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3–TYPE CURVES IN THE EUCLIDEAN SPACE E6
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MIRA PETROVIĆ

Dedicated to the sixtieth birthday of Professor Bang-Yen Chen

Abstract. In [1] D. Blair gave a complete classification of 3–type curves in the

space E3. In two recent papers [8] and [9] we gave a complete classification of 3–

type curves in the spaces E4 and E5. In this paper we give a complete classification

of 3–type curves in the space E6. This result completes the describing of 3–type

curves in Euclidean spaces.

1. Introduction

The notion of curves of finite type was introduced by B. Y. Chen around

1980. A closed curve γ in a Euclidean space En is of finite type (k–type, k ∈ N)

if its Fourier series expansion with respect to an arclength parameter is finite

(has exactly k nonzero terms).

It is proved in [3] that a closed curve γ: [0, 2πr] �→ En is of k–type (k ∈ N)

if and only if there is a vector A0 ∈ En, natural numbers p1 < p2 < · · · < pk

(frequency numbers of the curve), and vectors A1, . . . , Ak, B1, . . . , Bk ∈ En such

that ‖Ai‖2 + ‖Bi‖2 �= 0 (i = 1, . . . , k) and

γ(s) = A0 +
k∑

i=1

(Ai cos
pis

r
+ Bi sin

pis

r
).

It is shown in [5] that every curve of k–type in the space En lies in an

affine subspace of the dimension 2k. Hence, the only interesting case is n ≤ 2k.
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Consequently, considering the 3–type curves in the Euclidean space En, we can

always assume that n ≤ 6.

3–type curves in the space E3, have been investigated several times in the

literature (see e.g. [1, 8, 9]). So in [1] D. Blair gave a complete classification of all

closed 3–type curves in the space E3. Further in [8], we have classified all closed

3–type curves in the Euclidean space E4, and in [9], all closed 3–type curves

in the Euclidean space E5. Doing a final step, in this paper we give a complete

classification of all closed 3–type curves in the Euclidean space E6. This obviously

completes the classification of all closed 3–type curves in Euclidean spaces.

The methods which are used in this paper are similar to the corresponding

methods from the papers [1], [8] and [9]. In view of these similarities, we very

often mention only results omiting the proofs. But, comparing the spaces Ek and

Ek+1, we often meet the cases which are really possible in the space Ek+1, but

impossible in the space Ek. Hence, the investigations in the space Ek+1 are not

the complete analogies of the cases in the smaller space. Very often, some new

cases there appear.

We also mention that by usual lifting (x, y, z, t, u) �→ (x, y, z, t, u, 0) of the

space E5 into the space E6, every 3–type curve in the space E5 becomes a 3–type

curve in the space E6. Hence, if some of the following cases is possible in the

space E5, it is also possible in the space E6.

By the general statement, we have that a closed curve γ ⊆ E6 is of 3–type

if there are natural numbers p1 < p2 < p3 (frequency numbers of the curve) such

that γ: [0, 2πr] �→ E6 has the form

γ(s) = A0 +
3∑

i=1

(Ai cos
pis

r
+ Bi sin

pis

r
),

where A0 ∈ E6 and A1, A2, A3, B1, B2, B3 ∈ E6 are such that ‖Ai‖2 + ‖Bi‖2 �= 0

for each i = 1, 2, 3.

It is proved in [3] that the last condition is equivalent to the following system

of equations:

(O)
3∑

i=1

p2
i Dii = 2r2,
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I(l)
3∑

i=1
2pi=l

p2
i Aii + 2

3∑

i,j=1
i>j

pi+pj=l

pipjAij −
3∑

i,j=1
i>j

pi−pj=l

pipjDij = 0,

I(l)
3∑

i=1
2pi=l

p2
i Aii + 2

3∑

i,j=1
i>j

pi+pj=l

pipjAij −
3∑

i,j=1
i>j

pi−pj=l

pipjDij = 0,

where

Aij = 〈Ai, Aj〉 − 〈Bi, Bj〉, Aij = 〈Ai, Bj〉 + 〈Aj , Bi〉,
Dij = 〈Ai, Aj〉 + 〈Bi, Bj〉, Dij = 〈Ai, Bj〉 − 〈Aj , Bi〉,

(i, j = 1, 2, 3), and l runs the set

A = {2p1, 2p2, 2p3, p1 + p2, p1 + p3, p2 + p3, p2 − p1, p3 − p1, p3 − p2}.

