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Abstract 1 

The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far.The 2 

objectives of this study were to assess genetic diversity in a core collection of inbred lines 3 

derived from Spanish barley landraces; to establish its relationship to barleys from other origins; 4 

and to correlate the distribution of diversity with geographical and climatic factors. To this end, 5 

sixty four SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare 6 

ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces 7 

from the Spanish Barley Core Collection (SBCC) plus 66 cultivars, mainly from European 8 

countries, as a Reference set. Out of the 669 alleles generated, a large proportion of them were 9 

unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear 10 

genetic divergence between the six-row Spanish barleys and the Reference cultivars, whereas 11 

this was not evident for the two-row barleys. The genetic information was also used to estimate 12 

population structure. A model-based clustering analysis identified four main populations for the 13 

whole genotype set, and suggested further possible subdivision within two of these populations. 14 

Most of the six-row Spanish landraces clustered into two groups that corresponded to 15 

geographic regions with contrasting environmental conditions. The existence of wide genetic 16 

diversity in Spanish germplasm, possibly related to adaptation to a broad range of 17 

environmental conditions, and its divergence from current European cultivars confirm its 18 

potential as a new resource for barley breeders, and make the SBCC a valuable tool for the 19 

study of adaptation in barley. 20 

 21 

 22 
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Introduction 1 

For many crops, high-yielding cultivars developed by modern plant breeding programmes have 2 

replaced traditional landraces. This phenomenon, which in turn reduces the genetic base of 3 

current cultivars, is especially true in developed countries (Briggs 1978). Several recent studies 4 

have shown that this is the case for European barley (Hordeum vulgare ssp. vulgare) (Graner et 5 

al. 1994; Melchinger et al. 1994; Ellis et al. 1997; and Russell et al. 2000) though the loss in 6 

diversity due to modern breeding may have been partially offset by the subsequent introgression 7 

of disease resistances (Koebner et al. 2003). Historical records indicate that genetic erosion may 8 

have occurred as a consequence of the use of a very limited number of landraces and primitive 9 

cultivars in crosses during the earlier stages of modern breeding in Europe (Fischbeck 1992). It 10 

is likely, therefore, that genetic diversity present across original European landraces has not 11 

been fully exploited.  12 

In Spain, the National Centre for Plant Genetic Resources holds a collection of over 2000 13 

accessions of cultivated barley, most of which are native landraces collected in the first half of 14 

the 20th century (Lasa et al. 2001). Given their history of selection under Mediterranean 15 

conditions, over a long period of time (i.e., barley cultivation in Spain dates back to prehistoric 16 

times), they may harbour adaptive genes and alleles that have escaped mainstream breeding. An 17 

evaluation of the diversity represented by this genetic resource is necessary in order to facilitate 18 

its use in future cultivar development. To this end, a core collection of the accessions held at the 19 

national repository (Spanish Barley Core Collection or SBCC) was systematically assembled 20 

(Igartua et al. 1998). 21 

We chose microsatellite markers, as this system has been used effectively in diversity studies in 22 

barley (Struss and Plieske 1998, Russell et al. 2000; Matus and Hayes 2002; Russell et al. 2003, 23 

Malysheva-Otto et al. 2006; Pandey et al. 2006; Orabi et al. 2007). The main objective of this 24 

study was the characterization of the genetic diversity present in Spanish barleys, by means of 25 



 4

molecular markers, and their relationship to the standard breeding genepool, represented by a 1 

set of reference mostly European cultivars.  2 

 3 

 4 

Materials and  Methods 5 

Plant material  6 

A total of 225 six-row and two-row barley genotypes were included in this study, 159 of which 7 

are inbred lines from the SBCC (Igartua et al. 1998). These inbred lines from the SBCC were 8 

derived from single spikes chosen from each original landrace population, followed by single-9 

spike selfing for at least four times to ensure high levels of homozygosity (Lasa et al. 2001). 10 

Entries were divided into four groups, according to their geographic origin and row type: 11 

Spanish six-row, Reference six-row, Spanish two-row and Reference two-row (Table 1, 12 

Supplementary Material Table S1). The Spanish six-row group was comprised of 148 SBCC 13 

inbred lines and four cultivars, three of which were derived directly from landraces. The 14 

Reference six-row set comprised 33 genotypes: 27 European, 3 American (Mammuth, Morex, 15 

Steptoe), and 3 from CIMMYT-ICARDA origins (Orria, S-36, and S-45). The Spanish two-row 16 

group consisted of 11 SBCC inbred lines, whereas the Reference two-row set comprised 27 17 

cultivars from other European countries (including some bred in Spain from European parents), 18 

