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Abstract

A set of rules is defined to systematically number the groups and the
atoms of polypeptides in a modular manner. Supported by this numera-
tion, a set of internal coordinates is defined. These coordinates (termed
Systematic, Approximately Separable and Modular Internal Coordinates,
SASMIC) are straightforwardly written in Z-matrix form and may be di-
rectly implemented in typical Quantum Chemistry packages. A number
of Perl scripts that automatically generate the Z-matrix files are provided
as supplementary material. The main difference with most Z-matrix-like
coordinates normally used in the literature is that normal dihedral angles
(“principal dihedrals” in this work) are only used to fix the orientation
of whole groups and a different type of dihedrals, termed “phase dihe-
drals”, are used to describe the covalent structure inside the groups. This
physical approach allows to approximately separate soft and hard move-
ments of the molecule using only topological information and to directly
implement constraints. As an application, we use the coordinates defined
and ab initio quantum mechanical calculations to assess the commonly as-
sumed approximation of the free energy, obtained from “integrating out”
the side chain degree of freedom χ, by the Potential Energy Surface (PES)
in the protected dipeptide HCO-L-Ala-NH2. We also present a sub-box
of the Hessian matrix in two different sets of coordinates to illustrate the
approximate separation of soft and hard movements when the coordinates
defined in this work are used.

PACS: 87.14.Ee, 87.15.-v, 87.15.Aa, 87.15.Cc
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1 Introduction

The choice of the coordinates used to describe a molecule is an important issue if
computational considerations are to be taken into account and the efficiency of
the simulations is pursued. This choice also affects the coding of applications. If
cumbersomely defined coordinates are used, an unnecessary complexity may be
added to the design of Monte Carlo movements, the construction and pruning
of a database of structures [1,2] or the programming of molecular visualization
and manipulation tools.

Suitable coordinates frequently used to describe arbitrary conformations of
molecules are the so-called “internal” or “valence-type” coordinates [3]. Their
adequacy stems from a number of characteristics: first, they are closely related
to chemically meaningful structural parameters, such as bond lengths or bond
angles; second, they are local, in the sense that each one of them involves only
a small number of (normally close) atoms in its definition; and finally, there are
only 3n− 6 of them (where n is the number of atoms in the molecule), in such
a way that the overall rotation and translation have been naturally removed.

There also exists a family of coordinates [4–7], extensively used in the in-
ner calculations of many Quantum Chemistry packages (such as Gaussian [8]
or GAMESS [9]) and based on the “natural internal coordinates” originally
proposed by Pulay and coworkers [10–12], which are defined through linear
combinations of the original internals. These coordinates are specially designed
to describe normal-mode vibrations in the immediate neighbourhood of energy
minima and represent the best choice for accelerating convergence of geometry
optimizations in a particular basin of attraction, via diagonal estimation of the
Hessian matrix [7]. Accordingly, they maximally separate hard and soft move-
ments in these conditions. However, if the conformation of the molecule is far
from a minimum, this type of coordinates lose great part of their meaning and
they introduce many computational difficulties without increasing the efficiency.
Also, some of the definitions are redundant [6, 10–13], i.e., they use a number
of coordinates larger than the number of degrees of freedom. In this work, we
will only discuss coordinates, such as internals or Cartesian, that may be con-
veniently used to specify an arbitrary conformation of the system and that can
be directly related to simple geometrical variables.

In macromolecules, such as proteins, the number of degrees of freedom is
the main limiting factor when one tries to predict their behaviour via computer
modeling. Therefore, it is also advisable that the set of coordinates chosen
allows for a direct implementation of physically meaningful constraints that re-
duce the dimensionality of the conformational space considered. Most of the
expressions used in Statistical Mechanics or in Molecular Dynamics are best
written in Cartesian coordinates, however, the implementation of naturally ap-
pearing constraints is far from being straightforward in these coordinates. In
internal coordinates, on the contrary, the approximate separation of hard and
soft movements of the system allows to easily constrain the molecule [14–16]
by setting the hard coordinates (those that require a considerable amount of
energy to change noticeably) to constant values or to particular functions of the

2



soft coordinates. Moreover, in internal coordinates (and appealing to some rea-
sonable approximations), the Statistical Mechanics formulae for the constrained
system may be written in convenient closed form [17,18].

Still, although the bond lengths and bond angles are customarily regarded
as hard and their definition is unproblematic, the same is not true for dihe-
dral angles. Some definitions of dihedrals may lead to difficulties or to worse
separation of hard and soft modes. Let us exemplify this with a particular case:

Consider the definition of Z-matrix-like [19, 20] internal coordinates for the
HCO-L-Ala-NH2 molecule in fig. 6. Imagine that we “position” (i.e., we write
the corresponding Z-matrix row) every atom up to the hydrogen denoted by H9

and that we are now prepared to position the hydrogens in the side chain (H10,
H11 and H12) via one bond length, one bond angle and one dihedral for each
one of them. We will denote by (i, j) the bond length between atoms i and j;
by (i, j, k), the bond angle between the vectors ~rjk and ~rji; and by (i, j, k, l) the
dihedral angle between the plane defined by the atoms i, j and k and the one
defined by j, k and l.

A choice to position the atoms that is frequently seen in the literature [1,2,
21–23] is the one shown in table 1.

Atom name Bond length Bond angle Dihedral angle

H10 (10,8) (10,8,5) γ1 :=(10,8,5,3)
H11 (11,8) (11,8,5) γ2 :=(11,8,5,3)
H12 (12,8) (12,8,5) γ3 :=(12,8,5,3)

Table 1: A part of the internal coordinates, in Z-matrix form, of the protected dipep-

tide HCO-L-Ala-NH2, as frequently defined in the literature.

If we now perform the gedanken experiment that consists of taking a typical
conformation of the molecule and slightly moving each internal coordinate at a
time while keeping the rest constant, we find that any one of the three dihedrals
in the previous definition is a hard coordinate, since moving one of them while
keeping the other two constant distorts the internal structure of the methyl
group. Hence, in these coordinates, the soft rotameric degree of freedom χ,
which we know, for chemical arguments, that must exist1, is ill-represented.
In fact, it must be described as a concerted movement of the three dihedrals.
In reference [24] this is clearly explained. In references [1, 2], the problem is
recognized and the concept of “related dihedrals” is introduced, however, no
action is taken to change the definition of the coordinates.

