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ABSTRACT 
 

G-protein inwardly rectifying potassium (GIRK) channels mediate the synaptic 

actions of numerous neurotransmitters in the mammalian brain and play an important 

role in the regulation of neuronal excitability in most brain regions through activation of 

various G-protein coupled receptors such as the serotonin 5-HT1A receptor. In this 

report we describe the localization of GIRK1, GIRK2 and GIRK3 subunits and 5-HT1A 

receptor in the rat brain, as assessed by immunohistochemistry and in situ 

hybridization. We also analyze the co-expression of GIRK subunits with the 5-HT1A 

receptor and cell markers of glutamatergic, GABAergic, cholinergic and serotonergic 

neurons in different brain areas by double-label in situ hybridization. The three GIRK 

subunits are widely distributed throughout the brain, with an overlapping expression in 

cerebral cortex, hippocampus, paraventricular nucleus, supraoptic nucleus, thalamic 

nuclei, pontine nuclei and granular layer of the cerebellum. Double-labeling 

experiments show that GIRK subunits are present in most of the 5-HT1A receptor-

expressing cells in hippocampus, cerebral cortex, septum and dorsal raphe nucleus. 

Similarly, GIRK mRNA subunits are found in glutamatergic and GABAergic neurons in 

hippocampus, cerebral cortex and thalamus, in cholinergic cells in the nucleus of 

vertical limb of the diagonal band and in serotonergic cells in the dorsal raphe nucleus. 

These results provide a deeper knowledge of the distribution of GIRK channels in 

different cell subtypes in the rat brain and might help to elucidate their physiological 

roles and to evaluate their potential involvement in human diseases. 

 



 3 

INTRODUCTION 
 

Inwardly rectifying potassium channels have dominant control of the membrane 

potential of mammalian neurons, and modulation of their activity can profoundly 

influence neuronal excitability (Jan and Jan, 1997). A major signal transduction 

mechanism in neurobiology is the direct coupling of metabotropic receptors to ion 

channels by a membrane-delimited pathway that does not involve cytoplasmic 

intermediates (Nicoll, 1988; Neer, 1995). Inwardly rectifying potassium channels fall 

into seven subfamilies, and include a subfamily designated as Kir3 that is directly 

coupled to heterotrimeric G-proteins and mediates the effect of activated metabotropic 

receptors (Dascal, 1997; Yamada et al., 1998). Activation of metabotropic receptors 

coupled to Gi/o proteins catalyses the release of Gβγ subunits and directly interact with 

Kir3 channels to increase their open probability (Logothetis et al., 1987; Krapivinsky et 

al., 1995; Wickman and Clapham, 1995). This subfamily of inward rectifiers, also known 

as the G protein-regulated inwardly rectifying potassium (GIRK) channels, is composed 

of four members designated GIRK1-4 (Dascal, 1997). GIRK channels are tetramers 

and hence could exist as homo- or heteromeric complexes (Yang et al., 1995). 

Although the different GIRK subunits are regulated differentially by a variety of 

intracellular factors, reports indicate that these channels require membrane 

phosphatidylinositol-4,5-bisphosphate (PIP2) for activity (Sui et al., 1998; Huang et al., 

1998; Ho and Murrell-Lagnado, 1999). The levels of PIP2 can be changed and per se 

acts as a novel signal to regulate GIRK channels. Moreover, the functional dependence 

of Gβγ signalling on PIP2 predicts the possible cross-talk of different metabotropic 

receptors. In fact, GIRK channels are inhibited by activation of metabotropic receptors 

coupled to Gq/11 proteins and fosfolipase C-β via local PIP2 depletion (Cho et al., 2005). 

In addition to their major physiological role in synaptic transmission and 

regulation of membrane potential, GIRK proteins have been shown to be potential sites 

for genetic mutations inducing neuronal cell death. Our understanding of the 

development, maintenance and degeneration of mammalian nervous systems has 

been greatly facilitated by examination of naturally occurring (“weaver mouse”) and 

engineered (“Ts65Dn mouse”) neurological mouse mutants at chromosome 16 

(Davisson et al., 1990; Patil et al., 1995). Homozygous weaver (wv) mutations result in 

aberrant postnatal development and death of several classes of neurons. Compelling 

evidence indicates that the weaver phenotype results from a point mutation in the 
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sequence of the gene coding for the GIRK2 protein (Patil et al., 1995). The expression 

of GIRK2wv in heterologous systems has electrophysiological consequences 

(Slesinger et al., 1997; Rossi et al., 1998). A hypothesis hold that the mutated channel 

is inactive and that subsequent lack of regulation of membrane potential leads to 

excessive Ca+2 entry and death (Rossi et al., 1998). Mice with segmental trisomy 16 

(Ts65Dn) which have triplication of a region of mouse chromosome 16 homologous to 

the Down syndrome critical region in human chromosome 21, demonstrate behavioural 

abnormalities related to spatial learning and memory (Davisson et al., 1990). Evidence 

demonstrating alterations in signal transduction pathways through adenylyl cyclases 

and phospholipase C-β have been reported and interestingly, all GIRK2 splicing 

isoforms examined are expressed at higher levels in the Ts65Dn in comparison to the 

diploid brain mouse (Dierssen et al., 1997; Ruiz de Azua et al., 2001; Harashima et al., 

2006). Importantly, elevated levels of GIRK2 protein correlated with elevated levels of 

GIRK1 in several regions of the Ts65Dn mouse (Harashima et al., 2006). These results 

hold the current view of the GIRK2 subunits as an essential component that determines 

the surface localization of GIRK1 subunits. Therefore, a better knowledge of the co-

expression pattern of GIRK proteins in the brain could help to elucidate their potential 

role in the genesis of or susceptibility to various neurodegenerative and developmental 

disorders.  

Three GIRK channel subunits (GIRK1-GIRK3) exhibit broad and overlapping 

distributions in the central nervous system (CNS), whereas the fourth subunit (GIRK4) 

is found primarily in the heart (Kobayashi et al., 1995; Krapivinsky et al., 1995; Karschin 

et al., 1996; Chan et al., 1997). Formerly, the overlapping distributions of GIRK 

subunits in the CNS suggested that channels formed by multiple subunit combinations 

could contribute to neuronal channel content. An area of research now becoming 

appreciated is the process by which ion-channel proteins are translocated to the cell 

surface (Ma and Jan, 2002). Several groups have reported specific trafficking signals 

embedded within the ion channels, that is, aminoacid sequence motifs that are crucial 

for channel membrane-targetting and coassembly (Deutsch, 2002). Studies on GIRK 

channels have provided some clues to the complexity with which ion channels are 

processed and targeted to the membrane (Woodward et al., 1997; Ma et al., 2001). 

GIRK1 does not form functional channels when expressed alone, due to defects in 

membrane targeting (Chan et al., 1996; Woodward et al., 1997; Mirshahi and 

Logothetis, 2004). GIRK2 and GIRK4, both of which can function as homomers contain 
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endoplasmic reticulum (ER) export signals and reach the surface efficiently (Kennedy 

et al., 1999). However, although homomeric GIRK2 and GIRK4 channels have been 

found in native tissues exogenously expressed homomers of these channels give very 

brief and poorly resolved open-time kinetics that are different from native channels 

(Chan et al., 1996; Corey and Clapham, 1998). Importantly, both GIRK2 and GIRK4 

can recruit GIRK1, greatly increasing its surface expression and those results in highly 

active channels that are indistinguishable from native channels (Krapivinsky et al., 

1995; Chan et al., 1997; Woodward et al., 1997; Kennedy et al., 1999). Interestingly, it 

has been showed that GIRK2/GIRK3 heteromers have some activity, but showing 

reduced Gβγ sensitivity compared to other heteromers containing GIRK1 subunits 

(Jelacic et al., 2000). Comparison of the sequences of GIRK3 and other GIRK family 

members suggests that other differences might have functional consequences as well. 

For example, Glu35 in GIRK3 is replaced by His64 (the equivalent position) in GIRK4, 

and His64 interacts with Gβγ (He et al., 2002). Whereas GIRK3 has Asp165, other inward 

rectifiers contain a lysine residue that is involved in interacting with PIP2 (Lopes et al., 

2002). A most intriguing finding is that GIRK3, not only lacks an ER export signal, but in 

addition, GIRK3 contains a lysosomal targeting signal (Ma et al., 2002). Co-expression 

of GIRK3 with GIRK1 and GIRK2 leads to reduced expression of GIRK1 at the cell 

surface, and it has been proposed that GIRK3 target functional neuronal GIRK 

channels (GIRK1/GIRK2 heteromers and GIRK2 homomers) to lysosomal degradation 

pathways (Ma et al., 2002). Therefore, although the current view is that GIRK1/GIRK2 

heteromers are considered the prototypical GIRK channel in the CNS, the functional 

differences along with the unique trafficking characteristics of GIRK3, could open a new 

scenario for regulating the density of functional GIRK1/GIRK2 (or GIRK1/GIRK4) 

channels on cell surface simply controlling the amount of GIRK3 expressed, and 

therefore, the number of GIRK1/GIRK2 channels on the plasma membrane (Leaney, 

2003).  

Despite the importance of GIRK3, and in contrast to the extensive studies of 

GIRK mRNA distribution, little is known about the co-localization of GIRK subunits 

mRNA at cellular level in the brain. In this report we describe the distribution (protein 

and mRNA) and co-localization (mRNA) of GIRK(1-3) subunits and 5-HT1A serotonin 

receptors in the adult rat brain. We choose the 5-HT1A receptor for further anatomical 

co-localization with GIRK channels because extensive functional studies of GIRK-

mediated functions of 5-HT1A receptors have been performed. In fact, it has been long 
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known that the 5-HT1A serotonin receptor can stimulate the opening of GIRK channels 

in neurons (Andrade and Nicoll, 1987; Colino and Halliwell, 1987; Zgombick et al., 

1989; Penington et al., 1993). Again, there exists limited knowledge on the co-

expression of 5-HT1A receptor and GIRK subunits on defined cell subtypes of rat brain. 

The second aim of the study was to examine in detail the relationships of GIRK(1-3) 

mRNA positive neurons to glutamatergic, GABAergic and serotonergic neurons by in 

situ hybridization.  
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MATERIALS AND METHODS  
 
ANIMALS 
 Male albine Sprague-Dawley rats weigh 250-300 g were obtained from Iffa 

Credo (Lyon, France). Animals were kept in a controlled environment (12 h light-dark 

cycle, lights on at 08:00 h, and 22 ± 2 °C room temperature) with food and water 

provided ad libitum. Rats were carefully handled following the European Union 

regulations (O.J. of E.C. L358/1 18/12/1986).  
 