1 American (Logan) and 1 from ICARDA (S-7). The majority of accessions in the six-row 19 

Reference group were chosen because they represented material that formed the ancestors of 20 

most modern European cultivars (Baumer and Cais, 2000). Other cultivars in this group were 21 

either among the most used cultivars in Spain (Steptoe, Barberousse, Dobla, Hatif), or were 22 

parents in the Spanish National Barley Breeding Programme (Plaisant, Logan, Orria, ICARDA 23 

materials). The accessions in the two-row Reference group were either widely used cultivars in 24 
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Spain or parents in the Breeding Programme. Most of them were European, and provide a 1 

representative sample of European two-row barley diversity. 2 

Molecular marker analyses 3 

Samples of leaf tissue were taken from 8-10 plants per genotype, 14 days after sowing in paper-4 

pots in the greenhouse. DNA extraction was carried out following a CTAB procedure, as 5 

described in Casas et al. (1998). The entire set of 225 genotypes was genotyped for 64 6 

microsatellites, also known as simple sequence repeats (SSRs), (Supplementary Material Table 7 

S2) and for one sequence tagged site (STS) MWG699. This STS is closely linked to vrs1, the 8 

gene controlling ear type and that has been proposed as a diagnostic marker for barley origin 9 

(Tanno et al 1999; 2002). SSR primer pair sequences and amplification conditions were 10 

obtained from Pillen et al. (2000), Ramsay et al. (2000) and Macaulay et al. (2001). PCR 11 

amplifications were carried out in a final volume of 15 µl, containing 50 ng of genomic DNA, 12 

1x PCR Buffer (Biotools, Madrid, Spain), 2 mM MgCl2, 15 pmol of forward and reverse 13 

primers, dNTPs at 0.2 mM each, and 0.4 U of Tth DNA Polymerase (Biotools, Madrid, Spain).  14 

Equal volumes of electrophoresis loading buffer containing 95% formamide were added to the 15 

samples, which were then denatured at 95ºC, quickly cooled and electrophoresed in 5% 16 

polyacrylamide gels. A 30-330 bp AFLP Ladder (Invitrogen) was also loaded and products 17 

visualized by silver staining (Bassam et al. 1991). Gels were scanned with a Molecular Imager 18 

FX (Bio-Rad) and product sizes estimated using the Diversity Database software (Bio-Rad). 19 

Two cultivars were included as checks in each gel with these checks being polymorphic for the 20 

markers assayed. A set of 40 cultivars was assayed first for all markers, providing information 21 

on allele diversity and size at each marker. After all samples had been tested, the 22 

polymorphisms found were confirmed by running a set of verification gels for each marker with 23 

genotypes representing all apparent allele sizes. 24 
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Twelve SSRs, Bmag136, Bmag013, Bmag384, Bmag353, EBmac701, EBmac970, Bmac113, 1 

Bmag223, EBmac806, Bmag206, Bmag120, and Bmag135 were analysed using an ABI 310 2 

automated sequencer (Applied Biosystems). PCR products were run together with the internal 3 

lane size standard GeneScan 500 [TAMRA] according to supplier’s instructions. The results 4 

were processed with GeneScan software.  5 

Nearly all SSR used produced a single band per genotype. Double bands were observed in low 6 

frequency, and were even rarer among the SBCC landraces, which confirms their 7 

homozygosity. A single SBCC genotype showed double bands, for six SSRs and three cultivars 8 

showed double bands, at 13 SSRs in total. All potential cases of double bands were confirmed 9 

with additional PCR runs. When double bands were detected, the most intense was taken as 10 

representative and used for subsequent analyses. 11 

Genetic diversity 12 

The level of polymorphism of each locus was calculated according to Nei (1973), by using the 13 

gene diversity index, also known as polymorphism information content, 14 

PIC =  21 iP   15 

in which Pi is the frequency of the ith SSR allele. 16 

Manhattan (city block) distances between individuals were calculated with the computer 17 

program NTYSYS pc v. 2.1. (Rohlf 2000). This distance is based on the sum of the absolute 18 

number of repeat differences between genotypes and represents the analogous non-squared 19 

version of the ()2 distance measure (Goldstein et al. 1995), 20 
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where xki and xkj are the repeat sizes of the alleles in the ith and jth individuals at the kth locus,  1 

and n is the number of loci analysed. The distance matrix was used for a Principal Coordinate 2 

Analysis (PcoA module of NTSYS). 3 

Analysis of molecular variance (AMOVA) 4 

The analysis of the distribution of genetic variation across the germplasm groups established a 5 

priori was done using the AMOVA option of Arlequin software package (Arlequin software, 6 

Schneider et al. 2000). Fixation statistics (FST and RST, corresponding to the infinite allele and 7 

the stepwise mutation models of SSR evolution, IAM and SMM, respectively) were produced 8 

for individual SSRs and groups of germplasm. The significance of the estimates was obtained 9 

through permutation tests, using one thousand permutations. The significance level chosen was 10 

0.0008, which corresponds to a genome-wise significance level of 0.05 for 64 independent tests 11 

(one for each marker), applying a Bonferroni correction. 12 

Analysis of genetic structure 13 

Genotypes were classified into genetic clusters according to molecular markers, using a model-14 

based approach with the software package STRUCTURE (Falush et al. 2003). Given a value for 15 

the assumed number of subpopulations (clusters), this method assigns genotypes from the entire 16 

sample to clusters in a way that Hardy-Weinberg equilibrium is maximized within clusters, and 17 

linkage disequilibrium is accounted for by differences in allele frequencies among clusters. As 18 

the lines used for this study are homozygous, we used the method to detect exclusively 19 

association between marker loci rather than including within-marker locus variation (Kraakman 20 

et al. 2004). The analyses were done according to the linkage model in STRUCTURE (Falush et 21 

al. 2003). 22 
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Several runs of STRUCTURE were done by setting the number of subpopulations (K) from 1 to 1 