In this work, using the ideas of R. Abagyan and coworkers [14–16], we define
a set of rules to uniquely and systematically number the groups, the atoms

1According to our calculations, at the RHF/6-31+G(d) level of the theory, the barrier for
crossing from one of the three equivalent minima to any of the other two ranges from 3.1 to
6.8 kcal/mol, depending on the values of the Ramachandran angles φ and ψ. Compare with
the barriers in φ or ψ which may be as large as 20 kcal/mol depending on the region of the
Ramachandran map explored.
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Figure 1: Two types of dihedral angles. a) Principal dihedral. Used to describe

the rotation of whole groups around bonds. b) Phase dihedral. Used to describe the

internal covalent structure of groups. The positive sense of rotation is indicated.

and define the internal coordinates of polypeptides2 (a general set of rules to
perform this numbering and the subsequent definition of internals in any organic
molecule is included as supplementary material). The main difference with
other Z-matrix-like coordinates normally used in the literature [1, 2, 21–23] is
that, instead of positioning each atom with a bond length, a bond angle and a
dihedral angle, we use normal dihedral angles (called, from now on, “principal
dihedrals”) only to fix the orientation of whole groups and a different type
of dihedrals, termed “phase dihedrals” by R. Abagyan and coworkers [14–16]
(see fig. 1), to describe the covalent structure inside a group3. This allows
to approximately separate soft and hard movements of the molecule using only
topological information (i.e., not knowing the exact form of the potential) and to
easily implement constraints by forcing the coordinates that correspond to hard
movements to take constant values or ones that depend on the soft coordinates.
In reference [25] they correctly take this approach into account using out-of-
plane angles instead of phase dihedrals, however, they do not describe any rules
for a general definition and their numeration of the atoms is non-modular, as it

2IUPAC conventions only define a numeration system for the groups, for the branches and
for some selected dihedral angles. They focus on functional considerations and not in compu-
tational problems. For related documents and references, see http://www.chem.qmul.ac.uk/

iupac/jcbn/.
3Another option may be to use, as a third internal coordinate for each atom, another bond

angle. This is rather awkward, however, since two bond angles and a bond length do not
specify the position of a point in space. Any values of these three coordinates (except for
irrelevant degenerate cases) are compatible with two different symmetrical positions and a
fourth number must be provided to break the ambiguity. Also out of plane angles may be
used. In reference [24], different options are described.
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proceeds first through the backbone (see sec. 2).
In addition, the coordinates herein defined, are straightforwardly cast into

Z-matrix form and may be directly implemented in any Quantum Chemistry
package, such as Gaussian [8] or GAMESS [9]. This is due to the fact that,
although they involve atoms whose covalent structure is different, the mathe-
matical construction of the two types of angles in fig. 1 is exactly the same, and
the phase dihedrals are treated like principal ones without any problem by the
applications.

A number of Perl scripts are provided that number the atoms and generate
the coordinates herein defined for polypeptide chains. The applications read a
sequence file in which the different ionization states of the titratable side chains,
the tautomeric forms of Histidine and several terminal groups may be specified.
Then, an output file is generated with the symbolic definition of the Z-matrix
of the molecule which may be directly pasted into the input files of Gaussian [8]
or GAMESS [9] (and, upon slight modifications, of any Quantum Chemistry
package that is capable of reading Z-matrix format).

Now, if we redo the example in table 1 using phase dihedrals, we must write
the rows of the Z-matrix for the hydrogens in the side chain as shown in table 2.

Atom name Bond length Bond angle Dihedral angle

H10 (10,8) (10,8,5) χ :=(10,8,5,3)
H11 (11,8) (11,8,5) α1 :=(11,8,5,10)
H12 (12,8) (12,8,5) α2 :=(12,8,5,10)

Table 2: A part of the internal coordinates, in Z-matrix form, of the protected dipep-

tide HCO-L-Ala-NH2, as defined by the rules given in sec. 2.

Where the angle (10,8,5,3) is now the principal dihedral χ describing the
relative rotation of the methyl group around the bond (8,5) and the other two
are phase dihedrals that describe the internal structure of the group and that
are pure hard coordinates (as far as can be told only from topological infor-
mation). However, one must point out that, although all bond lengths, bond
angles and phase dihedrals may be regarded as hard coordinates, not all the
principal dihedrals will be soft. Examples of hard principal dihedrals are the
ones that describe the rotation around a double bond (or a triple one) or some
of the principal dihedrals in cyclic parts of molecules.

The physical approach described in this section, which should be taken into
account when designing internal coordinates, is embodied in a set of rules for
polypeptide chains in sec. 2, a slightly different prescription for general organic
molecules is provided as supplementary material. The systematic numeration
introduced facilitates the computational treatment of this type of systems and
the rules given for polypeptide chains ensure modularity [1,26], i.e., allows to add
any residue with minimal modification of the already existing notation and to
easily construct databases of structures or of Potential Energy Surfaces (PES).

The characteristics aforementioned have led us to term the coordinates
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herein defined Systematic, Approximately Separable and Modular Internal Co-

ordinates (SASMIC).
In this work, we will only deal with the numeration of one isolated molecule,

however, the procedure described may be easily generalized (and will be in
future works) to systems of many molecules (an important example being a
macromolecular solute in a bath of solvent molecules). This could be done
using ghost atoms in a similar manner to what is done in ref. [17], to position
the center of mass of the system, and in refs. [14–16], to actually define the
coordinates of a system of molecules.

Finally, in sec. 3, we use the new coordinates and ab initio quantum me-
chanical calculations in order to evaluate the approximation of the free energy,
obtained from “integrating out” the rotameric degree of freedom χ, via the
typical PES in the protected dipeptide HCO-L-Ala-NH2. This will be relevant
to design effective polypeptide potentials. We also present a small part of the
Hessian matrix in two different sets of coordinates to illustrate the approximate
separation of soft and hard movements when the SASMIC defined in this work
are used. Sec. 4 is devoted to the conclusions.

2 Numeration rules for polypeptides

2.1 Definitions

Figure 2: Schematic representation of the groups found in proteins (the angle in the

linear group might as well be 180o). From left to right: tetrahedral, triangular and

linear.

