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The import of chloroplast proteins synthesized in the
cytosol of a plant cell is mediated by two multiprotein
complexes or translocons located at the outer and inner
membranes of the chloroplast envelope, respectively,
TOC and TIC. These complexes integrate different signals
to assure the timely transport of proteins into the chlor-
oplast in accordance with the metabolic and develop-
mental needs of the cell. The past few years have
witnessed the emergence of redox as a regulator of the
protein transport process. Here, we discuss evidence that
the metabolic redox state of the chloroplast regulates the
import of preproteins by altering either the activity or
composition of participating transport components. It
appears that, through these redox changes, chloroplasts
communicate with other compartments of the plant cell.

Chloroplast proteome: need for coordination of
different factories within the plant cell
Because the vast majority of chloroplast proteins are
nuclear-encoded, plastid biogenesis relies on the efficient
sorting of proteins imported from the cytosol and on their
coordinated assembly with the smaller number of proteins
synthesized within the organelle, for example photosystem
multicomplexes or RuBisCO (Figure 1 and Box 1) [1–3].
Owing to changes inmetabolism linked to the environment
or stage of development, chloroplasts require adaptive
responses. The proficient coordination of plastid function
with activities of the plant cell requires rapid and efficient
reciprocal communication. Plastid signaling is currently
an area of intensive research that includes, among others,
a coordination of plastid protein import and nuclear gene
expression [4,5]. Herein, we discuss emerging evidence for
the role of redox in regulating protein import as a function
of the needs of the cell under changing conditions.

Original evidence for regulation of protein import by
redox
Some years ago, the effect of light on protein import into
chloroplasts was analyzed [6]. The authors performed in
vitro import studies with precursors of the photosynthetic
and non-photosynthetic isoforms of ferredoxin (Fdx) and
ferredoxin–NADP reductase (FNR), FdxI/FdxIII and
FNRI/FNRII, respectively. Interestingly, light had a strong,
specific effect on import of the non-photosynthetic isoforms.
Whereas the photosynthetic FdxI and FNRI isoforms were

properly transported to the stroma with concomitant de-
velopment of mature proteins after cleaving off the transit
peptide in light and darkness, the non-photosynthetic
FdxIII and FNRII precursors failed to enter the stroma
and the preproteins accumulated in the chloroplast inter-
membrane space (IMS) in the light. The mistargeting to the
IMS was not reversed when chloroplasts were transferred
back to dark. However, if the precursor proteins were rei-
solated and imported into non-light treated chloroplasts,
they were properly processed. The effect was ascribed to
misfolding in the IMS and to the possibility that the trans-
location of certain precursor proteins across the envelope
was regulated by light. Themolecular determinants behind
this observation have, however, remained elusive.

Other lines of evidence point to thiol-based redox as a
regulator of protein import
In recent years, diverse mechanisms have been invoked to
explain the import of proteins into chloroplasts. In an
attempt to dissect the participating factors and character-
ize the energetic and protein requirements, in vitro import
assays have been developed with the isolated organelle [7].
Following this approach and using the cysteine (Cys)-
modifying reagentN-ethylmaleimide, earlier investigators
concluded that functionally important Cys residues are
involved in the formation of early import intermediates
as well as in the import process itself [8,9]. These results
were in line with independent research that showed a
stimulation of import by dithiothreitol Q1(DTT) or reduced
glutathione added to the import reaction mixture [10]. A
different approach demonstrated that the in vitro modifi-
cation of Cys to yield a disulfide bridge inhibited the
formation of early import intermediates and subsequent
import [11]. Inhibition was relieved by DTT, thus demon-
strating reversibility of the redox effect.Molecular analysis
prompted the conclusion thatmembers of the TOCmachin-
ery participated in the crosslinking reaction, namely the
receptors Toc159 and Toc34 and the channel Toc75. These
findings have been confirmed very recently [12]. The
authors analyzed the effect on import not only of dithiol
reagents, such as DTT, but also monothiols such as b-
mercaptoethanol and reduced glutathione. It was con-
cluded that, although both types of reducing agents
enhanced protein import, dithiols were much more effec-
tive. Moreover, tris(2-carboxyethyl)phosphine Q2(TCEP), a
phosphine reagent that seems not to cross the chloroplast
envelope and exert its effect on the outside, confirmed that
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members of the outer translocon facing the cytosol contain
Cys essential for protein import. It might well be that those
subunits participate in a thiol–disulfide redox switch that
governs import. By contrast, a comparison of the DTT and
TCEP effects suggests that components of the inner envel-
ope membrane might be affected.

