toxicological assessment.

Title: Effects of three heavy metals on the bacteria growth kinetics. A bivariate model for

Running title: A bivariate model for toxicological assessment.

Diego Rial*, José Antonio Vázquez, Miguel Anxo Murado

Grupo de Reciclado y Valorización de Materiales Residuales (REVAL)
Instituto de Investigacións Mariñas (CSIC)
r/Eduardo Cabello, 6. Vigo-36208, Galicia, Spain
*Author to whom correspondence should be addressed
E-Mail: diegorialconde@iim.csic.es
Tel.: +34986214469; +34986231930

Abstract

The effects of three heavy metals (Co, Ni and Cd) on the growth kinetics of five bacterial strains with different characteristics (Pseudomonas sp., Phaeobacter sp. strain 27-4, Listonella anguillarum, Carnobacterium piscicola and Leuconostoc mesenteroides subsp. lysis) were studied in a batch system. A bivariate model, function of time and dose, is proposed to describe simultaneously all the kinetic profiles obtained by incubating a microorganism at increasing concentrations of individual metals. This model combines the logistic equation for describing growth, with a modification of the cumulative Weibull's function for describing the dosedependent variations of growth parameters. The comprehensive model thus obtained -that minimizes the effects of the experimental error- was statistically significant in all the studied cases and it raises doubts about toxicological evaluations that are based on a single growth parameter, especially if it is not obtained from a kinetic equation. In LAB cultures (C. piscicola and L. mesenteroides), Cd induced remarkable differences in yield and time-course of characteristic metabolites. A global parameter is defined ($E D_{50, \tau}$: dose of toxic chemical that reduces the biomass of a culture by 50% compared to that produced by the control at the time corresponding to its semimaximum biomass) that allows to compare toxic effects on growth kinetics using a single value.

Keywords: bacteria growth kinetics, logistic and Weibull equations, heavy metals, toxicity, dose-response modeling

INTRODUCTION

The microbial culture in a limited medium is a useful tool for assessing the biological activity of physical and chemical agents by dose-response (DR) analysis. This tool has been applied to goals as diverse as the study of the effect of electric pulses on cell viability (Peleg 1995), quantification of bacteriocins (Cabo et al. 1999; Vázquez et al. 2004a), probiotic tests (Vázquez et al. 2005a) or toxicological evaluations (Nyholm et al. 1992; Gikas 2007) The usual procedure in a DR analysis is based on the assumption that some quantity calculable from the growth data (some parameter of the growth equation, frequently the maximum specific growth rate, μ_{m}) varies depending on the dose according to a sigmoid model (Murado et al. 2002; Riobó et al. 2008a). Routine applications in toxicological assessments, such as those described in some legal norms, often replace the use of a growth equation with a simpler approach (ISO 1995; ISO 2006; Strotmann and Pagga 1996). Thus, it is common to estimate the specific growth rate from biomass measured at two points in the exponential phase, accepting that the appropriate interval for this measure is the same in the control units as in those treated with the chemical (ISO 2006). Although, in principle, the problem is simple and easy for standardize, it has several interrelated difficulties that can lead to questionable results and interpretations.

First, the variations in specific $\left(\mu_{\mathrm{m}}\right)$ or absolute $\left(v_{\mathrm{m}}\right)$ maximum growth rate may not explain the differences between the kinetic profiles of the control and toxic-dosed cultures. This is because the kinetic profile also depends on factors such as yield (biomass production/substrate consumption) that the biological entity obtains from the carbon and energy sources available, and the duration of the lag phase, that is, the time required by the organism to adjust its enzymatic system to environmental conditions. Although these factors represent aspects of the same metabolic system, each factor defines a subsystem that can be independently affected by the toxic agent. In other words, a substance can affect, independently or not, three parameters of the growth equation: maximum growth rate (μ_{m} or v_{m}), maximum biomass (X_{m}) and lag phase
(λ). As a result, no assessment based on the variation of a single parameter can in general explain the disturbance that a toxic substance produces in the biological system tested.

Moreover, any change in these parameters produces variations in the kinetic profile that move in time the location of the exponential phase or change its duration. This requires the use of different time intervals with each dose even for the simplified calculation of μ_{m}. Since such intervals cannot be defined a priori, it is necessary that the corresponding kinetic profiles, with sufficiently defined phases, should be available. Under these conditions, the information required to calculate μ_{m} can be more efficiently used to describe the toxic effect with more realism and less error.

The term 'heavy metals' is «used as a group name for metals and semimetals that have been associated with contamination and potential toxicity or ecotoxicity»(Duffus 2002). Heavy metals can be classified as essential (e.g. $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$) or non-essential (e.g. $\mathrm{Cd}, \mathrm{Hg}, \mathrm{Pb}$) depending on whether they have a biological role for microorganisms (Bruins et al. 2000). Essential metals have growth stimulatory effects up to a limit concentration, with inhibitory effects from this level. Bacteria have adapted to the presence of heavy metals in the environment and have developed resistance mechanisms (Bruins et al. 2000). Although the type of mechanisms may be more or less homologous in all species of bacteria (Ji and Silver 1995), it is expected to obtain different responses to the same toxic concentration for several bacterial species (or bacterial groups). For example, lactic acid bacteria (LAB) have been proposed as a promising alternative to remove heavy metals from water (Halttunen et al. 2007) and L. mesentoroides proved to be an effective metal-binding species (Mrvčić et al. 2009).

In this work, we propose the use of a bivariate model, as a function of time and dose, which combines the logistic equation as a description of growth, with the cumulative function of the

Weibull distribution as a description of the dose-response relationships. This approach was applied to model the effect of three heavy metals (Co, Cd and Ni) on biomass production by five microorganisms (LAB and marine bacteria). Our results demonstrated the suitability and accuracy of these equations to describe and predict the experimental data and to supply parameters, with clear biological meaning, useful for toxicological evaluations.

MATERIALS AND METHODS

Microorganisms, culture media, reagents and incubation conditions

Microorganisms from different habitats (marine and terrestrial), metabolic characteristics (homo and heterofermentative), cell wall structure (Gram-positive and negative) and behaviour (free, opportunistic parasite, probiotic) have been used for toxicological assessment. Table 1 summarizes the basic features of all the evaluated bacteria. Phaeobacter sp. and Listonella anguillarum were kindly provided by Dr. Lone Gram (DTU Aqua, Denmark) and Dr. Harry Birkbeck (University of Glasgow, UK), respectively. L. mesenteroides was supplied by Dr. B. Ray (University of Wyoming, Laramie, USA).