WESTERN BLOT STUDIES OF GIRK SUBUNITS  
 

After killing animals by decapitation, their brains were immediately removed and 

cerebral cortices were dissected out on ice and stored at -80ºC. The preparation of 

membranes from rat cerebral cortex samples was essentially as previously described 

for rat and human brain tissues (Garro et al., 2001; Salles et al., 2001). Western blot 

studies were performed as previously reported for GIRK subunits in rodent brain with 

minor modifications (Liao et al., 1996; Inanobe et al., 1999; Torrecilla et al., 2002). 

Briefly, plasmatic membrane proteins were solubilized in a sample buffer (2.2% (w/v) 

sodium dodecylsulphate [SDS], 6.6% (v/v) 2-mercaptoethanol, 11% (v/v) glycerol and 

125mM Tris-HCl, pH 7.5), resolved by electrophoresis in 10% SDS–polyacrylamide 

gels and then transferred to polyvinylidine difluoride membranes (Amersham 

Pharmacia, Madrid, Spain). Blots were blocked in 5% non-fat dry milk/phosphate-

buffered saline for 1 h, and incubated overnight with anti-GIRK1, GIRK2 or GIRK3 

antibodies. GIRK1 protein was detected using a rabbit polyclonal antiserum (1:7000; 

Alomone Labs, Jerusalem, Israel; cat. No. APC-005) raised against the synthetic 

peptide corresponding to 437-501 residues of mouse GIRK1 protein (acc. No. P35562). 

GIRK2 protein was detected using a rabbit polyclonal antiserum (1:250; Alomone Labs; 

cat. No. APC-006) raised against the synthetic peptide corresponding to 374-414 

residues of mouse GIRK2 protein (acc. No. P48542). GIRK3 protein was detected 

using a rabbit polyclonal antiserum (1:250; Alomone Labs; cat. No. APC-038) raised 

against the synthetic peptide corresponding to 344-361 residues of mouse GIRK3 

protein (acc. No. Q63511). Blots were washed and incubated with secondary 

antibodies (donkey anti-rabbit IgG; Amersham Pharmacia, product code NA934) 

conjugated to horseradish peroxidase diluted to 1:4000 in blocking buffer for 2 h at 
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room temperature. Immunoreactive bands were visualized with the enhanced 

chemiluminiscence (ECL) system (Amersham Pharmacia). Film analysis was 

conducted by quantitative densitometry. Each gel contained a prestained broad-range 

protein ladder to measure molecular masses of individual bands.  

 

IMMUNOHISTOCHEMISTRY 
 
Tissue preparation 

Animals were anaesthetized intraperitoneally with 15% choral hydrate (Sigma) 

and perfused transcardially under deep anaesthesia with saline in 50 mM phosphate 

buffer (pH 7.4), followed by 4% paraformaldehyde (Sigma). Brains were removed, kept 

immersed in the same fixative medium overnight and stored at 4 ºC for 2 days in 0.1 M 

phosphate buffer containing 30% sucrose. Tissue sections, 30 μm thick, were cut using 

a microtome-cryostat (Cryocut 3.000, Leica , Germany) with a stereotaxic atlas guide 

(Paxinos and Watson, 1998).  

 

Immunohistochemistry procedure 
The antigens, GIRK1, GIRK2, GIRK3 subunits and 5-HT1A receptor, were 

detected by immunohistochemistry using the avidin-peroxidase method with 3,3´-

diaminobenzidine (DAB) as chromogen. Following reduction of endogenous 

peroxidases with 1% hydrogen peroxide (Sigma) and blocking of nonspecific 

background staining with 5% normal goat serum (NGS) (Sigma), the sections were 

incubated with the following immunoreagents: 1) primary antisera: commercially 

obtained polyclonal antibodies used were rabbit anti-GIRK1, GIRK2 or GIRK3 channels 

(diluted to 1:100, 1:300 and 1:300, respectively; Alomone Labs; cat. No.s APC-005, 

APC-006, APC-038) or guinea pig anti-5-HT1A receptor (1:1000, raised against a 

synthetic peptide –PPPKKSLNGQPGSGD– corresponding to a region located in the 

large third intracellular loop of the rat and mouse 5-HT1A receptor protein; Chemicon 

Intl. Inc., Temula, CA; cat. No. AB5406); 2) goat anti-rabbit biotin-conjugated 

immunoglobulines (1:200; Chemicon Intl. Inc.; cat. No. AP132B) for GIRK1, GIRK2 and 

GIRK3, or goat anti-guinea pig biotin-conjugated immunoglobulines (1:200, Chemicon 

Intl. Inc.; cat. No. AP108B) for the 5-HT1A receptor; 3) ABC-peroxidase complex: 

streptavidin-ABC complex/HRP (Dako A/S, Glostrup, Denmark); 4) chromogen: 3,3´-

DAB (Sigma) 0.2 mg/mL in 0.2 M Tris HCl buffer containing 0.03% hydrogen peroxide. 



 9 

Each step was followed by an appropriate wash per triplicate in phosphate-buffer 

saline. Sections were carefully extended and mounted into gelatine-coated slides, 

dehydrated, mounted (DPX mountant for histology, Fluka Chemie AG, Buchs, 

Switzerland), and examined in an Olympus BX50F optic microscope (Olympus Optical 

Co. Ltd., Japan).  
 

Controls for specificity of the antibodies  
The specificity of the staining obtained in immunohistochemistry experiments 

was confirmed by preadsorption of the antibodies (anti-GIRK1, anti-GIRK2, anti-GIRK3 

and anti-5-HT1A receptor) with the addition of an excess of the corresponding control 

peptide (3:1), which resulted in the complete abolition of immunostaining. The 

remaining signal was not different from background.  

We used a second method to further control the specificity of GIRK1, GIRK2 and 

GIRK3 antibodies. As described above, western blot experiments were carried out on 

membrane preparations of cerebral cortex and we corroborated that the 

autoradiographic signal was abolished when we incubated the antibodies with an 

excess of the corresponding control peptide (3:1) (see also “Results, Evaluation of 

GIRK subunit specific antibodies”). We did not use this second method for the 5-HT1A 

receptor antibody as it was no useful for Western blot analysis.  

 

Analysis of the results 
Cell counting was performed directly at the microscope with the help of 

Quantimet 500 MC software. For each region, immunolabeled cells present in a 

predetermined area (32383.2 µm2, or 2030.5 µm2 for the habenula) were counted 

manually in 8 different samples obtained from the 2 hemispheres, out of 2 sections 

from 2 rats. In the case of the DR 4 different sections from each animal were examined. 

For a given structure, tissue sections from virtually identical anteroposterior levels were 

carefully selected for counting. The actual field to count was chosen at random in the 

first section and the same zone was systematically explored in the following sections. 

The standard deviations obtained ranged between 5-10% of the cell counts value. 

Table 1 contains the results of cell counting as: “++++” very abundant (more than 2500 

labeled elements/mm2), “+++” abundant (1500-2500 labeled elements /mm2), “++” 

moderate expression (1000-1500 labeled elements /mm2), “+” low expression (less 

than 1000 labeled elements /mm2), “-“ indicates the consistent absence of detectable 
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staining and “n.d” indicates that the presence of specific cellular staining could not be 

determined.  

 

IN SITU HYBRIDIZATION 
 
Tissue preparation 

Animals were killed by decapitation and the brains rapidly removed, frozen on 

dry ice and stored at -20ºC. Tissue sections, 14 μm thick, were cut using a microtome-

cryostat (HM500 OM; Microtom, Walldorf, Germany), thaw-mounted onto APTS (3-

aminopropyltriethoxysilane; Sigma) coated slides and kept at -20ºC until use. 

 

Hybridization probes 
The oligodeoxyribonucleotide probes used were as follows. For the mRNA 

encoding for GIRK1 channel the five oligonucleotides used were complementary to 

bases 4-48, 8-31, 137-181, 352-396 and 1504-1548 (GenBank acc. no. U01071). For 

GIRK2 mRNA four oligonucleotides were used, complementary to bases 219-263, 947-

991, 1326-1370 and 1401-1446 (GenBank acc. no AB073755). For the mRNA 

encoding for GIRK3 channel, three oligonucleotides were used, complementary to 

bases 276-320, 381-425 and 1398-1442 (Gen Bank acc. no L77929). For 5-HT1A 

receptor mRNA three oligonucleotides were simultaneously used, complementary to 

bases 1-48, 763-810 and 1219-1266 (Gen Bank acc. no NM_012585).  

Glutamatergic cells were identified by the presence of the vesicular glutamate 

transporters (vGluT) vGluT1 and vGluT2 mRNAs with two oligonucleotides 

complementary to bases 127-172 and 1756-1800 for vGluT1 (Gen Bank acc. no 

U07609) and another two oligonucleotides complementary to bases 466-510 and 2156-

2200 for vGluT2 (Gen Bank acc. no AF271235). The distributions of vGluT1 and 

vGluT2 mRNAs in rat brain show a complementary pattern that agrees with the 

localization of glutamatergic neurons (Kaneko et al., 2002). GABAergic cells were 

identified by the presence of the enzyme synthesizing GABA, glutamic acid 

descarboxylase (GAD), that in adult brain exist as two major isoforms, GAD65 and 

GAD67 (Soghomonian and Martin, 1998). Immunohistochemical and in situ 

hybridization histochemistry indicate that the majority of GABA-containing neurons in 

the brain co-express the genes encoding the two GAD isoforms. Two oligonucleotides 

for GAD65 isoform were used: bp 159-213 and 514-558 (Gen Bank acc. no 
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NM_012563) and another two oligonucleotides were used for GAD67 isoform: bp 191-

235 and 1600-1653 (Gen Bank acc. no NM_017007). Cholinergic cells were 

distinguished by the presence of the enzyme choline acetyl-transferase (ChAT) mRNA 

with two oligonucleotides complementary to bases 880-927 and 1669-1716 of the rat 

ChAT cDNA sequence (Gen Bank acc. no XM_224626). Since it has been shown that 

the serotonin transporter is exclusively expressed by serotonergic neurons, we have 

taken the serotonin transporter (ST) mRNA as indicator of serotonergic phenotype 

(Fujita et al., 1993). Serotonergic cells were identified by the presence of the serotonin 

transporter using one oligonucleotide complementary to bases 865-912 (Gen Bank acc. 

no m79450).  

The oligonucleotides were all synthesized and HPLC purified by Isogen 

Bioscience BV (Maarsden, The Netherlands). Evaluation of the oligonucleotide 

sequences with basic local alignment search tool of EMBL and Gen-Bank databases 

indicated that the probes do not show any significant similarity with mRNAs other than 

their corresponding targets in the rat.  

