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Abstract. Multisignature schemes are digital signature schemes that
permit one to determine a unique signature for a given message, de-
pending on the signatures of all the members of a specific group. In this
work, we present a new semi-short multisignature scheme based on the
Subgroup Discrete Logarithm Problem (SDLP) and on the Integer Fac-
torization Problem (IFP). The scheme can be carried out in an on- and
off-line basis, is efficient, and the bitlength of the multisignature does
not depend on the number of signers.
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1 Introduction

There are currently different methods and algorithms to perform, in a safe way,
digital signatures. Most of these protocols are based on Public Key Cryptography
[1]. The main feature of this kind of cryptography is that each individual has two
keys, one public key and one private key. Additionally, to make more efficient the
procedures of digital signatures and their electronic transmission, hash functions
are used [2]. These functions are publicly known and allow signing a digest of
the original document instead of the whole document.

Multisignature schemes are protocols of digital signature whereby a group of
users, G = {U1, . . . , Ut}, signs a document such that the signature is valid if and
only if all members of the group take part in the protocol and the signature ver-
ifies a specific condition of validity. These schemes have application in settings
such us, for example, corporate scenarios for signing contracts between compa-
nies, the government and public administrations, agreements between different
organization, etc. The easiest way to carry out a multisignature for a message
is to consider as such signature the list formed by all the partial signatures of
each one of the signers. However, this signature is not practical since its length
is proportional to the number of signers [3, 4].

In general, most of the multisignature protocols are performed as follows:

1. The signer U1 signs the original message by using the signer private key.
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2. Each one of the following signers, in an ordered way, signs the document,
already signed by the one who is previous in the group.

3. The last member of G, Ut, signs the signed document that the previous
signer has sent to him and sends to the verifier the original message and the
multisignature calculated by the group of signers.

The verifier performs the verification of the multisignature by checking each
one of the partial signatures of the group of signers, following the protocol and
keeping the order in which they were signed.

The first multisignature scheme was proposed in [5], where a modification of
the RSA cryptosystem was performed in such a way that the module considered
was the product of three primes instead of just two. In [6] a scheme was pro-
posed where the signature length is similar to the length of a simple signature
and shorter than the signature obtained from the scheme proposed in [5]. This
proposal can be used only if the cryptosystem is bijective. Other proposals based
on the RSA cryptosystems have been proposed [7–11].

Regarding multisignature schemes based on the discrete logarithm problem,
in [12] the group of signers must cooperate to sign the message and send the
signature to a given group of verifiers. Only the union of all verifiers is able to
validate the multisignature. Additionally, the signers must use not only their own
private keys, but also the public key of all the verifiers. However, this scheme
has some weaknesses [13, 14]. The scheme proposed in [15] allows to perform a
multisignature if the verifiers of the signature belong to a previously specified
group.This scheme has some weaknesses as well [16, 17].

In [18] a multisignature scheme for a generic model of public key is presented.
The model requires some properties: Each one of the signers must have a certified
public key with its corresponding private key, which must be generated by the
signer himself. The signers must interact in a given number of rounds. In each
round each signer receives a message, performs several calculations and sends
another message to the next signer. It must be computationally infeasible to
forge a multisignature if there exists one honest signer.

Our multisignature scheme has the property and advantage that each signer
has his own private key, but all of them share the same public key. In this sense,
the new scheme does not match exactly the model proposed in [18] since the
procedure is carried out in just one round in which all the signers participate.
Moreover, each signer does not need to have his own certified pair of keys (public
and private). In fact, in the protocol all the signers share the same public key,
but each one has his own private key. This fact simplifies and spares some of the
problems related to the computational effort for computation, bandwidth, and,
therefore, the overall efficiency of the proposed protocol.

Our proposal verifies several properties: It is secure, efficient, independent
of the number of signers, the signature is determined by all the signers in any
previously given order, allows adding new signers, and the verification procedure
does require the verification of the partial signature of each member of G.
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2 A multisignature scheme based on SDLP and IFP

We propose a new multisignature scheme whereby each member of a given group,
G, signs a document making use of his private key. The verifier of the signature
checks whether the signature corresponds to the multisignature of the group, by
using the public key that all the members of the group share [19].