Stock cultures of LAB and marine bacteria were kept at $-80^{\circ} \mathrm{C}$ in commercial MRS and marine medium, respectively, with 25% glycerol (Vázquez et al. 2004b; Cabo et al. 2001), respectively. Marine medium were provided by Difco (Becton, Dickinson and Company, MD, USA) and MRS medium by Pronadisa (Hispanlab S.A., Spain). Culture media were prepared as indicating on commercial formulation and sterilized at $121^{\circ} \mathrm{C}$ for 15 min .

Chemicals, $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, were in all cases purchased to Sigma (St. Louis, MO, USA). Concentrated solutions of these heavy metals were separately prepared and sterilized with steam flow at $101^{\circ} \mathrm{C}$ for 1 h . Individual concentrations of these
chemicals on final culture media were (in mg^{-1}): 0 -control, $3,6,9,15,24,40,64,100$ and 150. For mathematical modelling, these concentrations were coded in $[0,1]$ interval.

Inocula ($0.7 \% \mathrm{v} / \mathrm{v}$) consisted of cellular suspensions from 14-h cultures on MRS and marine media adjusted to a 700 nm absorbance $\left(\mathrm{A}_{700}\right)$ of 0.600 for marine bacteria and 0.900 for LAB. Fermentations were carried out in triplicate using 300 ml Erlenmeyer flasks with 150 ml of culture medium containing 1 ml of the corresponding inoculum and the volume of the concentrated heavy metal solution necessary to obtain the fixed final concentration. Experiments were performed with orbital shaking at 200 rpm and $22^{\circ} \mathrm{C}$ (L. anguillarum, Phaeobacter sp .), $27^{\circ} \mathrm{C}$ (Pseudomonas sp.) and $30^{\circ} \mathrm{C}$ (L. mesenteroides, C. piscicola).

Sampling and analytical determinations

At pre-established times, 2 ml samples were centrifugued at $4,000 \mathrm{~g}$ for 15 min . Sediments (biomass) were washed and resuspended in distilled water to the appropriate dilution for measuring the bacterial growth by A_{700}. In LAB cultures, supernatants were used for determining proteins (data not shown), glucose and characteristic metabolites from LAB fermentations.

Soluble proteins were quantified using the method of Lowry et al. (1951). Glucose, ethanol and lactic and acetic acids were measured by HPLC in membrane-filtered samples ($0.22 \mu \mathrm{~m}$ MillexGV, Millipore, USA) using an ION-300 column (Transgenomic, USA) with 6 mM sulphuric acid as a mobile phase (flow $=0.4 \mathrm{ml} \mathrm{min}^{-1}$) at $65^{\circ} \mathrm{C}$ and a refractive-index detector.

Mathematical modelling

Dose-response model

In previous works we have argued in favour of our preference for the cumulative function of the Weibull distribution as a DR model (Riobó et al. 2008b; Murado and Vázquez 2010). If the
original function is multiplied by an asymptotic value K, it can account for the possibility of low toxic bioavailability, resistant subpopulations or other conditions, relatively frequent in DR tests that can produce less than 1 asymptotes. It is also appropriate to reparameterize the equation to make explicit the dose for semimaximum response (m), which simplifies the assignment of initial values and the calculation of the confidence interval using the appropriate statistical software. It should be noted that the $E D_{50}$ or $E C_{50}$ (effective dose or concentration for 50% of the tested population) only coincides with m when $K=1$. Assuming that the response increases with dose, we will use the following formula, which we will denote by ${ }^{\mathrm{m}} \mathrm{W}$:
$R=K\left\{1-\exp \left[-\ln 2\left(\frac{D}{m}\right)^{a}\right]\right\}$; briefly: $R={ }^{m} W(D ; K, m, a)$
where R is the response (with K as maximum value), D is the dose, m is the dose corresponding to the semi-maximum response and a is a shape parameter related to the maximum slope of the response. Apart from the general method proposed, some biphasic profiles were fitted to a sum or difference of two equations [1]:
$R={ }^{m} W\left(D ; K_{1}, m_{1}, a_{1}\right) \pm{ }^{m} W\left(D ; K_{2}, m_{2}, a_{2}\right)$

Growth equation

A widely accepted model for the macroscopic description of the microbial growth kinetics is the logistic equation (Mercier et al. 1992; Wachenheim et al. 2003; Vázquez et al. 2005b), an advantage of which is the direct biological meaning of its parameters. This model describes the biomass variation versus time (growth rate v) by means of the following differential equation:
$v=\frac{d X}{d t}=\mu_{m}\left(\frac{X_{m}-X}{X_{m}}\right) X$
where X is the biomass (with X_{m} as asymptotic maximum), t the time and μ_{m} the maximum specific growth rate or biomass increase per biomass unit and time unit (dimensions t^{-1}). When this differential form is integrated with respect to time, for initial values $t=0, X=X_{0}$, the explicit expression is obtained:

$$
\begin{equation*}
X=\frac{X_{m}}{1+\exp \left[\ln \left(\frac{X_{m}}{X_{0}}-1\right)-\mu_{m} t\right]} \tag{3}
\end{equation*}
$$

For the purposes of our study, it is pertinent to reparameterize this basic form to make explicit other parameters more appropriate in some cases. This requires taking into account that the maximum rate $\left(v_{m}\right)$ is the slope of the tangent to the function at the inflection point and that the lag phase (λ) can be defined by the intersection of that tangent with the time axis (Zwietering et al. 1990; Vázquez and Murado 2008a). The relationship between λ and v_{m} thus established (see Appendix A) can involve a not very realistic restriction in some cases. An alternative time parameter is the time (τ) required to achieve the half of the maximum biomass. Five reparameterizations (L1 to L5) of [3] are shown in Table 2, and their calculation is detailed in Appendix A.