2. Main Result

The main theorem of this paper is the following.

Theorem. If γ(s) is a 3–type curve in the Euclidean space E6, then γ(s)
belongs to a p–parameter family of curves where p is one of the numbers 3, 6, 8,
9, 13, 15, 17, and which families of curves are described further on.

The proof of this theorem follows from the next series of propositions.
First, we shall differ the cases when all indices in the set A are distinct, or

some of them coincide.
The complete classification of all these cases is as follows.

(10) p2 �= 3p1, p3 �= 3p1, 3p2, p2 + 2p1, 2p2 ± p1,

(20) p2 = 3p1, p3 �= 5p1, 7p1, 9p1,

(30) p2 �= 2p1, p3 = 3p1,

(40) p2 �= 3p1, p3 = 3p2,

(50) p2 �= 3p1, p3 = p2 + 2p1,

(60) p2 = 3p1, p3 = 5p1,
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(70) p2 �= 3p1, p3 = p1 + 2p2,

(80) p2 = 3p1, p3 = 7p1,

(90) p2 �= 2p1, 3p1, p3 = 2p2 − p1,

(100) p2 = 2p1, p3 = 3p1,

(110) p2 = 3p1, p3 = 9p1.

We shall discuss all these cases separately. Introduce the following notations:

A1 = (a11, a12, a13, a14, a15, a16), B1 = (b11, b12, b13, b14, b15, b16),
A2 = (a21, a22, a23, a24, a25, a26), B2 = (b21, b22, b23, b24, b25, b26),
A3 = (a31, a32, a33, a34, a35, a36), B3 = (b31, b32, b33, b34, b35, b36).

If some index in the set A differs of all other indices in this set, we shall call
it “single”. The set A obviously has at least two single indices, namely 2p3 and
p2 + p3. These indices are evidently the greatest in A.

Lemma1. By a suitable change of the coordinate system, we can assume
that

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0), (µ �= 0).

In this system we have b21 = −a22, b22 = a21, thus B2 = (−a22, a21, b23, b24,

b25, b26).

We omit the proof since it is quite similar to the corresponding proof of
Lemma 1 in [8] and [9]. The similar is true in the next lemma.

Lemma 2. If 2p2 and p3 − p2 are single parameters, then by a suitable
change of coordinate system we can assume that

A2 = (0, 0, ν, 0, 0, 0), B2 = (0, 0, 0, ν, 0, 0),

for some ν �= 0.

Proposition 1. In the case (10) a curve γ(s) is a 3–type curve if and only
if, in a coordinate system, we have

A1 = (0, 0, 0, 0, ρ, 0), B1 = (0, 0, 0, 0, 0, ρ), (ρ �= 0),
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A2 = (0, 0, ν, 0, 0, 0), B2 = (0, 0, 0, ν, 0, 0), (ν �= 0),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0), (µ �= 0).

We again omit the proof. Note that this case is impossible in the space E5.
But here, it obviously defines a 3–parameter family of curves.

Proposition 2. In the case (20), γ(s) is a 3–type curve if and only if, in a
coordinate system, we have

A1 = (0, 0, a13, a14, a15, a16), B1 = (0, 0,−a14, a13, b15, b16),

A2 = (0, 0, ν, 0, 0, 0), B2 = (0, 0, 0, ν, 0, 0), (ν �= 0),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0), (µ �= 0),

where

a13 =
a2

15 + a2
16 − b2

15 − b2
16

6ν
, a14 = −a15b15 + a16b16

3ν
.

Hence in this case we get a 6–parameter family of curves.

Proposition 3. In the case (30), γ(s) is a 3–type curve if and only if, in a
coordinate system, we have

A1 = (a11, a12, 0, 0, a15, a16), B1 = (−a12, a11, 0, 0, b15, b16),
A2 = (0, 0, ν, 0, 0, 0), B2 = (0, 0, 0, ν, 0, 0), (ν �= 0),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0), (µ �= 0),

where

a11 =
a2

15 + a2
16 − b2

15 − b2
16

6µ
, a12 = −a15b15 + a16b16

3µ
.

Therefore, in this case we also get a 6–parameter family of curves.

