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MÓNICA BALSERA,*,{ JÜRGEN SOLL
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ABSTRACT

Chloroplasts as well as mitochondria are surrounded by two envelope membranes
that contain protein machineries to ensure well-organized communication and sub-
strate distribution between the organelle and the rest of the cell. Protein import into
organelles must be tightly coordinated with the internal protein synthesis machinery
to ensure assembly of functional complexes of dual genetic origin. Import must also
be coupled to the cellular metabolic state to guarantee requirements of the organelle
in response to developmental changes and environmental conditions.

Several recently published findings point to a role for redox in regulating chloro-
plast protein import: light and cysteine-modifying reagents affect import, certain
subunits of the protein import machinery contain redox-sensing components, and
others are potential thioredoxin targets. Herein we review the recent structural,
computational, genetic, and biochemical studies that have begun to identify key
characteristics and properties underlying protein import in chloroplasts. The pre-
dicted topology of some components is discussed, pointing out conserved cysteines in
the protein families that may play a role in linking redox to oxidative stress and
changes in the metabolic state of chloroplasts.

I. INTRODUCTION

Chloroplasts, photosynthetic organelles in green plant cells, have developed

different machineries during evolution to ensure a specific and efficient

transport network for proteins that, while synthesized in the cytosol, exert

their function within the plastid (Balsera et al., 2009b; Cline and Dabney-

Smith, 2008; Inaba and Schnell, 2008; Jarvis, 2008). Biogenesis of most

chloroplast proteins implies, therefore, translocation through two lipid mem-

branes (the outer and the inner envelope membranes) until they reach even-

tually the stroma of chloroplasts. In addition, some proteins are further
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transported from the stroma to thylakoids, with a final destination to either

the thylakoidal membrane or lumen. Hence, these proteins have to face the

insertion or complete translocation through a third lipid bilayer membrane.

The chloroplast proteome is, however, composed not only of nuclear-

encoded proteins, but also a number of subunits that are encoded in the

chloroplast genome (cpDNA), reminiscent of the ancient cyanobacterial

ancestors according to the endosymbiotic theory (Gould et al., 2008; Gray,

1992). Some essential multimeric protein complexes in chloroplasts are com-

posed of proteins of dual genetic origin, and their assembly into functional

units obviously depends on the availability of all subunits. For instance,

photosystem II (PSII) in plant chloroplasts is made up of more than 25

extrinsic and intrinsic different subunits of dual genetic origin (Barber,

2006). Three of these subunits (OE33, OE23, and OE17) function coordi-

nately at the oxygen-evolving complex. They are extrinsically associated with

PSII in the interior lumen, yet synthesized in the cytosol of the plant cell. The

three subunits use the general import pathway at the envelope level, involving

the TOC and the TIC complexes (Balsera et al., 2009b; Inaba and Schnell,

2008; Jarvis, 2008). At least two different protein translocation machineries

participate in their transport into thylakoids: cpTat (twin-arginine translo-

cation complex, with prefix ‘‘cp’’ indicating pathway in chloroplasts) for the

translocation of folded OE23 and OE17 (Robinson and Bolhuis, 2004), and

cpSec (secretory pathway in chloroplast) for the translocation of unfolded

OE33 (Schuenemann et al., 1999b). A third translocation machinery in

thylakoids, Alb3/cpSRP (single recognition particle), assures correct inser-

tion and folding of the light-harvesting complex within the thylakoid mem-

brane posttranslationally (Schuenemann et al., 1998). On the other hand,

insertion of the chloroplast-encoded reaction center protein PsbA (or D1) in

thylakoids and its assembly with other PSII subunits occurs cotranslationally

in an Alb3/SRP-dependent pathway in cooperation with cpSec, following a

mechanism similar to that mediating the transport of proteins to the bacterial

plasma membrane (Luirink et al., 2001; Zhang et al., 2001). Membrane

insertion of the thylakoidal proteins cytochrome f and PsaF is, however,

independent of Alb3 and SRP and seems to require only cpSec (Karnauchov

et al., 1994; Nohara et al., 1996). Finally, small intrinsic subunits like PsbW

and PsbX are spontaneously inserted into the thylakoid (Tissier et al., 2002).

Coordination and regulation of protein import is, therefore, central to

chloroplast biogenesis as both developmental changes and environmental

signals are believed to influence the capability for transport of proteins into

chloroplasts as well as their internal routing within the plastid. In this

respect, organelles have developed efficient means of communication with

other parts of the plant cell (Woodson and Chory, 2008). Present knowledge
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indicates that chloroplast redox signals influence not only translation and

translocation processes outside the chloroplast via retrograde signaling, but

also the import of nuclear-encoded proteins. Light, temperature, and Cys-

modifying reagents affect import (Bartsch et al., 2008; Dutta et al., 2009;

Friedman and Keegstra, 1989; Hirohashi et al., 2001; Pilon et al., 1992; Row

and Gray, 2001; Seedorf and Soll, 1995; Stengel et al., 2009). The transloca-

tion machinery at the inner envelope membrane contains putative redox

sensor components (Caliebe et al., 1997; Hormann et al., 2004; Kuchler

et al., 2002), and several members of the different protein transport com-

plexes are linked to thioredoxin (Trx) (Balsera et al., 2009a; Bartsch et al.,

2008; Mata-Cabana et al., 2007)—findings that strongly suggest a role for

redox in regulating and coordinating protein import with the rest of the

plant cell.

II. PATHWAYS OF PROTEIN IMPORT IN
CHLOROPLASTS

Most proteins targeted to chloroplasts are synthesized as preproteins or

precursor proteins with a presequence (or transit peptide) at the N-terminus

(Dobberstein et al., 1977). The transit peptide is necessary for proper locali-

zation at the chloroplast surface (Bruce, 2000). Soluble proteins that are

targeted to the thylakoid lumen contain a removable bipartite transit pep-

tide, with the most N-proximal part analogous to the transit peptide of

stromal proteins and the C-proximal counterpart specific for thylakoid

transfer (Smeekens et al., 1986). Thylakoid membrane proteins have a transit

peptide for stromal targeting and contain internal motifs for insertion into

the thylakoids. Preproteins are typically translocated in an unfolded state

and after (or during) translocation, the transit peptide is removed by a

specific protease. The mature protein is then folded in a functional competent

conformation and/or targeted to the proper chloroplast subcompartment

(Smeekens et al., 1990).

An interesting question deals with the location of chloroplast protein

synthesis in the cytosol and how preproteins are targeted or delivered to

the outer envelope membrane surface of chloroplasts. Different experiments,

including electron microscopy studies, have demonstrated that the process of

protein import into chloroplasts is posttranslational (Carde et al., 1982;

Chua and Schmidt, 1979) and that a cytosolic guidance complex, formed

either by chaperones (for proteins with a transit peptide) or the ankyrin

repeat containing protein AKR2 (for certain outer membrane proteins),
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accompanies the precursor protein to the chloroplast surface (Bae et al.,

2008; May and Soll, 2000; Qbadou et al., 2006).

A. PROTEINS DESTINED TO THE STROMA

A general import pathway has been described for precursor proteins that

contain a cleavable transit peptide and either reside in the stroma or have a

stromal import intermediate.

The coordinate activities of the multimeric TOC and TIC complexes of the

outer and the inner envelope membranes, respectively, facilitate the translo-

cation of these substrates through these barriers (Agne and Kessler, 2009;

Benz et al., 2009) (Fig. 1A). Receptors at the outer envelope specifically

recognize the chloroplast transit peptide and mediate precursor transfer to

the pore and translocation at expense of GTP and ATP (Keegstra et al., 1989;

Olsen and Keegstra, 1992). Protein components in the intermembrane space

assure the formation of supercomplexes between both translocases and the

correct transfer of the precursor from TOC to TIC. Further transport across
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the inner envelope requires ATP for import motor at the trans side (Jackson-

Constan et al., 2001) until the preprotein finally reaches the stroma and the

mature protein is folded and properly distributed.

B. PROTEINS DESTINED TO THE THYLAKOID MEMBRANE OR LUMEN

Following translocation to the stroma by the general import pathway, four

different pathways mediate the insertion/translocation of proteins destined

to the thylakoids and internal lumen compartment, three of which are

dependent on proteinaceous machineries at the membrane, namely Alb3,

cpSec, and cpTat. A fourth group, that includes certain small membrane

proteins, are believed to be inserted within the thylakoids spontaneously

(Aldridge et al., 2009; Mori and Cline, 2001; Schunemann, 2004, 2007;

Tissier et al., 2002) (Fig. 1B).

Pathways that mediate thylakoidal protein biogenesis involve either the

Alb3 insertase, or the cpSec translocase, or both. Alb3, a homolog of the

bacterial YidC and mitochondrial Oxa1 membrane insertases, functions

together with the cpSRP system in the posttranslational targeting and inser-

tion of the light-harvesting chlorophyll-binding proteins (LHCPs) into the

thylakoids (Luirink et al., 2001; Sundberg et al., 1997). The cpSRP/Alb3 and

cpSec systems also cooperate in the cotranslational integration of a number

of chloroplast-encoded subunits (Nilsson and van Wijk, 2002; Nilsson et al.,

1999; Zhang et al., 2001). In other situations, the cpSec system can function

independent of Alb3/cpSRP posttranslationally for the insertion of nuclear-

and chloroplast-encoded thylakoidal proteins (Karnauchov et al., 1994;

Mori and Cline, 2001; Nohara et al., 1996; Schuenemann et al., 1999a).

The transport of soluble proteins into the lumen is mediated either by

cpTat or cpSec pathways, each specialized for a subset of substrates (Braun

and Theg, 2008; Braun et al., 2007; Cline et al., 1992; Mori and Cline, 2001;

Schuenemann et al., 1999a). Whereas the former transports prefolded pro-

teins, the latter translocates unfolded substrates in an ATP-dependent

manner.