First, we realize that any molecule may be formally divided in groups such
as those in fig. 2. We will call “centers” the shaded atoms in the figure and
“vertices” the white ones. In general, there may exist groups with more than
four vertices, however, in proteins, only groups with four or less vertices oc-
cur. Examples of tetrahedral groups are the one whose center is the Cα in the
backbone or the Cβ in the side chain of alanine, triangular groups occur, for
example, at the N or the C’ in the backbone, finally, linear groups may be found
at the O in the side chain of tyrosine or at the S in methionine (see fig. 10).

A particular atom may be vertex of different groups but may only be center
of one group. There exist atoms that are only vertices but there do not exist
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atoms that are only centers, except in the case of molecules with only one group.
In the trivial case of diatomic molecules (in which the only internal coordinate is
a bond length), neither of the previous definitions are possible, since we cannot
identify a group.

Atoms that are covalently bonded to more than one atom will be called
“internal atoms” and are indicated as shaded circles in fig. 3. Atoms that are
covalently attached to only one internal atom will be called “external atoms”
and are indicated as white-filled circles in fig. 3. In proteins, only H and O may
be external atoms.

Figure 3: Schematic representation of the HCO-L-His-NH2 model dipeptide (with the

side chain in its uncharged ε tautomeric form). Internal atoms are shown as gray-filled

circles, external ones as white-filled circles. Internal bonds are indicated with curved

arrows. Typical biochemical definitions of some principal dihedrals are also shown.

In most macromolecular models (such as the Born-Oppenheimer approxima-
tion used in sec. 3), nuclei are considered point-like particles. Hence, rotation
around bonds joining external and internal atoms (termed “external bonds” or
“non-dihedral bonds”) is neglected, i.e., there are no internal coordinates as-
sociated to this movement. On the other hand, rotation around bonds joining
two internal atoms (called “internal bonds” or “dihedral bonds” and indicated
with curved arrows in fig. 3) is relevant and there may exist internal coordinates
describing it.

In order to conform with the physical approach stated in the introduction,
only one golden rule must be followed when defining the internal coordinates:
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One principal dihedral, at most4, must be defined on each internal

bond.

The rest of the rules that will be given are mere tidy conventions and sys-
tematics.

2.2 Rules for numbering the groups

First of all, we will divide the peptide in groups and number them. To do
this we proceed by branches, i.e., we choose the next group following a linear
sequence of covalently attached groups until there is no possible next one, in
which case, we either have finished the numeration process or we start another
branch. Every group is numbered once and it cannot be renumbered as the
process continues. This numeration is done for completeness and as a support
for the numeration of atoms and coordinates. In fig. 4, we have implemented
these rules in a protected histidine dipeptide.

Figure 4: Group identification and numeration in the protected dipeptide HCO-L-

His-NH2 (with the side chain in its uncharged ε tautomeric form). The different types

of groups are shown as gray-filled polyhedra.

The rules are as follows:

i) We select as the first group (and number it j = 1):

4It is not possible to define principal dihedrals for each internal bond for structures con-
taining rings due to the well known limitation of Z-matrix internal coordinates.
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• The amino group at the N-terminus (either charged or not) if the
polypeptide is not N-protected.

• The formyl group at the N-terminus if the polypeptide is formyl-N-
protected.

• The methyl group at the N-terminus if the polypeptide is acetyl-N-
protected.

These three cases are the most frequent. If a different species is used to
N-protect the polypeptide chain, a convention must be sought that also
starts at the N-terminus. This choice takes into account that the primary
structure of a polypeptide is normally presented from the N- to the C-
terminus.

ii) If there is only one unnumbered group linked to group j, we number it as
j + 1, set j = j + 1 and go to (ii).

iii) If there are two or more unnumbered groups linked to group j, we choose
the next one as the one with the greatest mass (the mass of a group is
defined as the sum of the atomic masses of its constituents). If two or
more neighbouring unnumbered groups have the same mass, we add the
mass of their first neighbours to break the tie. If this does not lead to
a decision, we proceed to the second neighbours and so on. If we run
out of neighbours and there is still a tie, we choose a group arbitrarily
among the ones that have been selected via this process and we indicate
the convention. We number the group chosen as j + 1, set j = j + 1
and go to (ii). Exception: When we must choose the next group to the
one whose center is a Cα in the backbone, instead of applying the rule of
greatest mass, which would yield the group at the C’ as the next one, we
choose the first group in the side chain (for residues that are different from
glycine). Then, we number the group chosen as j + 1, set j = j + 1 and
go to (ii). This is done in order to ensure modularity, since, otherwise,
the backbone would be always numbered first and the whole numeration
would have to be modified if we added a new residue to the chain.

iv) If there are no unnumbered groups linked to group j, we prepare to start
another branch and have two choices: For modularity reasons, we want
to completely number the side chain before proceeding into the backbone.
Hence, if we are numbering side chain groups and there are still unnum-
bered groups in the same side chain, we set j to the number of the lowest

numbered group that has unnumbered neighbours and that belongs to the

side chain of the residue whose groups we are numbering.. If we are not
numbering side chain groups or we are numbering side chain groups but
there is no unnumbered groups in the same side chain left, we set j to the

number of the lowest numbered group that has unnumbered neighbours in

the whole peptide. Then, we go to (ii).

This process terminates when all the groups are numbered.
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2.3 Rules for numbering the atoms

The atoms will be numbered in the order that they will be positioned via internal
coordinates in the Z-matrix. In fig. 5, the rules given in this subsection are
exemplified in a protected histidine dipeptide.

Figure 5: Atom numeration of the protected dipeptide HCO-L-His-NH2 (with the

side chain in its uncharged ε tautomeric form).