Oligonucleotides for GIRK1, GIRK2, GIRK3 and 5-HT1A mRNAs were labeled at 

their 3´-end using [α-33P]dATP (3000 Ci/mmol; New England Nuclear, Boston, MA, 

USA) for the in situ hybridization histochemistry experiments and terminal 

deoxynucleotidyltransferase (Oncogene Research Products, San Diego, CA, USA), 

purified using QIAquick Nucleotide Removal Kit (Qiagen GmbH, Hilden, Germany). For 

the co-localization studies GIRK, vGluT, GAD, ChAT and ST oligonucleotides (100 

pmol) were non-radioactively labeled with the same enzyme and Dig-11-dUTP (Roche 

Diagnostics GmbH, Mannheim, Germany) according to a previously described 

procedure (Schmitz et al., 1991). 

 

In situ hybridization histochemistry procedure 
The protocols for single- and double-label in situ hybridization histochemistry 

were based on a previously described procedure and have been already published 

(Tomiyama et al., 1997; Landry et al., 2000; Serrats et al., 2003). Briefly, frozen tissue 

sections were brought to room temperature, fixed for 20 min at 4ºC in 4% 

paraformaldehyde in phosphate-buffered saline (PBS; 1X PBS: 8 mM Na2HPO4, 1.4 

mM KH2PO4, 136 mM NaCl, 2.6 mM KCl), washed for 5 min in 3X PBS at room 

temperature, twice for 5 min each in 1X PBS, and incubated for 2 min at 21ºC in a 

solution of predigested pronase (Calbiochem, San Diego, CA, USA) at a final 
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concentration of 24 U/ml in 50 mM Tris-HCl pH 7.5, 5 mM EDTA. The enzymatic 

activity was stopped by immersion for 30 seconds in 2 mg/ml glycine in 1X PBS. 

Tissues were finally rinsed in 1X PBS and dehydrated through a graded series of 

ethanol. For hybridization, radioactively labeled and non-radioactively labeled probes 

were diluted in a solution containing 50% formamide, 4X SSC (1X SSC: 150 mM NaCl, 

15 mM sodium citrate), 1X Denhardt´s solution (0.02% Ficoll, 0.02% 

polyvinylpyrrolidone, 0.02% bovine serum albumin), 10% dextran sulfate, 1% sarkosyl, 

20 mM phosphate buffer pH 7.0, 250 μg/ml yeast tRNA and 500 μg/ml salmon sperm 

DNA. The final concentrations of radioactive and Dig-labeled probes in the 

hybridization buffer were in the same range (approximately 1.5 nM). Tissue sections 

were covered with hybridization solution containing the labeled probe/s, overlaid with 

Nescofilm coverslips (Bando Chemical Inc., Kobe, Japan) and incubated overnight at 

42ºC in humid boxes. Sections were washed four times (45 minutes each) in 0.6 M 

NaCl, 10 mM Tris-HCl pH 7.5 at 60ºC, and once in the same buffer at room 

temperature for 10 min. For single in situ hybridization experiments, tissue sections 

were dehydrated in a graduate series of ethanol. 

 

Development of radioactive and non-radioactive hybridization signal 
Hybridized sections were treated as described by (Landry et al., 2000). Briefly, 

after washing, the slides were immersed for 30 min in a buffer containing 0.1 M Tris-

HCl pH 7.5, 1M NaCl, 2 mM MgCl2 and 0.5% bovine serum albumin (Sigma) and 

incubated overnight at 4 ºC in the same solution with alkaline-phosphatase-conjugated 

anti-digoxigenin-F(ab) fragments (1:5000; Roche Diagnostics GmbH). Afterward, they 

were washed three times (10 min each) in the same buffer (without antibody), and twice 

in an alcaline buffer containing 0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, and 5 mM MgCl2. 

Alkaline phosphatase activity was developed by incubating the sections with 3.3 mg 

nitroblue tetrazolium and 1.65 mg bromochloroindolyl phosphate (Roche Diagnostics 

GmbH) diluted in 10 ml of alkaline buffer. The enzymatic reaction was blocked by 

extensive rinsing in the alkaline buffer containing 1 mM EDTA. The sections were then 

briefly dipped in 70% and 100% ethanol, air-dried and dipped into Ilford K5 nuclear 

emulsion (Ilford, Mobberly, Chesire, UK) diluted 1:1 with destilled water. They were 

exposed in the dark at 4 ºC for 5-6 weeks, and finally developed in Kodak D19 (Kodak, 

Rochester, NY, USA) for 5 min, and fixed in Ilford Hypam fixer (Ilford). 

For film autoradiography, some hybridized sections were exposed to Biomax-MR 
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(Kodak) films for 4 to 6 days at -80 ºC with intensifying screens.  

 

Analysis of the results 
The average densities of each mRNA in different brain regions were evaluated 

semi quantitatively on film autoradiograms with the aid of an image analysis system 

(MCID M4; Imaging Research, St. Catherines, Ontario, Canada). In table 1 we show 

these results as: “+++” very strong (relative optical density higher than 0.5), “++” 

moderate (relative optical density from 0.35 to 0.5), “+” low (relative optical density 

lower than 0.35), “-“ indicates that relative optical density was not detected and “n.d” 

indicates that relative optical density could not be determined. 

Tissue sections were examined in bright- and dark-field in a Wild 420 

macroscope (Leica, Heerbrugg, Germany) and in a Zeiss Axioplan microscope (Zeiss, 

Oberkochen, Germany). A Darklite iluminator (Micro Video Instruments, Avon, MA, 

USA) was used to improve the visualization of autoradioghaphic silver grains and 

capture of bright and dark-field images. 

GIRK and glutamatergic, GABAergic, cholinergic and serotonergic neurons were 

identified as cellular profiles exhibiting a dark precipitate (alkaline phosphatase reaction 

product) surrounding or covering the nucleus. GIRK1, GIRK2, GIRK3 and 5-HT1A 

radioactive-hybridization signal was considered positive when accumulation of silver 

grains over the stained cellular profiles was at least two- to three-fold higher than the 

background levels. 

Only cellular profiles showing abundance of GIRK1, GIRK2, GIRK3 or 5-HT1A 

mRNAs and the other GIRK subunits or cell type identifier (vGluT1, vGluT2, GAD, 

ChAT or ST mRNAs) were considered double labeled. 

 

Controls for specificity of the probes 
The specificity of the autoradiographic signal obtained in the in situ hybridization 

histochemistry experiments was confirmed by performing a series of routine controls 

(Pompeiano et al., 1992). For each mRNA under study, at least two different 

oligonucleotide probes complementary to different regions of the same mRNA were 

used independently as hybridization probes in consecutive sections of the same animal 

showing identical hybridization patterns. For a given oligonucleotide probe, addition in 

the hybridization solution of an excess of the same unlabeled oligonucleotide resulted 

in the complete abolition of the specific hybridization signal. The remaining 
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autoradiographic signal was considered background. The thermal stability of the 

hybrids was examined by washing at increasing temperatures: a sharp decrease in the 

hybridization signal was observed at a temperature consistent with the Tm of the 

hybrids (Figure 1). 

 

PREPARATION OF THE FIGURES 
 

Photomicrography was performed in a Wild macroscope M420 (Leica, 

Heerbrugg, Switzerland) or a Zeiss Axioplan microscope (Carl Zeiss, Oberkochen, 

Germany), equipped with a digital camera (DXM1200 F, Nikon) and ACT-1 (Nikon) as 

image capture software. Figures were prepared for publication using Adobe Photoshop 

software (Adobe Software, San Jose, CA, USA). Contrast and brightness of images 

were the only variables we adjusted digitally.  
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RESULTS 
 
Evaluation of GIRK subunit specific antibodies 
 

As a first approach to determine the levels of expression of GIRK1-3 subunits in 

rat brain, we characterized the specificity of the immunolabeling of these proteins in 

cerebral cortical membranes with the antibodies employed. As described previously by 

Krapivinsky et al.(1995), Liao et al.(1996), Torrecilla et al.(2002), and Koyrakh et 

al.(2005), GIRK1 immunoreactivity in rat brain cortical membranes was visualized as 

three bands, the lower molecular weight versions thought to represent core (50 KDa) 

and core-glycosylated species (55 KDa), and the heavily glycosylated (approximately 

60 KDa) GIRK1 subunit the functional mature protein (Figure 2). Detection of these 

polypeptides was completely abolished when the antibody was preincubated with 

excess of synthetic peptide (see Figure 2, A1). These results indicated that the 

antibody used specifically recognized GIRK1 subunits in rat brain. Analysis of the 

standard curves revealed a linear relationship between the amount of total membrane 

protein (1-6 µg) in each lane and the relative optical density of the 60 KDa GIRK1 

subunits band (see legend Figure 2, A2-A3). 

There are four different splice variants of GIRK2 subunits that differ in their 

sequences mainly at the extreme N- and C-termini of the subunit (Lesage et al., 1994; 

Lesage et al., 1995; Isomoto et al., 1996). GIRK2b, which is truncated at the C-

terminus and lacks the acidic cluster, shows reduced surface expression. The primary 

amino acid sequences of GIRK2a and GIRK2c show that these isoforms diverge only 

at their carboxyl terminal tails. GIRK2c is 11 amino acid residues longer at its C-

terminal end than GIRK2a (Lesage et al., 1995). The GIRK2d isoform is predominantly 

expressed in testis (Inanobe et al., 1999). It has been established that the antibody 

employed by us recognizes the GIRK2a, 2c and 2d splicing isoforms, but not the 

ubiquitously expressed GIRK2b splice variant (Lesage et al., 1994; Lesage et al., 1995; 

Isomoto et al., 1996; Inanobe et al., 1999). Accordingly, our results show that the 

antibody recognized a band of approximately 75 KDa and a band of lower molecular 

weight of around 50 KDa in rat cerebral cortex (Figure 2, B1). To demonstrate antibody 

specificity, GIRK2 antibodies were tested on western blots containing proteins from rat 

cerebral cortex with blocking peptides. Antibody against the C terminus of GIRK2 

preadsorbed with competitive peptide gave rise to only the 50 KDa immunoreactive 
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band (Figure 2, B1). Therefore, the possibility that the 50 KDa immunoreactive band 

was a deglycosylation product of the 75 KDa was not considered further. Potentially, 

both GIRK2a and GIRK2c splice variants could contribute to the 75 KDa 

immunoreactive band. Analysis of the standard curves revealed a linear relationship 

between the amount of total membrane protein (2.5-20 µg) in each lane and the relative 

optical density of the 75 KDa GIRK2 subunits band (see legend Figure 2, B2-B3). 

Figure 2, C shows representative immunoblots of GIRK3 subunits in crude 

plasmatic membranes from rat brain cortex. One band migrating at expected molecular 

mass (approximately 40 KDa) is shown. To demonstrate antibody specificity, GIRK3 

antibodies preincubated with blocking peptides were tested on western blots containing 

proteins from rat cerebral cortex. Antibody against the C-terminal domain of GIRK3 

subunit preadsorbed with competitive peptide gave rise to no immunoreactive bands 

(Figure 2, C1). Analysis of the standard curves revealed a linear relationship between 

the amount of total membrane protein (5-40 µg) in each lane and the relative optical 

density of the GIRK3 subunits band (see legend Figure 2, C2-C3). 