During evolution, chloroplasts developed an intricate
regulatory network based on the modification of Cys
according to the changing redox status of the organelle
[13]. A growing body of evidence indicates that certain
components of TOC and TIC complexes have redox-active
Cys with the potential to regulate protein function and,
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Figure 1. Schematic representation of known components of the protein import machineries in chloroplast membranes from Pisum sativum. Most chloroplast proteins

synthesized in the cytosol contain a removable N-terminal sequence (transit peptide) for proper plastid targeting and translocation via the general import pathway (Box 1;

[1,2]). According to the general view, cytoplasmic chaperones such as Hsp70/14-3-3 or Hsp90 bind to preproteins to keep them unfolded in an import competent state and

guide them to the receptors (Toc159 and Toc34) of the outer membrane of the chloroplast. It has been shown that the N-terminal region alone is sufficient for successful

targeting of certain proteins. After crossing the outer membrane, the preprotein passes through the inner membrane until it reaches the stroma, where the transit peptide is

proteolytically removed to yield a functional protein. Stromal chaperones such as Hsp93 and/or Hsp70 participate in this latter transport stage. It has been found that

hydrolysis of ATP and GTP is required for translocation of the preproteins across the two membranes of the plastid envelope. Thylakoidal proteins are further inserted or

translocated through the photosynthetic membrane [43]. Lumenal proteins contain a bipartite transit peptide that is sequentially removed for further translocation across

the cpSec or cpTat thylakoid translocons. Nuclear- and chloroplast-encoded thylakoid protein biogenesis is dependent on the Alb3 insertase, cpSec translocase or both.

However, not all chloroplast proteins follow the general import pathway and other translocation mechanisms are currently being described (not shown). Recently, an ER-

dependent pathway for chloroplast import has been described for several substrates and details of the transport mechanism are awaited with interest [50–52]. In addition,

several chloroplast proteins do not contain a cleavage transit peptide and their import pathways remain largely unknown [53,54]. Some outer envelope proteins apparently

do not use proteinaceous machinery for membrane insertion and others do not require the participation of the TOC primary receptors [55,56].
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consequently, import into chloroplasts (Table 1) [14]. A
recent study documents the ability of the single conserved
Cys in the Toc34 family to undergo disulfide bridge for-
mation under oxidizing conditions both in vitro and in
organello [15]. The current view of receptor binding
invokes a transient dimerization of receptors (Box 1),
although stable dimers cannot be ruled out [16]. The
formation of Toc159–Toc34 heterodimer via Cys cross-
linking has been proposed but not demonstrated. Whether
the receptors form regulatory disulfide bridges under phys-
iological conditions remains to be established.

Toc12, a subunit of the TOC complex in the chloroplast
intermembrane space that associates with Toc64 and
Hsp70, might also be sensitive to Cys redox modification
[17]. Structural prediction pointed to the proximity of two
conserved Cys in the Toc12 family and point mutational
analysis suggested the formation of an intramolecular
disulfide bridge that regulates the chaperone activity of
the protein. The authors suggested a functional relation of
Toc12 with the mistargeting and arrest of certain prepro-
teins in the IMS under light conditions [6]. However,
biochemical evidence for Cys oxidation in Toc12 is still

lacking as is information on redox fluctuation in the IMS as
a consequence of light or changing metabolic status. To
date, redox machineries equivalent to those catalyzing the
oxidation of proteins in the periplasmic space of bacteria or
the IMS of mitochondria have not been identified in the
chloroplast envelope [18].