Proposition 4. In the case (40), γ(s) is a 3–type curve if and only if, in a
coordinate system, we have

A1 = (0, 0, ν, 0, 0, 0), B1 = (0, 0, 0, ν, 0, 0), (ν �= 0),
A2 = (a21, a22, 0, 0, a25, a26), B2 = (−a22, a21, 0, 0, b25, b26),



360 MIRA PETROVIĆ

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0), (µ �= 0),

where

a21 =
a2

25 + a2
26 − b2

25 − b2
26

6µ
, a22 = −a25b25 + a26b26

3µ
,

and a2
21 + a2

22 �= 0.

Hence, in this case the above system again defines a 6–parameter family of
curves.

Proposition 5. (Case (50)) (p2 �= 3p1, p3 = p2 + 2p1). In this case, γ(s) is
a 3–type curve if and only if in a coordinate system we have

A1 = (a11, a12, a13, a14, a15, a16), B1 = (−a12, a11, b13, b14, b15, b16),
A2 = (a21, a22, ν, 0, 0, 0), B2 = (−a22, a21, 0, ν, 0, 0),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0, a2
21 + a2

22 + ν2 �= 0 and

(1) a11a21 + a12a22 = −ν

2
(a13 + b14),

(2) a11a22 − a12a21 =
ν

2
(a14 − b13),

(3)
6∑

i=3

(a2
1i − b2

1i) =
2p2p3

p2
1

µa21,

(4)
6∑

i=3

a1ib1i = −p2p3 µ a22

p2
1

,

(5) ν(a13 − b14) =
p3 µ a11

p2
,

(6) a11a22 − a12a21 + ν b13 = −p3 µ a12

p2
.

Since the case (50) generates a whole family of curves in the space E5 (see
[9]), the similar is true in the space E6. So, it is not necessary to construct at
least one solution of the above system of equations. It is easy to see that in this
case, the above system defines a 8–parameter family of curves.

A similar situation is true in all cases (60)–(110), so in each of these cases
there is at least one 3–type curve (and even more the whole family of such curves)
in the space E6.
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Proposition 6. (Case (60)) (p1 : p2 : p3 = 1 : 3 : 5). In this case γ(s) is a

3–type curve if and only if, in a coordinate system we have

A1 = (a11, a12, a13, a14, a15, a16), B1 = (b11, b12, b13, b14, b15, b16),

A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0 and

(1)
6∑

i=1

(a2
1i − b2

1i) = 3[
6∑

i=1

a1ia2i − b11a22 + b12a21 +
6∑

i=3

b1ib2i] + 30µa21,

(2)
6∑

i=1

a1ib1i =
3
2

6∑

i=1

(a2ib1i − a1ib2i) − 15µ a22,

(3)
6∑

i=1

a1ia2i − (−a22b11 + a21b12 +
6∑

i=3

b1ib2i) =
5µ

6
(a11 + b12),

(4)
6∑

i=1

b1ia2i − a11a22 + a12a21 +
6∑

i=3

a1ib2i =
5µ

6
(b11 − a12),

(5)
6∑

i=3

(a2
2i − b2

2i) = −10
9

µ (a11 − b12),

(6)
6∑

i=3

a2ib2i = −5
9

µ (a12 + b11).

In this case we obtain a 17–parameter family of curves.

Proposition 7. (Case (70)) (p2 �= 3p1, p3 = p1 + 2p2). In this case γ(s) is a

3–type curve if and only if, in a coordinate system we have

A1 = (a11, a12, ν, 0, 0, 0), B1 = (−a12, a11, 0, ν, 0, 0),

A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0, a2
11 + a2

12 + ν2 �= 0 and we have

(1) a11a21 + a12a22 = −ν

2
(a23 + b24),

(2) a11a22 − a12a21 =
ν

2
(b23 − a24),



362 MIRA PETROVIĆ

(3)
6∑

i=3

(a2
2i − b2

2i) =
2p1p3µ

p2
2

a11,

(4)
6∑

i=3

a2ib2i = −p1p3µ

p2
2

a12,

(5) ν (a23 − b24) =
p3 µ

p1
a21,

(6) ν (a24 + b23) = −p3µ

p1
a22.

In that case we get a 8–parameter family of curves.