C. PROTEINS DESTINED TO THE INTERMEMBRANE SPACE

Information on the biogenesis of proteins in the intermembrane space be-

tween the two envelopes is beginning to emerge. Two nuclear-encoded pro-

tein residents of the space, Tic22 and monogalactosyldiacylglycerol synthase

isoform 1 (MGD1), have been studied (Kouranov et al., 1999; Vojta et al.,

2007a). Whereas both seem to enter via the TOC complex (an observation

still controversial for Tic22), it has been proposed that MGD1 reaches the
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stroma to the point at which its transit peptide is cleaved by the stromal

processing peptidase and then retracts from TIC to the intermembrane space

(Vojta et al., 2007a). By contrast, Tic22 likely does not cross the inner

envelope at any point of translocation.

D. PROTEINS DESTINED TO THE INNER ENVELOPE MEMBRANE

Two different insertion pathways have been described for proteins residing in

the inner envelope membrane (Brink et al., 1995; Firlej-Kwoka et al., 2008)

(Fig. 1A). The ‘‘stop-transfer’’ pathway is mediated by builtin hydrophobic

signals that arrest them at the TIC level in the membrane and release them

laterally into the lipid bilayer (Brink et al., 1995; Firlej-Kwoka et al., 2008).

The ‘‘conservative sorting’’ pathway involves a soluble stromal intermediate

that is retargeted to the envelope by an unknown mechanism (Li and Schnell,

2006; Lubeck et al., 1996; Tripp et al., 2007; Vojta et al., 2007b).

E. DEVIATIONS FROM THE GENERAL TOC/TIC IMPORT PATHWAY

Proteomic studies have revealed many chloroplast proteins that are appar-

ently transported without a canonical cleavage transit peptide (Kleffmann

et al., 2004). In these cases, the targeting information is contained in the

mature protein sequence. Knowledge of the chloroplast import mechanism

of these proteins is scanty, but novel pathways are being proposed. The

import properties of two of these proteins, Tic32 and cQORH, that localize

in the inner envelope membrane have been analyzed and, although energy in

the form of ATP is required for import, no TOC/TIC components were

found to be involved in their import (Miras et al., 2002; Nada and Soll, 2004).

Distinct membrane insertion pathways are active for proteins residing at

the outer envelope chloroplast membrane (Hofmann and Theg, 2005a;

Inoue, 2007). The topological orientation for a-helical proteins anchored in

the membrane by an N-terminal hydrophobic tail, represented by OEP7, is

determined by the charged distribution flanking the transmembrane domain

(Lee et al., 2001; Salomon et al., 1990; Schleiff et al., 2001). These proteins

might make use of the TOC channel for integration, without the need for the

receptor components (Tsai et al., 1999; Tu et al., 2004). However, the

insertion of proteins with an Nout–Cin topology, as Toc34, likely does not

depend on protein machinery, but rather on the lipid composition of the

membrane (Qbadou et al., 2003). A mechanism for spontaneous insertion

into the membrane is proposed for certain b-barrel outer membrane proteins,

like OEP21 and OEP24, because neither proteinaceous machinery nor an

obvious energy source seems to be required for their integration (Bolter et al.,
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1999; Pohlmeyer et al., 1998). The b-barrel protein Toc75 is unique among

outer envelope proteins: it contains a cleavable bipartite transit peptide

necessary for targeting to the outer envelope as well as for transport via an

intricate transport pathway that likely involves stromal components (Tranel

and Keegstra, 1996).

Another group of chloroplast proteins with secretory-pathway-targeting

signal peptides has been identified and its relevance to their transport has

been experimentally verified for a number of representatives (Chen et al.,

2004; Nanjo et al., 2006; Villarejo et al., 2005). How these proteins cross the

envelope membranes and whether their transport involves vesicle fusion and

the participation of TOC/TIC components is currently under investigation.

III. MOLECULAR MACHINERIES INVOLVED IN
PROTEIN TRANSLOCATION THROUGH THE

CHLOROPLAST ENVELOPE MEMBRANES: THE
GENERAL IMPORT PATHWAY

Two multimeric protein complexes facilitate the translocation of most nucle-

ar-encoded proteins into or across the two envelope membranes—the so-

called TOC and TIC complexes (Fig. 1A). The subunits that comprise these

complexes are designated by the molecular weight of the first subunit

identified, usually in pea where much of the biochemical characterization

has been done (Schnell et al., 1997).

Protein import into chloroplasts has been divided into three distinct stages

based on energy requirements (Perry and Keegstra, 1994): (a) Energy-inde-

pendent stage during which proteins reversibly bind to the outer chloroplast

surface (Kouranov and Schnell, 1997); (b) Early import intermediate stage,

an irreversible step that corresponds to the stable binding/insertion and

requires �20 mM ATP in the presence of GTP (Inoue and Akita, 2008;

Kessler et al., 1994); and (c) Translocation and processing, that requires

�100 mM ATP (Pain and Blobel, 1987; Theg et al., 1989). Upon emerging

from the TIC complex, proteolytic cleavage of the transit peptide results in

the formation of the mature, functional protein.

Toc75, the protein-conducting channel that is evolutionarily related to the

family of Omp85 transporters in bacteria, is the central component of the

TOC complex (Bolter et al., 1998; Hinnah et al., 1997, 2002; Schnell et al.,

1994). Toc75 associates with Toc159 and Toc34, two GTPases that act as

import receptors at the outer membrane surface (Kessler et al., 1994). These

receptors receive the precursors from the cytosolic chaperones, preferentially

the pair composed of Hsp70/14-3-3 that recognizes specific phosphorylated
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residues in the transit peptide of certain substrates (May and Soll, 2000).

Intrinsic GTPase activity gives the receptors the capability to function not

only in preprotein recognition, but also as molecular switches and/or molec-

ular motors in transport itself (Kessler and Schnell, 2002; Schleiff et al.,

2003). There is evidence that the GTPase cycle of these receptors is modu-

lated by precursor binding (Reddick et al., 2007). The mechanistic model of

protein import holds that Toc GTPases (in their GTP-bound state) have high

affinity for precursor proteins. GTP hydrolysis (and/or nucleotide exchange)

is stimulated upon precursor binding (Becker et al., 2004b; Jelic et al., 2002),

releasing the protein to the Toc75 channel due to a loss of affinity of the

GDP-loaded form (Jelic et al., 2002; Schleiff et al., 2002). The GTPase

receptors are also susceptible to modification by phosphorylation (Jelic

et al., 2003; Oreb et al., 2008; Sveshnikova et al., 2000b). Functional analyses

have demonstrated, moreover, that phosphorylation and GTPase activity are

mutually exclusive, prompting the idea that cycles of phosphorylation/de-

phosphorylation act as additional regulatory points in protein import. The

functional significance of phosphorylation in vivo is, however, unknown

(Aronsson et al., 2006).

In addition to the GTPase receptors, the TOC complex contains a third

receptor subunit, termed Toc64, composed of two distinct functional

domains (Fig. 1A). Toc64 is a receptor for the cytosolic Hsp90 chaperone

that delivers a subset of precursors to Toc34 (Qbadou et al., 2006, 2007;

Sohrt and Soll, 2000). According to in vivo studies, its presence may not be

strictly required for import, but is essential for highly efficient translocation

(Aronsson et al., 2007; Hofmann and Theg, 2005b). On the other hand,

Toc64 forms a ternary complex of unknown properties with Toc12 (Becker

et al., 2004a) and a chaperone of the Hsp70 family in the intermembrane

space (imsHsp70) (Ratnayake et al., 2008). Moreover, Toc64 also recruits

Tic22, the only soluble subunit of the TIC complex in the intermembrane

space (Qbadou et al., 2007). It has been demonstrated that these four

subunits (Hsp90, Toc64, imsHsp70, Tic22) form a complex in an ATP-

dependent manner, leading to the proposal of a putative role of imsHsp70

in pulling the precursor from the TOC complex in cooperation with the

Toc64/Toc12 pair. An association with Tic22 would assure the continuity

of import to the Tic110 inner envelope translocon channel (Balsera et al.,

2009a; Gross and Bhattacharya, 2009; Heins et al., 2002; Kessler and Blobel,

1996; Kouranov et al., 1998). During TIC translocation, a putative import

motor formed by stromal Hsp93 (or ClpC) chaperone develops in coordina-

tion with the cochaperone Tic40 (Chou et al., 2006; Kovacheva et al., 2005,

2007; Nielsen et al., 1997; Stahl et al., 1999). In the current mechanistic

model, precursor interaction with Tic110 promotes the association of the
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Tic40–Hsp93 complex with Tic110 that then supports transfer of the transit

peptide to Hsp93 and stimulation of its ATPase activity, followed by delivery

of the preprotein to the stroma.

Three redox sensor proteins, Tic62, Tic32, and Tic55, appear to regulate

import according to the chloroplast metabolic redox state. Tic62 and Tic32

are classified as short-chain dehydrogenases (SDR)/reductases that associate

with TIC in a regulatory manner dependent on NADPH, ferredoxin-NADP-

oxidoreductase (FNR), and Ca2þ (Chigri et al., 2006; Hormann et al., 2004;

Kuchler et al., 2002; Stengel et al., 2008). Tic55 contains a Rieske iron–sulfur

center and a mononuclear iron-binding site (Caliebe et al., 1997). It remains

to be seen how these TIC-associated redox-active proteins function during

import. The identification of their substrates and response to different cellu-

lar conditions also awaits further work.

IV. STRUCTURE–FUNCTION RELATIONS OF TOC
AND TIC COMPONENTS: POTENTIAL FOR REDOX

REGULATION

A. THE PORE-FORMING PROTEIN Toc75: POTRA MOTIFS

AND CHANNEL PROPERTIES

Toc75, the protein-import channel in the TOC complex, is known as Toc75-

III in Arabidopsis thaliana, referring to the chromosome where the protein is

encoded (At3g46740). Two structurally and functionally different domains

are recognized in the Toc75 protein sequence (Fig. 2A). The N-terminal

soluble component, which functions as a receptor-binding site, harbors

polypeptide-transport-associated (POTRA) domains involved in protein–

protein interaction (Sanchez-Pulido et al., 2003). The C-terminal membrane

domain consists of antiparallel b-strands that form a b-barrel hydrophilic
channel within the membrane through which precursor proteins are trans-

ported (Reddick et al., 2008; Sveshnikova et al., 2000a). Reconstitution

experiments with recombinant Toc75 in planar lipid bilayer membranes

allowed in vitro characterization of the channel (Hinnah et al., 2002) and

demonstrated that the N-terminal region has the capability to modulate

channel properties (Bredemeier et al., 2007; Ertel et al., 2005).