Evidence of a role for redox in regulating the preprotein
conducting channel of the TIC complex of the inner mem-
brane, Tic110, emerged in biochemical assays [19]. Exper-
iments revealed a redox-active intramolecular disulfide
bridge in Tic110, whose activity appears to be regulated
by a stromal thioredoxin (Trx). Trx is a ubiquitous small
disulfide protein that is well known to mediate redox
changes in target proteins of both the chloroplast stroma
and thylakoid membrane. A proteomic study suggested
that an isoform of Trx is closely associated with the chlor-
oplast inner envelope membrane [20]. Because the active
disulfide of the Tic110 channel protein was found to be in
the reduced state in chloroplasts isolated from darkened
plants, it was concluded that regulation linked to redox
status is particularly relevant during periods of oxidative
stress as chloroplasts adapt to changes in the environment.

During import, Tic110 recruits the stromal motor com-
plex, composed of soluble Hsp93 and membrane-anchored
Tic40, at the envelope. Hsp93 (also known as ClpC) acts as
a stromal chaperone in protein import. Interestingly, the
activity of the cyanobacterial homolog of Hsp93 has also
been linked to Trx [21]. The redox active disulfide(s) is yet
to be identified. Earlier genetic studies showed that the
expression of cyanobacterial hsp93 is modulated by the
redox state of the cell [22]. By contrast, in plants, transcript
levels of the gene increased in short-day ntrc rosette leaves
of knockout plants lacking chloroplast NADP–thioredoxin
reductase with a built-in Trx [23]. Even if the chloroplast
and cyanobacterial Hsp93 proteins function in different
pathways and are not equally regulated, they are both
likely to act as chaperones [24]. Sequence analysis of
cyanobacterial Hsp93 revealed a single conserved Cys
residue in this chaperone family, suggesting that, if linked
to Trx, the regulatory disulfide would be inter- rather than
intramolecular [14]. Structural homology modeling of the
plant Hsp93 isoform is consistent with the formation of an
intramolecular disulfide bridge due to the presence of a
second conserved Cys. According to the proposed model,
the conserved Cys would be located in the nucleotide-
binding motif, suggesting that the disulfide bridge could
have either a structural role or function in regulating
ATPase activity or in forming the ternary Hsp93–Tic40–

Tic110 complex. Further experiments are needed to
confirm the formation of a disulfide bridge in chloroplast
Hsp93 and to evaluate its functional significance.

It is noteworthy that a mixed disulfide bridge developed
between Tic110 and the co-chaperone, Tic40, under oxidiz-
ing conditions [25]. Tic40 is a membrane protein with two
stroma-exposed hydrophilic domains, one of which prefer-
ably interacts with Tic110 and the other with Hsp93 [26].
However, the only conserved Cys in Tic40 capable of
oxidative crosslinking with Tic110 is found in the most
C-terminal stromal domain, which is indeed predicted to
associate with Hsp93 [27]. Refinements in the association
analyses in the ternary complex between the import motor
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Box 1. The general import pathway into chloroplasts

Several cytosolic factors have been invoked to facilitate the

guidance of presequences to the TOC receptors and enhance the

efficiency of translocation (Figure 1). The cytosolic Hsp70/14-3-3

complex might escort preproteins to the TOC GTPase receptors,

Toc159 and Toc34 [57]. Another set of precursors seems to be

guided by cytosolic Hsp90 that, after interaction with Toc64, delivers

the precursor to Toc34 [58]. TOC GTPase receptors, whose GTPase

activity is regulated by transit peptide binding, play a primary role in

chloroplast targeting [3]. Although their relative contribution to

preprotein recognition is a subject of intense debate, Toc159 and

Toc34 probably heterodimerize in the docking stage with the transit

peptide, contributing to the activation of membrane translocation.