The joint dose-growth model

When a parameter θ of the growth equation drops from a value θ_{0} without toxic agent to a value of θ in the presence of a given dose of the chemical, the response R_{θ} of this parameter can be defined as:
$R_{\theta}=\frac{\theta_{0}-\theta}{\theta_{0}}=1-\frac{\theta}{\theta_{0}}$; therefore: $\theta=\theta_{0}\left(1-R_{\theta}\right)$

If the response increases the parametric value $\left(\theta>\theta_{0}\right)$ we have:
$R_{\theta}=\frac{\theta-\theta_{0}}{\theta_{0}}=\frac{\theta}{\theta_{0}}-1$; and: $\theta=\theta_{0}\left(1+R_{\theta}\right)$

In both cases, R_{θ} represents the equation [1]. Thus, when the parameters of the logistic equation are made dependent on the dose according to the equation [1], the result will be an expression that describes simultaneously all the kinetic series obtained in the presence of different concentrations of the toxic chemical. If the reparameterization L3 (Table 2) is taken as reference, the full model is:

$$
\begin{gathered}
X=X_{m \bullet}\left\{1+\exp \left[2+\frac{4 v_{m \bullet}}{X_{m \bullet}}(\lambda \bullet-t)\right]\right\}^{-1} ; \text { where: } \\
X_{m \bullet}=X_{m}\left[1-{ }^{m} W\left(D ; K_{x}, m_{x}, a_{x}\right)\right] \\
v_{m \bullet}=v_{m}\left[1-{ }^{m} W\left(D ; K_{v}, m_{v}, a_{v}\right)\right] \\
\lambda=\lambda\left[1+{ }^{m} W\left(D ; K_{\lambda}, m_{\lambda}, a_{\lambda}\right)\right]
\end{gathered}
$$

This formulation assumes that the toxic action depresses the maximum biomass and the maximum growth rate, and prolongs the lag phase, but these assumptions, though reasonable, are not strictly necessary. The proposed DR models can describe other situations by changing the signs of the terms. If any of the parameter estimates $\left(K_{\mathrm{i}}, m_{\mathrm{i}}, a_{\mathrm{i}}\right)$ for the effect of the chemicals on a given parameter of the growth equation is not statistically significant, the effect involved is deleted and the model is recalculated. When the effects are inhibitory, it is advisable to include
the restriction $K_{\mathrm{i}} \leq 1$ to fit to the experimental values. This limitation serves to prevent the possibility that, at high doses, the growth equation is solved with negative parameters, which has no physical meaning and can corrupt the system solution. Such a restriction is not necessary with stimulatory effects, since the asymptotes higher than 1 are not problematic here.

Numerical methods

Fitting procedures and parametric estimations from the experimental results were performed by minimisation of the sum of quadratic differences between observed and model-predicted values, using the nonlinear least-squares (quasi-Newton) method provided by the macro 'Solver' of the Microsoft Excel XP spreadsheet. Subsequently, confidence intervals from the parametric estimations (Student's t test) and consistence of mathematical models (Fisher's F test) were determined using DataFit 9 (Oakdale Engineering, Oakdale, PA, USA).

RESULTS

Preliminary approach

The response of Pseudomonas sp. to Cd is an example useful for discussing the proposed approach, which requires us to decide on: 1) the parametric form of the growth model regarding the use of maximum absolute $\left(v_{\mathrm{m}}\right)$ or specific $\left(\mu_{\mathrm{m}}\right)$ growth rate as rate parameter; 2) the calculation method, with two options: 2a) individual fittings to the growth equation of the kinetic series corresponding to each dose, and use of model [1] to describe the effect of this dose on the growth parameters; 2b) simultaneous fitting to an equation [6] of all the kinetic series for obtaining the joint solution, once the effects that involve some parameter without statistical significance have been removed. The results were as follows (Figure 1 and Table 3):

Use of v_{m} (equations L3 and L5)

Individual fittings: Increasing concentrations of Cd caused a decrease of v_{m} and X_{m} values and an increase of λ (with L3) or τ (with L5). All the effects could be described ($\alpha=0.05$) by means of the model [1]. The use of λ as time parameter provided better fittings than τ.

Simultaneous fitting: All the parametric estimates were significant ($\alpha=0.05$), and the results of the individual fittings were confirmed.

These two fitting methods provided almost indistinguishable descriptions of the kinetic data, although with some differences in the profiles corresponding to the effects of the metal on the parameters of the growth equation. Since the simultaneous fitting involves the assumption that the toxic produces effects that satisfy DR models in all the cultures tested -which, in fact, must behave like a unitary system- this option was considered preferable to the individual fittings.

Use of μ_{m} (equation L4)
Individual fittings: Cd depressed the values of μ_{m} and X_{m} and increased λ. Nevertheless, the effect on μ_{m} did not obey the proposed model [1].

Simultaneous fitting: The parameters concerning the effect of Cd on $\mu_{\mathrm{m}}\left(K_{\mu}, m_{\mu}\right.$ and $\left.a_{\mu}\right)$ were not statistically significant $(\alpha=0.05)$. The model still provided a statistically significant description after removing that effect, but there is a disadvantage: since $v_{\mathrm{m}}=\mu_{\mathrm{m}} X_{\mathrm{m}} / 4$ (expression [A2] in Appendix A), the elimination of μ_{m} involves equal percentual responses of v_{m} and X_{m}, which constitutes an artificial condition.

Although the variation of μ_{m} does not correspond with the profile defined by the equation [1], this does not mean that μ_{m} is constant. In fact, the effect of Cd on μ_{m} (obtained by individual fittings to L4, or calculated by means of [A2] from fitting to L3 or L5) could be described by means of a subtractive bi-sigmoid model [2]. However, the use of [2] would create an unnecessary and doubtful complication, since the value of μ_{m} is highly dependent on the kinetic
data at short times, which are very sensitive to the experimental error. Under these conditions, the use of v_{m} instead of μ_{m} as rate parameter seems to be a better solution. This fact does not prevent the use of other more appropriate parameters for specific cases.

The bivariate model

The responses observed in the 15 studied cases showed characteristics dependent on the species and metals considered (Figures 2-4 and Tables 4-5). In all of them, the use of a model [6] led to a statistically significant description. Within the range of the tested doses, C. piscicola was remarkably insensitive to Co (which only prolonged the lag phase with an effect close to lack of significance), and L. mesenteroides was insensitive to Co and Ni (figures not shown). Five cases (Cd on Pseudomonas sp., C. piscicola and L. mesenteroides, Co and Ni on Phaeobacter sp.) involved changes in the three parameters ($X_{\mathrm{m}}, v_{\mathrm{m}}$ and λ or τ) of the growth equation; in the remaining seven cases the changes affected X_{m} and v_{m}. Three cases showed peculiarities of interest, as detailed below.

