ǫ is given by

Λb ǫ(z = b) = exp

(
i

2
Im

∮

γb

(log f)′dz

)

ǫ(z = b) , (15)

where the closed path γb has base point b. The prime denotes differentiation with respect to
z. The holonomy phase factor, Λb, will depend on the base point b. We require the holonomy
phase factor in (15) to coincide with an SL(2,Z) transformation as given in equation (7).
In this way the Lorentz rotation characterized by the holonomy phase factor Λb cancels the

SL(2,Z)–transformation characterized by the monodromy phase factor e
i

2
arg(cτ+d). This is

in agreement with the fact that the Killing spinor is covariantly constant with respect to the
generalized connection given in (6). We therefore require the following

exp

(
i

2
Im

∮

γb

(log f)′dz

)

= eiϕ where − π < ϕ =
1

2
arg(cτ + d) ≤ π . (16)

Let the closed contour γb be parameterized by λ which runs from 0 to 1. The holonomy
phase Λb is equal to

exp

(
i

2
Im

∮

γb

(log f)′dz

)

=

(
f(λ = 1)

|f(λ = 1)|)

)1/2 ( |f(λ = 0)|
f(λ = 0))

)1/2

. (17)

Combining this with the requirement (16) leads to the following monodromy condition for
the function f

f(z) → (cτ + d)f(z) . (18)



3.2. The scalar equations of motion
We perform a variation of the action (1) with respect to τ̄ and use the metric, given in (11).
This leads to the following equation of motion for τ :

∂∂̄τ − 2
∂τ ∂̄τ

τ − τ̄
= − i

4
δ(z − z0, z̄ − z̄0)

(
p+ qτ2 + rτ

)
. (19)

Equation (19) can be integrated to give the following equation:

lim
δ→0

∮

γδ

(

2πiτ ′ − p
1

z − z0
− q

τ2

z − z0
− r

τ

z − z0

)

dz = 0 . (20)

This implies that the integrand of (20) is an analytic function which does not have any poles
in the interior of γδ, so that we may deform the contour γδ to any contour which is homotopic
to γδ. Hence we can write

2πiτ ′ − p
1

z − z0
− q

τ2

z − z0
− r

τ

z − z0
=

∞∑

n=0

an(z − z0)
n , (21)

for arbitrary coefficients an. In the limit |z − z0| → 0 the poles on the left hand-side will
dominate all the terms on the right hand-side. In this approximation the right hand-side of
(21) can be put to zero, and we are left with the homogeneous version of equation (21), i.e.

2πiτ ′ − p
1

z − z0
− q

τ2

z − z0
− r

τ

z − z0
= 0 . (22)

The solutions to (22) are

e2πiτ/p = z − z0 for detQ = 0 and q = r = 0 ,

c

(
τ − τ0
τ − τ̄0

) π√
detQ

= z − z0 for detQ > 0 and q 6= 0 , (23)

where Q is the matrix defined in (3), τ0 ≡ τ(z = z0) = − r
2q +

i
q

√
detQ is a fixed point of eQ

and c 6= 0 is a constant. Any PSL(2,Z) transformation of these solutions is again a solution,
leading to solutions for all values of p, q and r subject to detQ ≥ 0. The monodromy is always
given by

τ → eQτ where eQ = cos(
√

detQ)I +
sin(

√
detQ)√

detQ
Q . (24)

This identifies eQ as the monodromy matrix. These solutions were first found in [14].
The left hand-side of expressions (23) can be recognized as expansions of modular functions

around fixed points of some modular group of transformations. In the next section we will
discuss the full solutions to the scalar field equation (19) in terms of such modular functions
that incorporate the above solutions as approximations around certain fixed points.



3.3. The Einstein equations of motion
Varying the action (1) with respect to the metric and substituting equations (11) and (12)
one finds that the zz̄ component of the Einstein equations is given by

∂∂̄ log |f |2 = −1

2
δ(z − z0, z̄ − z̄0)

i

τ − τ̄

(

p+ q|τ |2 + r
τ + τ̄

2

)

, (25)

where ∂ = ∂
∂z . All other components of the Einstein equations are identically zero.