10. For each run, batches of runs were carried out using burn-in time and replication numbers 2 

set to 10,000 (as several runs with these numbers set at 50,000 gave very similar results). 3 

Distribution of genetic diversity according to geographic and climatic factors 4 

The relationship of the populations defined by cluster analysis with climate and geography was 5 

examined. Factors considered were: altitude, latitude, rainfall, temperature, total 6 

evapotranspiration (ETP), Turc index, Papadakis climatic index, and agroecological region (a 7 

division of geographic zones based on historic barley production, defined in Igartua et al. 1998). 8 

Rainfall, temperature and ETP were calculated as annual means, and as seasonal means: Autumn 9 

(mean of October, November and December), Winter (January, February, March), and Spring 10 

(April, May, June). Turc index is an estimation of the agronomic productivity of a region, based 11 

on correlations between climatic factors and production over a long period of time, and is 12 

expressed as tons of dry matter per hectare of an adapted plant under standard cultivation 13 

(Ruimy et al. 1996). Papadakis climatic index is an international standard for this purpose. It 14 

classifies climates according to the factors that affect crop development most, namely 15 

temperature and humidity (Papadakis 1975). Data were extracted from the SIGA service 16 

(Spanish acronym for Geographic Information System for Agriculture) of the Spanish Ministry 17 

of Agriculture, Fisheries, and Food (http://www.mapa.es/es/sig/pags/siga/intro.htm). This site 18 

provides monthly averages of climatic data for 4186 locations over the country (averaged from 19 

1960 until 1996) collected by the National Institute of Meteorology. We had coordinates for the 20 

collections sites of all landrace-derived accessions from the SBCC. For 77 accessions, 21 

collection localities also had weather stations. For the rest, the nearest most similar location 22 

with climatic records was chosen. In 34 cases, climatic stations were less than 10 km away from 23 

collection sites; for an additional 35 cases, weather stations were within a 20 km radius; leaving 24 

only 13 cases where weather stations were over 20 km from the collection sites. When several 25 
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weather stations were available at similar distances we chose the one that most closely 1 

resembled the collection site in altitude and orientation.   2 

Association of markers and alleles with geographic and climatic factors was explored by means 3 

of linear regression analyses. Only alleles that were present in over 5% of the entries analysed 4 

were used for this purpose. Regressions of markers on climatic and geographic factors were 5 

carried out using PROC GLM (SAS 1988). Alleles were introduced in the model as dependent 6 

variables, whereas geographic and climatic factors were the independent variables. Significance 7 

was calculated for the model, which included only one allele, with the significance threshold set 8 

at 0.05, using a Bonferroni correction, as mentioned before. The association to climate types 9 

according to Papadakis index was done by analysis of variance (using similar significance levels 10 

as for the regression analyses). 11 

 12 

Results  13 

SSR diversity 14 

Overall, 669 alleles were found for the 225 genotypes and 64 SSRs (Supplementary Material 15 

Table S2). Null alleles were found at five loci (HvLTPPB, HvDHN7, EBmac806, Bmag135, 16 

and HvGLB2). The number of alleles per locus varied between 2 and 38, with a mean of 10.5 17 

alleles per locus. A sizeable proportion of alleles (34.1%) were restricted to one of the four 18 

germplasm groups. Although differences in sample size need to be considered, the number of 19 

unique alleles was much higher within the group of six-row Spanish barleys (184 out of 228). 20 

Most of these were rare alleles, present at very low frequencies, but nine of them were found in 21 

more than 10% of the individuals of the corresponding germplasm group. 22 
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Overall the Spanish six-row genotypes were more diverse than the Reference six-row group 1 

(average diversity index across all loci of 0.62 vs 0.58, Supplementary Material Table S2). The 2 

level of diversity in both two-row groups was lower (0.53 and 0.54). A few alleles were fixed at 3 

some groups. For instance, all the genotypes of the Spanish six-row group had the same allele at 4 

the HvHVA1 (136 bp) and HvCMA (133 bp) loci.  5 

 6 

Genetic variance among the four groups of germplasm defined a priori 7 

The analysis of molecular variance for the germplasm groups defined a priori revealed 8 

significant FST and RST parameters, for both six-row and two-row comparisons (Supplementary 9 

Material Table S3). Genetic divergence between the Spanish and Reference six-row groups was 10 

10.4 % for FST, whereas it was 21.4% for RST. For the comparison between the two-row groups, 11 

the FST was similar (11.9%), but RST was much lower than the value for between the six-row 12 

groups (7.5%).  13 

A principal coordinate analysis was carried out on the Manhattan distance matrix for the 64 loci 14 

and 225 genotypes (Fig. 1). The first axis alone explained 12.7% of the variance, and divided 15 

mainly the Spanish six-row group from the other three germplasm groups. The second axis 16 

explained 5.6% of the marker variance, and separated mostly both two-row groups from the 17 