Recently, high-resolution structures of the N-terminal POTRA domain

and the C-terminal b-barrel pore for Toc75 bacterial homologs have been

obtained by X-ray crystallography (Clantin et al., 2007; Gatzeva-Topalova

et al., 2008; Kim et al., 2007), providing a general insight into the structural

rearrangement and mechanism of transport. These studies, together with
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solution structures of the POTRA domain determined by small X-ray scat-

tering and NMR (Knowles et al., 2008), demonstrated the conformational

flexibility of the POTRA domains that is essential for substrate binding.

Functional analyses demonstrated that the POTRA domains differ in func-

tional importance, consistent with the variation in the number of POTRA

domains among species (Kim et al., 2007). Toc75-III contains three POTRA

domains (Fig. 2A), each with a b1–a1–a2–b2–b3 topology (Kim et al., 2007).

The structure of the membrane-embedded C-terminal b-barrel domain

revealed the presence of 16 b-strand modules in FhaC from Bordetella

pertussi, a bacterial Toc75 homolog (Clantin et al., 2007). Based on this

structure, homology models have been built for POTRA2 and 3 as well as

the b-barrel for pea Toc75 (Reddick et al., 2008). The crystallographic

structure also contributed to understanding the so-called motif 3, a highly

conserved region within the b-barrel domain identified previously in a pro-

tein sequence analysis of the Toc75 protein family (Moslavac et al., 2005).

This motif is made up of a long loop, termed L6, and the first half of strand

B12 (Clantin et al., 2007). In the conformational state with which the struc-

ture was solved, motif 3 is inside the transmembrane b-barrel (Clantin et al.,

2007). The authors proposed that motif 3 is an active element in transport

and that conformational changes would expel L6 from the inside, opening

the channel for translocation. Interestingly, a number of conserved Cys

residues are uniquely found in the second POTRA domain and at the

beginning of motif 3 in the plant sequences (Fig. 2A). The functional or

structural importance of these residues is unknown. However, according to

the homology model, they are not sufficiently close to participate in an

intramolecular interaction, but could interact with other TOC subunits in

regulating protein import.

B. THE Toc159 AND Toc34 GTPase RECEPTORS: A MULTIGENE FAMILY

Toc159 and Toc34 operate as receptors in the outer membrane and provide

the import process with specificity and efficiency (Agne and Kessler, 2009;

Kessler and Schnell, 2002). Sequence analysis revealed that the TOC

GTPases, Toc159 and Toc34, are evolutionarily related and similarly

organized (Hiltbrunner et al., 2001a; Hofmann and Theg, 2003; Reumann

et al., 2005). Toc34 is anchored to the membrane by a short transmembrane

helix at the C-terminal tail and exposes the GTP-binding domain (G domain)

to the cytosol (Fig. 2B). Toc159 is characterized by a large N-terminal acidic

domain (A domain), followed by the Toc34-related GTP-binding domain

(G domain) and a membrane-protected C-terminal domain (M domain)

(Fig. 2B), exposing the A and G domains to the cytosol (Becker et al.,
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2004b; Chen et al., 2000; Hiltbrunner et al., 2001a; Hirsch et al., 1994; Kessler

et al., 1994; Schnell et al., 1994; Seedorf et al., 1995). Studies on truncated

versions of Toc159 have demonstrated that the A domain is dispensable for

activity, and its role in protein import remains evasive (Agne et al., 2009;

Chen et al., 2000). On the other hand, even though it has been shown that

precursor proteins interact directly with theM domain of Toc159 (Kouranov

and Schnell, 1997), its function, structure, and membrane topology

remain unknown. Secondary structure predictions indicate that the M do-

main is composed mainly of b-sheets (data not shown), while topological

prediction programs (TBBpred and TMBpro (Natt et al., 2004; Randall

et al., 2008)) indicate the M-domain is likely forming a transmembrane

b-barrel module.

High-resolution structures of the soluble G-domain of pea andArabidopsis

Toc34 in the GDP- or GTP-bound form have contributed useful information

not only about the functional mechanism and recognition of peptide-binding

pocket, but also about the quaternary structure and dimerization mode of

the protein (Koenig et al., 2008a; Sun et al., 2002) (Fig. 2C). Independent

experiments have demonstrated the ability of Toc34 and Toc159 to undergo

homo- and heterodimerization via their GTPase domains (Bauer et al., 2002;

Becker et al., 2004b; Hiltbrunner et al., 2001a; Koenig et al., 2008b; Smith

et al., 2002; Weibel et al., 2003; Yeh et al., 2007). Recently, an interaction

between Toc34 and Toc159 demonstrated in vivo in Arabidopsis (Rahim

et al., 2009) prompted the proposal that interchangeable homodimeric and

heterodimeric states may serve as a regulatory mechanism. The two subunits

of the dimer may function as GTPase-activating proteins that reciprocally

stimulate or coordinate the hydrolysis of GTP. Apropos this point, the

transit peptide likely plays a prominent role in stimulating the GTPase

activity of the receptors and influencing their interaction (Becker et al.,

2004b).

Even though extensive work has been done on TOCGTPase receptors, the

actual sequence of events in preprotein recognition and transfer of the

precursor to the channel is still under debate. Two models are being consid-

ered. Both agree with GTP-mediated regulation of the Toc34/Toc159 recep-

tors and the function of the central channel Toc75, but they differ in the

mode of preprotein recognition. The first model (targeting model) favors

Toc159 as the initial preprotein receptor (Bauer et al., 2002; Hiltbrunner

et al., 2001b; Smith et al., 2004). Binding of the preprotein to Toc159

promotes oligomerization of both GTPases, Toc34 and Toc159, in their

GTP-bound state. The interaction with Toc75 would stimulate their GTPase

activity, resulting in transfer of the cargo protein to the channel. A second

model (motor model) proposes Toc34 to be the initial preprotein receptor
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and Toc159 to function as a GTP-driven motor that moves preproteins

through the channel (Becker et al., 2004b; Schleiff et al., 2003; Sveshnikova

et al., 2000b). The mechanistic models proposed up to date undoubtedly need

further improvement. Structural analysis of the functional complex at high

resolution is essential to understanding the mechanism of preprotein recog-

nition and translocation involving the GTPases receptors and central

channel.

Plant Toc159 and Toc34 are encoded by a multigene family (Bauer et al.,

2000; Gutensohn et al., 2000; Hiltbrunner et al., 2001a; Jackson-Constan and

Keegstra, 2001; Jarvis et al., 1998; Kubis et al., 2004). Only one protein is

known for each Toc159 and Toc34 component in pea (psToc159 and

psToc34, respectively), where most of the biochemical studies have been

performed. However, other isoforms should not be ignored until the genome

sequence is completed.

Several studies have demonstrated functional specialization among the

Toc159 and Toc34 isoforms. Further, genetic analysis of knockout mutants

of Toc159 homologs in Arabidopsis (atToc159, atToc132, atToc120, and

atToc90) indicated functional redundancy between Toc132 and Toc120 and

minimal functional overlap among Toc132/Toc120, Toc159, and Toc90

(Bauer et al., 2000; Ivanova et al., 2004; Kubis et al., 2004). Characterization

of the expression and accumulation of photosynthetic proteins inArabidopsis

mutants led to the conclusion that Toc159 is a receptor with specificity for

highly abundant, photosynthetic proteins and that Toc132 and Toc120 are

preferentially involved in the import of nonphotosynthetic proteins, especial-

ly in nongreen tissues (Bauer et al., 2000; Kubis et al., 2004). Toc90, the

shortest member of the Toc159 family that lacks a yet uncharacterized A

domain, may support the accumulation of photosynthetic proteins in plastids

jointly with Toc159 (Hiltbrunner et al., 2004). Further evidence for the

existence of an import pathway with preference for photosynthetic precur-

sors was gained by detailed studies on Toc34 mutant plants. In Arabidopsis,

the Toc34 family is composed of atToc34 and atToc33, isoforms with differ-

ent biochemical properties and tissue distribution (Jarvis et al., 1998; Jelic

et al., 2003; Kubis et al., 2003). atToc33 is mainly expressed in photosynthetic

tissues and can be specifically phosphorylated, whereas atToc34 is the domi-

nant isoform in roots and is not modified by phosphorylation. These differ-

ences are consistent with different modes of regulation—a proposal

supported by genetic studies with Arabidopsis revealing that these two iso-

forms may function as receptors for different subsets of substrates. Thus, the

toc33 knockout mutant is deficient in expression, import, and accumulation

of photosynthetic proteins. Specific and preferential association between the

different Toc34 and Toc159 isoforms meets functional needs: atToc34 with
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atToc132 and atToc120, and atToc159 with atToc33 (Bauer et al., 2000;

Gutensohn et al., 2000; Jarvis et al., 1998; Jelic et al., 2003).

C. ACCESSORY TOC COMPONENTS: Toc64, Toc12, AND ImHsp70

A third preprotein receptor, termed Toc64, has been implicated in the protein

import process in chloroplasts (Qbadou et al., 2007; Sohrt and Soll, 2000).

Toc64 has been described as having bimodular architecture and dual func-

tionality, acting at both sides of the outer envelope membrane (Fig. 3A).

Topological studies indicate that Toc64 is anchored to the membrane by

three transmembrane helices in an Nin–Cout topology (Lee et al., 2004b;

Qbadou et al., 2007). The C-terminal domain, composed of three tetratrico-

peptide repeats (TPR), is exposed to the cytosol and is involved in the

recognition and interaction with cytosolic Hsp90 chaperones preloaded

with precursor proteins (Mirus et al., 2009; Qbadou et al., 2006, 2007). The

N-terminal amidase-like domain, oriented to the intermembrane space,

seems to be involved in recruiting chaperones via interaction with a cocha-

perone, Toc12, and likely participates in coordination events at the inter-

membrane space side after preprotein translocation through Toc75 (Qbadou

et al., 2007). Functional analyses demonstrated that Toc64 lacks the capabil-

ity to act as an amidase. Moreover, it seems like its amidase conformation

has been dramatically disrupted by hydrophobic helices traversing the outer

envelope membrane (Qbadou et al., 2007; Sohrt and Soll, 2000) (Fig. 3A).