The rules are as follows:

i) The first atom (k = 1), is chosen as the heaviest of the external atoms

in the first group. If there are two or more candidates with the same
mass, we choose arbitrarily and indicate the convention. Exception: If
the polypeptide is formyl-N-protected, instead of applying the rule, which
would yield the oxygen at the formyl group, we choose the hydrogen at the

formyl group

ii) The second atom (k = 2) is the center of the first group and we set j = 1
(the index of the group).

iii) If group j + 1 exists and is covalently attached to group j, we number
the unnumbered vertices of group j starting by the center of group j + 1
and, then, in order of decreasing mass. If, otherwise, group j + 1 does
not exist or it is not covalently attached to group j, we simply number

the unnumbered vertices of group j in order of decreasing mass. If, at any
point, there are two or more candidates with the same mass, we choose
arbitrarily and indicate the convention. Exception 1: If groups j and j+
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1 belong to the same cyclic part of the molecule, the vertices of j that are
centers of groups (other than j + 1) belonging to the same cycle must not

be numbered at this step (for an example of this rule, see the numeration
of C13 and N18 in fig. 5). Exception 2: If the polypeptide is amide-C-
protected, instead of applying the above rule and arbitrarily choosing one
of the hydrogens in the terminal amide group before the other, we number
the trans hydrogen before the other (see fig. 5). Exception 3: Due to
the rules for the numeration of groups given in the previous subsection,
the next group to the one at the Cα is the first one in the side chain. If
we applied the general rule for numbering the vertices of the Cα-group,
we would number first the center of the first group at the side chain and,
then, the C’ in the backbone. This would make the only principal dihedral
defined on bond (Cα, N) different from the conventional Ramachandran
angle φ. In order to avoid this, at this point, we number the C’ first
among the unnumbered vertices of the Cα-group and, then, resume the
usual numeration process (see fig. 5).

iv) If group j+1 does not exist, we have finished. Otherwise, we set j = j+1
and go back to (iii).

The exception to rule (i) and the exceptions 2 and 3 to rule (iii) are intro-
duced in order that the principal dihedrals that are to be defined after numbering
the atoms conform to the biochemical IUPAC conventions for the dihedrals φ,
ψ and ω in the backbone. At the termini, we have ensured that the atom where
the Cα of the hypothetical residue 0 or N + 1 would occur is used to define the
principal dihedrals.

See fig. 10 for the numeration of the twenty naturally occurring amino acids
with formyl-N- and amide-C-protection.

2.4 Rules for defining the internal coordinates

Using the numeration for the atoms given in the previous section, we give now a
set of rules for defining the internal coordinates that conform with the physical

approach discussed in the introduction of this work. The coordinates are written
in Z-matrix form (see table 3) for convenience and the rules are applied to the
protected dipeptide HCO-L-His-NH2 (with the side chain in its uncharged ε
tautomeric form) using the numeration given in fig. 5.

The rules are as follows:

i) The positioning of the first three atoms is special. The corresponding rows
of the Z-matrix are always as the ones in table 3 (except, of course, for
the chemical symbol in the first column, which may change).

ii) The positioning of the remaining vertices of group number 1 (if there is
any) is also special, their rows in the Z-matrix are:

Ti (i, 2) (i, 2, 1) (i, 2, 1, 3)
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Atom name Bond length Bond angle Dihedral angle

H1

C2 (2,1)
N3 (3,2) (3,2,1)
O4 (4,2) (4,2,1) (4,2,1,3)
C5 (5,3) (5,3,2) (5,3,2,1)
H6 (6,3) (6,3,2) (6,3,2,5)
C7 (7,5) (7,5,3) (7,5,3,2)
C8 (8,5) (8,5,3) (8,5,3,7)
H9 (9,5) (9,5,3) (9,5,3,7)
C10 (10,8) (10,8,5) (10,8,5,3)
H11 (11,8) (11,8,5) (11,8,5,10)
H12 (12,8) (12,8,5) (12,8,5,10)
C13 (13,10) (13,10,8) (13,10,8,5)
N14 (14,13) (14,13,10) (14,13,10,8)
H15 (15,13) (15,13,10) (15,13,10,14)
C16 (16,14) (16,14,13) (16,14,13,10)
H17 (17,14) (17,14,13) (17,14,13,16)
N18 (18,16) (18,16,14) (18,16,14,13)
H19 (19,16) (19,16,14) (19,16,14,18)
N20 (20,7) (20,7,5) (20,7,5,3)
O21 (21,7) (21,7,5) (21,7,5,20)
H22 (22,20) (22,20,7) (22,20,7,5)
H23 (23,20) (23,20,7) (23,20,7,22)

Table 3: Internal coordinates in Z-matrix form of the protected dipeptide HCO-L-

His-NH2 (with the side chain in its uncharged ε tautomeric form), following the rules

given in sec. 2.4. Principal dihedrals are indicated in bold face.

Where T is the chemical symbol of the i-th atom, and (i, 2, 1, 3) is a phase
dihedral.

iii) We set i to the number that follows that of the last vertex of the first group.

iv) We choose j as the lowest numbered atom that is covalently linked to i.

v) We choose k as the lowest numbered atom that is covalently linked to j.

vi) If no principal dihedral has been defined on the bond (j, k) (we say that
a principal dihedral (i, j, k, l) is “on the bond (j, k)”), we choose l as the

lowest numbered atom that is covalently linked to k. Otherwise, we choose
l as the second lowest numbered atom that is covalently linked to j (i.e., the
lowest numbered atom that is covalently linked to j and that is different
from k, or, equivalently, the atom that was used to define the only principal
dihedral on the bond (j, k)).

12



vii) The row of the Z-matrix that corresponds to atom i is:

Ti (i, j) (i, j, k) (i, j, k, l)

Where T is the chemical symbol of atom i, (i, j) is a bond length, (i, j, k)
is a bond angle and (i, j, k, l) is a principal dihedral if the first case in
point (vi) has occurred or a phase dihedral otherwise.

viii) If i+ 1 does not exist, we have finished. Otherwise, we set i = i+ 1 and
go to (iv).