The responses to Cd of C. piscicola and L. mesenteroides could not be described using the form L4 as the core of the model [6]. The reason, mentioned in mathematical modelling section, is that real relation between v_{m} and λ variations was not that assumed by model [6]. This problem can be solved by means of a reparameterization such as L 2 , where λ is not explicit, or L 5 , with τ as time parameter. The L5 option led to the best fit in both cases (Tables 4-5 and Figures 3-4).

It is obvious that the exposure to Cd accelerated the death phase of L. mesenteroides cultures (Figure 5), but we have not been able to develop an explicit algebraic expression that can describe these growth kinetics. Accordingly, the description of this case by means of a model of the type [6] was carried out excluding biomass values for times longer than 34 h .

The growth of Phaeobacter sp. in Ni-dosed cultures showed a value of X_{m} higher than the control for concentrations up to $40 \mathrm{mg} \mathrm{l}^{-1}$, with a marked drop from this level. The model [6] adequately described this response assuming a negative value for the asymptote $\left(K_{\mathrm{m}}\right)$ of the effect of Ni on X_{m}. This means to accept that low doses of Ni cause a slight increase in biomass production, which is no longer detected at higher doses, where the effects on v_{m} and λ are of greater intensity.

By representing biomass as a simultaneous function of dose and time (Figures 2-4), it was possible to observe an interesting behaviour that it is not easily verifiable using 2D figures. The biomass, especially at long times, falls in some cases with a stepped shape. Such a shape is expected to be found when the toxic agent affects in different way the mechanisms that underlie to the meanings of the different kinetic parameters (maximum growth rate, yield and lag phase). Indeed, if the toxic action modifies a parameter θ_{1} of the growth equation according to a DR model with moderate values of K_{1}, m_{1} and a_{1} and a parameter θ_{2} with high values of K_{2}, m_{2} and a_{2}, the effect on θ_{1} will produce a smooth fall of the biomass at low doses and a sharp decline at doses near the m_{2} value. The model [6] adequately describes this response, not predictable with estimates based on the effect of the chemical on a single parameter.

It should be noted that if the toxic effect is typified by means of the $E D_{50}$, it is necessary to provide the values corresponding to all the affected parameters of the growth equation. Another option is to consider a single index as a summary of all the effects on the biomass produced at a given time. This is the main datum with practical interest in operational contexts (effluent treatment, bio-silage, batch fermentation) and also provides the most reliable estimate of the expected effects in problems of environmental assessment. Since an important time reference is τ (time required to achieve semimaximum biomass), the summary index may be defined as $E D_{50, \tau}$, or dose that reduces the biomass by 50% compared to that produced by the control at time τ (see

Table 6 and Appendix B). In summary, Cd was the most toxic heavy metal and Ni the least toxic chemical in most cases.

Effects on lactic acid fermentation

In MRS medium, C. piscicola and L. mesenteroides produce lactic acid as the main metabolite from glucose, which provides additional criteria to assess the effects of the metals tested (e.g., the yields of metabolite productions by substrate consumption). With regard to this production, it is interesting to observe the cumulative variation of the following magnitudes with the meaning of yields:

$$
\begin{equation*}
Y_{X / G}=\frac{-\Delta X}{\Delta G} ; Y_{L / G}=\frac{-\Delta L}{\Delta G} ; Y_{L / X}=\frac{\Delta L}{\Delta X} \tag{7}
\end{equation*}
$$

where $\Delta X, \Delta G$ and ΔL are the increments along the time of biomass, glucose and lactic acid with respect to the corresponding initial concentrations (biomass may be replaced by A_{700}, since relationships are here of greater interest than absolute values).

Figure 6 shows the variation of these yields in C. piscicola cultures exposed to the three metals; coincidentally, the affected growth parameters were different for the three cases (Table 4). The occasional divergence in the profiles at short times is less important than its convergence (or lack thereof) at middle and long times, because the analytical error is higher at the beginning of the culture, and it is, moreover, amplified by the use of relations. In any case, the profiles are clearly characteristic of the considered response.

Thus, with respect to Cd -which modified $X_{\mathrm{m}}, v_{\mathrm{m}}$ and τ - the production of biomass and lactic acid per unit of substrate consumption diminished progressively with increasing doses. This result for lactic acid is in agreement with its definition as primary metabolite (Luedeking and

Piret 1959). However, the production of lactic acid per unit of biomass increased with the dose, despite the involved higher energy cost. With regard to Co, which slightly extended the lag phase, the three yields were essentially the same in control and Ni-dosed cultures. Concerning Ni , which only altered the maximum growth rate, the behaviour of yields took an intermediate position.
L. mesenteroides showed a heterofermentative metabolism with production of ethanol, acetic and lactic acid (data not shown). When the sum (M) of the three metabolites was used for calculation of the yields [7], the results were similar to those obtained with C. piscicola. Against Cd -which modified $X_{\mathrm{m}}, \nu_{\mathrm{m}}$ and τ - an increase of the dose generated a decrease of $Y_{X / G}$ and $Y_{M / G}$, but an increase of $Y_{M / X}$. Against Co and Ni -without effect in the dose domain tested-, control and dosed cultures showed no significant differences.

It may be noted that if the (constitutive) production of lactic acid were stimulated as a mechanism of resistance, its relations with the concentration of chemical, substrate and biomass would be as those found in our results. On the other hand, for both LAB the variations of $Y_{X / G}$ (as well as $Y_{L / G}$ and $Y_{L X}$, linked to primary metabolism) are associated to responses whose description involved to admit an inhibitory effect on the parameter X_{m}. These features confirm that the effects on yield, which are connected with the value of the parameter X_{m}, can be independent (as in the mentioned cases) from those related to growth rate and lag phase. Therefore, none of such effects can be neglected in predictive toxicological evaluations.