 
GIRK and 5-HT1A receptor protein and mRNA distribution in rat brain 
 

Immunocytochemistry studies carried out with specific polyclonal antibodies 

against GIRK1, GIRK2 and GIRK3 subunits and the 5-HT1A serotonin receptor at 

various coronal levels from adult rat brain confirmed that all GIRK subunits analyzed 

are very abundant in the rat forebrain and that the 5-HT1A receptor is present notably in 

certain areas. Moreover, in situ hybridization studies also showed that the mRNAs 

corresponding to these GIRK channel subunits are widely and heterogeneously 

distributed along the rat brain. Analysis of emulsion-dipped coronal brain sections 

revealed more details of the hybridization pattern at the cellular level. In all cases, we 

observed some nuclei with a strong hybridization signal in contrast to some other 

regions with no detectable signal. The distribution pattern of the three GIRK subunits 

studied was very similar. However, some differences between the brain expressions of 

these GIRK subunits can be pointed out. 
GIRK1 subunit. Results are summarized in Table 1 and illustrated in Figure 3, 

A1-G1. In the particular case of the GIRK1, we found a high density of stained cells 

through all cortical layers with higher density in layer VI. This protein was also found as 

a stained neuropil in layer IV and in apical dendrites through the different layers. The 
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mRNA encoding GIRK1 was also widely distributed through all cortical layers although 

the highest density of this mRNA expression appeared in layer IV (Figure 4, A1-A2). 

The piriform cortex was the cortical area where both GIRK1-immunoreactive (IR) cells 

and its mRNA were expressed at highest densities. The dentate gyrus and the 

pyramidal layer of the hippocampus were among the most prominently labeled brain 

regions when stained with specific antibodies and also when hybridized with GIRK1 

33P-labeled probes (Figure 5, A1-A2). In the septum the number of cells showing 

GIRK1-IR seamed to be higher than the density of mRNA positive cells that was 

noticed in this area. Similarly, in the caudate-putamen, abundant small cells containing 

GIRK1-immunoreactivity (IR) were found, although the staining was quite weak. In 

contrast, the hybridization signal in this area was very low. It was notable the presence 

of GIRK1-IR in the medial and lateral habenular nuclei with the highest number of 

immunostained cells per mm2 in the medial nucleus. The presence of GIRK1 mRNA 

was moderate in the medial habenular nucleus and lower in the lateral nucleus (Figure 

6, A1-A3). In the thalamus high number of cells showed GIRK1-IR and also, moderate 

hybridization signal was observed with the in situ hybridization experiments (Fig. 7, A1-

A3). Interestingly, the arcuate, the paraventricular and the supraoptic nuclei (Figure 8) 

showed a high number of immunostained cells, although a very low hybridization signal 

could be detected in these three nuclei of the hypothalamus. In other hypothalamic 

nuclei, the number of GIRK1-IR cells was abundant in contrast to a low presence of 

mRNA at this level. In the red nucleus it was possible to observe large stained cells 

although they were not abundant. Moderate GIRK1-IR was found in the ventral 

tegmental area as well as in the compact part of the substantia nigra. However, no 

mRNA expression could be detected in these two areas. With regard to the dorsal 

raphe nucleus, abundant GIRK1-IR cells were found although low densities of mRNA 

were observed in this nucleus. In the pontine nucleus, we observed numerous GIRK1-

IR cells and moderate densities of mRNA expression. In the locus coeruleus, we found 

a low presence of GIRK1 mRNA. In contrast, in the granular cell layer of the cerebellum 

abundant GIRK1-IR cells and a very strong hybridization signal were found. In the 

cerebellum we found GIRK1 mRNA expressing-cells in the granular layer and there 

was an absence of mRNA expression in Punkinje cells (Figure 9, A1-A3).  

In relation to the subcellular localization, GIRK1-IR was found in cell bodies of 

immunostained neural cells and dendrites, for example in apical and basal dendrites of 

the pyramidal layer of the hippocampus as well as in granule cells of the dentate gyrus 
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(Figure 6, A2) and also in the apical dendrites of cells in the cerebral cortex. GIRK1-IR 

fibers were also present in the lateral septum (data not shown). 

GIRK2 subunit. GIRK2 protein and its mRNA also presented a widespread 

distribution in the rat brain, as summarized in Table 1 and illustrated in Figure 3, A2-G2. 

All different neocortical areas examined presented a high density of GIRK2-

immunostained cells through all layers. Nevertheless, because of the characteristics of 

the staining in the cortex, it was not possible to count neuronal cell bodies in every 

cortical layer. The most important characteristic of GIRK2-IR in layers II to III was the 

presence of stained fibers oriented perpendicularly to the surface of the cortex with an 

intense neuropil in layer I. GIRK2-IR cells were found, in particular, in pyramidal cell 

bodies of layer V. GIRK2 mRNA was also observed through all cortical layers (Figure 4, 

B1-B2). As in the case of GIRK1 subunit, GIRK2-IR and its mRNA were both enriched 

in piriform cortex. In the hippocampal formation, a large number of GIRK2-IR cell 

bodies were found in the pyramidal layer of all CA subfields and in the granule cell 

layer of the dentate gyrus, surrounded by an intensely stained neuropil. This abundant 

expression of GIRK2-IR in the hippocampus was paralleled by a very strong 

hybridization signal obtained for the corresponding mRNA (Figure 5, B1-B2). Similarly 

to more superficial layers of the cortex, the number of GIRK2-IR cells in the septum 

could not be determined because of the presence of abundant stained fibers. However, 

by in situ hybridization, we demonstrated a moderate presence of GIRK2 mRNA in the 

septum. In the caudate-putamen, neither GIRK2-IR nor its mRNA showed a significant 

signal. In the habenula, high numbers of GIRK2-IR cells and strong signal of GIRK2 

mRNA were observed in the medial nucleus. These densities were lower in the lateral 

habenula which was characterized by the presence of abundant IR-fibers and 

varicosities (Figure 6, B1-B3). In the thalamus numerous cells expressed GIRK2-IR and 

showed a moderate hybridization signal (Figure 7, B1-B3). We observed a remarkable 

presence of GIRK2-IR in the arcuate, the paraventricular and the supraoptic nuclei of 

the hypothalamus, where large neurons were intensely immunostained. These results 

correlated with a moderate to very strong hybridization signal. In the rest of the 

hypothalamic nuclei, GIRK2 mRNA was relatively abundant, although no GIRK2-IR 

could be detected. Very few large GIRK2-stained cells were observed in the red 

nucleus (Figure 10). Other areas enriched in GIRK2-IR were the ventral tegmental 

area, with an important presence of immunostained fibers, and the substantia nigra. In 

the latter, and specifically in its compact part, the staining of neural cell bodies was very 
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intense and fibers penetrating into the reticular part were the most important 

characteristics, together with positively stained dendritic spines (Figure 11). In the 

dorsal raphe nucleus a few IR-cells were found, and we could determine a moderate 

intensity in GIRK2 mRNA expression signal. Abundant cells were GIRK2-IR in the 

pontine nucleus, with a moderate density of mRNA. In the locus coeruleus, 

intermediate levels of GIRK2 mRNA were found. Intense GIRK2-IR and hybridization 

signal was found in the granule cell layer of the cerebellum. A high GIRK2 mRNA 

labeling was also seen in the Punkinje cells (Figure 9, B1-B3).  

In general, GIRK2 protein was found at a somatodendritic level, for example in the 

hippocampus, and we also found IR-fibers in the cortex, the lateral habenular nucleus 

and the reticular part of the substantia nigra. 

GIRK3 subunit. This subunit also showed a wide distribution in the rat brain 

(Table 1 and Figure 3, A3-G3). GIRK3 was expressed in all cortical layers with higher 

number of IR-cells per mm2 in the most superficial layers (II and III). The distribution of 

GIRK3 mRNA was in agreement with the IR-expression pattern in the different cortical 

layers with a high presence of mRNA in layers II-III and a little bit stronger density of 

mRNA in layer IV (Figure 4, C1-C2). Both GIRK3-IR and its mRNA were most abundant 

in the piriform cortex. In the dentate gyrus and the pyramidal layer of the hippocampus 

we found a high number of positive immunostained cells. Both structures exhibited only 

moderate densities of GIRK3 mRNA (Figure 5, C1-C2). A dense plexus of 

immunostained fibers was found in the septum. It was not possible to determine the 

density of GIRK3 IR-cells due to the presence of numerous immunostained fibers in 

this area. Using in situ hybridization, we demonstrated a very low presence of this 

mRNA in the septum. In the caudate-putamen a moderate number of cells were 

GIRK3-IR. The hybridization signal in this area was very low. It was notable the GIRK3-

IR in the habenula, mainly in its medial part. In contrast, the presence of the 

corresponding mRNA was very low in both parts of the habenula (Figure 6, C1-C3). In 

the thalamic nuclei GIRK3-IR and mRNA were expressed at moderate levels (Figure 7, 

C1-C3). GIRK3-IR was found abundantly in cells of the paraventricular and the 

supraoptic nuclei of the hypothalamus with a distinct and intense staining, although the 

hybridization signal was not detected in the supraoptic nucleus and was very low in the 

paraventricular nucleus. Interestingly, GIRK3-IR was abundant in many hypothalamic 

nuclei but a low presence of hybridization signal was noticed. GIRK3-IR could also be 

seen in large stained cells in the red nucleus. The staining pattern of GIRK3-IR in the 
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ventral tegmental area as well as in the reticular part of the substantia nigra was its 

presence in fibers which did not allow the visualization of stained cell bodies. In the 

compact part of the substantia nigra, a few neural cells showed GIRK3-IR. In none of 

these areas the corresponding mRNA could be detected. Regarding the dorsal raphe 

nucleus, a moderate number of cells positively immunostained for this protein were 

found and a low density of hybridization signal was observed. Few GIRK3-IR cells and 

low mRNA densities were observed in the pontine nucleus. In the locus coeruleus, low 

amounts of GIRK mRNA were detected. Abundant GIRK3-IR cells were found in the 

granule cell layer of the cerebellum, which showed also a strong hybridization signal. 

GIRK3 mRNA labeling was also seen in Punkinje cells (Figure 9, C1-C3). 

In relation to its subcellular localization, GIRK3-IR was mainly present in cell bodies of 

neural cells, dendrites and axon-like fibers. 

 5-HT1A receptor. The expression of this serotonin receptor along the rat brain 

has some similarities with the localization of the studied GIRK subunits (Figure 3, A4-

G4). We found 5-HT1A-IR in all cortical layers; especially in the most internal ones 

(layers V and VI). The density of the hybridization signal was low in all neocortical 

areas and the highest intensities corresponded to the internal layers (layers V and VI). 