At the expense of ATP, the preprotein is transferred and transported

through Toc75, a b-barrel transmembrane protein that constitutes

the TOC channel [59]. Components of the chaperone system in the

intermembrane space, composed of the DnaJ-like Toc12 and

imsHsp70, seem to be recruited to the outer envelope by Toc64

[17,60]. Together with Tic22, a soluble TIC component in the IMS,

these keep the preprotein in a competent unfolded state and

coordinate the translocation to the TIC channel, probably Tic110

[19,61]. Concomitant with preprotein reception, Tic110 recruits

components of the import motor (chaperone Hsp93 together with

co-chaperone Tic40 and/or chaperone Hsp70) at the stromal side of

the envelope [26,62]. Tic20 is also described as a protein-conducting

channel. New experimental evidence obtained from a Tic20 homo-

log in apicomplexa suggests a regulatory role of Tic20 in protein

import [63]. Functional complementation studies are in order to

determine a conserved role of Tic20 in plants and apicomplexa.

Another putative protein-conducting channel, Tic21, might com-

pensate for Tic20 at different stages of leaf development [64]; an

independent study has, however, classified PIC21/Tic21 as a

permease [65]. Three redox-sensing auxiliary components transi-

ently interact with the TIC core to modulate preprotein import

according to the metabolic redox state of the chloroplast. Several

modes of regulation affecting preprotein import efficiency have

been identified: (i) modulation of the GTPase activity of the TOC

receptors [66]; (ii) intra- or intermolecular covalent interactions in

TOC components taking place under oxidizing conditions

[11,12,15,17]; (iii) modification of TOC isoform composition accord-

ing to preprotein and/or plastid type [67–70]; (iv) variation in TIC

protein composition as a reflection of chloroplast metabolic redox

status [33,71]; and (v) modulation of activity of TIC components by

regulatory Cys [19,28] (Figure 1).
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Hsp93–Tic40 and the Tic110 protein channel are obviously
in order.

Tic55, another member of the TIC complex, has also
recently been linked to Trx [28]. Tic55 is a membrane
protein with three hydrophilic domains exposed to the
stroma: a Rieske domain, a catalytic domain with a mono-
nuclear non-heme Fe(II) active site and a domain of
unknown function that carries a conserved CxxC motif
[29]. The specific contribution of Tic55 to preprotein import
remains elusive. It has been proposed that the protein
might regulate import via its function in electron transfer
or as a redox sensor. In a recent study, the authors cap-
tured Tic55 from an inner envelope preparation on an
affinity column using a mutated Trx-f as bait [28].
Sequence analysis showed that Tic55 contains several
conservedCys that could form an oxidant-induced disulfide
bridge in the regulation of protein import [14,28].

Effects of the relative NADPH/NADPH ratio on protein
import: the TIC redox translocon
Molecular studies on the import machinery of the chlor-
oplast envelope revealed that the Tic62 and Tic32 subunits
contain binding motifs for redox-active cofactors that
possibly affect protein import [30,31] (Table 1). Together
with the Rieske protein Tic55, these components have been
proposed to form the ‘‘redox regulon’’ of the TIC complex
[32].

Tic32 was found to be extrinsically attached to the inner
envelope membrane and to contain a functional NAD(P)-
binding domain characteristic of the family of short-chain

dehydrogenases [33,34]. Biochemical analysis demon-
strated that its interaction with the translocon is regulated
by the chloroplast NADPH/NADP ratio: more oxidizing
conditions (lower NADPH/NADP ratio) favor association
of Tic32 with the TIC translocon, whereas more reducing
conditions (higher NADPH/NADP ratio) have the opposite
effect and lower the affinity of the Tic32 subunits for the
core of the TIC complex. Tic32 members also contain a C-
terminal extension that specifically binds chloroplast cal-
modulin (CaM) in a manner that is enhanced under oxidiz-
ing conditions. Moreover, in vitro protein import
experiments have demonstrated that the translocation of
certain substrates is impeded by CaM inhibitors or calcium
ionophores [35]. Considering that the calcium level in
chloroplasts fluctuates in a light/dark-dependent manner,
it seems plausible that metabolic factors such as CaM
modulate the interaction of Tic32 with the core of the
TIC complex.