We suppose that G = {U1, U2, . . . , Ut} is the group of signer and T is the
Trusted Third Party which computes its own private key, the unique public key
associated to all private keys, as well as helps the members of G to generate
their private key.

2.1 Key generation

First of all, T generates its own private key:

1. T chooses two large primes p and q such that

p = u1 ⋅ r ⋅ p1 + 1, q = u2 ⋅ r ⋅ q1 + 1,

with r, p1, q1 primes, u1, u2 ∈ ℤ, with gcd(u1, u2) = 2, i.e., u1 = 2v1,
v2 = 2v2, and gcd(v1, v2) = 1. To guarantee the security of the scheme,
the bitlength of r is chosen so that the Discrete Logarithm Problem in a
Subgroup of ℤ∗

n, of order r, be computationally infeasible. Although the fac-
tors of n are of a particular form, they can be efficiently generated and to our
knowledge there is no known efficient algorithm to factorize n ([20], [21]).

2. T computes

n = p ⋅ q,
�(n) = (p− 1)(q − 1) = u1 ⋅ u2 ⋅ r2 ⋅ p1 ⋅ q1,

�(n) = lcm(p− 1, q − 1) =
�(n)

gcd(p− 1, q − 1)
= 2v1 ⋅ v2 ⋅ r ⋅ p1 ⋅ q1,

where �(n) is the Euler function and �(n) is the Carmichael function.

3. Next, T selects an element � ∈ ℤ∗
n of order r modulo n, verifying

gcd(�, �(n)) = gcd(�, u1 ⋅ u2 ⋅ r2 ⋅ p1 ⋅ q1) = 1.

The element � can be efficiently computed due to the fact that T knows
the factorization of n, �(n), and �(n) [21, Lemma 3.1]. We denote by Sr the
multiplicative subgroup of ℤ∗

n generated by �.

4. T generates a secret random number s ∈ ℤ∗
r and computes

� ≡ �s (mod n). (1)

5. The values (�, r, �, n) are made public; whereas T keeps secret (p, q, s).
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Remark that breaking the key generation protocol amounts to solving the
Integer factorization Problem (IFP). Moreover, to determine s from � in the ex-
pression (1) the Subgroup Discrete Logarithm Problem (SDLP) must be solved.

Before generating the private key of each signer, T generates its private key
and the shared public key as follows:

1. T determines its private key by generating four random integer numbers
a0, b0, c0, d0 ∈ ℤ∗

r .
2. T obtains the common public key by computing

P ≡ �a0 ⋅ �b0 (mod n) ≡ �a0+s⋅b0 ≡ �ℎ,

Q ≡ �c0 ⋅ �d0 (mod n) ≡ �c0+s⋅d0 ≡ �k.

where ℎ ≡ (a0 + s ⋅ b0) (mod r) and k ≡ (c0 + s ⋅ d0) (mod r).

For avoiding T can impersonate any signer of G, an interactive session be-
tween each user Ui and T is developed to compute Ui’s private key, i = 1, . . . , t:

1. Ui generates two secret integers bi, di ∈ ℤr at random and sends the values
of �bi , �di to T in a secure way, in order to protect both secret integers.
Note that T can determine Ai and Ci since it knows ℎ, k, �bi , and �di , but
it cannot compute ai, ci because it cannot solve the SDLP. In short, each
party gets access to only 2 out of the 4 key parameters.

2. T computes

Ai ≡ �ℎ ⋅ (�bi)−s (mod n) ≡ �ai ,

Ci ≡ �k ⋅ (�di)−s (mod n) ≡ �ci .

Then T sends to Ui the values of Ai, Ci by using a secure channel.
3. The private key of Ui is the set (bi, di, Ai, Ci). Remark that for Ui it is also

impossible to compute the values of ai and ci.

2.2 Key verification

To verify the correctness of T ’s key, each signer, Ui ∈ G, i = 1, . . . , t, tests if

� ∕≡ 1 (mod n), �r ≡ 1 (mod n).

Moreover, each signer must verify that his private key corresponds to the public
key (P,Q) by checking the correctness of the following expressions:

P ≡ Ai ⋅ �bi (mod n), Q ≡ Ci ⋅ �di (mod n).