Proposition 8. (Case (80)) (p1 : p2 : p3 = 1 : 3 : 7). In this case γ(s) is a

3–type curve if and only if, in a coordinate system, we have

A1 = (a11, a12, a13, a14, a15, a16), B1 = (−a12, a11, b13, b14, b15, b16),

A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0 and

(1)
6∑

i=3

(a2
2i − b2

2i) =
14
9

µ a11,

(2)
6∑

i=3

a2ib2i = −7
9

µ a12,

(3)
6∑

i=3

(a1ia2i − b1ib2i) = 7µ a21,

(4)
6∑

i=3

(a1ib2i + b1ia2i) = −7µ a22,

(5)
6∑

i=3

(a2
1i − b2

1i) = 6a11a21 + 6a12a22 + 3
6∑

i=3

(a1ia2i + b1ib2i),

(6)
6∑

i=3

a1ib1i = 3a11a22 − 3a12a21 +
3
2

6∑

i=3

(b1ia2i − a1ib2i).

In this case we get a 15–parameter family of curves.

Proposition 9. (Case (90)) (p2 �= 2p1, 3p1, p3 = 2p2 − p1). In this case γ(s)
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is a 3–type curve if and only if in a coordinate system we have

A1 = (a11, a12, ν, 0, 0, 0), B1 = (a12,−a11, 0, ν, 0, 0),
A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0, a2
11 + a2

12 + ν2 �= 0 and

(1) a11a21 + a12a22 =
ν

2
(b24 − a23),

(2) a11a22 − a12a21 =
ν

2
(a24 + b23),

(3)
6∑

i=3

(a2
2i − b2

2i) = −4p1p3 µ

p2
2

a11,

(4)
6∑

i=3

a2ib2i = −2p1p3 µ

p2
2

a12,

(5) ν (a23 + b24) = −2p3

p1
µ a21,

(6) ν (a24 − b23) =
2p3

p1
µ a22.

In that case it can be proved that above system defines a 9–parameter family
of curves.

Proposition 10. (Case (100)) (p1 : p2 : p3 = 1 : 2 : 3). In this case γ(s) is
a 3–type curve if and only if, in a coordinate system, we have

A1 = (a11, a12, a13, a14, a15, a16), B1 = (b11, b12, b13, b14, b15, b16),

A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),
A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0 and

(1)
6∑

i=1

a1ia2i = −b11a22 + a21b12 +
6∑

i=3

b1ib2i,

(2)
6∑

i=1

b1ia2i = a11a22 − a12a21 −
6∑

i=3

a1ib2i,

(3)
6∑

i=1

(a2
1i − b2

1i) = 3µ (a11 + b12),
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(4)
6∑

i=1

a1ib1i =
3
2

µ (b11 − a12),

(5)
6∑

i=1

a1ia2i − b11a22 + b12a21 +
6∑

i=3

b1ib2i = −6µa21,

(6)
6∑

i=1

a2ib1i + a11a22 − a12a21 −
6∑

i=3

a1ib2i = 6µ a22,

(7)
6∑

i=3

(a2
2i − b2

2i) = −3
2

µ (a11 − b12),

(8)
6∑

i=3

a2ib2i = −3
4

µ (b11 + a12).

In this case we get a 15–parameter family of curves.

Proposition 11. (Case (110)) (p1 : p2 : p3 = 1 : 3 : 9). In this case γ(s) is
a 3–type curve if and only if in a coordinate system we have

A1 = (0, 0, a13, a14, a15, a16), B1 = (0, 0, b13, b14, b15, b16),
A2 = (a21, a22, a23, a24, a25, a26), B2 = (−a22, a21, b23, b24, b25, b26),

A3 = (µ, 0, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0, 0),

where µ �= 0 and

(1)
6∑

i=3

(a1ia2i − b1ib2i) = 0,

(2)
6∑

i=3

(a1ib2i + a2ib1i) = 0,

(3)
6∑

i=3

(a2
1i − b2

1i) = 3
6∑

i=3

(a1ia2i + b1ib2i),

(4)
6∑

i=3

a1ib1i = 1, 5
6∑

i=3

(b1ia2i − a1ib2i),

(5)
6∑

i=3

(a2
2i − b2

2i) = 6µ a21,

(6)
6∑

i=3

a2ib2i = −3µ a22.
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Finally, in that case, it can be proved that we obtain a 13–parameter family
of curves.

Summarizing all Propositions 1–11, we get the theorem.
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