3 Application

3.1 Theory

When a number of degrees of freedom are removed from the description of the
conformations of a physical system via their integrating out in the partition
function, the energy function that remains, which describes the behaviour of
the system only in terms of the rest of the degrees of freedom, is a free energy.
It depends on the temperature and contains the entropy of the information that
has been averaged out as well as the enthalpy. However, it is frequent, when
studying the conformational preferences of model dipeptides in order to use
the information for designing effective potentials of polypeptides [27–33], that
the energy of these molecules be approximated by the Potential Energy Surface
(PES) in the bidimensional space spanned by the Ramachandran angles φ and
ψ [25, 33–35]. If we recognize that the potential energy of the system in the
Born-Oppenheimer approximation (denoted by V3n−6) depends on the 3n − 6
internal coordinates, this surface (denoted by V2) may be defined as:

V2(φ, ψ) := min
Qα

V3n−6(φ, ψ,Q
α) . (1)

Where Qα denotes the rest of the internal coordinates.
The use of this surface, instead of a free energy function with the Qα degrees

of freedom integrated out, is justified in the approximation that these internal
coordinates are hard and that they are comparably much more difficult to excite
at room temperature than φ and ψ. If we assume that this is correct, these hard
degrees of freedom may be easily eliminated [17] and the partition function of
the system may be written as follows:

Z = C

∫

dφ dψ dQα e−βV3n−6(φ,ψ,Q
α) ' C ′

∫

dφ dψ e−βV2(φ,ψ) . (2)

Where β := 1/RT .
Note however that, in the “flexible” picture for the constraints, this expres-

sion is correct only if we assume that the Jacobian determinant of the change of
coordinates from Cartesians to {φ, ψ,Qα} and the determinant of the potential

13



second derivatives matrix with respect to the hard coordinates, both evaluated
at the equilibrium values, do not depend on φ and ψ (see ref. [17]). If, alterna-
tively, we accept the “rigid” picture for the constraints, we must ask that the
determinant of the induced metric tensor in the constrained hypersurface do not
depend on φ and ψ [36]. If these approximations (which will be reexamined in
future works) do not hold but the hardness of the Qα degrees of freedom is still
assumed, the expressions in eq. 2 must be modified by adding some correction
terms to V2(φ, ψ).

In eq. 2 for the partition function, one also may see that, apart from the
different multiplicative constants C and C ′, which do not affect the expected
values of observables, the use of the PES V2(φ, ψ) as the fundamental energy
function of the system is justified because it plays the same role as the whole
potential energy of the system in the first integral.

However, although the hardness of the bond lengths, the bond angles and
even the dihedral ω in the peptide bond may be assumed, this is not a good
approximation for the rotameric degrees of freedom in the side chains of residues.
In the frequently studied [25, 34] example of HCO-L-Ala-NH2 (see fig. 6), as it
has already been said in footnote 1, the side chain degree of freedom χ must
be regarded as soft. Still, although it is more complex, a soft degree of freedom
may also be averaged out if it is considered convenient.

Figure 6: Atom numeration of the protected dipeptide HCO-L-Ala-NH2.

In this section, we will assume that the energy of the formyl-alanine-amide
dipeptide may be correctly approximated by a Potential Energy Hypersurface
(PEH) (denoted by V3) that depends on the Ramachandran angles φ and ψ but
also on the principal dihedral χ that describes the rotation of the methyl group
in the side chain. Analogously to eq. 1, its definition in terms of the whole
energy of the system is:

V3(φ, ψ, χ) := min
Q′α

V3n−6(φ, ψ, χ,Q
′α) . (3)

Where Q′α represents the internal coordinates that are not φ, ψ or χ.
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Note, in addition, that the two definitions are related by the following ex-
pression:

V2(φ, ψ) = min
χ

V3(φ, ψ, χ) . (4)

We will also assume for V3(φ, ψ, χ) the aforementioned approximations that
lead to eq. 2, in such a way that we can write (deliberately omitting the irrelevant
multiplicative constants):

Z '

∫

dφ dψ dχ e−βV3(φ,ψ,χ) =

∫

dφ dψ Z(φ, ψ) :=

:=

∫

dφ dψ e−βF (φ,ψ) . (5)

Where we have defined:

Z(φ, ψ) := e−βF (φ,ψ) :=

∫

dχ e−βV3(φ,ψ,χ) . (6)

This is what must be done in general when a soft degree of freedom is
needed to be integrated out in Statistical Mechanics [37] and the approximations
in ref. [17] cannot be made. The function F (φ, ψ) is a free energy because, in
general, it depends on the temperature and it contains the entropy of the degree
of freedom χ whose influence has been averaged.

We must remark at this point that, to integrate out the side chain angle
χ could be reasonable if one’s aim is to use the ab initio obtained information
from a single dipeptide to include it in an effective potential for simulating
polypeptides. There is no point in integrating out the Ramachandran angles φ
and ψ, since the conformation of the larger system will depend crucially on their
particular values, because they lie in the backbone of the molecule and there
are as many pairs (φ, ψ) as residues in the chain. The side chain angle χ, on
the contrary, will only influence its immediate surroundings and its importance
could be of different magnitude depending on the treatment that the side chains
are given in the model for the polypeptide.

In this context, if we wanted to use an energy function that does not depend
on χ (in some circumstances, a computational must), we would have to perform
the integral in the last term of eq. 6 and use F (φ, ψ) instead of V2(φ, ψ), since, as
it has already been remarked, χ is not a hard coordinate and the approximations
needed to write eq. 2 do not hold. Therefore, if we compare the last term in
eq. 5 with the last term in eq. 2, we see that, apart from additive constants
that do not depend on φ and ψ and that come from the multiplicative constants
omitted, the PES V2(φ, ψ) must be understood as a candidate for approximating

the more realistic F (φ, ψ) and saving much computational effort.
There are several ways of computing the potential energy, see, for example,

the hindered rotor approximation in reference [38]. In the following subsections,
the validity of this approximation will be assessed in the particular case of
formyl-alanine-amide with ab initio Quantum Mechanics calculations.
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3.2 Methods

The ab initio quantum mechanical calculations have been done with the package
GAMESS [9] under Linux. The coordinates used for the HCO-L-Ala-NH2 dipep-
tide in the GAMESS input files and the ones used to “move” the molecule in the
the automatic Perl scripts that generated the input files are the SASMIC defined
in sec. 2. They are presented in table 4 indicating the name of the conventional
dihedral angles (see also fig. 6 for reference). In the energy optimizations, on the
contrary, they have been converted to Delocalized Coordinates [4] to accelerate
convergence.