The hippocampal formation exhibited very high densities of 5-HT1A-IR cells and 5-HT1A 

mRNA labeling (Figure 3, D4-E4 and Figure 5, D1-D2). Abundant stained fibers were 

seen in the septum together with 5-HT1A-IR cell bodies. These cells showed a 

moderate density of mRNA. It was notable the presence of 5-HT1A-IR in the medial 

habenular nucleus, however, its corresponding mRNA was not detected. In the 

thalamus the expression of both the protein and its mRNA were quite low. We could 

emphasize the presence of remarkable levels of mRNA encoding this receptor in the 

zona incerta (Figure 3, C4). There were abundant 5-HT1A-IR cells in the arcuate, 

paraventricular and supraoptic nuclei. Nevertheless, no mRNA could be detected in 

none of these three areas. In the other hypothalamic nuclei, 5-HT1A-IR and its mRNA 

expression were very low. In the case of the red nucleus there were a low number of 

intensely stained cells. In the substantia nigra a low expression of the 5-HT1A-IR was 

found in the compact part but no mRNA was detected in the entire area. In contrast, 

abundant 5-HT1A receptor-IR cells were found in the dorsal raphe nucleus which 

showed also very high densities of mRNA (Figure 3, F4). The expression of this 

receptor in the pontine nucleus was moderate and we noticed a low presence of 

mRNA. In the locus coeruleus, it was noticed a moderate signal of mRNA.  
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The 5-HT1A receptor appeared expressed in cell bodies and dendrites of neural cells, 

for example in the medial septum. 

 

Co-localization of GIRK subunits 
 

In order to analyze the cellular coexistence of the different GIRK mRNAs, we 

performed double in situ hybridization experiments using 33P-labeled and Dig-labeled 

probes to detect the GIRK subunits. The co-localization of GIRK subunits was 

examined in dentate gyrus, pyramidal layer of the hippocampus, cortex and thalamic 

nuclei (Figure 12). 

 As shown in Figure 12 (A), in the dentate gyrus of the hippocampus GIRK1 

mRNA hybridization signal can be clearly seen as autoradiographic grains over GIRK2 

mRNA-expressing cell profiles. Within this area, the vast majority of the cells were both 

GIRK1 and GIRK2 mRNA-positive, although we could also see a few GIRK1 or GIRK2 

single-labeled cells. Similarly, in Figure 12 (B) GIRK3 mRNA and GIRK1 mRNA as well 

as GIRK3 and GIRK2 mRNAs (Figure 12, C), co localized in a large number of cells 

along the dentate gyrus. 

 In the pyramidal layer of the hippocampus, the large majority of cells also 

showed double-hybridization signal of GIRK1 and GIRK2, GIRK1 and GIRK3 and 

GIRK2 and GIRK3 mRNAs with only few single-labeled cells (Figure 12, D-F). 

 A high percentage of cells in the cerebral cortex (Figure 12, G-I) and the 

thalamus (Figure 12, J-L) showed co expression of the pairs of GIRK subunits 

analyzed, but considerable numbers of single-labeled cells were also found. 

 

GIRK subunits in glutamatergic cells 
 

Glutamatergic cells were identified by the presence of the vesicular glutamate 

transporters vGluT1 and vGluT2 mRNAs and were detected simultaneously in tissue 

sections using non-radioactive probes. The presence of the GIRK subunit mRNAs was 

determined using 33P-labeled oligonucleotides. 

 In the dentate gyrus (Figure 13, A1-A3) and pyramidal cell layer of the 

hippocampus (Figure 13, B1-B3), the vast majority of the glutamatergic cells were 

GIRK mRNA-positive. Only a few vGluT mRNA containing cells lacked GIRK mRNA 

and a few cells expressing mRNA coding one of the GIRK proteins were not 
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glutamatergic. 

In the cerebral cortex, the vast majority of glutamatergic cells also co-expressed 

GIRK subunits. In contrast to the hippocampus, many GIRK mRNA-positive cells were 

devoid of vGluT mRNA (Figure 13, C1-C3). 

In the thalamus, the majority of labeled cells were double-positive and showed 

mRNA encoding vGluT and one of the GIRK subunits, but substantial populations of 

GIRK-negative glutamatergic cells as well as GIRK-positive non-glutamatergic cells 

were observed (Figure 13, D1-D3). 

 

GIRK subunits in GABAergic cells 
 

GABAergic cells were identified by the presence of the glutamic acid 

descarboxylase (GAD65 and GAD67) mRNAs and were detected in tissue sections 

using non-radioactive probes. The presence of the GIRK subunit mRNAs was 

determined using 33P-labeled oligonucleotides. 

 The majority of GIRK mRNA-expressing cells in the dentate gyrus (Figure 14, 

A1-A3), the pyramidal cell layer of the hippocampus (Figure 14, B1-B3) and the 

cerebral cortex (Figure 14, C1-C3), did not show GAD mRNA signal. In these 

structures, most of GABAergic cells were also GIRK mRNA-positive. 

 Virtually all cells in the thalamus showing GIRK mRNAs were devoid of GAD 

mRNA. In contrast, in the reticular thalamic nucleus, GIRK mRNAs were always found 

in GAD mRNA-containing cells. Some GAD mRNA-positive cells that lacked GIRK 

mRNA were also found in the reticular thalamic nucleus (Figure 14, D1-D3). 

 

GIRK subunits in cholinergic cells 
 

Cholinergic cells were distinguished by the presence of choline acetyl-

transferase (ChAT) mRNA. We detected these cells in the nucleus of the vertical limb 

of the diagonal band using non-radioactive probes. The presence of the GIRK subunit 

mRNAs was determined using 33P-labeled oligonucleotides. The majority of cholinergic 

cells expressed GIRK1 or GIRK2 mRNA. Some GIRK1 mRNA- and some GIRK2 

mRNA-positive cells devoid of ChAT mRNA were also observed (Figure 15, A-H). 

GIRK3 mRNA expression was absent in this area.  
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Co-localization of GIRK subunit mRNAs and 5-HT1A receptor mRNA 
 

We analyzed the cellular co-existence of the 5-HT1A receptor mRNA and GIRK 

subunits through double in situ hybridization. We used 33P-labeled oligonucleotides for 

the serotonin receptor and Dig-labeled probes to detect GIRK subunits. The co-

localization of these three GIRK subunits with the 5-HT1A receptor was examined in 

dentate gyrus, pyramidal layer of the hippocampus, cortex, septum and dorsal raphe. 

 In the dentate gyrus (Figure 16, A1-A3) and pyramidal layer of the hippocampus 

(Figure 16, B1-B3) as well as in the cerebral cortex (Figure 16, C1-C3), the vast 

majority of 5-HT1A receptor-expressing cells showed GIRK subunit mRNAs. Cells that 

expressed GIRK mRNA and were 5-HT1A mRNA-negative, were also observed in the 

dentate gyrus and CA fields of the hippocampus. This type of cells was very abundant 

in the cerebral cortex. 

In contrast, in the septum, GIRK mRNA was mostly found in 5-HT1A receptor 

mRNA-expressing cells. Nevertheless, numerous 5-HT1A receptor mRNA positive cells 

lacked GIRK mRNA labeling (Figure 16, D1-D3). 

In the dorsal raphe nucleus, the majority of cells expressing the serotonin 

receptor 5-HT1A mRNA were also GIRK mRNA-positive. Few cells were found that 

expressed GIRK mRNAs without co-expression of 5-HT1A receptor mRNA (Figure 16, 

E1-E3). In general, the expression of GIRK3 mRNA in the dorsal raphe nucleus was 

more limited than GIRK1 and GIRK2 in terms of number of labeled cells. 

 

GIRK subunits in serotonergic cells 
 

Serotonergic cells were identified by the presence of the serotonin transporter 

(ST) mRNA in the dorsal raphe nucleus. We used 33P-labeled oligonucleotides to 

detect the ST mRNA and Dig-labeled probes for GIRK subunits. In most of the cells 

expressing the ST mRNA we also found GIRK mRNA. In addition, only a few cells were 

found that expressed GIRK mRNA without apparent ST mRNA labeling (Figure 17).
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DISCUSSION 
 

In this work we have carried out a comparative analysis of the distribution of the 

GIRK1, GIRK2, GIRK3 subunits and 5-HT1A receptor in the rat brain. Our study is the 

first to compare the expression of these proteins and their corresponding mRNAs in 

different brain areas. In addition, we have examined the co-expression of the mRNAs 

codifying the GIRK subunits and their presence in glutamatergic, GABAergic, 

cholinergic, serotonergic and 5-HT1A receptor-containing cells in selected rat brain 

structures. Moreover, to our knowledge, this is the first detailed report of the distribution 

of the GIRK3 protein in the adult rat brain.  

 

GIRK1, GIRK2 and GIRK3 protein and mRNA expression 
 

GIRK1 protein-immunoreactivity (IR) showed a wide distribution along the 

different brain areas analyzed. It is noteworthy its presence in areas such as the 

cerebral cortex, hippocampal formation, habenular nuclei, thalamic nuclei, some 

hypothalamic nuclei and the granular layer of the cerebellum. Studies by Bausch et al. 

(1995) showed a similar distribution of GIRK1, although this group observed this 

protein in dendrites of granular and pyramidal cells of the hippocampus, while they did 

not recognize clearly its presence in the somata of these neurons. In contrast, Ponce et 

al. (1996), Miyashita and Kubo (1997) and us found immunoreactivity in the somata 

and dendrites of pyramidal cells in the CA1-3 as well as in the granular layer of the 

dentate gyrus. In fact, the high presence of GIRK1 protein in dendrites and also in cell 

bodies of the pyramidal layer of the hippocampus has already been described by Drake 

et al. (1997). Liao et al. (1996) found GIRK1 in the pyramidal cells but not in the 

granule cells of the dentate gyrus. These discrepancies could be due to technical 

differences, such as the use of different antibodies with different specificity. In the 

cerebral cortex, the neuropil was GIRK1-positive as already reported by Liao et al. 

(1996), Ponce et al. (1996) and Miyashita and Kubo (1997). Apparently, the labeling 

was stronger in layer IV, which contains thalamocortical projections that, most likely, 

contribute to the immunostaining in the cortex. This has been demonstrated by Ponce 

et al. (1996) using unilateral kainate lesions of the thalamus that resulted in a loss of 

staining on the side ipsilateral to the lesion in cortical layer IV. In addition, some studies 

have analyzed the localization of mRNA through in situ hybridization in the rat brain 
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and also in the mouse brain (Karschin et al., 1994; DePaoli et al., 1994; Kobayashi et 

al., 1995; Karschin et al., 1996). In agreement with these authors, we found a very high 

density of GIRK1 mRNA in the cerebral cortex, hippocampus (dentate gyrus and CA1, 

CA2 and CA3 fields of hippocampus), thalamic nuclei and the cerebellar granular layer. 