Reference six-row group. Twenty nine of the 66 cultivars analysed, are included in the 18 

European Barley Core Collection (http://www.barley.ipk-gatersleben.de/ebdb.php3), among 19 

them the Spanish cultivars Albacete and Candela. These 29 cultivars are identified in Fig. 1, to 20 

provide anchor points for interpretation of the results.  21 

The grouping of genotypes observed in Fig. 1 did not follow entirely the groups made a priori. 22 

After these results, we considered appropriate to investigate the genetic structure of the 23 
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germplasm studied, especially to address the question of whether highly diverse Spanish six-1 

row barleys constitute a single group. 2 

Genetic structure 3 

We detected an underlying structure, with at least four populations, based on the criterion of 4 

maximization of the natural log probability of the data, which is proportional to the posterior 5 

probability of K (Falush et al. 2003). The results did not point to a clear cut-off point for the 6 

number of populations in our sample but, for practical purposes, the K=4 solution seemed 7 

sensible, as the increase of the log tapered off after this value (Fig. 2). At this level, every run 8 

produced almost exactly the same populations, whereas this consistency decreased notably for 9 

values of K above 4. Also, 72% of genotypes were assigned to one of the four populations with 10 

membership probabilities ≥0.75. Therefore, this level seemed the smallest value of K that 11 

captured the major structure of the data.   12 

The first split divided a majority of six-row Spanish lines from the rest (Fig. 3). The second split 13 

(K=3) separated two populations among the group of Spanish six-row landraces differentiated 14 

in the previous step (colours red and blue Fig. 3). The third step (K=4) separated Reference six-15 

row genotypes, together with a few Spanish, from all two-row genotypes (grey and green in Fig. 16 

3) .  17 

The genotypes were spread among the four populations as follows: Population I had 55 18 

genotypes, 31 of them from the Reference six-row group, 6 from the Reference two-row (all of 19 

them winter cultivars), and 18 lines from the Spanish six-row group. Population II comprised 34 20 

genotypes, including all spring and four winter cultivars from the Reference two-row group, 9 21 

lines from the Spanish two-row group, and 2 from the Reference six-row group (Dobla, Olli). 22 

Population III included 50 lines from the Spanish six-row group. Population IV comprised 86 23 

lines, also all of them of the Spanish six-row group.  24 
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Genetic divergence among populations was highly significant (Table 2). FST and especially, RST 1 

values were higher when the comparison involved populations dominated by genotypes from 2 

the Reference sets (I or II) with populations dominated by SBCC genotypes (III and IV). The 3 

lowest values corresponded to the comparisons between the populations dominated by Spanish 4 

genotypes (III and IV). The second analysis, run separately for populations III and IV, also 5 

indicated a subpopulation structure, more evident for population III (Table 2). 6 

Association of groups with geographic and climatic factors 7 

The distribution of the populations revealed in the previous section followed quite closely the 8 

distribution of climates in the Iberian peninsula, after the index of Papadakis (Fig. 4a,b). This 9 

was particularly true for genotypes belonging in the populations III and IV. Population III 10 

genotypes came from areas with Temperate Mediterranean climates, whereas population IV 11 

came from regions with Maritime, Subtropical Mediterranean and Continental Mediterranean 12 

climates. This apparently non-random distribution was confirmed by the analysis of population 13 

averages for a set of ecogeographic variables (Table 3). Population II, with 9 out the 11 SBCC 14 

two-row genotypes, came mostly from inland Northern Spain, with the lowest yearly 15 

temperatures on average, largest overall rainfall, and highest Turc productivity index. There 16 

were also marked differences between the two main populations of SBCC genotypes (III, and 17 

IV). Population IV had the lowest average for altitude, latitude, and spring rainfall, whereas it 18 

had the highest values for temperature, evapotranspiration, and autumn rainfall. The resulting 19 

Turc index was rather high. Overall, this is the profile of a relatively warm area, with sufficient 20 

water in the beginning of the growth cycle, followed by terminal water stress. Population I 21 

averages were intermediate between values of populations III and IV.  22 

The analyses of association for single alleles were carried out for a total of 277 alleles with a 23 

frequency greater than 5% among the SBCC genotypes. The climatic variables for Autumn are 24 

not shown, as they presented very high correlation coefficients with the corresponding Winter 25 
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variables. About 50% of the markers (31 out of 64 SSRs) showed association of at least one 1 

allele with some geographic or climatic factor (Table 4). The largest number of associations 2 

occurred with Papadakis climate index and Agroecological region, followed by associations 3 

with Temperature and Evapotranspiration variables. Latitude, Altitude and Precipitation 4 

variables showed less associations and Turc productivity index had the least number (five) 5 

associated markers (Table 4).  6 

The distribution of MWG699 haplotypes over populations of genotypes defined in this study 7 

was clearly different between populations (Table 5). Haplotype D was the most frequent, with 8 

highest frequencies in Populations I and III (Fig. 4b). Conversely, haplotype A was more 9 

frequent in Population IV, and haplotype K was clearly predominant amongst the genotypes of 10 

Population II. All entries with the K haplotype were two-row. The distribution of haplotypes in 11 

the subpopulations of populations III and IV was even more biased.  12 
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Discussion 14 