Atom name Bond length Bond angle Dihedral angle

H1

C2 (2,1)
N3 (3,2) (3,2,1)
O4 (4,2) (4,2,1) (4,2,1,3)
C5 (5,3) (5,3,2) ω0 :=(5,3,2,1)
H6 (6,3) (6,3,2) (6,3,2,5)
C7 (7,5) (7,5,3) φ :=(7,5,3,2)
C8 (8,5) (8,5,3) (8,5,3,7)
H9 (9,5) (9,5,3) (9,5,3,7)
H10 (10,8) (10,8,5) χ :=(10,8,5,3)
H11 (11,8) (11,8,5) (11,8,5,10)
H12 (12,8) (12,8,5) (12,8,5,10)
N13 (13,7) (13,7,5) ψ :=(13,7,5,3)
O14 (14,7) (14,7,5) (14,7,5,13)
H15 (15,13) (15,13,7) ω1 :=(15,13,7,5)
H16 (16,13) (16,13,7) (16,13,7,15)

Table 4: SASMIC internal coordinates in Z-matrix form of the protected dipeptide

HCO-L-Ala-NH2. Principal dihedrals are indicated in bold face and their typical

biochemical name is given.

First, we have calculated the typical PES V2(φ, ψ) defined in eq. 1 in a regular
12x12 grid, with both φ and ψ ranging from −165o to 165o in steps of 30o. This
has been done by running energy optimizations at the RHF/6-31+G(d) level
of the theory, freezing the two Ramachandran angles at each value on the grid,
starting from geometries previously optimized at a lower level of the theory
and setting the gradient convergence criterium to OPTTOL=0.0001 and the self-
consistent Hartree-Fock convergence criterium to CONV=0.00001.

Then, at each grid point, we have defined another one-dimensional grid in
the coordinate χ that ranges from χ0(φ, ψ) − 50o to χ0(φ, ψ) + 60o in steps
of 10o, where χ0(φ, ψ) is one of the three equivalent equilibrium values (se-
lected arbitrarily) of this degree of freedom at each point of the original PES.
This partition in 12 points spans one third of the χ-space, but it is enough
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for computing the integrals because the surface V3(φ, ψ, χ) has exact three-fold
symmetry in χ (note, for example, that the value of V3 at χ0(φ, ψ)− 60o would
be equal to the one at χ0(φ, ψ)+60o). Next, we have run energy optimizations,
with the same parameters described above and at the same level of theory, at
each point of the χ-grid for every grid-value of the PES (i.e., freezing the three
angles). The starting geometries have been automatically generated via Perl
scripts taking the final geometries in the (φ, ψ)-grid and systematically chang-
ing χ. Note that this amounts to only changing the principal dihedral (10,8,5,3)
in the Z-matrix in table 4; with poorly designed coordinates that did not sep-
arate the hard modes from the soft ones, this process would have been more
difficult and rather unnatural.

After all the optimizations (∼ 54 days of CPU time in 3.20 GHz PIV
machines), we have 12x12x12=1728 points with grid coordinates (φi, ψj , χk)
i, j, k = 1 . . . 12 of the function V3(φ, ψ, χ) and we may approximate the integral
defining F (φ, ψ) in eq. 6 by a finite sum:

F (φi, ψj) := −RT ln

(

∑

k

e−βV3(φi,ψj ,χk)

)

=

= −RT ln

(

∑

k

e−β[V3(φi,ψj ,χk)−〈V3〉(φi,ψj)]

)

+ 〈V3〉(φi, ψj) . (7)

Where the additive constants produced by the three-fold symmetry in the
coordinate χ have been omitted.

The quantity 〈V3〉(φ, ψ), defined as:

〈V3〉(φi, ψj) :=
1

12

∑

k

V3(φi, ψj , χk) , (8)

has been introduced in order for the values of the exponential function to be
in the precision range of the computer.

Analogously, the average energy may be computed via:

U(φi, ψj) :=

∑

k

V3(φi, ψj , χk)e
−βV3(φi,ψj ,χk)

∑

k

e−βV3(φi,ψj ,χk)
=

=

∑

k

V3(φi, ψj , χk)e
−βV3(φi,ψj ,χk)−〈V3〉(φi,ψj)]

∑

k

e−β[V3(φi,ψj ,χk)−〈V3〉(φi,ψj)]
= . (9)

And, finally, we extract the entropy from:

F (φi, ψj) = U(φi, ψj) − TS(φi, ψj) . (10)
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Additionally, apart from the calculations needed to integrate out χ, we have
also performed an unconstrained geometry optimization in the basin of attrac-
tion of the local minima of the PES normally known as γL or C7eq depending
on the author [35]. This calculation was done at the MP2/6-31++G(d,p) level
of the theory and with the same values of the variables OPTTOL and CONV than
the ones used in the PES case. The starting geometry was the final structure
corresponding to the point (−75o, 75o) of the PES calculations at the lower level
of the theory described in the preceding paragraphs.

In the local minimum found, we have computed the Hessian matrix (also at
MP2/6-31++G(d,p)) in two different sets of coordinates: the properly defined
SASMIC shown in table 4 and an ill-defined set in which the lines corresponding
to the hydrogens H10, H11 and H12 in the side chain have been substituted by
those in table 1. This is done to numerically illustrate the better separation
of the hard and soft modes achieved by the internal coordinates defined in this
work with respect to other Z-matrix-like coordinates.

3.3 Results
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Figure 7: Ramachandran plots of (a) the free energy F (φ,ψ) and (b) −TS(φ,ψ) in

the model dipeptide HCO-L-Ala-NH2.

In order to assess if V2(φ, ψ) could be considered a good approximation of
F (φ, ψ), we have used a statistical quantity, defined in [39], which measures the
typical error that one makes in the energy differences between arbitrary pairs
of conformations of the system if one effective potential is used instead of the
other. If we measure this distance between F (φ, ψ) and V2(φ, ψ), using the 144
points in the (φ, ψ)-grid, we obtain:

d(F, V2) = 0.098 RT . (11)

We present the result in units of RT (at 300o K, where RT ' 0.6 kcal/mol)
because it has been argued in [39] that, if the distance between two different
approximations of the energy of the same system is less than RT , one may safely
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substitute one by the other without altering the relevant physical properties. In

this case, this criterium is widely satisfied. Moreover, if one assumes that the
effective energy studied will be used to construct a polypeptide potential and
that the latter will be designed as simply the sum of mono-residue ones (making
each term suitably depend on different pairs of Ramachandran angles), then, the
number Nres of residues up to which one may go keeping the distance between
the two approximations of the N -residue potential below RT is (see ref. [39]):

Nres(F, V2) =

(

RT

d(F, V2)

)2

' 104 . (12)

The goodness of the approximation in this case is much due to the simplicity
and small size of the side chain of the alanine residue and also to the fact that the
dipeptide is isolated. For bulkier residues included in polypeptides, we expect
the difference between F (φ, ψ) and V2(φ, ψ) to be more important.