The interaction of Tic62, another short-chain dehydro-
genase family member, with the TIC core complex has also
been found to depend on the metabolic NADPH/NADP
ratio. Like Tic32, the affinity of Tic62 for the TIC complex
is influenced by chloroplast redox status. Association is
increased with lower NADPH/NADP ratios, conditions
under which Tic62 shows higher affinity for FNR, a second
specific interaction partner [33,34]. Furthermore, Tic62
can reversibly shuttle between the envelope membrane
and the stroma as a function of the relative NADPH/NADP
ratio. Under more reducing conditions, Tic62 is partially
released to the stroma.
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Table 1. Redox properties of proteins involved in chloroplast protein transport (Figure 1)

Subunit Function Redox element Refs

Toc75 Channel-forming protein

at the outer envelope

membrane.

Participates in disulfide crosslinking with TOC

GTPases under oxidizing environment. Contains

conserved cysteines at the N-terminal POTRA

domain and at the beginning of the so-called

motif 3, an active membrane element in transport.

[11,12,14]

Toc159

and Toc34

GTPase receptors of

the TOC complex.

Involved in intermolecular disulfide bridge formation.

Contain one conserved cysteine in the GTPase domain

involved in dimer formation.

[11,12,14,15]

Toc12 DnaJ-like co-chaperone

at the IMS.

Contains a CxGxxC motif at the DnaJ domain involved in

a functional important intramolecular disulfide bridge.

[17]

Tic110 Channel-forming protein

at the inner envelope

membrane.

Forms intramolecular disulfide bridge under oxidizing

conditions. Activity probably regulated by stromal Trx.

[19]

Hsp93 Chaperone of the TIC

protein import motor.

The cyanobacterial ortholog has been linked to Trx.

Computational analysis points to conserved cysteine

residues in plant Hsp93 with potential for intramolecular

disulfide bridge formation.

[14,21]

Tic62 Redox sensor of the

TIC complex.

Bimodular protein. The N-terminal domain belongs to the

short-chain dehydrogenase family and contains an

NADP(H)-binding motif; the C-terminal domain belongs

specificallyQ6 and interacts with FNR. Dynamic binding

to the TIC complex according to the metabolic redox state

of the chloroplast.

[30,33,34]

Tic32 Redox sensor of the

TIC complex.

Bimodular protein. The N-terminal domain belongs to the

short-chain dehydrogenase family and contains an

NADP(H)-binding motif; the C-terminal tail interacts

specifically with stromal calmodulin. Dynamic binding

to the TIC complex according to the metabolic redox state

of the chloroplast.

[31,33]

Tic55 Redox sensor of the

TIC complex.

A membrane protein that exposes to the stroma a Rieske

domain, a catalytic domain that coordinates a mononuclear

non-heme Fe(II) and a hydrophilic CxxC domain of unknown

function. Activity probably regulated by stromal Trx.

[28,29]
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The molecular features of Tic62 and Tic32 were
recently put in the context of protein import as a reflec-
tion of their modification by the chloroplast NADPH/
NADP ratio [12]. These authors observed that perturb-
ing this ratio altered the import efficiency of some but
not all proteins that follow the general import pathway
(Box 1). The import of other proteins taken up by import
mechanisms apparently unrelated to TOC and TIC was
also not affected by this ratio. It was suggested that the
interaction of Tic62 and Tic32 with TIC might account
for the observed effect. The recruitment of the redox
regulated subunits to the translocon might, therefore,
result in different TIC subcomplexes in which Tic62 and
Tic32 couple the redox state of chloroplasts to nucleotide
binding and thereby alter import.

Despite the apparent importance of redox in regulating
preprotein import into chloroplasts, genetic studies have
revealed that none of the genes encoding proteins of the
‘‘redox regulon’’ seems essential for plant viability under
standard conditions. The function of the encoded proteins
might, therefore, lie either in fine-tuning of transport of
several substrates or in enabling chloroplasts to adjust to a
change in environmental conditions [36–38].