Integrating equation (25) we obtain

lim
δ→0

Im

∮

γδ

(log f)′dz = − sign(q)
√

detQ , (26)

where eQ is the monodromy matrix of τ measured when going around the contour γδ.
The orders of the zeros/poles of the function f(z) at z = z0 determines the deficit angle

at the location of the source. These orders can be computed as follows. Let γδ be a closed
circular contour of radius δ which encircles the point z0. This leads to the following expression
for the deficit angle:

δ = i lim
δ→0

∮

γδ

(log f)′dz = sign(q)
√

detQ . (27)

These deficit angles occur in the formula for the total mass of the seven-brane configuration:

m =
1

16πG3





∫
i

2
dz ∧ dz̄ ∂τ ∂̄τ̄

(Imτ)2
+ 2

∑

j

δj



 , (28)

where
δj = sign(qj)

√

detQj (29)

is the deficit angle of the det Q > 0 brane at the location zj . Note that there is no deficit
angle at the position of the detQ = 0 branes.

4. Constructing Solutions

A single D7 brane corresponds to p = 1 in equation (23). The monodromy of τ measured
when going around a single D7 brane is τ → Tτ ≡ τ + 1 where

T =

(
1 1
0 1

)

. (30)

Further, from equation (18) it follows that f → f . The element T ∈ PSL(2,Z) is of infinite
order. However, solutions containing only an object with this monodromy will have infinite
mass per volume element [1]. This is related to the fact that after modding out the complex
plane with T the fundamental domain one gets has infinite area (measured with respect to
i
2

dτ∧dτ̄
(Im τ)2 ), and this leads to an infinite mass per volume element. Thus, to obtain solutions of

finite mass, we are forced to include objects with other monodromies. Here we employ the
S-duality of the theory. We take S to have the following matrix representation

S =

(
0 −1
1 0

)

. (31)
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Figure 1. The fundamental domain of the group PSL(2,Z). The point ρ denotes the point
−1

2 + i
2

√
3. The wavy lines in the g-plane represent branch cuts. The g-plane is mapped

1 → N to the z-plane.

Note that S2 = −I2 and that, when acting on the Killing spinor ǫ, S8 = I2.
We will consider only solutions whose monodromy group is PSL(2,Z). Having chosen

a monodromy group we can specify the functions τ and f . From equation (23) it can be
concluded that there must exist a function, j(τ), which is monodromy neutral, i.e. is an
automorphic function j(Λτ) = j(τ). Here Λ is an element of the monodromy group. The
set of τ values which are inequivalent under Λ form what is called the fundamental domain,
see Figure 1. This fundamental domain is an orbifold containing three orbifold points with
monodromies in distinct conjugacy classes:

τ = i∞ : eQ = T
︸ ︷︷ ︸

detQ=0

, τ = i : eQ = S
︸ ︷︷ ︸

detQ>0

, τ = ρ : eQ = T−1S
︸ ︷︷ ︸

detQ>0

.

We require that the function j(τ) maps the fundamental domain onto the Riemann sphere Ĉ
in a one-to-one fashion, so that the inverse function j−1 exists. Note that the inverse mapping
j−1 has branch cuts connecting the points zi∞ to zρ and zρ to zi, where the subscript indicates
the value τ has at that point. In the case of PSL(2,Z) the function j(τ) is given by Klein’s
modular j function. In general we will map the Riemann sphere via a mapping g(z) to N
Riemann spheres so that the function τ(z) is defined by

j(τ(z)) = g(z) , (32)

where g(z) is a quotient of polynomials. The explicit form of g(z) is determined by the fact
that (i) we require that the modular j function maps the points {i∞, ρ, i} to {∞, 0, 1},
respectively and (ii) we require a certain number of branes at each orbifold point.



orbifold point τ order monodromy deficit angle δ

i∞ ∞ ±T 0

i 2 ±S ∓π/2

ρ 3 ±(T−1S) – 2π/3, π/3

Table 1. The order of the orbifold points τ , the monodromy of τ and f and the deficit angles
for τ = i∞, ρ, i.