Although perhaps essential for high-efficiency protein import, genetic studies

have assigned a secondary role to Toc64 because it may not be required

protein import per se (Aronsson et al., 2007; Hofmann and Theg, 2005b).

Furthermore, a detailed analysis of the Arabidopsis genome indicates the

presence of a second Toc64 homolog in chloroplasts (J. Soll, unpublished

data). Alternatively, it might have a very specific function for the import of

just a subset of substrates, as demonstrated for its homolog in mitochondria

(Lister et al., 2007).

As the most recently described member of the TOC complex, little is

known about Toc12 (Becker et al., 2004a). It is anchored to the outer

envelope membrane by a short motif at its N-terminus. The rest of the

protein is exposed to the intermembrane space and shows sequence similarity

to J-domains (Fig. 3B). In fact, biochemical studies have identified an inter-

action with Hsp70-like proteins in the intermembrane space (Becker et al.,

2004a). The exact nature and properties of the imsHsp70 that interacts with

Toc12 in chloroplasts remain to be defined (Becker et al., 2004a; Marshall

et al., 1990; Qbadou et al., 2007; Ratnayake et al., 2008; Schnell et al., 1994;

Waegemann and Soll, 1991).
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A three-dimensional model of pea Toc12 has been built from an NMR

structure and a disulfide bridge involving the Cys of its characteristic

CXGXXC motif has been proposed (Becker et al., 2004a) (Fig. 3B). The

disulfide bridge may be essential for its cochaperone activity because the

mutation of the N-terminal Cys into serine dramatically affects Toc12 func-

tionality in pea (Becker et al., 2004a). Taking into account that reversible

disulfide bridge formation is a common mechanism to alter chloroplast

enzyme activity, the authors proposed that the bridge maybe important for

the regulation of the translocation event. Although there is no direct evidence

for this to date, a potential disulfide bridge constitutes an interesting state-

ment on the basis of redox properties of the chloroplast intermembrane

space. In pea, Toc12 is a protein of 103 amino acids, of which the first 38

residues may function as noncleavage targeting signal to chloroplasts

(as reported in ARAMEMNON database; http://aramemnon.botanik.

uni-koeln.de/) as well as membrane anchor (Becker et al., 2004a). Homologs

of Toc12 are found in Arabidopsis,Zea,Medicago, and Physcomitrella, albeit

longer in sequence (160 residues). A multiple sequence alignment shows that

pea lacks the last 52–54 amino acid residues found in other members of the

family (Fig. 3B). Actually the toc12 gene is composed of three exons, the

third of which corresponds to the missing component in the Toc12 pea

sequence (Fig. 3B). This structure suggests that either pea Toc12 sequence

is incomplete or that the pea protein, indeed, lacks this domain possibly due

to alternative splicing. Interestingly, a highly conserved tryptophan-rich

motif (WxxWxxWxxW) is found in this domain. The functional significance

of the absence of the C-terminal extension in pea Toc12 remains to be

explored. The protein sequence from rice constitutes an exception as the Cys

residues in the CXGXXCmotif are replaced by serine and lacks the conserved

tryptophans (Fig. 3B). Additional studies are necessary to analyze the role of

the C-terminal region absent in pea and not conserved in rice as well as the

significance of the Cys mutation in rice and possibly other cereals.

D. Tic22, A PUTATIVE LINKER IN THE INTERMEMBRANE SPACE

Little is known about the structure and function of Tic22—a soluble protein

in the intermembrane space, peripherally associated with the outer face of the

inner membrane (Fig. 1A) (Kouranov et al., 1998). It has been found closely

associated to Tic20, Tic110, and, as mentioned earlier, in a complex with a

number of TOC components (Becker et al., 2004a; Qbadou et al., 2007).

These findings have led to the proposal that Tic22 may participate as a

molecular linker in the interaction between TOC and TIC during protein

import. Phylogenetic analyses revealed that Tic22 is a protein of
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cyanobacterial origin. Its homolog in Synechocystis (slr0924) has been exper-

imentally located in the thylakoid lumen and, to a minor extent, in the

periplasmic space (Fulda et al., 2002). Tic22 is an essential protein in cyano-

bacteria and, interestingly, its content seems to be regulated by the redox

state of the cell. Two putative roles were ascribed to slr0924 protein in

Synechocystis, one in the transport of protein subunits and the other linked

(directly or indirectly) to electron transfer (Fulda et al., 2002). The relevance

of these ideas awaits further experiments.

Two Tic22 isoforms are recognized in the genome ofArabidopsis (Fig. 4A):

Tic22-IV (At4g33350) has two conserved Cys in two different motifs (Gly-X-

X-Cys-Phe and Cys-Pro) and represents the ortholog of Tic22 in pea. The

other isoform, Tic22-III (At3g23710), has one conserved Cys. Secondary

structure predictions indicate that Tic22 is a mixed a/b protein (Fig. 4A).

According to PHYRE, a protein structure prediction program (Kelley and

Sternberg, 2009), templates for structural modeling with highest likelihood to

be correct (45% estimated precision) are related to a number of proteins that

contain a Trx-like fold and belong to the Trx superfamily. Two groups of

proteins are recognized: one group is constituted of proteins that have

evolved to bind metals to act as chaperones (metal-binding motif: Cys-Pro-

X-X-Cys-Pro; PDB codes: 2cx4, 2ggt, 2b7k); the others are members of the

DsbD-DsbC family (catalytic motif: Cys-X-X-Cys; PDB code: 1eej). The

results from PHYRE are in accord with those obtained by the BIOINFO

server (Ginalski et al., 2003). Although the presence of redox-active Cys

cannot be disregarded as both Tic22 isoforms have conserved Cys, their

function as a Trx is not expected due to the absence of the canonical Trx

catalytic motif, Cys-X-X-Cys. Apropos this point, it is noted that recent

phylogenetic analyses have identified a number of Trx- and glutaredoxin-

related sequences containing a single Cys at the putative active site (Fig. 4A)

and the conserved metal-binding motif is not present. Moreover, due to the

absence of Cys in the cyanobacterial homolog of Tic22, a relation with

bacterial DsbD-DsbC is not appropriate (Fig. 4A). A putative function

could be envisaged as a chaperone that involves a noncovalent interaction

with substrates—like either protein disulfide isomerase-related ERp29 in the

endoplasmic reticulum that contains an inactive Trx fold and assists in the

maturation and transport of many secretory proteins (Barak et al., 2009), or

the Q8ZP25_SALTY and HYAE_ECOLI proteins that interact with the Tat

signal peptide and function as molecular chaperones (Parish et al., 2008).

Structural and functional characterizations of Tic22 would give useful in-

sight into the function of this putative chaperone in the chloroplast inter-

membrane space.
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E. THE PROTEIN-CONDUCTING CHANNEL OF THE INNER

ENVELOPE: Tic110 AND Tic20

Tic110 is an essential and specific protein in chloroplast-containing organ-

isms (Inaba et al., 2005; Schnell et al., 1994; Wu et al., 1994). It is found as a

single copy in all plants, except for Physcomitrella patens in which a second

isoform has been detected by genome sequence analysis (Kalanon and

McFadden, 2008). There is extensive evidence that Tic110 forms the protein

translocation channel at the inner envelope membrane of chloroplasts

(Fig. 1A), although other specialized import pathways appear to be present,

for example, Tic20 (Kouranov et al., 1998).

Tic110 comprises two hydrophobic membrane-spanning a-helices at the

extreme N-terminus, both necessary for anchoring into the inner envelope

(Lubeck et al., 1996). A new topological model of Tic110 incorporates four

additional transmembrane helices, with amphipathic features, within the

region of residues 92–959 in the pea sequence (Balsera et al., 2009a)

(Fig. 4B). This new model for Tic110 reconciles the results of numerous

studies during the past several years. The model contains regions in the

intermembrane space suitable to form supercomplexes with the TOC ma-

chinery and to receive the precursor as well as a large region in the stroma

that could interact with molecular chaperones (Inaba et al., 2003, 2005).

However, other studies suggest that Tic110 forms a large globular domain

on the stromal side, without channel activity, to recruit chaperones (Inaba

et al., 2003; Jackson et al., 1998). Electrophysiological characterization of

reconstituted planar lipid bilayer membranes of native Tic110 as well as

recombinant mutants of the protein lacking the two hydrophobic transmem-

brane helices at the N-terminus favor the former topological model (Balsera

et al., 2009a; Heins et al., 2002) (Fig. 4B). Experiments have shown that

Tic110 has properties of a cation-selective channel that is sensitive to chloro-

plast transit peptides. These studies have assigned a prominent role to the

amphipathic transmembrane helices in the channel structure of Tic110.

Interestingly, Ca2þ seems to act as an effector of gating and selectivity in

the Tic110 channel.

Tic110 is composed mainly of a-helices (Balsera et al., 2009a; Inaba et al.,

2003). Computational analyses have detected the presence of two helical unit

repetitions in the stroma that resemble those of the so-called HEAT motifs

(Andrade et al., 2001; Balsera et al., 2009a). Interestingly, a large number of

the HEAT repeats are involved in cytoplasmic transport, where the two

helical units appear to function as flexible joints that can wrap around target

substrates and act as scaffolding on which other molecular components

assemble (Andrade and Bork, 1995; Andrade et al., 2001). A highly

296 M. BALSERA ET AL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41



Comp. by: pg1356Proof0001092720 Date:10/8/09 Time:08:49:15 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000015377/0000000016/0001092720.3d Proof by: QC by: ProjectA-
cronym:BS:ABR Volume:52010

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

disordered, negatively charged region may be important for protein interac-

tion, likely in the intermembrane space (Balsera et al., 2009a). In addition, a

number of fully conserved Cys are spread over the sequence and, according

to the proposed topological model (Balsera et al., 2009a), they are likely

localized in the stromal region of the protein (Fig. 4B). Biochemical experi-

ments uncovered a redox-active disulfide bridge potentially functional in

regulating Tic110 via stromal Trx. Owing to its presence in the reduced

state in chloroplasts isolated from darkened plants, Tic110 was assigned a

role in allowing the channel to adapt to environmental change (Balsera et al.,

2009a). Thus, when channel activity is disturbed by oxidation, Trx could

restore the system to normal activity. The validity of this interpretation

awaits further experiments.

