
The only economic deposit of garnets in Spain is located
in the Almería province (SE Spain), forming part of the
Neogene Volcanic Complex of El Hoyazo. Due to the
high quantity and diversity of the almandine garnets,
this area is unique. Garnet occurs as isolated euhedral
crystals in the volcanic rock, as the principal component
of metapelitic xenoliths in dacite, and as a terrigenous
deposit formed by the erosion of the volcanic dome. In
this work, we provide new mineralogical and geochem-
ical data, which should be taken into account during the
processing and recovery of the garnet placer.

Economic importance of the garnet
placer

Almandine (Fe3Al2Si3O12) is the most common variety of garnet. It
is also the variety preferred for industrial purposes because of a com-
bination of superior chemical and physical characteristics such as
high resistance to degradation, high specific gravity (4.32) and hard-
ness (7.0–7.5). These
characteristics make
garnet a high-quality
abrasive used in the
manufacture of sand-
paper, abrasive
wheels, polishing/
lapping grains, pow-
ders, grits, and other
industrial products.
Other applications
deal with water fil-
tration systems,
additive in grouting
cements for oil-well
drilling applications,
low- to medium-
level radiation
shielding, and the
cleaning and condi-
tioning of soft metals
(Andrews, 1995;
Harben and Kuzvart,
1996).

Garnet placer deposit

The garnet-rich sands of El Hoyazo (Almería province, SE Spain)
are located to the south of their source area: El Hoyazo Volcanic
Complex (Figure 1A). The Complex consists of an erosional rem-
nant of a peraluminous volcanic-subvolcanic dacite dome (a pipe
and surrounding block lava) of the high-K calc-alkaline type, which
forms a shallow hill. The age of the eruption has been estimated at
11.9 Ma (Munksgaard, 1984). The dacite dome was covered by
Messinian reef deposits (Dabrio et al., 1981). Subsequent erosion
excavated a large depression through the overlying limestone cover
into the softer volcanic rock. The result is a roughly circular crater-
like depression, with an area of approximately 0.7 km2. This is cut
by a gorge through which the Rambla de las Granatillas reaches the
plain of Cuenca de Níjar.

The Quaternary alluvial fan, which forms the placer deposit,
covers an area of 1 km2 and has a maximum thickness of 40 m
(IGME, 1981). Garnets are found loose in layers 5–50 cm thick and
up to 50% in volume garnet-rich (Figure 1B). The richest beds lay at
0.5–1.5 m from the base of the sand body. The composition of the El
Hoyazo garnet does not differ very much from that found in other
typical industrial deposits (Table 1). At the beginning of the twenti-
eth century, garnet exploitation reached an all-time high, which
peaked in 1933. From 1996 until very recently, a private company,
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Figure 1  A(left)  – General view of El Hoyazo Volcanic Complex. Note that erosion excavated a large depression
through the overlying limestone cover into the softer volcanic rock. B(right) – Garnet-rich sands. Garnets are found
loose in layers 5–50 cm thick and up to 50% in volume garnet-rich. The richest beds lay at 0.5–1.5 m from the base of
the sand body.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36046139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Garnetkao, S.L., had recommenced the exploitation intermittently.
Garnet grains are easily recovered from the ore sands for industrial
applications, principally as a mineral abrasive. The method of bene-
ficiation is quite simple and inexpensive: the collection of the garnet-
rich sands is followed by screening, magnetic separation, washing,
jigging and spiral concentration, crushing and finally, classification.
The end product is an 80-mesh garnet-rich powder, and the average
yield was estimated at 6t/day (Lunar et al., 1997, 1999; Benito et al.,
1998).

Source area rocks

El Hoyazo is part of a volcanic and metallogenetic
belt that extends from the Cabo de Gata to Mar
Menor, in the eastern border of the Betic Ranges (SE
Spain). This belt comprises five series of increasingly
younger volcanic rocks: calc-alkaline, high-K calk-
alkaline, shoshonitic, ultrapotassic and alkali basalts.
The volcanic activity began in the late
Burdigalian/early Langhian and ended in the Messin-
ian (Bellon and Brousse, 1977; López Ruíz and
Rodríguez Badiola, 1980; Bellon et al., 1983; Di Bat-
tistini et al., 1987).

The El Hoyazo dacite is porphyritic and has a
glassy matrix (50 vol.%), which contains minerals
from magmatic crystallization (mainly plagioclase

(10–15 vol.%), cordierite (10 vol.%) and biotite (8–10 vol.%), and
subrodinately sillimanite, quartz, hornblende, pyroxene, hercynite,
apatite, zircon and opaques); xenoliths (60% of metapelitic alu-
minium-rich restite material and 40% of several types of igneous
rocks); and monocrystals derived from the xenoliths (Zeck, 1968,
1970, 1992; Molin, 1980).

The garnet-biotite-sillimanite gneissic xenoliths are the most
important type of inclusion, not only because they are the most abun-
dant, but also because they include garnet in their mineralogy. The
alternation of biotite and sillimanite (fibrolite) defines a foliation.
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Table 1  Chemical compositions of industrial garnet (wt %) from different world
producers. Modified from Harben and Kuzvart, 1996.

Note: * total Fe.

Figure 2  Some selected features of the main minerals which form part of the paragenesis of the gneissic xenoliths: a) garnet crystals
displaying tiny inclusions of quartz, biotite and zircon; b) acicular sillimanite randomly included in a cordierite grain; c) clouded
plagioclase associated with biotite, and d) graphite in fibrous sillimanite.
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The mineral assemblage also includes cordierite, plagioclase, potas-
sium feldspar (sanidine), hercynite, apatite, corundum, zircon,
quartz, and opaques (graphite, ilmenite and magnetite) (Figure 2).
These xenoliths have been interpreted as restites, formed by extrac-
tion of 30–60 wt.% rhyolitic melt from a pelitic protolith. The pro-
tolith was probably a garnet-biotite phyllite from the surrounding
Alpujárride metamorphic complex (Cesare et al., 1997).