DISCUSSION

The use of sigmoidal equations for describing both microbial growth (Vázquez and Murado 2008b; Gernaey et al. 2010) and dose-response relationships (Vølund 1978; Faust et al. 2003; Gennings et al. 2004) is an extensively accepted practice. However, the combination of both
approaches in a single mathematical equation, that enables the evaluation of the effects of a chemical on all the growth parameters, have not been completely explored. The model proposed here assumes that a toxic agent can determine independent variations satisfying DR relationships on all the parameters of the growth equation. The alternative use of different reparameterizations of this growth equation allowed us to solve a variety of particular cases and to accurately describe the batch cultures kinetics of five bacteria as affected by three heavy metals.

This approach is very similar to that proposed, almost 30 years ago, by Kooijman et al. (1983). We believe that our focus improves the treatment of the effects on the lag phase, provides flexible reparameterizations and avoids, by using a global model able to solve simultaneously all the possible effects on the parameters of the growth equation, some incoherences difficult to explain, as we saw, if we deal with such effects individually. We also believe that it has not been sufficiently underlined the fact that the evaluations based on the variation of a single parameter of the growth equation can have limited predictive value (as it can be verified by applying the global index $E D_{50, \tau}$ under different hypothesis). In our work, we have found that the maximum growth rate -the most often affected parameter- only provides an adequate description for one of the twelve cases in which an inhibitory response was detected.

Cabrero et al. (1998) have shown that the effects of Zn and Cu on activated sludge bacteria modify the biomass yield coefficient and the growth rate. Nevertheless, the kinetics of growth were individually fitted and equations for predicting the effect of metals on growth parameters were not proposed. Recently, Giotta et al. (2006) have calculated for Rhodobacter sphaeroides the concentration that inhibits 50% of μ_{m} and X_{m} for seven heavy metals; but the effect on the lag phase was only evident in three of the seven cases and it was neglected for this calculation. On the contrary, this last parameter was identified as responsible for the Ni, Co and Zn -induced decreases on the growth of Pseudomonas sp. and mixed microbiota from a wastewater treatment
plant (Şengör et al. 2009). However, the experimental data of this report clearly showed that maximum biomass and growth rate should have been used for modelling the described processes.

In LAB cultures, not significant effects on kinetic parameters were observed for Ni and Co . It corroborated the high capacity of these bacteria to accumulate some heavy metals without inhibitory effects on biomass production (Halttunen et al. 2007; Mrvčić et al. 2009). Nevertheless, Cd-dosed cultures of both LAB species tested were significantly affected in all the parameters of the growth equation.

Our results and mathematical proposal defined a global dose-growth model that: 1) constitutes the simultaneous solution of the series of kinetic profiles obtained by incubating a microorganism in the presence of increasing concentrations of a toxic agent; 2) allows to quantify the effects of such an agent on all the parameters of the growth equation, as well as to determine directly the corresponding confidence intervals; 3) considers the time-dose matrix as a whole, which minimizes the effects of experimental error, both random and systematic; 4) generated consistent descriptions when it was applied to study the effects of three heavy metals $(\mathrm{Cd}, \mathrm{Co}$ and Ni$)$ on five bacteria whose responses showed marked differences within the dose and time domains tested.

Appendix A. Reparameterizations of the logistic equation

The explicit form of the logistic equation [2] can be written as follows:

$$
\begin{equation*}
X=\frac{X_{m}}{1+\exp \left(c-\mu_{m} t\right)} ; c=\ln \left(\frac{X_{m}}{X_{0}}-1\right) \tag{A1}
\end{equation*}
$$

For determining the maximum growth rate it is necessary: 1) to obtain the abscissa (τ) of the inflection point, by isolating it from the expression that results by equating the second derivative of the function to zero; 2) to insert the value τ in the first derivative of the function. The results are:

$$
\begin{equation*}
\tau=\frac{c}{\mu_{m}} ; v_{m}=\frac{X_{m} \mu_{m}}{4} \tag{A2}
\end{equation*}
$$

For determining the lag phase, it must be kept in mind that the ordinate of τ is $K / 2$. Thus, the equation of the tangent at the inflection point and its intersection (λ) with the abscissa axis are:

$$
\begin{equation*}
X=\frac{X_{m}}{2}+v_{m}(t-\tau) ; \lambda=\frac{c-2}{\mu_{m}} \tag{A3}
\end{equation*}
$$

Thus, the reparametrized logistic equation, with explicit v_{m} and λ, requires to isolate μ_{m} and c in [A2] and [A3] respectively, and to insert the corresponding values into [A1]:

$$
\begin{equation*}
X=\frac{X_{m}}{1+\exp \left[2+\frac{4 v_{m}}{X_{m}}(\lambda-t)\right]} \tag{A4}
\end{equation*}
$$

Moreover, by inserting $X=X_{m} / 2$ in [A1], we obtain $c=\mu_{m} \tau$, where τ (abscissa of the inflection point) is the time needed to reach the semimaximum biomass. By replacing c by $\mu_{\mathrm{m}} \tau$ in [A1] we obtain another reparameterized form:

$$
\begin{equation*}
X=\frac{X_{m}}{1+\exp \left[\mu_{m}(\tau-t)\right]} \tag{A5}
\end{equation*}
$$

Or, in general, to make explicit the time τ_{q} necessary to achieve a proportion q of the maximum biomass:

$$
\begin{equation*}
X=\frac{X_{m}}{1+\exp \left[\ln \left(\frac{1}{q}-1\right)+\mu_{m}\left(\tau_{q}-t\right)\right]} \tag{A6}
\end{equation*}
$$

Appendix B. Calculation of $\boldsymbol{D E} E_{50, \tau}$

Once the solution of the examined system is obtained by means of a model [6], the $E D_{50, \tau}$, or dose that reduces the biomass to 50% of that produced by the control in time τ, can easily be calculated as follows:

1. Fit the kinetic data of the control to the growth equation in the parametric form L5 (Table 1) to obtain the semimaximum biomass $\left(X_{\mathrm{m}, 0} / 2\right)$ and the time needed to reach it $\left(\tau_{0}\right)$. For another proportion q of the maximum biomass, use the form [A6].
2. Set an arbitrary initial value (${ }^{I} E D_{50, \tau}$) (see next point 5).
3. Calculate the value of biomass (X) that results from applying the model [6], by assigning the values ${ }^{I} E D_{50, \tau}$ and τ_{0} to the variables D and t.
4. Calculate the absolute value of the difference $H=\left|X-\frac{X_{m, 0}}{4}\right|$
5. Calculate, using the Solver macro in Microsoft Excel, the value of $E D_{50, \tau}$ that minimizes H. For ensuring that the algorithm finds the absolute minimum, it is advisable to start with an ${ }^{I} E D_{50, \tau}$ value associated with a reasonably small value of H.