Tic20 (Kouranov et al., 1998) and Tic21 (Teng et al., 2006) are two other

candidates proposed to constitute translocation channels at the inner enve-

lope membrane of chloroplasts. Participation of Tic20 in the import of

preproteins has been assessed by crosslinking experiments in which the

protein was found to form part of an active import supercomplex in the

chloroplast envelope together with other TOC and TIC components

(Kouranov and Schnell, 1997; Kouranov et al., 1998). Although Tic20

knockout plants are not viable, in vivo analyses have been carried out in

transgenicArabidopsis plants in which levels of expression of the protein were

altered (Chen et al., 2002). It was concluded that, while the import of certain

nuclear-encoded plastid proteins was impaired, others were not affected.

More recently, analyses of a conditional mutant generated in Toxoplasma

gondii showed that Tic20 is essential for protein import albeit likely not as the

general import pore, but as an accessory or regulatory component of the

import complex (van Dooren et al., 2008). Topological studies have not yet

been addressed, but four a-helical transmembrane regions are predicted by

hydrophobicity analyses (Fig. 4C). GFP fusion at the Tic20 C-terminus in

Toxoplasma gondii demonstrated that this region is oriented toward the

stroma, suggesting an Nin–Cin topology (van Dooren et al., 2008).

Databases reveal two isoforms of Tic20 inA. thaliana: Tic20-I (At1g04940)

is the ortholog of psTic20 and Tic20-IV (At4g03320). Two other Arabidopsis

proteins distantly related to Tic20 (At2g47840 and At5g55710) represent the

closest orthologs to cyanobacterial counterparts (Kalanon and McFadden,

2008). A chloroplast location is predicted for all four proteins by the ARA-

MMENON database (http://aramemnon.botanik.uni-koeln.de/). Given that

the function of these isoforms is not known, further characterizations of the

cyanobacterial counterparts may help understanding the role of Tic20 in

plants (Gross and Bhattacharya, 2009). Tic20 may form a channel indepen-

dent of Tic110.
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Analysis of protein sequences of Tic20-I family members reveals a highly

conserved C-terminal CXXCmotif (except inArabidopsiswhere it is replaced

by an SXXC motif) and a highly conserved CXP motif close to a WWW

motif within the first putative transmembrane helix. Assuming four trans-

membrane helices in Tic20 and topology similar to Toxoplasma gondii (van

Dooren et al., 2008), the CXXC motif would face the chloroplast stroma

(Fig. 4C). However, whether these Cys act in a regulatory capacity remains to

be experimentally verified.

The other inner membrane component proposed to function as channel for

protein import, Tic21 (At5g15290), has four predicted transmembrane heli-

cal segments (Teng et al., 2006). However, its affiliation to the TIC complex is

a matter of debate as the protein has been identified as a metal permease

(Duy et al., 2007).

F. ENERGY DRIVING FORCE IN THE TIC COMPLEX: Tic40 AND Hsp93/ClpC

One of the functional aspects of Tic110 is its capability to recruit the stromal

motor complex composed of the membrane-attached Tic40 cochaperone and

the stromal Hsp93 (or ClpC) chaperone at the inner envelope membrane

(Fig. 1A) (Nielsen et al., 1997; Stahl et al., 1999). Tic40 is anchored to the

inner membrane by a single transmembrane helix at its N-terminus, exposing

a large C-terminal domain to the stroma that contains a putative TPR

domain followed by a Sti1 domain that is characteristic of cochaperones

Hsp70-interacting protein (Hip) and Hsp70/Hsp90-organizing protein (Hop)

(Bedard et al., 2007; Chou et al., 2003; Stahl et al., 1999) (Fig. 5A). The TPR

motif is a degenerate 34-amino acid sequence that structurally consists of two

antiparallel a-helices often found in tandem repetitions in a protein sequence.

This motif is found in certain cochaperones, especially for interaction with

Hsp90 (Odunuga et al., 2003). It has been demonstrated that the Tic40 Sti1

domain is functionally equivalent to the Hip/Hop family of cochaperones

(Bedard et al., 2007; Chou et al., 2006). The mode of action currently

envisaged involves the ternary interaction of Tic40 with Hsp93 and Tic110

during a late stage of translocation. A region that includes the putative TPR

domain of Tic40 has been implicated in interaction with Tic110, while the

Sti1 domain seems to stimulate the ATPase activity of the Hsp93 chaperone.

Analyses of mutant plants suggest that Tic40 might not essential for protein

import, but is important for its efficiency (Chou et al., 2003). Refinements of

the current model are awaited with interest (Jarvis, 2008).

An analysis of its amino acid sequence with the SMART search engine

(Letunic et al., 2006) revealed that Tic40 likely consists of two Sti1 modules

(Karpenahalli et al., 2007). Surprisingly, the TPR motifs were not
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recognized. A further search with the TPRpred and REP programs (Andrade

et al., 2000) yielded negative results, suggesting that, if TPR motifs are

present in Tic40, they are largely degenerated. In fact, the protein sequence

region where putative TPR motifs were identified in Tic40 is composed of

strategically situated proline residues that fit better with Sti1 motifs than with

TPR motifs (Fig. 5B). Based on this finding, an alternative module organiza-

tion is proposed here in which two Sti1 motifs are arranged in tandem at the

C-terminus of Tic40 (Fig. 5A). Considering that Sti1 modules are also

composed of a-helices, the secondary structure of Tic40 would fit with the

second alternative model presented here. Structural analyses are, however,

necessary to confirm a given model. Bedard and collaborators pointed out

that the Tic40 family of proteins contains only one conserved Cys within

their Sti1 domain (Bedard et al., 2007). This observation may explain how

Tic40 covalently interacts with Tic110 in the presence of copper chloride

(II)—that is, by forming a crosslink between this Cys and a counterpart in

Tic110 (Stahl et al., 1999). The Tic40 Cys residue is, however, in the region

proposed to interact with Hsp93, not Tic110. This point should be further

studied with other interaction partners under controlled redox conditions.

Hsp93 (or ClpC) belongs to class I of the Hsp100/Clp superfamily—

molecular chaperones that use ATP to promote changes in the folding of

proteins and belong to the functionally heterogeneous AAAþ family of

proteins (ATPases associated with various cellular activities). They can

function as independent molecular chaperones or as regulatory components

of the Clp protease. The Hsp93 population associated with the inner enve-

lope in chloroplasts is recognized as a component of the TIC machinery that

acts as the protein motor in the final stages of import (Akita et al., 1997;

Kovacheva et al., 2005, 2007; Nielsen et al., 1997). At the protein sequence

level, Hsp93 in chloroplasts is very similar to the counterparts in cyanobac-

teria (data not shown), and no obvious motif can be identified at first sight as

a determinant for a specific function in protein import transport. Arabidopsis

has two isoforms of the protein: Hsp93-V or ClpC1 (At5g50920) and Hsp93-

III or ClpC2 (At3g48870) (Constan et al., 2004; Kovacheva et al., 2007).

Dimers of ClpC1, but not ClpC2, were detected in the Arabidopsis stroma by

proteomics (Peltier et al., 2004). On the other hand, in maize mesophyll

chloroplasts, a hexameric ClpC was observed (Majeran et al., 2008) in accord

with the expected functional assembly (Andersson et al., 2006).

Recently, Hsp93 was identified as a potential Trx target in cyanobacteria,

although the physiological significance of this observation is not known

(Mata-Cabana et al., 2007). Moreover, the expression of clpC seems to

respond to redox state in Synechocystis (Hihara et al., 2003). Interestingly,

knockout mutants plants of chloroplast NADPH-Trx reductase (NTRC), a
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protein involved in the response to environmental stress, showed increased

levels of transcripts for Hsp93-V in short-day ntrc rosette leaves (Lepistö

et al., 2009).

The Hsp93 sequence has two ATP-binding domains (NBD1 and NBD2),

each containing two conserved motifs (known as Walker A and Walker B)

that participate in the binding of nucleotide and the Mg2þ cation (Schirmer

et al., 1996). NBD1 and NBD2 are linked by a central spacer that provides

flexibility to the molecule. Further, the so-called arginine finger (R-finger)

senses ATP binding and hydrolysis and transmits conformational changes

essential for Hsp93 activity (Fig. 5C). Cyanobacterial Hsp93 contains a

single conserved Cys, suggesting that a regulatory intermolecular disulfide

bridge links activity to Trx. The conserved Cys residue is located at the

beginning of the Walker A motif in the first nucleotide-binding domain

(Fig. 5C) and thus may have a direct effect on ATPase activity. In plants,

the situation is different: a second conserved Cys is present in the NBD1

domain (Fig. 5C). According to a theoretical structure built by homology

modeling using a high-resolution structure of ClpB as template (PDB code:

1QVR; 49% identity), these two Cys residues (Cys299 and Cys405 in

Hsp93-V from Arabidopsis) are sufficiently close to form an intramolecular

disulfide bridge (Fig. 5D). If so, the disulfide bridge could either be structural

or regulate direct ATPase activity. The applicability of either of these views

awaits future experiments.