Although the essential result is the one stated in the previous paragraphs, we
wanted to look in more detail at the origin of the differences between F (φ, ψ) and
V2(φ, ψ). For this, we have first subtracted from F (φ, ψ), U(φ, ψ) and V2(φ, ψ)
the same constant reference (min F (φ, ψ))5 in order to render the numerical
values more manageable and to minimize the statistical error of the y-intercept
in the linear fits [40, 41] that will be made in the following.

Then, fitting U(φ, ψ) against V2(φ, ψ), we have found that they are more
correlated than F (φ, ψ) and V2(φ, ψ) (compare the Pearson’s correlation coef-
ficient, r(U, V2) = 0.999999 vs. r(F, V2) = 0.999954, and the aforementioned
distance, d(U, V2) = 0.015 RT vs. d(F, V2) = 0.098 RT ), and that they are
separated by an almost constant offset: V2(φ, ψ) is ∼ 0.3 kcal/mol lower that
U(φ, ψ) (on the other hand, V2(φ, ψ) is ∼ 0.6 kcal/mol higher than F (φ, ψ)).
Hence, the three Ramachandran surfaces F (φ, ψ), U(φ, ψ) and V2(φ, ψ) are very
similar, except for an offset. In fig. 7a, F (φ, ψ) is depicted graphically and, in
fig 8, the relative offsets among the three energies are schematically shown.

Figure 8: Relative offsets among the thermodynamical surfaces involved in the study.

Contrarily, the entropy (we use TS(φ, ψ) in order to deal with quantities
that have units of energy), which may be found in fig. 7b, and whose average

5At the level of the theory used in the calculations, the minimum of F (φ,ψ) in the grid is
-414.7985507934 hartree.
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magnitude is ∼ 0.9 kcal/mol, is almost uncorrelated with F (φ, ψ), U(φ, ψ) and
V2(φ, ψ), being the correlation coefficients r(TS, F ) = 0.382, r(TS,U) = 0.379
and r(TS, V2) = 0.381, respectively. Hence, given that d(U, V2) is almost an
order of magnitude lower than d(F, V2), it is reasonable to conclude that the
greatest part of the (little) noise between F (φ, ψ) and V2(φ, ψ) comes from the
entropic term −TS(φ, ψ). This is supported by the fact that the difference
F (φ, ψ) − V2(φ, ψ) is highly correlated with TS(φ, ψ), being the correlation
coefficient r(F − V2, TS) = 0.998.

Finally, and in order to illustrate the better separation of the hard and
soft modes achieved by the internal coordinates defined in this work, we have
calculated the Hessian matrix in the minimum γL (also C7eq) in two different
sets of coordinates. They are described at the end of sec. 3.2 and they correspond
to the SASMIC set, defined according to the rules given in sec. 2, and a set in
which the coordinates that position the hydrogens in the side chain have been
ill-defined.

In fig. 9, we present the sub-boxes of the two Hessian matrices corresponding
to the coordinates defined in tables 2 and 1.

Figure 9: Sub-boxes of the Hessian matrix in the minimum γL (also C7eq) corre-

sponding to the coordinates defined in tables 2 and 1. The quantities are expressed in

kcal/mol · rad−2. See the text for more details.

From the values shown, one can conclude that, in the “properly defined coor-
dinates”, some convenient characteristics are present: on one side, the relatively
low values of the elements Hχα1

and Hχα2
(and their symmetric ones) indicate

that the soft degree of freedom χ and the hard ones α1 and α2, which describe
the internal structure of the methyl group, are uncoupled to a reasonable extent;
on the other side, the relatively low value of Hχχ compared to Hα1α1

and Hα2α2

(a difference of almost an order of magnitude) proves that χ may be regarded
as soft when compared to the hard degrees of freedom α1 and α2.

On the contrary, in the “ill-defined coordinates”, the three dihedrals are
hard, considerably coupled and equivalent.

4 Conclusions

Extending the approach of refs. [14–16] and the ideas stated in [1, 2, 26], we
have defined a systematic numeration of the groups, the atoms and the internal
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coordinates (termed SASMIC) of polypeptide chains. The advantages of the
rules herein presented are many-fold:

• The internal coordinates may be easily cast into conventional Z-matrix
form and they can be directly implemented into quantum chemical pack-
ages.

• The algorithm for numbering allows for automatizing and facilitates the
coding of computer applications.

• The modularity of the numeration system in the case of polypeptides per-
mits the addition of new residues without essentially changing the already
numbered items. This is convenient if databases of peptide structures need
to be designed.

• The set of internal coordinates defined reasonably separate the hard and
soft movements of polypeptides for arbitrary conformations using only
topological information.

A number of Perl scripts that automatically generate these coordinates for
polypeptide chains are provided as supplementary material. Also, a supplemen-
tary document is provided that states the rules for numbering the groups, atoms
and defining the internal coordinates in general organic molecules.

In addition, we have used the coordinates herein defined and ab initio Quan-
tum Mechanics to assess the approximation of the free energy obtained from
averaging out the rotameric degree of freedom χ via the conventional PES in
the protected dipeptide HCO-L-Ala-NH2. Applying the criterium in ref. [39], we
have found that approximating F (φ, ψ) by V2(φ, ψ) is justified up to polypep-
tides of medium length (∼ 100 residues) and much computational effort may
be saved using the PES instead of the more realistic free energy. However, the
small size of the side chain of the alanine residue and the fact that the dipeptide
is isolated do not allow to extrapolate this result. For bulkier residues included
in polypeptides, we expect the difference between F (φ, ψ) and V2(φ, ψ) to be
more important.
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Figure 10: Numeration of the left-handed dipeptides HCO-L-X-NH2, where X runs

on the twenty naturally occurring amino acids (except for Glycine, which is the achiral

species HCO-Gly-NH2). Uncharged side chains are displayed and Histidine is shown

in its ε tautomeric form.
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Appendix

SASMIC rules for general organic molecules

The definitions found in sec. 2.1 are kept. The only changes affect the rules for
numbering the groups and the atoms, since, when this is achieved, the rules for
defining the internal coordinates are the same as the ones in sec. 2.4.