Redox control transport and folding in the thylakoidal
lumen
Recently, it was found that 40% of the proteins residing in
the lumen are linked to Trx or a related redox-active
protein, thus underscoring the importance of redox-linked
regulation in this compartment [39–42]. It is of interest
that lumenal proteins have two options for import, the
cpTat and cpSec pathways, both adapted from bacteria [43]
(Figure 1). In the cpTat pathway, prefolded proteins are
transported into the lumen after entering and achieving
their correct conformation in the stroma. By contrast,
cpSec translocates unfolded units in an ATP-dependent
manner with folding occurring after translocation. The
SecA subunit has been recently linked to Trx in cyanobac-
teria [21]. Although further biochemical experiments are
in order, it appears that the disulfide bridge in SecA is
redox-active, thus offering a role for redox in regulating
thylakoid protein transport from the stromal side in both
plants and cyanobacteria [14]. Unlike their stromal
counterparts, redox-active proteins of the lumen examined
so far are active when oxidized [44]. However, there
appears to be no correlation between redox activity of
transported proteins and mode of import. For example,
although both are redox-active, FKBP13 and OE33 are
translocated by different pathways (cpTat and cpSec,
respectively) [45,46]. Based on current knowledge, it seems
that selection of a particular translocation pathway is
determined by chaperone and, possibly, by redox require-
ments of proteins harboring active Cys residues. The situ-
ation is reminiscent of the sulfhydryl oxidation system
functional in the IMS of mitochondria and the periplasmic
space of bacteria [18]. In both cases, specialized machi-
neries catalyze the oxidative folding of proteins via a
disulfide relay system involving coordination between
soluble regulatory components and the transmembrane
reductant transfer system. However, in contrast to these
systems, little is known about the redox properties and

regulatory mechanisms active in the lumen and new pos-
sibilities are just beginning to emerge [14,47–49].

Looking to the future
Recent observations have added new insight to the com-
plex and highly regulated process of preprotein import
into chloroplasts. On one hand, change in the organiz-
ation of the TOC GTPase receptor isoforms results in
different TOC complexes, each apparently with affinity
for a particular class of preproteins. On the other hand,
the oxidative cross linking of subunits of the outer envel-
ope translocon influences the transport efficiency of a
subset of preproteins when in vitro protein import exper-
iments are performed in isolated chloroplasts. The TIC
machinery is also subjected to dynamic changes in com-
position and activity through its response to regulatory
redox signals from the chloroplast. Thus, although the
relative NADPH/NADP ratio typically remains stable in
chloroplasts due to photosynthesis during the day and to
the oxidative pentose phosphate pathway at night, the
equilibrium might be significantly altered as a result of
changes in metabolism, particularly during adaptation
to oxidative stress conditions. Current evidence suggests
that the activity of several TIC subunits is linked to
redox by way of Trx, particularly in response to oxidative
events.

The unveiling of a role for redox in regulating and
coordinating chloroplast protein import raises new ques-
tions. For example, biochemical mechanisms that link
metabolic redox state of the cell to the reversible associ-
ation of redox-sensing subunits with the TIC complex are
still poorly understood. Further research is also needed to
elucidate specific redox modifications in translocon subu-
nits and their relation to import activity. The endogenous
substrates for the redox sensor components await identi-
fication as do participants that transmit redox information
to the translocon machinery. According to present evi-
dence, Trx could communicate a redox signal to Tic110,
Hsp93 and Tic55, probably during environmental adap-
tation. The Cys residues functional in these and other
participating proteins need to be identified and character-
ized. A related unknown concern is the consequence of
redoxmodification on protein activity. Questions similar to
these apply to the TOC subunits that contain redox-active
Cys, some exposed to the cytosol. Finally, a major area for
future development concerns the mechanism by which
redox-active proteins are transported and folded following
their entrance into the thylakoid lumen via the cpTat and
cpSec (Box 2 Q3) [43].
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