The distributions of GIRK1-IR and its mRNA are coincident in the cerebral 

cortex, hippocampus, amygdala, thalamic nuclei, pontine nuclei and granular layer of 

the cerebellum. In contrast, this parallelism is not so evident in other structures such as 

the septum, caudate putamen, habenular nuclei, hypothalamic arcuate, paraventricular 

and supraoptic nuclei, and substantia nigra, where an important number of cells were 

immunoreactive but expressed only low mRNA densities. 

 Our distribution of GIRK2 protein-IR is in accordance with a previous work by 

Murer et al. (1997), who noticed an intense immunostaining of cell bodies in the 

septum, hippocampus, compact part of the substantia nigra and granular layer of the 

cerebellum. We found strongly GIRK2-IR fibres in areas such as the external layers of 

the cerebral cortex (with stained fibres oriented perpendicularly to the surface of the 

cortex), septum, lateral habenular nucleus and reticular part of the substantia nigra with 

remarkably stained dendrites, fibres and spines. This distribution is comparable to that 

described by Murer et al. (1997) and Liao et al. (1996). In addition, we found a strong 

staining of GIRK2 protein in the arcuate and the paraventricular nuclei of the 

hypothalamus, which has not been described before. In contrast to these authors, we 

found positively stained cells in the red nucleus and the dorsal raphe. As in the case of 

the GIRK1 subunit, the use of different antibodies can be the reason of these 

differences between studies. In the present study, the specificity of the immunostaning 

was assessed by preadsorption of the antisera with the corresponding control peptide 

antigens. 

The distribution of the mRNA encoding GIRK2 protein in the adult rat brain we 

described in this work is in agreement with previously published localizations in the 

mouse and rat brain (Kobayashi et al., 1995; Liao et al., 1996). GIRK2 mRNA was 

substantially expressed in the hippocampus, ventral tegmental area, substantia nigra 

and the granular layer of the cerebellum. A moderate expression of this subunit was 

observed in the cerebral cortex, thalamic and hypothalamic nuclei, supraoptic nucleus, 

pontine nuclei and dorsal raphe nucleus and a lower signal was noticed in the caudate 

putamen and septum. In general, there was a good correlation between the GIRK2 

protein expression and the localization of its corresponding mRNA. It is noteworthy that 
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in areas such as the superficial layers of the cerebral cortex and the septum, where we 

described stained fibres and were not able to detect cellular immunostaining, we did 

find mRNA hybridization signal.  

 With regard to the GIRK3 subunit, to our knowledge, this is the first study on the 

distribution of this protein in the adult rat brain apart from the study carried out by 

Grosse et al. (2003) based on GIRK3-IR in the hippocampus. It is remarkable, the 

presence of GIRK3-IR in layers II-III of the cerebral cortex, hippocampus, amygdala, 

medial habenular nucleus, some hypothalamic nuclei such as the paraventricular and 

supraoptic nuclei and also in the granular layer of the cerebellum. We found this protein 

not only in cell bodies but also in fibres of the septum, ventral tegmental area and 

substantia nigra. Using in situ technique, we also found high densities of mRNA 

encoding the GIRK3 subunit in the cerebral cortex, hippocampal formation, amygdala, 

thalamic nuclei, posterior hypothalamic nuclei and cerebelum. These results are in 

accordance with those described by Karschin et al. (1996). However, these authors 

found mRNA-positive cells in the nucleus of the vertical limb of the diagonal band, 

caudate putamen and globus pallidus, where we noticed only very low hybridization 

signal. These results show that this GIRK3 subunit is located in areas where GIRK1 

and GIRK2 are also expressed and this parallelism is in agreement with the possible 

formation of heterotetrameric GIRK channels GIRK1/3 and GIRK2/3 as well as 

homomeric GIRK3 channels. 

 It is important to highlight that, in general, the anatomical distributions of cell 

bodies immunoreactive for the three different GIRK subunits are highly comparable to 

their respective mRNAs, indicating that these proteins are mainly expressed at the 

somatodendritic level. This subcellular localization is coherent with their function as G 

protein-regulated channels. However, we also observed some cases of mismatch 

between mRNA and GIRK-IR. For example, we found relatively strong GIRK1- and 

GIRK3-IR in the supraoptic nucleus, where mRNA levels were very low. 

 In synthesis, we report that the three GIRK subunits are widely distributed along 

the adult rat brain and present similar anatomic localizations (see Table 1). In 

particular, they have overlapping distributions in the cerebral cortex, hippocampus, 

thalamic nuclei, paraventricular and supraoptic nuclei, pontine nuclei and the granular 

layer of the cerebellum among others. However, this is not the case in other areas, for 

example, the GIRK1 subunit is found in the caudate putamen where the other GIRK 

subunits are only moderately expressed. In this area, we could expect to find more 
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GIRK1/2 and GIRK1/3 than any other combination of subunits. It is noteworthy the 

presence of GIRK2 subunit in the substantia nigra where there are a vast majority of 

homotetrameric GIRK channels composed by four GIRK2 subunits in dopaminergic 

cells or the GIRK3 subunit in the amygdala (Inanobe et al., 1999). 

 

GIRK mRNAs co-expression 
 

We used double in situ hybridization to analyze the cellular co-expression of 

different GIRK subunits in brain areas with a high degree of co-localization, such as the 

dentate gyrus, pyramidal layer of the hippocampus, cortex and thalamic nuclei. 

Independently of the two GIRK subunits selected, we found a similar pattern of co-

expression. For example, we found numerous cells expressing GIRK1 and GIRK2 

mRNA subunits, along with a few GIRK1 mRNA positive cells and a few GIRK2 mRNA 

positive cells. These single labeled cells are likely to contain GIRK1/3 channels and 

GIRK2/2 or GIRK2/3 channels, respectively. In summary, we demonstrated the co-

existence of different subunits in variable combinations in rat brain, suggesting that 

different subunit organizations of the GIRK channels might occur in different neurons, 

resulting in diversity of channel functions. 

 

GIRK mRNAs expression in glutamatergic, GABAergic and cholinergic cells 
 

Another important aim of our study was to determine whether these GIRK 

channels are present in glutamatergic, GABAergic and cholinergic cells. Our work 

provides evidence showing that the vast majority of glutamatergic and GABAergic cells 

in the dentate gyrus, pyramidal layer of the hippocampus and the cerebral cortex, 

express GIRK mRNAs. In the thalamus, however, we found GIRK subunits in a high 

proportion of glutamatergic cells, but not in GABAergic neurons, with the exception of 

the reticular thalamic nucleus, where GIRK mRNAs always co-localized with GAD 

mRNA. Almost all cholinergic cells studied in the nucleus of the vertical limb of the 

diagonal band showed GIRK1 or GIRK2 mRNA labeling, whereas no GIRK3 mRNA 

was found. Therefore, GIRK channels in this area are likely to contain GIRK1 and 

GIRK2 subunits. 
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5-HT1A receptor distribution and co-localization with GIRK subunits. GIRK 
mRNAs expression in serotonergic cells of the dorsal raphe nucleus 

 

Similarly to cholinergic cells, we found expression of GIRK subunits in 

serotonergic cells of the raphe nuclei as identified by the presence of serotonin 

transporter mRNA. This suggests that GIRK channels are able to mediate inhibitory 

responses in this area and regulate serotonin release from the raphe nuclei to the 

hippocampus, septum and other projection areas. Consequently, these channels could 

have an important role in learning and memory. 

On the other hand, it has been long know that the activation of GPCR coupled to 

Gi/o proteins can cause the opening of GIRK channels through a membrane-delimited 

pathway. It has already been proved that, in mammalian neurons and in Xenopus 

oocytes, GIRK channels can be activated by neurotransmitters through GPCR such as 

the serotonin 5-HT1A, muscarinic M2, dopamine D2, D3 and D4, α2-adrenergic, 

metabotropic mGluR1a, 2 and 7, GABAB, neuropeptide Y1 and Y2, cannabinoid, 

melatonin, adenosine A1, μ-, δ- and κ-opioid and nociceptin/orphanin receptors 

(Andrade et al., 1986; North, 1989; Brown and Birnbaumer, 1990; Hille, 1992; Lesage 

et al., 1995; Kim et al., 1995; Murer et al., 1997; Karschin, 1999). Moreover, GIRK 

subunit knock-out mice have revealed important roles for GIRK channels in the 

generation of IPSPs in hippocampal and cerebellar neurons, where they serve as a 

common effector for various neurotransmitters. For instance, in hippocampal neurons 

of GIRK2 knock-out mice there is an evident loss of responsiveness both to 5-HT1A and 

GABAB agonists (Luscher et al., 1997; Slesinger et al., 1997). Therefore, since GIRK 

channels could be acting as important effectors of 5-HT1A receptors upon activation by 

serotonin or serotonin agonists, we carried out co-localization assays in the adult rat 

brain, in order to determine whether GIRK subunits are expressed in 5-HT1A positive 

cells and could thus mediate regulatory responses through this receptor. The 

distribution pattern of the 5-HT1A receptor and its mRNA reported here is in accordance 

with previous data from Kia et al. (1996) and Chalmers and Watson (1991) and 

Pompeiano et al. (1992), respectively. In general, there is a good concordance 

between 5-HT1A protein distribution and the expression of its mRNA, both showing the 

highest densities in the hippocampus, cerebral cortex, septum and raphe nuclei. It is 

worth mentioning that clear mismatches are found in nuclei such as the habenula as 

well as in the hypothalamic supraoptic, paraventricular and arcuate nuclei, where we 
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and other authors (Collin et al., 2002) find 5-HT1A receptor immunoreactive neurons but 

the corresponding mRNA is not detected (see also Chalmers and Watson 1991). These 

mismatches might be due to particular turnover rates of 5-HT1A receptor protein and/or 

mRNA in these regions compared to other brain areas, which might result in 

undetectable levels of this mRNA. We found GIRK subunits co-expressed with both 

somatodendritic 5-HT1A autoreceptors in the raphe nuclei and with postsynaptic 5-HT1A 

heteroreceptors in projection areas. Our results suggest that GIRK channels can 

mediate inhibitory responses in these areas when serotonin or its agonists activate the 

serotonin receptor 5-HT1A. 