G. REGULATORY COMPONENTS OF THE TIC

COMPLEX: Tic55, Tic62, AND Tic32

Three modular proteins, Tic55, Tic62, and Tic32, have been classified as

members of a redox regulatory network at the TIC machinery (Caliebe

et al., 1997; Hormann et al., 2004; Kuchler et al., 2002). Tic55 is a multi-

domain integral membrane protein that consists of: (i) a Rieske domain that

binds a [2Fe-2S] cluster via the motif Cys-X-His-X16-Cys-X2-His; (ii) a

catalytic domain that contains a mononuclear nonheme mononuclear Fe(II)

ion active site, likely coordinated by two histidine residues and one

carboxylate ligand from an aspartate residue, a type of structural motif

known as ‘‘2-His-1-carboxylate facial triad’’; (iii) a hydrophilic CXXC

domain of unknown function; (iv) a C-terminal transmembrane domain

predicted to contain two transmembrane hydrophobic helices, TM (Caliebe

et al., 1997) (Fig. 6A). In vitro protein import experiments in chloroplasts

showed that the translocation of precursor proteins into chloroplasts was

diminished by diethylpyrocarbonate, possibly via modification of the Rieske

iron–sulfur cluster. However, the role for Tic55 in protein import is not
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known. It is of cyanobacterial origin evolutionarily and is related to the LLS1

(Lethal-leaf spot 1)-family of oxygenases in plants (Gray et al., 2004).

This type of Rieske nonheme protein, which is widespread among electron

transfer proteins, participates in widely divergent enzyme reactions. Whether

Tic55 participates in an electron transfer reaction or as a redox sensor

element that controls TIC activity, or both, remains to be investigated

(Caliebe et al., 1997; Hidalgo et al., 1997; JagerVottero et al., 1997). There

is evidence that the oxidation state of the Rieske center acts as a regulatory

element based on findings with similar proteins (Martins et al., 2005). Inter-

estingly, Tic55 has recently been identified as a potential Trx target (Bartsch

et al., 2008). While this identification needs to be supported by biochemical

or genetic studies, it is in accord with the presence of a number of conserved

Cys not involved in iron binding in the chloroplast protein (Fig. 6A). Of par-

ticular interest is a fully conserved CxxC motif located in a domain of Tic55,

LLS1, and PTC52 and not found in other Rieske proteins (Gray et al., 2004).

Cys176

N-t NAD(P)-binding Rossmann-fold domain

N-t NAD(P)-binding Rossmann-fold domain

C-t FNR-binding domain

C-t CaM-binding motif

N-terminal domain model

N-terminal domain model

Cys311

Cys155 Cys175

Cys268
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Cys335
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Cys175

Cys

Cys311
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R
ieske

C
atalytic
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38710195
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Fig. 6. (See color plate section at the back of the book.)
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Relevant possibilities also come from initial homology modeling of the

Rieske domain which pointed to a thiol pair (Cys 176 and 193 in the pea

Tic55 sequence, Fig. 6A) as possible participants in disulfide bridge forma-

tion and, therefore, in interacting with Trx. These Cys residues are located in

the so-called proline loop characteristic of Rieske proteins that connects the

cluster-binding domain with the basal domain (Colbert et al., 2000). How the

Rieske cluster regulates the active site, whose regulatory redox motif is

recognized by Trx and elucidation of the role of Tic55 in regulating the

complete TIC machinery are very interesting questions to pursue in the

future.

Tic62 and Tic32 activities are linked to NADPH (Hormann et al., 2004;

Kuchler et al., 2002). They belong to the extended and classical families of the

SDR superfamily, respectively, and are predicted to contain a Rossmann-

type fold. Their reductase activity has been demonstrated experimentally by

in vitro assays using NBT as substrate, but endogenous substrates are still

unknown. To date, no direct functional link or interaction has been detected

between them, and they may possibly function independently. Both are

extrinsically attached to the inner envelope membrane at the stromal

side and show similar modes of dynamic binding to the TIC complex: more

oxidizing conditions (or lower NADPH/NADP ratio) favor their association

with TIC, whereas more reducing conditions (or higher NADPH/NADP

ratio) dissociate the subunits from the complex (Chigri et al., 2006; Stengel

et al., 2008). Despite their similarities and common cyanobacterial origin,

they are not evolutionarily related and interact with different partners: Tic62

interacts with FNR, and Tic32 binds to calmodulin (CaM)—a primary

transducer of intracellular Ca2þ signals in eukaryotes (Chigri et al., 2006;

Kuchler et al., 2002).

Tic62 is characterized by a bimodular structure: the N-terminal domain

contains the NADPH-binding motif, while the C-terminal domain is pre-

dicted to be highly disordered in solution and to contain several repetitive

proline-rich modules (Kuchler et al., 2002) (Fig. 6B). These repetitive mod-

ules have been shown to interact with FNR. Evolutionarily, only vascular

plants possess the ‘‘full-length Tic62’’ protein, that is, they contain the C-

terminal, FNR-binding domain that is missing in other plants like Physcomi-

trella patens (Balsera et al., 2007). This leads to the question of what defines

Tic62 as a TIC component: is it reductase capacity or FNR-binding capacity?

As noted earlier, the redox environment, reflected by the stromal NADPH/

NADP ratio and FNR availability, strongly influences Tic62 functionality

and its binding to the TIC complex (Stengel et al., 2008). However, not only

these factors affect the reversible binding of Tic62 to the TIC complex: its

distribution between the soluble stromal compartment and the inner
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envelope membrane: more reducing conditions released Tic62 from the

membrane to the stroma, thereby possibly increasing its affinity for FNR.

The significance of this stromal effect is not known.

Tic32 consists of a catalytic (NADP-binding) N-terminal domain and a C-

terminal CaM-binding extension (Fig. 6C) (Chigri et al., 2006). It is not

known whether CaM regulates Tic32 oxidoreductase activity or provokes a

conformational rearrangement that perturbs interaction with its partners.

The second option seems plausible because coimmunoprecipitation experi-

ments showed that NADPH abolished the interaction of Tic32 with the TIC

machinery. It was assumed, therefore, that CaM would favor binding to the

translocon complex. Protein sequence analyses showed the presence of a

number of Tic32 homologs in plants (Kalanon and McFadden, 2008). How-

ever, because no functional data are available for these homologs, a relation

with the TIC complex cannot be ensured. Further, due to lack of a transit

peptide (Nada and Soll, 2004), a chloroplast location cannot be predicted for

the Tic32 homologs. Thus, much remains to be done to understand the role

of the redox-sensitive Tic62 and Tic32 molecules that are switches closely

associated with the TIC complex. Interestingly, both Tic62 and Tic32 contain

conserved Cys in their Rossmann-fold domain (Fig. 6B and C). Based on

homology modeling, they seem unfit for an intramolecular interaction

(Fig. 6B and C). It is of interest to learn whether they participate in intermo-

lecular binding.

V. REGULATION OF CHLOROPLAST PROTEIN
IMPORT BY METABOLIC AND

ENVIRONMENTAL REDOX STATE

A. THE OUTER ENVELOPE, THE FIRST MEMBRANE BARRIER

IN PROTEIN IMPORT

Biochemical characterization of protein import in chloroplasts with in vitro

systems has shown that chloroplast protein translocation is affected by Cys-

modifying reagents such as N-ethyl-maleimide (NEM) and dithiothreitol

(DTT). Experiments with the precursor of the small subunit of RuBisCO

(pSSu) as a model protein for import showed that the affinity for the

receptor-binding sites was dramatically reduced after NEM treatment,

while the number of binding sites was not affected (Friedman and

Keegstra, 1989). These results were later confirmed not just for pSSu, but

also for the precursor of ferredoxin-NADP-oxidoreductase (pFNR) (Row

and Gray, 2001). Significantly, mutating the Cys residues of the transit
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peptides did not affect import. These findings thus let us to the view that at

least one component of the chloroplast protein import machinery participat-

ing in the formation of early import intermediates contains one or more

functionally important Cys residues.

Subsequent work showed that import yield was stimulated after chloro-

plasts were treated with DTT or reduced glutathione (Pilon et al., 1992;

Stengel et al., 2009). In another set of experiments, the oxidizing agent copper

chloride (II) was shown to inhibit the formation of an early import interme-

diate and subsequent import of pSSu (Seedorf and Soll, 1995). Inhibition was

relieved by DTT. In this case, the effect was ascribed to the formation of a

crosslinked complex consisting of Toc159, Toc34, and Toc75. The opposite

effects of DTT and CuCl2 treatments point to the presence of a reversible

disulfide bridge at the level of outer envelope membrane in land plant

chloroplasts. By means of diagonal 2D redox SDS-PAGE, different redox

treatments on outer envelope vesicles isolated from pea chloroplasts con-

firmed the formation of intermolecular disulfide bridges among the TOC

components. It was concluded that the redox state of Cys in the TOC

complex affects the efficiency of protein import (Stengel et al., 2009). The

longstanding question of whether DTT can influence the chloroplast protein

import machinery has thus at long last been answered.

The only subunit of the import machinery in chloroplasts whose structure

is known to date at high resolution is Toc34 (Koenig et al., 2008b; Sun et al.,

2002). X-ray crystallography structural studies revealed that the Toc34

monomer is divided into a globular GTP-binding domain (G domain) and

a small C-terminal a-helical part (Figs. 2C and 7). The core is defined by six

b-sheets flanked by six a- and two 310-helices. A feature of the Toc34

structure is a long loop connecting b6 and a6 secondary elements. Many

conserved residues in the Toc34 sequence are localized in this loop, and a role

in the nucleotide exchange process is proposed for this region (Sun et al.,

2002). As noted earlier, this cytosolic loop contains the fully conserved Cys

residue in the Toc34 family that was shown to interact with other TOC

components in the presence of copper chloride using pea as a model plant

(Seedorf and Soll, 1995; Sun et al., 2002). Interestingly, the long loop

and the conserved Cys residue are also predicted in the Toc159 family

(Figs. 2C and 7).

In view of these findings, determination of the structure of the

outer envelope channel protein, Toc75, becomes even more timely. A high-

resolution structure of a bacterial homolog of Toc75 (Gatzeva-Topalova

et al., 2008) highlights the need to analyze the conformation of the complete

N-terminal POTRA-containing domain and its organization with respect to

the pore domain and the membrane. As seen earlier, a number of conserved
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Cys residues are found in the second POTRA domain—in the cytosol and at

the beginning of motif 3 within the channel (Fig. 2A). As noted earlier, these

residues may participate in the interaction with Toc34.