In fact, we have:

Ai ⋅ �bi (mod n) ≡ �ai ⋅ �bi ≡ �ai+s⋅bi ≡ �ℎ ≡ P,
Ci ⋅ �di (mod n) ≡ �ci ⋅ �di ≡ �ci+s⋅di ≡ �k ≡ Q.
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2.3 Signing a message

We will present a protocol to determine a multisignature of the group G for a
given message M , where only the signers participate.

We suppose a secure hash function, h, has been selected (for example, one
of the SHA-2 family) with h(M) = m. Moreover, it is assumed that the set of
signers has been ordered, due to the fact that each signer will sign the signature
determined by the previous signer.

The process is as follows: Each signer verifies the partial signature deter-
mined by the previous signer, computes his own signature by using the received
signature, and sends the new partial signature to the next signer.

1. The first signer, U1, computes his partial signature for the message M by
using his private key, (b1, d1, A1, C1), and m = h(M):

F1 ≡ A1 ⋅ Cm
1 (mod n),

g1 ≡ b1 +m ⋅ d1 (mod r)

and sends (F1, g1) to the second signer, U2.
2. The second signer, U2, verifies U1’s signature checking if

P ⋅Qm ≡ F1 ⋅ �g1 (mod n).

U2 computes his partial signature for the message:

F2 ≡ F1 ⋅A2 ⋅ Cm
2 (mod n) ≡ �a1+a2+m(c1+c2),

g2 ≡ g1 + b2 +m ⋅ d2 (mod r) ≡ b1 + b2 +m(d1 + d2).

U2 sends (F2, g2) as his partial signature to the third signer.
. . .

i. The signer Ui receives the Ui−1’s partial signature (Fi−1, gi−1) and then
verifies this partial signature checking if

P i−1 ⋅Q(i−1)⋅m ≡ Fi−1 ⋅ �gi−1 (mod n).

Ui computes his partial signature:

Fi ≡ Fi−1 ⋅Ai ⋅ Cm
i (mod n) ≡ �a1+⋅⋅⋅+ai+m(c1+⋅⋅⋅+ci),

gi ≡ gi−1 + bi +m ⋅ di (mod r) ≡ b1 + ⋅ ⋅ ⋅+ bi +m(d1 + ⋅ ⋅ ⋅+ di).

Ui sends (Fi, gi) to the next signer.
. . .
t. The last signer in the group, Ut, receives the Ut−1’s partial signature and

verifies that signature testing if

P t−1 ⋅Q(t−1)⋅m ≡ Ft−1 ⋅ �gt−1 (mod n).

Ut computes his partial signature for the message:

Ft ≡ Ft−1 ⋅At ⋅ Cm
t (mod n) ≡ �a1+⋅⋅⋅+at+m(c1+⋅⋅⋅+ct),

gt ≡ gt−1 + bt + dt ⋅m (mod r) ≡ b1 + ⋅ ⋅ ⋅+ bt +m(d1 + ⋅ ⋅ ⋅+ dt).

Ut makes public the multisignature for M : (F, g) = (Ft, gt).
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The verification of each partial signature carried out by each signer (but the
first one) is necessary in order to avoid that a signer signs a non-valid message.
Moreover, the verification of the Ui’s partial signature is correct because it is

Fi ⋅ �gi (mod n) ≡ �a1+⋅⋅⋅+ai+m(c1+⋅⋅⋅+ci)�b1+⋅⋅⋅+bi+m(d1+⋅⋅⋅+di)

≡ �a1+⋅⋅⋅+ai(�c1+⋅⋅⋅+ci)m�b1+⋅⋅⋅+bi(�d1+⋅⋅⋅+di)m

≡
i∏

j=1

�aj ⋅ �bj
(
�cj ⋅ �dj

)m ≡ i∏
j=1

P ⋅Qm = P i ⋅Qi⋅m.