Genetic diversity in groups defined a priori 15 

The average number of alleles per locus (10.5, Supplementary Material Table S2) was higher 16 

than comparable figures reported in other studies for cultivated barley (Russell et al. 1997; 17 

Macaulay et al. 2001; Karakousis et al. 2003; Sjakste et al. 2003). Although many markers are 18 

in common among these studies and ours, they surveyed smaller samples than that of the current 19 

study. The level of diversity found in our sample is closer to values reported in studies with 20 

populations of Hordeum spontaneum (Ivandic et al. 2002; Baek et al. 2003), or large diverse 21 

sets of cultivated barley (Russell et al. 2000; Matus and Hayes 2002). Thus, we can conclude 22 

that we are studying a sample of Hordeum vulgare types with considerable polymorphism. 23 

Notably, we had 14 SSRs in common with the worldwide survey of cultivated barley diversity 24 

carried out by Malysheva-Otto et al. (2006). In the present study, the average number of alleles 25 
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and PIC for these 14 loci were 12.1 and 0.72, respectively, compared with 18.6 and 0.79 for the 1 

worldwide study.   2 

On average, SSRs derived from genic sequences were less polymorphic than SSRs from random 3 

genomic clones (6.5 vs 12.1 alleles per locus). Interestingly, most of the gene-derived markers 4 

in our study showed higher diversity values than previously reported for a set of elite German 5 

cultivars (Pillen et al. 2000). The high values of diversity detected were mostly due to the large 6 

number of alleles (591) present in the six-row Spanish group, 34.1% of which were private 7 

alleles. As pointed out by Matus and Hayes (2002), the presence of so many unique alleles 8 

could be an indication of the relatively high rate of mutation at SSR loci, or could also point to 9 

the existence of exotic germplasm that could be a reservoir for novel alleles for crop 10 

improvement. Thus, the high diversity of the Spanish six-row accessions, coupled with the high 11 

number of unique alleles, could be explained by a rather long history of isolation from other 12 

European countries and concurrent genetic drift or selection for adaptation to local constraints. 13 

The generally low frequency of most private alleles is consistent with a genetic drift explanation 14 

but the presence of some private alleles with high frequencies in Spanish barleys, however, 15 

suggests the effect of selection pressure. The distribution of five of the nine private alleles 16 

present in high frequencies in the Spanish six-row group was related to geographical factors. 17 

The association of the distribution of genetic diversity with geographic patterns also points at 18 

the presence of selection pressure favouring alleles associated with better local adaptation 19 

(Tables 3, 4).  20 

The molecular analysis of variance revealed a remarkable genetic divergence between the 21 

Spanish and Reference sets. FST values among them were similar to values found by Maestri et 22 

al. (2002) and Koebner et al. (2003) for comparisons between winter and spring barleys, two 23 

quite distinct germplasm groups. The divergence between Spanish and Reference groups was 24 

similar for both the two-row and six-row barleys, using an IAM (measured by the FST, 25 
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Supplementary Material Table S3). However using a SMM (RST statistic), the Spanish and 1 

Reference six-row barleys would be more distinct than the two-row groups. This was caused by 2 

the fact that differences in allele frequencies between groups were similar in number for both 3 

row types but, for the six-row groups, the alleles with different frequencies among groups were 4 

also more distant in size. Accordingly, there were more SSRs clearly discriminating between the 5 

Spanish and Reference sets for the six-row than for the two-row groups (Supplementary 6 

Material Table S3). The level of genetic differentiation between Spanish and Reference sets was 7 

not as high as found among barley landraces from Syria and Jordan (RST = 32.04) (Russell et al. 8 

2003) but were close to the values found between populations of wild barley from different 9 

countries (FST = 7.75~10.54, and RST = 8.58 ~ 10.59) (Ivandic et al. 2002). For some markers, 10 

both FST and RST indices were significant, whereas for others only one of the two statistics, 11 

usually FST, was significant, as found also by Ivandic et al. (2002), who recommended the use of 12 

both indices to provide maximum information on allele differentiation among groups of 13 

genotypes. 14 

The evidence suggests that the Spanish six-row barleys are more distinct from their Reference 15 

counterparts than the two-row types. The principal coordinate analysis supported this, as about 16 

half of the Spanish two-row barleys clustered mostly with cultivars from the Reference two-row 17 

set (Fig. 1), especially with spring cultivars (Beka, Triumph, and Alexis). Other Spanish two-18 

row entries clustered closer to the six-row barleys, intermediate between the Spanish and 19 

Reference sets. Nevertheless, the observations on the Spanish two-row set cannot be conclusive, 20 

because of the small sample size. This size was set to be proportional to their prevalence in the 21 

original collection of Spanish barleys (Igartua et al., 1998). 22 

The Spanish six-row genotypes generally formed a distinct group, with only a few genotypes 23 

clustering with genotypes of the Reference sets (about 16 in total). The distinct cluster of 24 