Finally, the Toc64 receptor has also been implicated in covalent interac-

tions with other TOC components using copper chloride (II) as a specific Cys

crosslinker (Sohrt and Soll, 2000). Of the six Cys conserved in land plants

(Fig. 3A), only two are predicted to be located to the cytosolic side (Qbadou

et al., 2007), one in the loop between the first two putative transmembrane

helices and the second in the second TPR domain, the latter also conserved in

the mitochondrial isoform (Kalanon and McFadden, 2008). These residues

may be responsible for interacting with other TOC components. Mutation

studies would be useful to assess the role that these Cys play at the outer

envelope interface.

B. BETWEEN TWO BARRIERS, THE INTERMEMBRANE SPACE

It has been known for some time that at least two chloroplast precursor

proteins, nonphotosynthetic ferredoxin (FdIII) and FNR isoform II

(FNRII), are differentially imported into chloroplasts under light and dark

conditions (Hirohashi et al., 2001). High light resulted in mistargeting and

accumulation of these preproteins in the intermembrane space, whereas the

import of the precursor forms of photosynthetic counterparts (FdI and

FNRI) was not affected. This effect of protein arrest in the intermembrane

space under high light was ascribed to a folding event, likely due to the

sensitivity of the folding machinery to redox state in the intermembrane

space (Becker et al., 2004a).

(active)

(active)

(inactive) Intermembrane
space

Stroma

Cytosol

MGD1
Trx

TIC

Toc75

imsHsp70

Tic22

To
c6

4

Toc12

Toc34

Toc159

SH

SH

SH

+++
HS

GTP

GTPP

P

MGD1

HSSH S S-
S S-

Fig. 7. (See color plate section at the back of the book.)
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Furthermore, two residents of the intermembrane space, Toc12 and

MGD1, potentially contain disulfide bridges (Fig. 7). The redox state of

the Cys residues in MGD1 has been linked to function, showing that the

enzyme is active only in its reduced form. Further, Trx has been reported to

modulate the activity of MGD1, resulting in the proposal that redox regula-

tion may be essential to coordinate galactolipid biosynthesis and chloroplast

development (Benning and Ohta, 2005; Yamaryo et al., 2006). By contrast,

the oxidized form of Toc12 is believed to be the form active in coordinating

the chaperone system of the intermembrane space with protein import

(Becker et al., 2004a). However, the presence of a disulfide bridge in Toc12

has yet to be confirmed. The intermembrane studies raise a number of

interesting questions. First, how does MGD1 sense the redox state of the

inner membrane space? One could think of the presence of Trxs, and a

proteomic study has indeed detected a form of m-type Trx associated with

the Arabidopsis envelope membrane. It is likely, however, that it is present at

the stromal face of the inner envelope membrane (Ferro et al., 2003). Even

so, one could envisage a mechanism similar to the one reported for thyla-

koids for which a transmembrane reducing equivalent transfer system has

been proposed to link the stroma to the lumen (Motohashi and Hisabori,

2006). There is, however, no evidence for such a system in the envelope.

Finally, machineries are known to catalyze the oxidation of proteins in the

intermembrane space of mitochondria and the periplasmic space of bacteria

(Herrmann et al., 2009). Here again, although the presence of semiquinone

radicals, flavoproteins, and iron–sulfur proteins has been experimentally

detected at the inner envelope membrane of chloroplasts and an electron

transfer chain employing these carriers might be present (JagerVottero et al.,

1997), no equivalent systems have been detected so far in this region.

At this point it would be necessary to identify if a disulfide bridge is present

in Toc12, to get additional insight into the regulatory disulfide bridge in

MGD1 and look for associated elements in the intermembrane space.

Further experiments are also needed to understand how light affects the

transport of a subset of proteins resulting in their folding and arrest in

the intermembrane space. It would be interesting to know whether Cys are

implicated and the identity of neighboring proteins that participate in this

process.

C. CHLOROPLAST REDOX STATE AND THE INNER ENVELOPE BARRIER

It is now accepted that the activity of the TIC complex is likely linked to both

metabolic and oxidative regulation (Fig. 8). Recently, three TIC components

have been functionally linked to stromal thioreodoxins. The finding that
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Tic110, the putative translocation channel, contains a regulatory disulfide

bridge linked to specific stromal Trxs has opened a new line of investigation

in the regulation of protein import. It has been proposed that Tic110 may

respond to environmental factors via a change in redox and that Trx then

reactivates Tic110 by reduction (Balsera et al., 2009a). Future experiments

will determine whether a particular Trx acts in vivo in this capacity as well as

the functional consequences of the effect of change in redox state. Another

TIC subunit, the redox sensor Tic55, has been also classified as a Trx target

based on its interaction with a mutant Trx protein (Bartsch et al., 2008).

Although sequence analysis demonstrated the presence of well-conserved

Cys in strategic positions (Fig. 6A), further experiments are needed to

confirm the presence of regulatory disulfide bridge(s) in Tic55 and, eventual-

ly, its functional significance.

Evidence for a final component of the TIC machinery as a putative Trx

target, Hsp93, was obtained with a cyanobacterial homolog (Mata-Cabana

et al., 2007). Although the TIC machinery is not present in cyanobacteria,

work is justified to determine whether plant and cyanobacterial Hsp93

chaperone functions are comparable. As mentioned earlier, a proteomic

study has identified a Trx isoform closely associated with the inner envelope

membrane, raising the possibility of a functional link between these groups of

proteins (Ferro et al., 2003).

On the other hand, a dynamic interaction between Tic62 and Tic32 and the

TIC machinery is dependent on the ratio of another redox pair, NADPH/

NADP (Chigri et al., 2006; Stengel et al., 2008). This ratio appears to play a

central role due to their functionality both as redox carriers and signaling

components (Fig. 8). Although variations in the NADPH/NADP ratio in

chloroplasts are not extensive due to the photosynthetic machinery operating

during the day and the oxidative pentose phosphate pathway at night, the

equilibrium may be significantly perturbed during metabolism, particularly

Redox regulation

Metabolic
NADPH/NADP

Oxidative
S-S/ HS- -SH

CaM

FNR
FNR

Stroma

IMS

IEM

Trx
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CaM
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under stress conditions. It thus seems feasible that by a dynamic association,

the Tic62 and Tic32 subunits could influence the import properties of, at

least, a subset of proteins by altering the composition of the TIC machinery

in response to changing conditions of the chloroplast. Indeed, recent results

showed that the protein import efficiency of a subset of protein substrates is

affected after altering the NADPH/NADP ratio in isolated chloroplasts by

the addition of different metabolites—a decrease in the NADPH/NADP

ratio enhanced protein import (Stengel et al., 2009).

The metabolic factors, FNR and CaM, also affect Tic62 and Tic32 bind-

ing, respectively, as mentioned earlier (Chigri et al., 2006; Kuchler et al.,

2002). Again, the molecular mechanisms of these interactions remain largely

unknown. Thus, it remains to be seen whether FNR transmits redox infor-

mation to Tic62 when thylakoid bound and part of the photosynthetic

machinery or when dissociated and soluble in the stroma (Forti and

Bracale, 1984). Alternatively, a signal could be generated when the enzyme

undergoes binding and induces a conformational change in Tic62.

On the other hand, the functional interpretation of the Tic32–CaM inter-

action is also elusive. CaM responds to Ca2þ signals and transmits informa-

tion to a receptor protein whose activity is then affected (Zielinski, 1998). It is

known that light/dark conditions influence the level of Ca2þ in the chloro-

plast (Sai and Johnson, 2002) and that the import of a subset of proteins that

contain a cleavable transit peptide is inhibited either by calmodulin inhibitors

or calcium ionophores. Further, the addition of external calmodulin or

calcium restores import activity (Chigri et al., 2005) and calcium acts as an

effector in control of gating and selectivity of the Tic110 protein channel

(Balsera et al., 2009a). It becomes interesting to know if Ca2þ, CaM, Tic32,

and Tic110 are functionally connected.

A role for redox in controlling the composition of the TIC machinery has

been strengthened by a recent proteomic study on envelope membranes of C3

(pea) chloroplasts and C4 (maize) mesophyll chloroplasts (Brautigam et al.,

2008). Whereas the channel-forming proteins Tic110 and Toc75 showed a

relatively high spectral abundance in both samples, the study showed that the

relative abundance of Tic55, Hsp93, and FNR is markedly decreased in C4

mesophyll envelopes. On the other hand, Tic32 and Tic62 were not identified

in the envelope of C4 mesophyll chloroplasts. The authors proposed that,

due to a spatial separation of reduction equivalents produced in mesophyll

and bundle sheath chloroplasts, C3 and C4 mesophyll chloroplasts have

different modes of redox-dependent import. Independent proteomic experi-

ments with total chloroplast membranes from maize mesophyll and bundle

sheath cells revealed high levels of Tic110, Tic40 (and Tic21) in mesophyll

chloroplasts under conditions attributed to increased protein influx (Majeran
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and vanWijk, 2009; Majeran et al., 2008). In sharp contrast to the Brautigam

study (Brautigam et al., 2008), subunits of the translocation machinery other

than Hsp93 were not detected specifically in mesophyll cells. At this point, no

further conclusions can be drawn regarding the distribution of the redox

regulatory subunits.

VI. FURTHER POSSIBLE REDOX TARGETS IN
CHLOROPLAST PROTEIN IMPORT

A. THE DRIVEN MOTOR FORCE FOR THE SEC MACHINERY

The cpSec system in thylakoids consists of a membrane-embedded protein-

conducting channel, formed by the SecE and SecY subunits, and the periph-

erally associated ATPase motor SecA (Laidler et al., 1995; Nakai et al., 1994;

Schuenemann et al., 1999a; Yuan et al., 1994) (Fig. 1B). Upon complex

formation with the precursor protein in the stroma, SecA associates with

the thylakoidal SecE/Y channel. Cycles of ATP hydrolysis together with

proton motive force energy provide the driving force for the complete trans-

location of the preprotein through the channel (Economou and Wickner,

1994; Karamanou et al., 1999; Nakai et al., 1994).Out of the two SecA-

related sequences in Arabidopsis (At4g01800 and At1g21650), the former

represents the true homolog to cyanobacterial SecA and its localization in

chloroplasts has been confirmed by proteomics (Kleffmann et al., 2004).