In summary, this work provides for the first time a useful and until now unknown 

evidence showing that most glutamatergic, GABAergic, cholinergic and serotonergic 

cells in the rat brain areas studied show mRNA codifying the GIRK channels forming 

subunits GIRK1, 2 and 3. Therefore, these channels can be found expressed in the 

plasmatic membrane of these cells controlling the release of both excitatory and 

inhibitory neurotransmitters to their projection areas and so, they could play a very 

important role in the regulation of neuronal excitability of different neurons in a variety 

of brain regions. Moreover, the close relationship between 5-HT1A receptor mRNA and 

GIRK1-3 channel mRNAs on both GABAergic and glutamatergic neurons of the rat 

hippocampus, provides an anatomical framework to explain the important role as 

modulator of hippocampal functions, such as learning/memory and emotional state, of 

serotonin via 5-HT1A receptors using as effectors the GIRK channels coupled to this 

receptor trough the heterotrimeric Gi/o proteins. This may have important clinical 

implications in aging, dementia and affective disorders. 

On the one hand, since there is a high colocalizacion between GIRK subunits 

and the serotonin receptor, and also with the serotonin transporter (marker of 

serotonergic neurons) in the dorsal raphe nucleus, we may think that substances that 

could specifically inhibit these channels in this brain area would be useful in controlling 

the depressive illness. In fact, with current antidepressant treatments, such as selective 

serotonin reuptake inhibitors, we look for an increase in the neurotransmitter serotonin 

levels in areas such as the hippocampus. By inhibiting the activity of these GIRK 

channels, we could induce a greater depolarization of serotonergic neurons at the 

raphe nucleus and therefore, achieve higher levels of this neurotransmitter in projection 

areas. 
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On the other hand, the fact that these GIRK channels are expressed in a wide 

variety of brain structures is indicative of their importance as effectors of many different 

receptors and therefore, their pharmacological control can be a great benefit to the 

treatment of a wide range of pathologies such as anxiety disorders, prevention of 

damage in situations of ischemia, treatment of drug addiction, and so forth, as has 

been pointed out by other authors before (Blednov et al., 2001; Mao et al., 2002; 

Morgan et al., 2003; Kobayashi et al., 2006). 

Therefore, a greater knowledge of the brain location of the GIRK subunits 

presented in this paper may present a starting point for considering these channels as 

future therapeutic targets in the control of various pathologies as well as to understand 

some of the adverse effects caused by drugs currently used in therapeutic such as 

some antidepressants that acting on GIRK channels at heart can cause bradycardy in 

overdose (Kobayashi et al., 2003; Kobayashi et al., 2004). 
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FIGURE LEGENDS 

 

Figure 1.- A-C: Specificity control of the hybridization signal with the GIRK1-1 (137-

181) oligonucleotide probe. Rat coronal consecutive sections were hybridized with the 
33P-labeled GIRK1-1 probe. Hybridized sections were washed at increasing 

temperatures of 60ºC (A), 70ºC (B) and 80ºC (C). A large decrease in the hybridization 

signal could be observed at 80ºC. Black spots in C are non specific staining. D-F: 

Cohybridization experiments. The signal obtained with the GIRK1-1 labeled 

oligonucleotide (A) was completely blocked by competition with a 50-fold excess of the 

corresponding unlabeled probe (D). The same hybridization pattern as with the GIRK1-

1 probe was observed with the 33P-labeled GIRK1-2 (352-396) oligonucleotide probe 

(E). The signal obtained with the GIRK1-2 labeled oligonucleotide (E) was completely 

pageed by competition with a 50-fold excess of the corresponding unlabeled probe (F). 

Pictures are digital images taken from film autoradiograms. Scale bar = 3 mm. 

 

Figure 2.- Detection of GIRK1-3 subunits immunoreactivity in rat brain cortical 

membranes. A1. Representative immunoblotting of GIRK1 subunits in samples of 

cortical membranes without (lanes 1, 2 and 3 on the right) and after preincubation with 

the synthetic peptide used as the immunogen (lanes 4, 5 and 6 on the left). A2. GIRK1 

appears as a triplet, with the three bands representing differentially glycosylated 

versions of the core polypeptide. Standard curves for the 60 KDa version of the GIRK1 

subunits were generated with incremental amounts of total membrane protein ranging 

from 1 to 6 µg. A3. The correlation coefficient was obtained by linear regression 

analysis and was r2 = 0.9720. B1. Representative Western blots of GIRK2 subunit. 

Note that immunoblots labelled with anti-GIRK2 exhibited two positive bands (right), of 

which only the 75 KDa band disappeared after preincubation with the synthetic peptide 

used as the immunogen (left). B2-B3. Immunoblotting with incremental amounts of 

protein ranging from 2.5 to 20 µg, allowed to obtain the corresponding standard curves 

from which the correlation coefficient (r2 = 0.9879) was estimated by linear regression 

analysis. C1. Representative Western blots of GIRK3 subunit immunoreactivity in 

samples of cortical membranes without (right) and after preincubation with the blocking 

peptide (left). C2. Standard curves were generated by immunoblotting using 

incremental amounts of total membrane protein ranging from 5 to 40 µg. C3. The 

correlation coefficient was obtained by linear regression analysis and was r2 = 0.9664. 
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The positions of molecular weight markers are indicated on the left in A1, B1 and C1.  

 

Figure 3.- Regional distribution of the different GIRK subunit mRNAs and 5-HT1A 

mRNA in consecutive sections of the rat brain at different rostrocaudal levels. 

Autoradiographic images show GIRK1 (A1-G1), GIRK2 (A2-G2), GIRK3 (A3-G3) and 

5-HT1A receptor (A4-G4) mRNAs visualized by in situ hybridization with the 

corresponding 33P-labeled oligonucleotides. Pictures are digital photographs from film 

autoradiograms. A5-G5 show photographs of a Nissl stained section for each level. 

Scale bar = 3 mm. 

 

Figure 4.- Laminar distribution of GIRK subunit mRNAs and detail of positively 

immunostained neural cells in the rat frontal cortex. Dark-field photomicrographs from 

emulsion-dipped coronal sections through cortical layers indicated by roman numbers 

where GIRK1 (A1), GIRK2 (B1) and GIRK3 (C1) mRNA-containing cells (white silver 

grains) appear localized in the different layers. Detail of GIRK1-IR cells in layer V (A2), 

GIRK2- IR cells in layer V (B2) and GIRK3-IR cells in layer III (C3). Scale bars = 400 

µm in A1-C1; 20 µm in A2-C2. 

 

Figure 5.- Expression of GIRK subunit and 5-HT1A receptor mRNAs and detail of 

positively immunostained neurons in rat hippocampus. Dark-field photomicrographs 

from emulsion-dipped coronal sections through the hippocampal region showing the 

presence of mRNA coding for GIRK1 (A1), GIRK2 (B1), GIRK3 (C1) and 5-HT1A (D1). 

Detail of GIRK1-IR cells in the hilus of the dentate gyrus (A2), GIRK2-IR cells in the 

CA3 field (B2), GIRK3-IR cells in the CA1 field (C2) and 5-HT1A receptor-IR cells in the 

CA3 field of the hippocampus (D2). Scale bars = 400 µm in A1-D1; 20 µm in A2-D2. 

 

Figure 6.- Expression of GIRK subunit mRNAs in emulsion-dipped sections and detail 

of positively immunostained neurons in rat habenular nuclei. Dark-field 

photomicrographs from coronal sections through the habenular region showing the 

presence of mRNA coding for GIRK1 (A1, A2), GIRK2 (B1, B2) and GIRK3 (C1, C2). 

A2, B2 and C2 are higher magnification photomicrographs of the medial habenular 

nucleus. Detail of GIRK1-IR cells in the medial habenular nucleus (A3), GIRK2-IR cells 

in the lateral habenular nucleus (B3) and GIRK3-IR cells in the medial habenular 

nucleus (C3). Scale bars = 400 µm in A1-C1; 50 µm in A2-C2; 20 µm in A3-C3. 
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Figure 7.- Distribution of GIRK subunit mRNAs in the rat thalamus as observed on 

emulsion-dipped sections under dark-field illumination. Photographs show GIRK1 (A1-
A3), GIRK2 (B1-B3) and GIRK3 (C1-C3) mRNAs. Scale bars = 400 µm in A1-C1; 100 

µm in A2-C2; 50 µm in A3-C3. 

 

Figure 8.- Bright-field photomicrographs showing GIRK1 subunit positively 

immunostained neurons in the supraoptic nucleus (A1, A2) and the paraventricular 

nucleus of the hypothalamus (B1, B2). Scale bar = 100 µm in A1-B1; 20 µm in A2-B2. 

 

Figure 9.- Distribution of GIRK subunit mRNAs in the rat cerebellum. Emulsion-dipped 

sections show GIRK1 (A1-A3), GIRK2 (B1-B3) and GIRK3 (C1-C3) mRNAs. A3-C3 

illustrate cresyl violet staining in the same labeled sections showed in A2-C2, 

respectively. Arrowheads in A2-C2 and A3-C3 point to Purkinje cells. Note the absence 

of GIRK1 mRNA in Punkinje cells in A2 and A3. Scale bars = 400 µm in A1-C1; 50 µm 

in A2-C2 and A3-C3. 

 

Figure 10.- Detail of GIRK2 subunit-immunostained neurons for the in the rat red 

nucleus (A1, A2). Scale bars = 100 µm in A1; 20 µm in A2. 

 

Figure 11.- GIRK2 immunoreactive neural cells in the rat substantia nigra (A) and a 

dark-field photomicrograph of this area showing the presence of mRNA coding for 

GIRK2 (B). Detail of neural cell bodies in the substantia nigra compact part (C) and 

reticular part (D). Scale bars = 100 µm in A, B; 20 µm in C and D. 

 

Figure 12.- High-magnification photomicrographs showing the simultaneous detection 

of two GIRK mRNAs in different brain areas. One of the subunits was detected by 

using 33P-labeled oligonucleotides (33P) and the other with digoxigenin-labeled probes 

(Dig) as indicated. Photomicrographs were taken from the dentate gyrus (A-C), the 

pyramidal layer of the hippocampus (CA1 field) (D-F), the parietal cortex (G-I) and the 

thalamus (J-L). White arrowheads point to single Dig-labeled cells. Black arrowheads 

point to single 33P-labeled cells. Black-and-white arrowheads point to double-labeled 

cells. Scale bar = 10 µm. 
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Figure 13.- High-magnification photomicrographs showing the simultaneous detection 

of two species of mRNA using Dig- labeled probes for vGluT mRNA and 33P-labeled 

oligonucleotide probes for the mRNA of GIRK subunits GIRK1 (A1-D1), GIRK2 (A2-D2) 

and GIRK3 (A3-D3) in the dentate gyrus of the hippocampus (A1-A3), pyramidal layer 

of the hippocampus (CA1 field) (B1-B3), parietal cortex (C1-C3) and thalamus (D1-D3). 

White arrowheads point to single Dig-labeled cells. Black arrowheads point to single 
33P-labeled cells. Black-and-white arrowheads point to double-labeled cells. Scale bar = 

20 µm. 