Spanish six-row genotypes, however, showed a remarkable internal diversity that was 25 
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comparable to the two Reference sets combined, given the scatter of their respective points on 1 

the principal coordinate analysis (Figure 1). 2 

Interestingly, the Mediterranean cultivar Athenais (from Greece) appeared to show a relatively 3 

higher degree of genetic relatedness to Spanish accessions compared with other non-4 

Mediterranean cultivars.  5 

Genetic Structure 6 

The use of the STRUCTURE clustering algorithm allowed the identification of subpopulations 7 

of genotypes, based on their genetic similarity. This procedure has been used for clustering of 8 

collections of inbred lines in maize (Remington et al. 2001, Jung et al. 2004), Arabidopsis 9 

(Olsen et al. 2004), rice (Garris et al. 2003), wheat (Chao et al. 2007) and barley (Pandey et al. 10 

2006; Morrell and Clegg 2007), among other crops. In all these studies, authors found evidence 11 

of population substructure though Kraakman et al. (2004) did not find any substructure among a 12 

collection of recent spring barley cultivars. In our study, we have clearly and consistently 13 

identified four populations, two dominated by Spanish six-row entries, and two clearly formed 14 

around the Reference sets.  15 

The two main Spanish populations (III and IV) were identified by the STRUCTURE analysis at 16 

K=3, prior to the separation of populations I and II, which comprised all the entries from the 17 

Reference sets (K=4). This does not necessarily imply that the two main Spanish populations 18 

presented larger genetic divergence than populations I and II (basically two-row vs. six-row 19 

Reference sets) as the population sizes were not equal and this may well have affected the order 20 

of population identification. Indeed the FST snd RST fixation indices (Table 2) showed that the 21 

genetic divergence between populations III and IV was slightly less than that between 22 

populations I and II.  It is still remarkable, however, that the split between the two large Spanish 23 

populations and the two populations dominated by Reference sets entries are roughly 24 
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comparable as the Reference sets were very diverse, including cultivars of all growth and row 1 

types (spring and winter, two-row and six-row) and represented the range of germplasm that 2 

largely underpins current European barley cultivars.  The AMOVA of the four populations 3 

derived from the STRUCTURE analysis confirmed the genetic divergence among them. The 4 

range of values observed for FST and RST among populations was similar to the range found in a 5 

comparison of landraces from Jordan and Syria by Russell et al. (2003).  6 

 7 

Association of populations with geographic and climatic factors 8 

The two main Spanish populations were distributed according to geographic patterns, and 9 

roughly following a North-South direction (Fig. 4), though some groupings independent from 10 

geography were also observed.  11 

A few studies have shown that correlations of climatic factors with genetic diversity assessed 12 

with SSRs are prevalent in H. spontaneum. (Turpeinen et al. 2001; Baek et al. 2003; Ivandic et 13 

al. 2002, 2003). Nevo et al. (2005) even suggested a possible adaptive role for the SSRs 14 

themselves, in a situation dominated by abiotic stresses. Some of the associations found by 15 

these authors were confirmed in the present study (Table 4). This was true for 6 markers 16 

(HvM62, HvLTPPB, Bmag369, Bmag378, HvBTAI3, HvM67). In another two cases, we 17 

detected similar associations to those found by Ivandic et al. (2002), but using different markers 18 

in the same regions. In this study HvM62 and Bmag369 alleles correlated with temperature and 19 

rainfall, whereas Ivandic et al.(2002) found Bmac29 (close to HvM62) and Bmac273 and 20 

Bmag120 (flanking Bmag369) were associated with humidity.  21 

The main climatic factors affecting the distribution of barley cultivars are temperature and water 22 

availability (Morris et al. 1991). Accordingly, we divided the markers associated with climatic 23 

and ecogeographic factors in five groups: markers with association to temperature and rainfall 24 
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distribution; markers related to only one of these two factors; markers related to other climatic 1 

factors; markers related only to complex geographic indexes (Table 4). As climatic factors were 2 

themselves correlated it is difficult to discriminate the effect of single factors however by 3 

looking at the number of associations, temperature seemed to be the single climatic factor which 4 

most affected the distribution of marker alleles in the SBCC landraces.  5 

Thus, adaptation to ecogeographic factors could be one of the causes of the observed 6 

subpopulation structure of the SBCC. It cannot be concluded, however, that there are loci for 7 

adaptation linked to the SSRs whose distribution is associated with geography and climate. The 8 

genetic diversity of this sample of germplasm was clearly stratified in populations (Fig. 3), and 9 

these populations were seemingly distributed along eco-geographic gradients (Table 3). Thus  10 

the distribution of entries from populations III, IV-I, and IV-II followed a gradient of 11 

agroecological conditions occurring in the barley growing area of the Iberian peninsula, 12 

following the main climatic clines. Therefore, any marker that had uneven distribution across 13 

genotypic subpopulations would necessarily appear associated to geographic or climatic factors 14 

for which subpopulations also differ. Actually, there were similarities between locus by locus 15 