ACKNOWLEDGEMENTS

We wish to thank to Ana Durán and Margarita Nogueira for their excellent technical assistance. Diego Rial Conde was awarded with Isabel Barreto contract and we are greateful for this financial support (Dirección Xeral de Investigación, Desenvolvemento e Innovación; Xunta de Galicia). This study was partially funded by the Xunta de Galicia (Programa de Consolidación para estructuración das unidades de investigación do sistema galego I+D+I 2008-2010, IN845B2010/004) and Ministerio de Ciencia e Innovación (CTM2010-18411).

REFERENCES

Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198-207

Cabo ML, Murado MA, González MP, Pastoriza L (1999) A method for bacteriocin quantification. J Appl Microbiol 87:907-914

Cabo ML, Murado MA, Gonzalez MP, Vazquez JA, Pastoriza L (2001) An empirical model for describing the effects of nitrogen sources on nisin production. Lett Appl Microbiol 33:425-429 Cabrero A, Fernandez S, Mirada F, Garcia J (1998) Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res 32:1355-1362

Duffus JH (2002) "Heavy metals" - A meaningless term? (IUPAC technical report). Pure Appl Chem 74:793-807

Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63:43-63

Gennings C, Carter Jr. WH, Carney EW, Charles GD, Gollapudi BB, Carchman RA (2004) A novel flexible approach for evaluating fixed ratio mixtures of full and partial agonists. Toxicol Sci 80:134-150

Gernaey KV, Lantz AE, Tufvesson P, Woodley JM, Sin G (2010) Application of mechanistic models to fermentation and biocatalysis for next-generation processes. Trends Biotechnol 28:346-354

Gikas P (2007) Kinetic responses of activated sludge to individual and joint nickel ($\mathrm{Ni}(\mathrm{II})$) and cobalt (Co(II)): An isobolographic approach. J Hazard Mater 143:246-256

Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides . Chemosphere 62:1490-1499

Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30-35

Hjelm M, Bergh Ø, Riaza A, Nielsen J, Melchiorsen J, Jensen S, Duncan H, Ahrens P, Birkbeck H, Gram L (2004) Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units Syst Appl Microbiol 27:360-371 International Organization for Standardization (2006) Water quality - Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum ISO 10253:2006. International Organization for Standardization (1995) Water quality - Pseudomonas putida growth inhibition test ISO 10712:1995.

Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61-75

Kooijman SALM, Hanstveit AO, Oldersma H (1983) Parametric analyses of population growth in bio-assays. Water Res 17:527-538

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275

Luedeking R, Piret EL (1959) Kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Tech Eng 1:393-412.

Martens T, Heidorn T, Pukal R, Simon M, Tindall BJ, Brinkhoff T (2006) Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56:1293-1304

Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus . J Chem Technol Biotechnol 55:111-121 Mrvčić J, Prebeg T, Barišić L, Stanzer D, Bačun-Drùina V, Stehlik-Tomas V (2009) Zinc binding by Lactic acid bacteria. Food Technol Biotechnol 47:381-388

Murado MA, Gonzalez MP, Vázquez JA (2002) Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models. Enzyme Microb Technol 31:439-455

Murado MA, Vázquez JA (2010) Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: A dynamic mathematical model and its implications on hormesis. BMC Microbiol 10:220 Nyholm N, Sorensen PS, Kusk KO (1992) Statistical treatment of data from microbial toxicity tests. Environ Toxicol Chem 11:157-167

Peleg M (1995) A model of microbial survival after exposure to pulsed electric-fields. J Sci Food Agric 67:93-99

Riobó P, Paz B, Franco JM, Vázquez JA, Murado MA, Cacho E (2008a) Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships. Food Chem Toxicol 46:2639-2647

Riobó P, Paz B, Franco JM, Vázquez JA, Murado MA (2008b) Proposal for a simple and sensitive haemolytic assay for palytoxin. Toxicological dynamics, kinetics, ouabain inhibition and thermal stability. Harmful Algae 7:415-429

Şengör SS, Barua S, Gikas P, Ginn TR, Peyton B, Sani RK, Spycher NF (2009) Influence of heavy metals on microbial growth kinetics including lag time: Mathematical modeling and experimental verification. Environ Toxicol Chem 28:2020-2029

Skov MN, Pedersen K, Larsen JL (1995) Comparison of pulsed-field gel electrophoresis, ribotyping, and plasmid profiling for typing of Vibrio anguillarum serovar O1 Appl Environ Microbiol 61:1540-1545

Strotmann UJ, Pagga U (1996) A growth inhibition test with sewage bacteria -results of an international ring test 1995. Chemosphere 32:921-933

Vázquez JA, González MP, Murado MA (2004a) Peptones from autohydrolysed fish viscera for nisin and pediocin production. J Biotechnol 112:299-311

Vázquez JA, González MP, Murado MA (2004b) A new marine medium: Use of different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme Microb Technol 35:385-392

Vázquez JA, González MP, Murado MA (2005a) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245:149-161

Vázquez JA, Mirón J, González MP, Murado MA (2005b) Bacteriocin production and pH gradient: Some mathematical models and their problems. Enzyme Microb Technol 37:54-67 Vázquez JA, Murado MA (2008a) Mathematical tools for objective comparison of microbial cultures. Application to evaluation of 15 peptones for lactic acid bacteria productions. Biochem Eng J 39:276-287

Vázquez JA, Murado MA (2008b) Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J Chem Technol Biotechnol 83:91-96

Volund A (1978) Application of the four-parameter logistic model to bioassay: comparison with slope ratio and parallel line models. Biometrics 34:357-365

Wachenheim DE, Patterson JA, Ladisch MR (2003) Analysis of the logistic function model:
Derivation and applications specific to batch cultured microorganisms. Bioresour Technol 86:157-164

Zwietering MH, Jongenburger I, Rombouts FM, VAN'T Riet K (1990) Modeling of the Bacterial Growth Curve. Appl Environ Microbiol 56:1875-1881

TABLE CAPTIONS

Table 1: Marine and LAB bacteria used.