2.4 Verifying the multisignature

Let (F, g) be the multisignature for a message M computed by the group of t
signers, G. In order to verify such signature, a verifier must to check if

P t ⋅Qt⋅m ≡ F ⋅ �g (mod n). (2)

This verification equation is correct as

F ⋅ �g (mod n) ≡ �a1+⋅⋅⋅+at+m(c1+⋅⋅⋅+ct)�b1+⋅⋅⋅+bt+m(d1+⋅⋅⋅+dt)

≡
t∏

j=1

�aj ⋅ �bj
(
�cj ⋅ �dj

)m ≡ t∏
j=1

P ⋅Qm = P t ⋅Qt⋅m.

2.5 Properties and Security analysis

The proposed multisignature scheme has the following properties:

1. The scheme has a fixed size, i.e., it does not depend on the number of signers.
2. The multisignature is a semi-short signature in the sense that the pair (F, g)

is composed by two elements belonging to ℤ∗
n and to ℤ∗

r , respectively.
3. The multisignature is efficient as all computations require polynomial time.
4. It is possible to include new signers in the group G without re-execution

of the protocol by the rest of the signers. It is possible to place the new
signers at the end of the signer group so that each one of them follows the
protocol by computing his partial signature from the previously computed
multisignature.

5. The multisignature verification process is easy and efficient.

The proposed multisignature scheme is secure since to break the proposed
scheme an attacker needs to solve three difficult problems: IFP, DLP, and SDLP.
Hence, a signer knowing only his private key cannot determine neither T ’s private
key nor its secret value s.

In the scheme it is impossible for two signers to compute a forged signature
because each signer verifies the signatures of all the previous signers.

Moreover, two or more signers could try to conspire with the goal of obtaining
the secret value s of T , and then computing new private keys.
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In this attack, if the signers Ui and Uj , j > i, share their signatures (Fi, gi)
and (Fj , gj), they know that the following holds

Fi ⋅ �gi ≡ Fj ⋅ �gj (mod n),

Ai ⋅ �bi ⋅ Cm
i ⋅ �mdi ≡ Aj ⋅ �bj ⋅ Cm

j ⋅ �mdj (mod n),

�ai+s⋅bi+m⋅ci+s⋅m⋅di ≡ �aj+s⋅bj+m⋅cj+s⋅m⋅dj (mod n).

Then, they can suppose that the exponents verify the following equations:

ai + s ⋅ bi +m ⋅ ci + s ⋅m ⋅ di ≡ aj + s ⋅ bj +m ⋅ cj + s ⋅m ⋅ dj (mod r),

ai − aj +m(ci − cj) ≡ s((bj − bi) +m(dj − di)) (mod r),

s ≡ (ai − aj +m(ci − cj))((bj − bi) +m(dj − di))−1 (mod r).

But, none of them can solve this equation because they do not know ai, aj , ci, cj .
The scheme is secure even if a user has access to the signatures of two distinct

messages signed with the same keys because it implies solving IFP and DLP.
Finally, nobody can determine a forged multisignature for the message M

without being detected by T . In fact, a forger could know the public key, (P,Q),
the message, M , its hash, m, the number of signers, t, and the values (�, r, �, n).
From these data, he can choose an integer ḡ and determine the element �ḡ =
�s⋅ḡ ∈ Sr. Moreover, he can compute

F ≡ P t ⋅Qt⋅m ⋅ (�ḡ)−1 (mod n)

and publish the pair (F , ḡ) as a multisignature of the signer group G for the
message M , that passes the verification equation (2).

Nevertheless, T can prove that this multisignature is a forgery. It is sufficient
that it calculates

F̃ ≡
t∏

i=1

Ai ⋅ Cm
i (mod n),

and shows that F̃−1 ⋅ F ∕≡ 1 (mod n).

3 Conclusions

A new semi-short multisignature scheme based on three difficult problems from
Number Theory, namely, integer factorization, discrete logarithms, and subgroup
discrete logarithms has been proposed. A multisignature (F, g) is semi-short in
the sense that F ∈ ℤ∗

n and g ∈ ℤ∗
r , where the bitlength of n is much bigger than

the the bitlength of r.
This scheme permits one to obtain a semi-short signature with a fixed bitlength,

which is independent of the number of signers.
The multisignature scheme is efficient since the computations only require

polynomial time, verifies the conditions of multisignature schemes, and moreover
it is secure both against conspiracy attacks and against forgery.
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