FST (not shown) calculated for the four populations presented in Table 2, and the strength of loci 16 

association with eco-geographic traits. This was especially true when the analysis was based 17 

only on populations III and IV which included the majority of SBCC entries, and showed 18 

clearly distinct eco-geographic distributions (Table 3). Markers (31) that showed association 19 

with eco-geographic factors showed an average FST of 0.18 between these populations,  which 20 

was significantly (P<0.0001) larger than the average FST value of 0.05 for the rest of the marker 21 

loci. For these two populations, the correlation coefficient of FST with number of associations 22 

was 0.64. The reason for uneven distribution of marker alleles over subpopulations could be the 23 

selection for adaptation to local environments (Russell et al. 2003) but could also be due to 24 

incomplete admixture of populations from different origins, with different phylogenetic 25 

histories. Further efforts to elucidate the causes of this biased marker distribution will need to 26 
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focus on the existence of unlinked gene complexes, distribution of functional polymorphisms, 1 

and search of molecular signatures of selection.    2 

All evidence found points to the existence of at least two large distinct populations of Spanish 3 

six-row barleys (III and IV), spread over different environments. In order to investigate whether 4 

these populations have a different origin all material in this study were genotyped with the STS 5 

MWG699, which was proposed by Tanno et al. (1999, 2002) as a marker of barley 6 

domestication. The marker shows three haplotypes, named A, D, and K, the last one being only 7 

reported in two-row barleys. Tanno et al. (2002) found the A haplotype widely spread, whereas 8 

D was confined to the Mediterranean region, though Casas et al. (2005) found a more widely 9 

spread distribution of D haplotype over Europe and a possible association of this marker with 10 

plant growth type.  11 

The distribution of MWG699 haplotypes over the populations and subpopulations found in this 12 

study reflects the population structure and the distribution of the SSRs used to identify the 13 

populations (Table 5). If this marker does reflect domestication history, then the evidence found 14 

suggests the presence of two different origins for SBCC barleys, that may be related to the 15 

influx of different human populations coming into the Iberian peninsula in historic or prehistoric 16 

times. Alternatively, there could be a substratum of barleys in Spain that originate from a 17 

domestication event in the Western Mediterranean region (possibly represented by the 18 

MWG699 D haplotype), as several authors propose a polyphyletic origin for barley (Komatsuda 19 

et al. 1994; Morrell and Clegg 2007; Orabi et al. 2007), and some evidence points to a Western 20 

Mediterranean centre of origin or diversity for barley (Moralejo et al. 1994; Molina-Cano et al. 21 

1987, 2005). Interestingly both Casas et al. (2005) and Tanno et al. (2002) found that the 22 

MWG699 D haplotype was present in some H. spontaneum accessions from Morocco. 23 

In conclusion, we propose the hypothesis that the SBCC genotypes have at least two different 24 

origins, and that the distribution of their original landrace populations over the Iberian peninsula 25 
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followed patterns of adaptation to local conditions. This adaptation may have been due to 1 

distinct fitness of founder populations to different climates, to new variability created through 2 

admixture and recombination of original populations, or to specific adaptations that developed 3 

locally. Further studies on the SBCC should shed light on the causes of adaptation, specifically 4 

on traits and genes that led to its distribution. Such studies will also facilitate the utilization of 5 

this important genetic resource as a source of useful novel alleles in future breeding 6 

programmes. 7 
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Table 1. Barley genotypes analysed (detailed information on cultivars in Supplementary 
material Table S1). 

Plant material Nº of accessions 
Six-row  
 Spanish 

- Inbred lines derived from local landraces (SBCC) 148
- Cultivars 

Albacete, Almunia, Candela, Pané 4
 Reference set 

Ager, Asplund, Athenais, Athene, Banteng, Barberousse, 
Bordia, Dea, Dobla, Dura, Frisia, Gerbel, Hatif de Grignon, 
Hauter, Herfodia, Juli, Mammuth, Maskin, Mirco, Monlon, 
Morex, Olli, Orria, Plaisant, Ragusa, Senta, Steptoe, S-36, S-
45, Tapir, Vega Svalöf, Vindicat, Vogelsanger Gold 33

Two-row 
 Spanish 

- Inbred lines derived from local landraces (SBCC) 11
 Reference set 

Albaicín, Alexis, Alpha, Angora, Beka, Camelot, Cameo, 
Clarine, Gaelic, Graphic, Hassan, Hispanic, Igri, Kym, 
Labea, Logan, Mogador, Nevada, Pallas, PC-4, Seira, 
S-7, Tipper, Tremois, Triumph, Union, Volga, Wisa, Zaida. 29
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Table 2. FST and RST statistics for pairwise comparisons between the populations (named in 
Roman numerals I through IV) and subpopulations of barley genotypes defined by the analysis 
carried out with the STRUCTURE package for K=4.  

FST  RST 
Populations I II III IV Populations I II III IV 
II 13.0 -   II 12.6 -   
III 14.0 23.3 -  III 20.9 32.0 -  
IV 11.9 23.0 11.8 - IV 19.9 32.8 10.5 - 
Subpopulations III-1 III-2 III-3  Subpopulations III-1 III-2 III-3  
III-2 51.3 -   III-2 70.0 -   
III-3 25.4 21.5 -  III-3 25.7 29.8 -  
Subpopulations IV-1 IV-2   Subpopulations IV-1 IV-2   
IV-2 8.3 -   IV-2 7.3 -   
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Table 3. Means and standard deviations of geographic and climatic factors for the landrace-derived inbred lines of the SBCC of the four populations, and 
population IV subpopulations, deduced from the population structure analyses. 