Little is known specifically about SecA in chloroplasts but its functional

equivalence and high sequence similarity to bacterial homologs allows direct

comparisons with many functional and structural studies performed on the

bacterial system (Yuan et al., 1994). Under physiological conditions, SecA

forms homodimers in solution. However, the oligomerization state of the

protein during translocation is a matter of debate since certain groups have

proposed that the dimer dissociates during translocation. This view is not

shared by others, and it has been proposed that a dynamic equilibrium

between different oligomerization states exists in SecA that depends on

environmental conditions, lipids, or even the presence of transit peptides

(Benach et al., 2003; Driessen, 1993; Duong, 2003; Or and Rapoport, 2007;

Osborne et al., 2004; Shin et al., 2006; Woodbury et al., 2002).

High-resolution structures have been obtained by X-ray crystallography

for several bacterial SecA proteins in different nucleotide-bound states (Hunt

et al., 2002; Osborne et al., 2004; Papanikolau et al., 2007; Sharma et al.,

2003; Vassylyev et al., 2006; Zimmer et al., 2008). SecA is composed of two

domains: an N-terminal motor domain and a C-terminal translocation
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domain. The motor domain shares similarities with the DEAD motor

domains of ATPase helicases. With this type of protein, the binding of

ATP and release of ADP generate a force that is translated into large protein

conformational changes and movement of the protein.

Based on studies with SecA homologs, several structural elements can be

identified in the chloroplast SecA protein from Arabidopsis (Fig. 9A). Two

nucleotide-interacting regions, NBD1 and NBD2 (or IRA2), have been

identified in the motor domain (Kull et al., 1996) as forming a mononucleo-

tide cleft (Sharma et al., 2003). Whereas NBD1 contains the minimal ATPase

catalytic machinery, the highly flexible NBD2 (or IRA2) subdomain acts as

intramolecular receptor for ATPase hydrolysis (Sianidis et al., 2001). The

motor region also contains a family-specific variable region (VAR) that

PBD

TP

A

B

N-t motor domain C-t translocation domain

VAR

IRA1

Motifs

296 431 573 700

76947185611

Cys621

Cys214
Cys443

Cys280

Cys443

Cys246

Cys280

Cys860

Cys660

905 979 1022
472
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Fig. 9.
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shows significant length and sequence variability in the different SecA pro-

teins. Cyanobacterial and plant SecA present one of the longest VAR regions

in the SecA superfamily (Papanikolau et al., 2007) that, interestingly, is the

most divergent region between cyanobacterial and plant SecA. Although a

function has not been identified, this region may be involved in SecA oligo-

merization (Papanikolau et al., 2007). Another region identified in the motor

domain of chloroplast SecA is the preprotein-binding domain (PBD). On the

other hand, the C-terminal translocation domain functions as a regulatory

domain that physically associates with NBD2 (or IRA2) and restricts its

activator function (Sianidis et al., 2001).

Recently, a proteomic study carried out with membrane preparations

from a cyanobacterium has identified SecA as a potential Trx target

(Mata-Cabana et al., 2007). The high sequence similarity between the

bacterial SecA homologs and Synechocystis and Arabidopsis SecA proteins

(42–49% identity) prompted us to apply homology modeling to build a

three-dimensional structure for cpSecA to obtain insight into the conforma-

tional organization of the conserved Cys (Fig. 9B). Independent of the

template used for the modeling (PDB codes: 2fsf, 1nkt, 2vda, 2ibm, 1tf5),

two conserved Cys (Cys280 and Cys443) in the Arabidopsis model were

found to be located in a favorable position for forming a disulfide bridge.

Interestingly, the first of these Cys precedes the catalytic motif II or Walker B

DEAD-motif, whereas the second is positioned closed to the so-called motif

III (Hunt et al., 2002; Sharma et al., 2003) (Fig. 9A). It was found that motif

III is intertwined with the catalytic motif II and IRA2. The formation of a

putative disulfide bridge close to the catalytic site places it in strategic

position for regulation. However, due to the lack of the first Cys, a similar

disulfide bridge is not expected for the cyanobacterial SecA counterpart (see

also the paper by Nishiyama and Hisabori in this volume concerning the

distribution and specificity of Cys residues distribution in cyanobacterial

enzymes) (Fig. 9A). Considering that SecA from Synechocystis was experi-

mentally identified as a potential Trx target (Mata-Cabana et al., 2007),

further analyses are necessary to determine whether the cyanobacterial Cys

targeted by Trx are linked in an intermolecular disulfide bond.

B. TRANSPORT AND FOLDING OF REDOX-ACTIVE PROTEINS IN THE

THYLAKOIDAL LUMEN

Since the turn of the current century, a number of groups have contributed to

the elucidation of the composition, mechanisms, and metabolic activities of

proteins in the thylakoidal lumen—a long-neglected compartment of thyla-

koids. To date, more than 70 different proteins have been detected in the
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lumen, all nuclear encoded, that function not only in the light reactions, but

also in folding, proteolysis, and protection against oxidative stress (Peltier

et al., 2002; Schubert et al., 2002). Recent observations provide evidence that

a number of these proteins contain disulfide bridges and have the potential to

participate in redox signaling (Gopalan et al., 2004; Hall et al., 2008;

Marchand et al., 2006). However, in contrast to their stromal counterparts

that are usually active in the reduced state, lumenal proteins are active when

oxidized (Buchanan and Luan, 2005).

Import behavior has been analyzed for two lumenal proteins that contain

disulfide bridges essential for activity—the immunophilin FKBP13 and oxy-

gen-evolving complex extrinsic subunit OE33 (or OEE1/PsbO) (Fig. 10A).

Both proteins have been identified as Trx targets and are thus candidates for

redox regulation (Gopalan et al., 2004; Lee et al., 2004a; Lemaire et al., 2004;

Marchand et al., 2006). In vitro import experiments suggested that FKBP13

uses cpTat for import (Gupta et al., 2002)—a pathway that employs folded

substrates, thereby raising the question of whether FKBP13 is transported in

the oxidized or reduced state. Both scenarios are plausible since biochemical

and structural studies revealed that the disulfide bridge formation is essential

not for folding but for enzymatic activity. By contrast, OE33 follows a cpSec-

dependent pathway of translocation (Cline et al., 1992). OE33 contains

disulfide bridges that are essential both for activity and incorporation

as part of PSII structure (Tanaka and Wada, 1988). OE33 has thus to

be kept in an unfolded, competent state in the stroma as well as when
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crossing the thylakoidal membrane. Once in the lumen, the protein is

oxidized and folded (Fig. 10B).

The evolutionary and molecular basis for the acquisition of a transit

peptide specific for the cpTat or cpSec import pathway is not clear. The

situation is complicated by the requirement of particular proteins for trans-

port in either the folded or unfolded state. The disulfide bond-containing

aprotinin, a therapeutic protease inhibitor, is an interesting case in point. By

fusing the protein to transit peptides specific for each pathway, aprotinin has

been successfully translocated into the lumen of tobacco plastid transfor-

mants by using either the cpSec or cpTat pathways (Tissot et al., 2008). In

each case, the protein was fully functional after translocation—an indication

that disulfide bridges were correctly formed, independent of import pathway.

At least for this example, the efficiency of transport was comparable and a

functional structure was similarly acquired in the stroma and the lumen.

A requirement for specific lumenal chaperones may be an important factor in

defining the path of translocation. On the other hand, keeping in mind that

SecA is a putative Trx target, selection of a particular pathway may be linked

to regulation of import for a subset of substrates (Fig. 10). This is an

attractive idea that needs in-depth experiments. First, SecA should be con-

firmed as a Trx target biochemically or genetically and its regulatory disulfide

bridge(s) should be identified. These studies should include demonstration

that Trx alters SecA activity and protein import. Different situations can be

envisaged for an effect on import: the redox state of SecA could influence its

oligomerization state (a subject highly debated in the literature), its interac-

tion with the transit peptide or its catalytic activity, the most common

mechanism of action of Trx in the stroma (Schurmann and Buchanan, 2008).

Little is known about how newly imported proteins are correctly folded for

disulfide bridge formation once in the lumen. This could be either enzyme

mediated or achieved spontaneously in an environment that is highly oxidiz-

ing, particularly in the light (Fig. 10C). The mystery is heightened by the

apparent absence of Trx in a compartment that, so far, appears to house a

number of Trx targets. Recent work, however, offers relevant possibilities.

HCF164, a protein residing in the thylakoid, that contains a soluble Trx-

like domain exposed to the lumen, has been proposed to act as transmem-

brane transducer of reducing equivalents from photoreduced stromal Trx

(Motohashi and Hisabori, 2006) (Fig. 10C). In a separate report, structural

analysis prompted the suggestion that cytochrome c6A, a redox-active lu-

menal component, could act as catalyst for the oxidation of protein dithiols

by molecular oxygen (Marcaida et al., 2006). Finally, more recently, a

protein required for disulfide bond formation in the extracytosolic space

has been identified in the inner membrane of the cyanobacterium
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Synechocystis, SynDsbBA (Singh et al., 2008) (Fig. 10C). The full-length

protein is the result of the evolutionary fusion of two homologs from

Gram-negative bacteria: (i) DsbA, a soluble periplasmic protein with a

catalytic Cys-X-X-Cys motif that acts as a disulfide bond carrier and rapidly

oxidizes Cys residues in protein substrates, and (ii) DsbB, a membrane-

localized thiol oxidoreductase protein that transfers redox equivalents to

DsbA. Genome analyses revealed that this fused system is conserved in all

oxygenic photosynthetic organisms (Singh et al., 2008). Further, its ortholog

in Arabidopsis (At4g35760) seems to be localized in the thylakoidal mem-

brane according to the plastid proteome database (http://ppdb.tc.cornell.

edu). Future studies on the location, function, and substrate specificity of

this fused protein will surely give new insight into redox regulation. Estab-

lishing the system in chloroplasts would give also support to the believed

prokaryotic evolutionary origin of this compartment (Herrmann et al.,

2009). A tangential area awaiting exploration concerns the role of thiol/

disulfide exchange in regulating the activity of lumenal proteins and the

mechanism(s) by which these changes are achieved.
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