 

Figure 14.- High-magnification photomicrographs showing the simultaneous detection 

of two species of mRNA using Dig- labeled probes for GAD mRNA and 33P-labeled 

oligonucleotide probes for the mRNA of GIRK subunits GIRK1 (A1-D1), GIRK2 (A2-D2) 

and GIRK3 (A3-D3) mRNA in the dentate gyrus of the hippocampus (A1-A3), 

pyramidal layer of the hippocampus (CA1 field) (B1-B3), parietal cortex (C1-C3), and 

reticular thalamic nucleus (D1-D3). White arrowheads point to single Dig-labeled cells. 

Black arrowheads point to single 33P-labeled cells. Black-and-white arrowheads point to 

double-labeled cells. Scale bar = 20 µm. 

 

Figure 15.- High-magnification photomicrographs showing the simultaneous detection 

of two species of mRNA using 33P-labeled oligonucleotide probes for GIRK1 (A-D) and 

GIRK2 (E-H) subunits (silver grains) and Dig- labeled probes for ChAT mRNA in the 

nucleus of the vertical limb of the diagonal band. White arrowheads point to single Dig-

labeled cells. Black arrowheads point to single 33P-labeled cells. Black-and-white 

arrowheads point to double-labeled cells. Scale bar = 20 µm. 

 

Figure 16.- High-magnification photomicrographs showing the simultaneous detection 

of two species of mRNA using 33P-labeled oligonucleotide probes for the serotonin 

receptor 5-HT1A (silver grains) and Dig- labeled probes for the mRNAs of GIRK 

subunits: GIRK1 (A1-E1), GIRK2 (A2-E2) and GIRK3 (A3-E3) in the dentate gyrus of 

the hippocampus (A1-A3), pyramidal layer of the hippocampus (CA1 field) (B1-B3), 

parietal cortex (C1-C3), septum (D1-D3), dorsal raphe nucleus (E1-E3). White 

arrowheads point to single Dig-labeled cells. Black arrowheads point to single 33P-

labeled cells. Black-and-white arrowheads point to double-labeled cells. Scale bar = 20 

µm. 
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Figure 17.- High-magnification photomicrographs showing the simultaneous detection 

of two species of mRNA using 33P-labeled oligonucleotide probes for GIRK1 (A), 

GIRK2 (B) and GIRK3 (C) subunits (silver grains) and Dig-labeled probes for the 

serotonin transporter mRNA in the dorsal raphe nucleus. White arrowheads point to 

single Dig-labeled cells. White arrowheads point to single Dig-labeled cells. Black 

arrowheads point to single 33P-labeled cells. Black-and-white arrowheads point to 

double-labeled cells. Scale bar = 20 µm. 

 



 36 

TABLE OF ABBREVIATIONS 
 

AD  anterodorsal thalamic nucleus 

APTS  3-aminopropyltriethoxysilane 

Arc  arcuate nucleus 

CA1  field CA1 of hippocampus 

CA2  field CA2 of hippocampus 

CA3  field CA3 of hippocampus 

ChAT  choline acetyl transferase 

CM  central medial thalamic nucleus  

CPu  caudate-putamen 

DG  dentate gyrus of the hippocampus 

Dig  digoxigenin 

DMH  dorsomedial hypothalamic area 

DR  dorsal raphe nucleus 

DS  dorsal septal nucleus 

ECL  enhanced chemiluminiscence system 

ER  endoplasmic reticulum 

GAD  glutamic acid descarboxylase 

GIRK  G-protein inwardly rectifying potassium channel (Kir3) 

GL  granular cell layer of cerebellum 

5-HT  serotonin  

IC  inferior colliculus 

ICM  major island of Calleja 

IG  indusium griseum 

IP  interpeduncular nucleus 

IPSP  inhibitory postsynaptic potential 

IR  immunoreactive or immunoreactivity 

Kir3  G-protein inwardly rectifying potassium channel (GIRK) 

LC  locus coeruleus 

LDDM  laterodorsal thalamic nucleus, dorsomedial part 

LDVL  laterodorsal thalamic nucleus, ventrolateral part 

LHb  lateral habenular nucleus 

MG  medial geniculate nucleus 
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MHb  medial habenular nucleus 

MnR  median raphe nucleus 

MS  medial septal nucleus 

NGS  normal goat serum 

Pa  paraventricular nucleus 

PFCx  prefrontal cortex 

Pir  piriform cortex 

PK  Purkinje cell layer 

Pn  pontine nuclei 

Rt  reticular thalamic nucleus 

SDS  sodium dodecyl sulfate 

SNC  substantia nigra, compact part 

SNR  substantia nigra, reticular part 

SO  supraoptic nucleus 

ST  serotonin transporter 

Ts65Dn segmental tryisomy 16, Down syndrome model 

Tu  olfactory tubercle 

VDB  nucleus of the vertical limb of the diagonal band 

vGluT  vesicular glutamate transporter 

VMH  ventromedial hypothalamic nucleus 

VS  ventral septal nucleus 

wv  weaver mouse 

ZI  zona incerta 
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TABLES 
 

Table 1.- Estimated densities of immunoreactive cells and of mRNAs encoding GIRK 

subunits and 5-HT1A receptor in different regions of the rat brain.  

The relative abundance of immunostained cell bodies is indicated as: “++++” very 

abundant (more than 2500 labeled elements/mm2); “+++” abundant (1500-2500 

labeled elements/mm2); “++” moderate expression (1000-1500 labeled elements/mm2); 

“+” low expression (less than 1000 labeled elements/mm2); “-“ consistent absence of 

detectable staining; “n.d” not determined. 

The relative densities of labeled mRNAs obtained by semiquantification of film 

autoradiograms are expressed as: “+++” very high (relative optical density higher than 

0.5); “++” moderate (relative optical density from 0.35 to 0.5); “+” low (relative optical 

density lower than 0.35); “-“ very low or undetectable; “n.d” not determined. 
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Table 1. Estimated densities of immunoreactive cells and of mRNAs encoding GIRK subunits and 
5-HT1A receptor in different regions of the rat brain. 
 
 

Brain area GIRK1 GIRK2 GIRK3 5HT1A 
Protein mRNA Protein mRNA Protein mRNA Protein mRNA 

Primary cortical areas 
(Motor, Somatosensory, 
Auditory, Visual cortices) 

    

 Layer I - - intense 
neuropil - - - - - 

 Layer II-III +++ ++ abundant 
fibres ++ +++ ++ ++ - 

     Layer IV +++ +++ + ++ ++ +++ ++ - 
     Layer V +++ ++ +++ ++ ++ ++ +++ + 
     Layer VI +++ ++ +++ ++ ++ ++ +++ + 
Prelimbic, Infralimbic, 
anterior Cingulate, Insular 
and Orbital Cortices, and 
Parietal and Temporal 
association cortical areas 

        

 Layer I - - intense 
neuropil - - - - - 

 Layers II-VI ++ ++ abundant 
fibres ++ ++ ++ ++ - 

Piriform cortex ++++ +++ ++++ +++ +++ ++ ++ + 
Entorhinal and 
Retrosplenial Cortices         

 Layer II ++ +++ abundant 
fibres  ++ ++ ++/+++ ++ ++ 

 Inner layers ++ +/++ abundant 
fibres ++ ++ +/++ ++ + 

Hippocampus and related 
areas  intense 

neuropil    

 Dentate gyrus ++++ +++ ++++ +++ ++++ ++ ++++ +++ 
 Ammon´s horn     
  CA1  +++ +++ +++ +++ +++ ++ ++ ++ 
  CA2  +++ +++ +++ +++ +++ ++ ++ ++ 
  CA3  +++ +++ +++ +++ +++ ++ +++ ++ 

Subiculum and 
presubiculum +++ +++ ++ ++ ++ ++   

 Taenia tecta +++ n.d +++ n.d ++ n.d + n.d 
Septum and Diagonal 
Band     

 Ventral septal nucleus +++ + abundant  
fibres ++ abundant 

fibres. + n.d ++ 

 Medial septal nucleus +++ + abundant  
fibres ++ abundant 

fibres  + + ++ 

 Dorsal septal nucleus ++ + abundant  
fibres ++ abundant 

fibres + n.d ++ 

 Ventral limb of the 
diagonal band ++ + +++ ++ +++ + + - 

Basal Ganglia         
 Caudate-putamen +++ + - + ++ + + - 
 Globus pallidus + - + - - - - - 
Amygdala ++ + - ++ +++ + ++ - 

Epithalamus   abundant  
fibres 

 
   

 Lateral habenula ++++ + + ++ ++ + + - 
 Medial habenula ++++ ++ +++ +++ +++ + ++++ - 



Thalamus  
 Anterodorsal nucleus +++ ++ +++ +++ ++ ++ + - 
 Reticular nucleus +++ ++ ++ ++ ++ ++ + - 
 Centromedial nucleus +++ ++ ++ ++ ++ ++ + - 
 Laterodorsal nucleus, 

dorsomedial part +++ ++ +++ +++ ++ ++ + - 

 Laterodorsal nucleus, 
ventrolateral part +++ ++ ++ ++ ++ ++ + - 

Hypothalamus  
 Dorsomedial nucleus +++ + + ++ +++ + + + 
 Ventromedial nucleus +++ + + +++ +++ + + ++ 
 Arcuate nucleus ++++ - +++ +++ n.d + +++ - 
 Paraventricular nucleus  ++++ + +++ ++ +++ + ++++ - 
 Supraoptic nucleus ++++ - +++ +++ +++ - ++++ - 
Brainstem  
 Red nucleus + n.d + n.d + n.d + - 

 Ventral tegmental area ++ - 
+ 

abundant 
fibres 

+++ abundant 
fibres - n.d - 

 Substantia nigra  abundant 
fibres  abundant 

fibres   

  Compact part ++ - +++ +++ + - + - 
  Reticular part + - - +++ - - - - 
 Dorsal raphe nucleus +++ + + ++ ++ + +++ +++ 
 Pontine nuclei +++ ++ +++ ++ ++ + ++ + 
 Locus coeruleus n.d + n.d ++ n.d + n.d ++ 
Cerebellum  
 Granule cell layer  +++ +++ +++ +++ +++ +++ - - 
 
The relative abundance of immunostained cell bodies is indicated as: “++++” very abundant (more 
than 2500 labeled elements/mm2); “+++” abundant (1500-2500 labeled elements/mm2); “++” 
moderate expression (1000-1500 labeled elements/mm2); “+” low expression (less than 1000 
labeled elements/mm2); “-“ consistent absence of detectable staining; “n.d” not determined. 
The relative densities of labeled mRNAs obtained by semiquantification of film autoradiograms are 
expressed as: “+++” very high (relative optical density higher than 0.5); “++” moderate (relative 
optical density from 0.35 to 0.5); “+” low (relative optical density lower than 0.35); “-“ very low or 
undetectable; “n.d” not determined. 
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