Rules for numbering the groups

As we have done for peptides, first of all, we will divide the molecule in groups
and number them. To do this we proceed by branches, i.e., we choose the next
group following a linear sequence of covalently attached groups until there is no
possible next one, in which case, we either have finished the numeration process
or we start another branch. Every group is numbered one time and it cannot
be renumbered as the process continues.

In fig. 11, we have implemented these rules for general organic molecules in
a protected histidine dipeptide.

Figure 11: Group identification and numeration in the protected dipeptide HCO-L-

His-NH2 (with the side chain in its uncharged ε tautomeric form), following the rules

for general organic molecules. The different types of groups are shown as gray-filled

polyhedra.

The rules are as follows:

i) The first group (j = 1), is chosen, among those that are linked to the
molecule via only one internal bond (termed “terminal groups”), as the
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one that has the greater mass (the mass of a group is defined as the sum
of the atomic masses of its constituents). If two or more terminal groups
have the same mass, we add the mass of their first neighbours to break
the tie. If this does not lead to a decision, we proceed to the second
neighbours and so on. If we run out of neighbours and there is still a
tie, we choose a group arbitrarily among the ones that have been selected
via this process and we indicate the convention. If there are no terminal
groups, we perform this selection process among those groups that have
at least one external atom6.

ii) If there is only one unnumbered group linked to group j, we number it as
j + 1, set j = j + 1 and go to (ii).

iii) If there are two or more unnumbered groups linked to group j, we choose
the one with the greater mass as in point (i), we number it as j + 1, set
j = j + 1 and go to (ii).

iv) If there are no unnumbered groups linked to group j but there are still
unnumbered groups in the molecule, we set j to the number of the low-

est numbered group that has unnumbered neighbours (we prepare to start
another branch) and we go to (ii).

This process terminates when all the groups are numbered.

Rules for numbering the atoms

The atoms will be numbered in the order that they will be positioned via internal
coordinates in the Z-matrix. As in the previous section, in fig. 12, these rules
for a general organic molecule are exemplified in a protected histidine dipeptide.

The rules are as follows:

i) The first atom (k = 1), is chosen as the heaviest of the external atoms in

the first group. If there are two or more candidates with the same mass,
we choose arbitrarily and indicate the convention.

ii) The second atom (k = 2) is the center of the first group and we set j = 1
(the index of the group).

iii) If group j + 1 exists and is covalently attached to group j, we number
the unnumbered vertices of group j starting by the center of group j + 1
and, then, in order of decreasing mass. If, otherwise, group j + 1 does
not exist or it is not covalently attached to group j, we simply number

the unnumbered vertices of group j in order of decreasing mass. If, at any
point, there are two or more candidates with the same mass, we choose
arbitrarily and indicate the convention. Exception: If groups j and j+1

6The rare case in which there are neither terminal groups nor external atoms (such as
C60 fullerene) will not be treated here, although it would require only a small number of
adjustments to the rules.
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Figure 12: Atom numeration of the protected dipeptide HCO-L-His-NH2 (with the

side chain in its uncharged ε tautomeric form), following the rules for general organic

molecules.

belong to the same cyclic part of the molecule, the vertices of j that are
centers of groups (other than j + 1) belonging to the same cycle must not

be numbered at this step (for an example of this rule, see the numeration
of C17 and N22 in fig. 12).

iv) If group j+1 does not exist, we have finished. Otherwise, we set j = j+1
and go back to (iii).

Rules for defining the internal coordinates

Using the numeration for the atoms given in the previous section, the rules
for defining the SASMIC internal coordinates that conform with the physical

approach discussed in the introduction are the same as the ones given in the
sec. 2.4.

The coordinates, written in Z-matrix form, of the protected dipeptide HCO-
L-His-NH2 (with the side chain in its uncharged ε tautomeric form) using the
numeration given in fig. 12 are given in table 5.
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Atom name Bond length Bond angle Dihedral angle

O1

C2 (2,1)
N3 (3,2) (3,2,1)
H4 (4,2) (4,2,1) (4,2,1,3)
C5 (5,3) (5,3,2) (5,3,2,1)
H6 (6,3) (6,3,2) (6,3,2,5)
C7 (7,5) (7,5,3) (7,5,3,2)
C8 (8,5) (8,5,3) (8,5,3,7)
H9 (9,5) (9,5,3) (9,5,3,7)
N10 (10,7) (10,7,5) (10,7,5,3)
O11 (11,7) (11,7,5) (11,7,5,10)
H12 (12,10) (12,10,7) (12,10,7,5)
H13 (13,10) (13,10,7) (13,10,7,12)
C14 (14,8) (14,8,5) (14,8,5,3)
H15 (15,8) (15,8,5) (15,8,5,14)
H16 (16,8) (16,8,5) (16,8,5,14)
C17 (17,14) (17,14,8) (17,14,8,5)
N18 (18,17) (18,17,14) (18,17,14,8)
H19 (19,17) (19,17,14) (19,17,14,18)
C20 (20,18) (20,18,17) (20,18,17,14)
H21 (21,18) (21,18,17) (21,18,17,20)
N22 (22,20) (22,20,18) (22,20,18,17)
H23 (23,20) (23,20,18) (23,20,18,22)

Table 5: Internal coordinates in Z-matrix form of the protected dipeptide HCO-L-

His-NH2 (with the side chain in its uncharged ε tautomeric form), following the rules

for general molecules. Principal dihedrals are indicated in bold face.
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C. van Alsenoy, Ab initio conformational analysis of N-formyl L-alanine
amide including electron correlation, J. Mol. Struct. 567–568, 361 (2001).

[26] J. L. Alonso, G. A. Chass, I. G. Csizmadia, P. Echenique, and
A. Tarancón, Do theoretical physicists care about the protein folding
problem?, in Meeting on Fundamental Physics ‘Alberto Galindo’, edited
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