Table 2: Five reparametrizations of the logistic equation as growth model. X_{0} : initial biomass, X_{m} : maximum biomass, μ_{m} : maximun specific growth rate, ν_{m} : maximum growth rate, λ : lag phase, τ : time for semimaximum biomass.

Table 3: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the response of Pseudomonas sp. to Cd , according to the specified forms of the growth equation (see Table 2). Rate (v_{m} or μ_{m}) and time (λ or τ) parameters that are pertinent in each case are the explicit ones in the used reparametrization. ns: not significant; adj. r^{2} : adjusted coefficient of multiple determination.

Table 4: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the specified responses fitted to the model [6]. Notations as in Table 3.

Table 5: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the specified responses fitted to the equation [6]. Notations as in Table 3.

Table 6: Parametric estimates of ED50, τ values.

TABLES

Table 1

TABLE 1: Marine and LAB bacteria used

Bacteria	Strain	Characteristics
Pseudomonas sp.	CECT 4355	Marine / Gram $(-) /$ free
Phaeobacter sp.	$27-4^{*}$	Marine / Gram (-) / free / probiotic
Listonella anguillarum	$90-11-287^{* *}$	Marine / Gram (-)/ opportunistic parasite
Leuconostoc mesenteroides subsp. lysis	HD-IIM_1	LAB / Gram $(+) /$ free / heterofermentative
Carnobacterium piscicola	CECT 4020	LAB / Gram (+)/free / homofermentative

CECT: Spanish Type Culture Collection (University of Valencia, Spain).
HD-IIM: Department Animal Science, University of Wyoming (Wyoming, USA)
*Phaeobacter 27-4 was initially identified as Roseobacter 27-4 (Hjelm et al., 2004; Martens et al., 2006).
**Listonella anguillarum was isolated from rainbow trout and initially defined as Vibrio anguillarum (Skov et al., 1995).

Table 2

TABLE 2: Five reparametrizations of the logistic equation as growth model. X_{0} : initial biomass, X_{m} : maximum biomass, μ_{m} : maximun specific growth rate, v_{m} : maximum growth rate, λ : lag phase, τ : time for semimaximum biomass.

L1

$$
X=X_{m}\left\{1+\exp \left[\ln \left(\frac{X_{m}}{X_{0}}-1\right)-\mu_{m} t\right]\right\}^{-1}
$$

L2

$$
X=X_{m}\left\{1+\exp \left[\ln \left(\frac{X_{m}}{X_{0}}-1\right)-\frac{4 v_{m}}{X_{m}} t\right]\right\}^{-1}
$$

L3

$$
X=X_{m}\left\{1+\exp \left[2+\frac{4 v_{m}}{X_{m}}(\lambda-t)\right]\right\}^{-1}
$$

L4

$$
X=X_{m}\left\{1+\exp \left[2+\mu_{m}(\lambda-t)\right]\right\}^{-1}
$$

L5

$$
X=X_{m}\left\{1+\exp \left[\frac{4 v_{m}}{X_{m}}(\tau-t)\right]\right\}^{-1}
$$

Table 3

TABLE 3: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the response of Pseudomonas sp . to Cd , according to the specified forms of the growth equation (see table 2). Rate (v_{m} or μ_{m}) and time (λ or τ) parameters that are pertinent in each case are the explicit ones in the used reparametrization. ns: non significant; adj. r^{2} : adjusted coefficient of multiple determination.

		L3 individual	L3 in [6]	L4 in [6]	L5 in [6]
growth	X_{m}	0.869 ± 0.049	0.852 ± 0.026	0.846 ± 0.026	0.865 ± 0.034
model	$\mathrm{V}_{\mathrm{m}}-\mu_{\mathrm{m}}$	0.058 ± 0.011	0.057 ± 0.005	0.265 ± 0.024	0.058 ± 0.007
	$\lambda-\tau$	5.565 ± 1.581	5.220 ± 0.731	4.911 ± 0.787	12.523 ± 0.630
	adj. r^{2}	0.992	-	-	-
effect on X_{m}	K_{x}	0.600 ± 0.152	0.383 ± 0.053	0.405 ± 0.049	0.929 ± 0.039
	$\mathrm{~m}_{\mathrm{x}}$	0.097 ± 0.066	0.052 ± 0.004	0.057 ± 0.003	0.121 ± 0.016
	ax_{x}	0.911 ± 0.664	6.738 ± 3.073	7.800 ± 6.124	1.476 ± 0.266
	adj. r^{2}	0.889	-	-	-
effect on	$\mathrm{K}_{v}-\mathrm{K}_{\mu}$	0.989 ± 0.095	1.000 ± 0.032	ns	0.996 ± 0.017
$\mathrm{~V}_{\mathrm{m}}$ or μ_{m}	$\mathrm{m}_{\mathrm{v}}-\mathrm{m}_{\mu}$	0.125 ± 0.027	0.142 ± 0.021	ns	0.118 ± 0.029
	$\mathrm{av}_{\mathrm{v}}-\mathrm{a}_{\mu}$	1.602 ± 0.616	2.239 ± 0.772	ns	1.787 ± 0.627
	$\mathrm{adj} . \mathrm{r}^{2}$	0.975	-	-	-
effect on	$\mathrm{K}_{\lambda}-\mathrm{K}_{\tau}$	6.511 ± 0.398	2.779 ± 0.772	7.464 ± 1.800	1.102 ± 0.311
λ or τ	$\mathrm{m}_{\lambda}-\mathrm{m}_{\tau}$	0.172 ± 0.018	0.090 ± 0.007	0.159 ± 0.016	0.089 ± 0.010
	$\mathrm{a}_{\lambda}-\mathrm{a}_{\tau}$	2.546 ± 0.735	4.390 ± 1.345	2.478 ± 0.440	4.006 ± 1.386
	$\mathrm{adj} . \mathrm{r}^{2}$	0.991	-	-	-
	adj. r^{2}	-	0.992	0.988	0.987

Table 4

TABLE 4: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the specified responses fitted to the model [6]. Notations as in table 3.

Table 5

TABLE 5: Parametric estimates and confidence intervals ($\alpha=0.05$) corresponding to the specified responses fitted to the equation [6]. Notations as in tables 3 and 4.