Our next task is to find an explicit realization of the function f(z). We first choose a
function F (τ) which transforms as

F (τ) → δ(a, b, c, d)(cτ + d)F (τ) whenever τ → aτ + b

cτ + d
, (33)

where δ(a, b, c, d) is a phase factor and then write

f(z) = F (τ)h(z) , (34)

where the function h(z) cannot be written as a function of τ only and has monodromies which
are such that they cancel the phases δ(a, b, c, d). The unique realization of F (τ) for PSL(2,Z)
is given by F (τ) = η2(τ) where η(τ) is the Dedekind eta function. This function transforms
under the different PSL(2,Z)-transformations as follows:

η2(τ + 1) = eπi/6η2(τ) , η2(−1

τ
) = e−πi/2τη2(τ) , η2(−τ + 1

τ
) = e−2πi/3τη2(τ) .

Using these monodromies and the required monodromies of f(z) it is not difficult to derive
an explicit realization of the function h(z). This completes the construction of a solution.

For the convenience of the reader we have presented in table 1 the monodromies of τ
and f and the deficit angles measured when going around the points zi∞, zρ, zi in a counter
clockwise direction.

5. Example: the N = 6 solution with only D7–branes

As an application of the previous sections we now present a N = 6 solutions where all
monodromies at the det Q > 0 orbifold points have been cancelled out. Therefore, the metric
has no deficit angles in these points. It is convenient to use the following form of the mass
formula

m =
1

16πG3

(

N × area + 2
∑

j

δj

)

, (35)

where δj are the different deficit angles and N is the number of times the fundamantal domain
is covered by τ(z). We see that a cancelletion of monodromies can be achieved by taking a



S and a −S object at τ = i and a T−1S object together with two −T−1S–objects at z = zρ.
This leads us to consider an N = 6 solution which is asymptotically a cone with deficit angle
π. Similarly, the N = 12 and N = 24 cases lead to a cylinder and a sphere. These special cases
were first given in [1]. Note that our methods allow a much wider class of solutions including
det Q > 0 objects. We can, for instance, make supersymmetric solutions with N > 24 by
employing det Q > 0 objects with negative deficit angles. For examples, see [15].

The N = 6 solution is best represented by giving a picture of its branch cuts in the z-plane:
The explicit expressions for the functions τ(z) and f(z) corresponding to this solution can

D7 D7

D7D7

O7

z i

T
S

S

T

T

T

Figure 2. The most general supersymmetric N = 6 solution with only non-trivial T -
monodromies around the orbifold points zi∞, where the D7-branes are located. The filled
(dashed) lines are T (S) branch cuts.

be found in [15]. The N = 6 solution corresponds in the weak coupling limit Im τ → ∞ to a
system of 4 D7–branes and a O7–plane [17]. A more detailed discussion of this solution can
be found in [15].

6. Remarks

We have presented a class of seven-brane solutions of IIB supergravity thereby generalizing
the existing class of solutions by allowing additional objects with monodromies Tr Λ 6= 2 at
the orbifold points z = ρ, i. It would be interesting to better understand the explicit form of
the source terms we used via the PST method.

It is not clear what the correct interpretation of the det Q > 0 branes are within string
theory. They are not Dirichlet branes like the D7–brane. This can, for instance, be seen from
the fact that no worldvolume action containing a single Born–Infeld vector can be constructed
that describes the dynamics close to these branes [13]. One could perhaps consider them as
effective bound states of two D7–branes whose monodromies are related to each other by a
SL(2,Z)–transformation. This is based on the observation that the monodromy of a det Q > 0
brane can be written as the product of two such monodromies. A related interpretation was
discussed in [16], where it was shown that the approximate solution (23) with det Q > 0 can



be written as a distribution of det Q = 0 branes. Alternatively, the work of [17] suggests that
they have something to do with the non-perturbative description of O7–planes.

An interesting generalization of our results would be to add D3–branes and consider D3–
D7 brane sytems. This could lead to applications both in the AdS/CFT correspondence and
in cosmology. It would be interesting to see if, in addition to the solutions with only D7–
branes of [1], the more general solutions with det Q > 0 objects can also play a role in these
applications.
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