Properties of the industrial garnets

We have confirmed the physical and mineralogical properties of the
garnets in the dacite and the garnets in the gneissic xenoliths. Both
show similar sizes (2–10 mm in size in the lava; up to 1.5 cm in the
xenoliths), red colour, euhedral or subhedral habit, unitary cell size
(ao = 11.537 ± 0.01 Å and 11.535 ± 0.01 Å, respectively), refraction
index (n = 1.809), mineralogical composition (Alm70-82 Pir6-16
Gros15-2 Espes11-1 and Alm70-82 Pir9-15 Gros15-2 Espes8-1, respec-
tively) and zonation (Fe and Mg increasing, and Ca and Mn decreas-
ing from core to rim). There are, however, differences in the mineral
inclusions: garnets from the dacite contain biotite, sillimanite (fibro-
lite), quartz and zircon; garnets in the gneissic xenoliths also contain
amoeboidal to subhedral Ce-rich (32.5 wt.%) monazite, and xeno-
time, which have not been detected in the garnets from the volcanic
rocks (Figure 3) (Benito et al., 1998; Muñoz-Espadas, 1999). Mon-
azites occur as amoeboidal-to-elongated inclusions, from around 10
µm to 120 µm, hosted not only in garnet crystals, but also in the
matrix of the xenoliths.

Oxygen isotopic values δ18O range from +11.5 to +11.7‰
(Martínez-Frías et al., 1998). Radiogenic isotope data yields a µ
(238U/204Pb) value that is much lower for garnets from the dacite
(0.146), than in the ones from the gneissic xenoliths (24.9–33.5).
This could be explained by the high amount of 204Pb in the former
(226.8 ppm of total Pb), compared with a maximum of 3.391 ppm in
the latter. Other rates using Pb, Sm and Nd isotopes, on the other
hand, are very similar for garnets from both sources (Table 2). The
Sm-Nd estimated age of the garnets is 313 ± 52 Ma, which coincides
with the age of the protolith of the gneissic xenolith from the
Alpujárride metamorphic complex (Muñoz-Espadas, 1999). 

Controversy on the origin of the garnets

Two different mechanisms have been proposed to explain the origin
of garnets in the volcanics of El Hoyazo: direct crystallization from
a silicate melt; and derivation as restitic monocrystals from
metapelitic xenoliths. The former hypothesis was proposed by
López Ruíz et al., 1977, based on the different zonation of the gar-
nets from each source. The latter was initially suggested by Zeck,
1968, 1970, who stressed the similar textural and mineralogical
characteristics of the garnets in lava and xenoliths, and regarded the
former as monocrystal inclusions. This idea was later supported by
Molin, 1980 and Munksgaard, 1985, who found no differences in
garnet zoning patterns.

Although our study mostly confirms the mineralogical and tex-
tural characteristics of the El Hoyazo garnets, new differences were
identified — REE-bearing minerals were detected only in garnets in
the gneissic xenoliths. In addition, the different value of µ and total
Pb are at odds with the restitic monocrystal hypothesis, suggesting a
different origin for the garnets from both sources. 

Acknowledgement

The work presented here forms part of NATO programme CRG
960014 and has been partly co-financed by project PB97-1230 of the
Spanish “Dirección General de Investigación Científica y Técnica
(DGICYT)”. Thanks are given to M. Harffy for correcting the Eng-
lish version, José Arroyo for drawing the figures, and Rogelio
Sánchez and Jesús Muñoz for the photographic compositions. Spe-
cial thanks are extended to J.M. Fidalgo (Garnetkao, S.L.) for his
permission to sample the area.

References

Andrews, P.R.A. 1995 The beneficiation of Canadian garnet ores at CAN-
MET: CIM Bulletin, v. Nov/Dec, pp. 55-59.

Bellon, H., and Brousse, R., 1977, Le magmatisme périméditerranéen occi-
dental. Essai de synthèse: Bulletin de la Société Géologique de France, v.
19, pp. 469-480.

Bellon, H., Bordet, P., and Montenat, C., 1983, Chronologie du magmatisme
néogéne des Cordillères Bétiques (Espagne méridionale): Bulletin de la
Société Géologique de France, v. 25, pp. 205-217.

Benito, R., Martínez-Frías, J., Lunar, R., and Wolf, D., 1998, El Hoyazo: a
unique garnet-rich volcanic complex in southeast Spain: Transactions-
Institution of Mining and Metallurgy. Section B. Applied Earth Science,
v. 107, pp. B158-B164.

Cesare, B., Salvioli Mariani, E., and Venturelli, G., 1997, Crustal anatexis
and melt extraccion during deformation in the restitic xenoliths at El Joy-
azo (SE Spain): Mineralalogical Magazine, v. 61, pp. 15-27.

Dabrio, C.J., Esteban, M., and Martín, J.M., 1981, The coral reef or Níjar,
Messinian (Uppermost Miocene), Almería Province, S.E. Spain: Journal
of Sedimentary Petrology, v. 51, n. 2, pp. 0521-0539.

December 2000

268

Figure 3  SEM picture (JSM-6400) of an irregular inclusion of
monazite hosted in a garnet from the metamorphic xenoliths. 

Table 2  Radiogenic isotopes data of the El Hoyazo garnets.

Note: µ = 238U/204033 Pb; σ = mean weighted deviation. 
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