Populations Altitude (m) 
Latitude 
(degrees) 

Temperature 
(degrees) ETP (mm) 

Autumn rainfall 
(mm) 

Winter rainfall 
(mm) 

Spring rainfall 
(mm) 

Turc productivity 
index 

(# lines) Mean* SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

I (18) 689 a 337 40.8 a 1.7 14.6 b 2.5 727 b 88 54.7 ab 18.0 44.4 a 17.4 48.9 b 13.7 14.2 ab 6.0 

II (9) 817 a 411 41.6 a 0.7 13.7 b 2.3 694 b 74 63.1 ab 35.7 48.5 a 34.5 60.5 a 14.5 16.8 a 7.8 

III (50) 757 a 219 40.6 a 1.1 14.9 b 2.0 733 b 74 49.6 b 12.3 42.0 a 12.2 45.6 b 8.8 10.9 b 4.6 

IV (82) 490 b 329 38.9 b 2.8 16.8 a 2.3 804 a 87 62.2 a 25.4 50.2 a 25.0 42.5 b 16.9 15.4 a 6.5 

Subpopulations         

IV-1 (23) 621 a 300 40.4 a 3.0 15.3 b 1.8 744 b 64 52.4 b 25.0 41.7 a 25.6 49.3 a 18.5 13.7 a 7.2 

IV-2 (59) 439 b 328 38.3 b 2.5 17.5 a 2.2 827 a 83 66.0 a 24.7 53.5 a 24.2 39.8 b 15.6 16.0 a 6.2 
*Means followed by the same letter within columns are not significantly different for P<0.05. 
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Table 4. Loci with at least some individual allele presenting significant associations with 
ecogeographic and climatic factors, for a locus-wise probability P<0.00018, equivalent to 
P<0.05 at the genome-wise level for 277 independent comparisons. 

Loci related with similar variables are grouped as follows (from top down): association to 
temperature and rainfall; association to either temperature or rainfall; association to other 
climatic factors; association to complex geographic indexes). Also shown, associations of 
distribution of these loci with geographic and climatic factors described in the literature 
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3H HvM62 (3H) R/E A

3H HvLTPPB (3H) T G

2H Bmac134 (2H) G

7H Bmag369 (7H) A

4H HvBTAI3 (4H)

4H HvM003 (4H) R R G G

1H HvGLUEND (1H)

2H Bmag378 (2H) T/R

3H Bmag136 (3H)

6H Bmac316 (6H) G G

1H HvALAAT (1H)

5H Bmac113 (5H) G G

3H Bmag006 (3H)

2H Bmac132 (2H)

1H Bmac399 (1H) G G

1H HvM20 (1H) A G G

7H Bmac156 (7H) G

4H HvM67 (4H) R/E A G

2H Bmag125 (2H) G

1H HvHVA1 (1H) G

4H HvM40 (4H) R
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TOTAL 19 15 8 8 5 14 8 4 4 10 5 4 4

A Altitude
E Evapotranspiration
G Geographical differences among landrace populations
L Latitude
R Rainfall, water availability, humidity
T Temperature
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Table 5. Distribution of STS MWG699 haplotypes across populations derived from 
population structure analyses. 

Haplotype Populations and 
subpopulations 

Nº of 
genotypes A D K 

I 55 22 26 7 
II 34 4 2 28 
III 50 9 40 1 

III-1 8 8 0 0 
III-2 12 0 12 0 
III-3 30 1 28 1 

IV 86 51 35 0 
IV-1 24 4 20 0 
IV-2 62 47 15 0 

Total 225 86 103 36 
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Figure 1. Associations among 225 genotypes of barley revealed by principal coordinate analysis performed on genetic distances calculated from 64 SSR 

data. The first principal coordinate differentiates most of the Spanish six-row landraces from other European cultivars. Genotypes included in the 

European Barley Core Collection are labelled. 
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Figure 2. Evolution of the natural log probability of the data, which is proportional to the 

posterior probability of K, against K (number of populations). Values are the mean of 25 runs of 

the package STRUCTURE. 
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Figure 3. Clustering process using SSR information for 225 barley genotypes, and the package 

STRUCTURE. Genotypes are represented in columns. K is the number of populations. 

Genotypes are classified according to the a priori germplasm group, except in the last tier (Final 

populations), where they are classified by Q (the probability of membership of every genotype 

to each population, identified by colour). A second STRUCTURE analysis for populations III 

and IV is shown in the lower part of the Figure.  
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Figure 4. Distribution of 159 Spanish landraces of the Spanish Barley Core Collection, 

according to their classification in four populations (see text). Genotypes are placed according 

to latitude and longitude of collection sites. The key for the climates according to Papadakis 

index is given at the lower right corner (TM, Temperate Mediterranean; FTM, Fresh Temperate 

Mediterranean; STM, Subtropical Mediterranean; MM, Maritime Mediterranean; CM, 

Continental Mediterranean).  

 

 
 
 
 
 
 
 
 