		Phaeobacter sp.			L. mesenteroides		
		Cd-L3	Co-L3	Ni-L3	Cd-L5	Co-L3	Ni-L3
growth	X_{m}	2.297 ± 0.146	2.541 ± 0.072	2.415 ± 0.052	3.932 ± 0.090	3.879 ± 0.055	3.976 ± 0.025
model	$\mathrm{V}_{\mathrm{m}}-\mu_{\mathrm{m}}$	0.343 ± 0.149	0.278 ± 0.024	0.284 ± 0.018	$0,544 \pm 0.062$	0.532 ± 0.026	0.510 ± 0.017
	$\lambda-\tau$	8.664 ± 1.402	6.564 ± 0.359	6.501 ± 0.275	8.866 ± 0.240	5.291 ± 0.203	5.360 ± 0.150
effect on X_{m}	K_{x}	1.000 ± 0.000	1.000 ± 0.000	-0.253 ± 0.053	1.000 ± 0.000	ns	ns
	$\mathrm{~m}_{\mathrm{x}}$	0.088 ± 0.034	0.661 ± 0.434	0.094 ± 0.017	0.363 ± 0.193	ns	ns
	ax_{x}	1.642 ± 0.923	0.768 ± 0.284	2.395 ± 1.076	0.261 ± 0.066	ns	ns
effect on	$\mathrm{K}_{v}-\mathrm{K}_{\mu}$	1.000 ± 0.000	0.911 ± 0.065	0.872 ± 0.120	0.913 ± 0.043	ns	ns
$\mathrm{~V}_{\mathrm{m}}$ or μ_{m}	$\mathrm{m}_{v}-\mathrm{m}_{\mu}$	0.020 ± 0.010	0.143 ± 0.021	0.348 ± 0.049	0.120 ± 0.022	ns	ns
	$\mathrm{av}_{\mathrm{v}}-\mathrm{a}_{\mu}$	0.916 ± 0.241	1.716 ± 0.513	1.956 ± 0.498	2.094 ± 0.780	ns	ns
effect on	$\mathrm{K}_{\lambda}-\mathrm{K}_{\tau}$	ns	3.391 ± 1.025	7.665 ± 3.931	4.622 ± 1.195	ns	ns
λ or τ	$\mathrm{m}_{\lambda}-\mathrm{m}_{\tau}$	ns	0.216 ± 0.035	0.483 ± 0.053	0.218 ± 0.032	ns	ns
	$\mathrm{a}_{\lambda}-\mathrm{a}_{\tau}$	ns	6.302 ± 2.551	8.065 ± 4.495	2.413 ± 0.271	ns	ns
	adj. r^{2}	0.959	0.997	0.997	0.995	0.995	0.997

15
16
17
18
19
20
21
22

Table 6

TABLE 6: Parametric estimates of $E D_{50, \mathrm{z}}$ values

Strain	Toxic	$E D_{50, \mathrm{r}}(\mathrm{mg} / \mathrm{L})$
Pseudomonas sp.	Cd	10.8
	Co	84.3
Phaeobacter sp.	Cd	1.5
	Co	20.5
	Ni	49.4
Listonella anguillarum	Cd	10.0
	Co	17.8
Carnobacterium piscicola	Ni	123.7
	Cd	4.3
Leuconostoc mesenteroides subsp. Iysis	Ni	121.9

FIGURE CAPTIONS

Figure 1: Top (t as independent variable): growth kinetics of Pseudomonas sp. exposed to the specified doses of $\mathrm{Cd}\left(\mathrm{mg} \mathrm{l}^{-1}\right)$. Doses of 100 and $150 \mathrm{mg} . \mathrm{l}^{-1}$ were omitted because growth was completely inhibited. Experimental results (points) and individual (dashed line) or simultaneous (solid line) fittings to model [6]. Bottom: effect of Cd (coded doses as independent variable) on the parameters of the growth equation in its parametric form L3 (responses $-\mathrm{R}-$ as dependent variables calculated by means of equations [4] or [5]). Parameter values (points), and fittings to equations [1] (solid line) and [2] (dashed line). Natural dose (mg. 1^{-1})=coded dose $\times 150$. For clarity, confidence intervals (in all cases less than 5% of the experimental mean value; $\alpha=0.05$; $\mathrm{n}=3$) were omitted.

Figure 2: Left: Experimental data of the growth kinetics for the tested bacteria (points), and fittings to equation [6] (surface). D : coded dose; t : time in hours. For clarity, confidence intervals (in all cases less than 5% of the experimental mean value; $\alpha=0.05 ; n=3$) were omitted. Right: correlation between observed and predicted values. Numerical results are summarized in Table 4.

Figure 3: Left: Experimental data of the growth kinetics for the tested bacteria (points), and fittings to equation [6] (surface). For clarity, confidence intervals (in all cases less than 5\% of the experimental mean value; $\alpha=0.05 ; n=3$) were omitted. Keys as in Figure 2. Numerical results in Table 4.

Figure 4: Left: Experimental data of the growth kinetics for the tested bacteria (points), and fittings to equation [6] (surface). For clarity, confidence intervals (in all cases less than 5\% of the
experimental mean value; $\alpha=0.05 ; n=3$) were omitted. Keys as in Figure 2. Numerical results in Table 5.

Figure 5: Growth kinetics of L. mesenteroides exposed to Cd, which shows the effect of metal on the death phase at times longer than 40 hours (removed in Figure 4). O : control, $\bullet:$ increasing concentrations of Cd (in reverse order to the final values of the ordinate). Lines are merely indicative and do not represent fits to any model. For clarity, confidence intervals (in all cases less than 5% of the experimental mean value; $\alpha=0.05 ; n=3$) were omitted.

Figure 6: Biomass (X), lactic acid production (L) and glucose consumption (G) relationships for C. piscicola at different times (hours). \bigcirc : control; \bullet : increasing concentrations of heavy metal (when there is not overlapping, profiles move away from control as toxic concentration increases). Note that there is a correspondence between the grouping mode of the profiles and the parameters of the model [6] affected by the metals (Table 4).

FIGURES

Figure 1

83

Figure 2

L. anguillarum (Cd)

L. anguillarum (Co)

Figure 3

Figure 4

Figure 5

Figure 6

