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Abstract 
 

The Spanish Barley Core Collection, consisting of one hundred and fifty-nine landrace-derived 

inbred lines and sixteen cultivars, was characterized for resistance to powdery mildew (Blumeria 

graminis f. sp. hordei) using a set of 27 isolates with a wide spectra of virulences/avirulences on 

most of the genes expected to occur in Europe. No landrace-derived line and no cultivar were 

resistant to all the isolates but at least 3 landraces showed infection types below 2 for 23 isolates. 

Twenty-two landraces and one cultivar showed resistance against half of the isolates used. Eleven 

isolates were sufficient to separate the majority of resistance profiles. In total, thirty-four resistance 

spectra were detected and fourteen resistance genes/alleles were postulated alone or in combination: 

MlLa, Mlh, Mlg, Mla22, Mla7(Mlu), Mla7(Mlk), Mlk, Mla12, Mla9, Mla3, Mla6(Mla14), Mlra and 

Mla1. The majority of resistance spectra are composed only by one line. Resistance in twenty-one 

landrace-derived lines and four cultivars was based on either unidentified genes or combinations of 

known and unknown genes/alleles. Therefore, the SBCC may be a source for broadening the 

genetic base of powdery mildew resistance.  
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Introduction 

Powdery mildew caused by the biotrophic fungus Blumeria graminis f.sp. hordei, is one of the most 

destructive diseases of barley (Hordeum vulgare L.) in temperate latitudes worldwide. It is of great 

economic importance as it causes yield as well as seed quality losses (Zhang et al. 2005). The 

management of the disease normally involves the use of fungicides. However, their high cost, the 

environmental concerns and the insensitivity built up in the pathogen populations, have already led 

to a gradual limitation of their use in the past (Gullino and Kuijpers 1994). A cheaper and 

environment-friendly alternative to control this pathogen is the use of resistant cultivars. This option 

requires the knowledge of the genetics of mildew resistance in barley. Many resistance genes and 

quantitative trait loci (QTL) against powdery mildew have been identified in barley cultivars, 

landraces and wild Hordeum species (Friedt and Ordon 2007), and many of them have already been 

used in barley breeding in Europe (Brown and Jørgensen 1991). However, most of the genes 

commonly used by breeders are closely linked or allelic, which limits the number of gene 

combinations (Jørgensen 1994). Additionally, the continuous use of these genes often results in a 

selection in favour of pathotypes with the matching virulence genes in the pathogen population, and 

therefore in the ´breakdown´ of the resistance. Only the mlo resistance gene has remained highly 

effective against powdery mildew for the last 30 years. During this period, it has been introgressed 

widely into two-rowed European spring barley cultivars. However, it has been scarcely used in 

winter barley breeding in Europe (Panstruga et al. 2005; Dreiseitl 2007). Therefore, new and 

effective resistance sources are still needed, especially for six-rowed winter barleys, which are 

grown widely in Southern Europe. For this purpose, tests for resistance must be carried out in order 

to identify genes or alleles conferring powdery mildew resistance in new cultivars or inbred lines. 

These tests are normally based on the gene-for-gene hypothesis (Flor 1971), which postulates that 
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for every gene in the plant that confers resistance, there is a corresponding gene in the pathogen 

conferring avirulence.  

Landraces represent valuable reservoirs of genetic variability that may be utilized for gene and 

allele mining for disease resistance. Indeed, most of the powdery mildew resistance genes used 

commercially were derived from barley landraces (Fischbeck and Jahoor 1991). Large-scale 

cultivation of barley landraces in Europe practically ceased in the second half of the 20th century, 

with the advent of modern plant breeding. Currently, in most European countries, landraces exist 

only in gene banks (Ceccarelli et al. 2000) and they have not been fully exploited for resistances to 

powdery mildew. In Europe, attempts have been mostly conducted in Central and North-Western 

regions (Jensen et al. 1992, Caffier and de Vallavieille-Pope 1996, Dreiseitl and Jørgensen 2000). 

To our knowledge, few studies have been carried out in the European Mediterranean areas. 

Considering that the Fertile Crescent is assumed to be the original area of barley cultivation and 

North Africa one of the possible centres of barley diversification (Badr et al. 2000, Molina–Cano et 

al. 2002), we may speculate that barley landraces coming from Mediterranean regions may possess 

powdery mildew resistance genes different from those already identified in other European barleys.  

The Spanish Barley Core Collection (SBCC) (Igartua et al. 1998, Lasa 2008) comprises a 

representative sample of native landraces collected in Spain in the first half of the 20th century as 

well as some commercial cultivars successfully grown in Spain. Such landraces possess an 

important history of adaptation and selection under Mediterranean conditions which makes them a 

very attractive resource for new adaptive traits (Yahiaoui et al. 2008). Previous studies in the SBCC 

revealed the presence of significant levels of resistance to most frequently observed barley diseases, 

including powdery mildew (Silvar et al. 2010a). We can foresee that barley landraces collected 

from Spain may be a rich source of new genes for mildew resistance. 

The main goals of this study were first, to evaluate these potentially new sources of resistances to B. 

graminis by analyzing the SBCC with a wide range of isolates possessing broad spectra of 
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virulences and second, to elucidate the putative resistance genes present in Spanish lines by 

comparing their infection types and resistance spectra with those of a differential set. 

Material and methods  

 
Plant materials. The Spanish Barley Core Collection (Igartua et al. 1998), consisting of 159 (148 

six-rowed and 11 two-rowed) inbred lines derived from local landraces, and 16 commercial 

cultivars (8 six-rowed and 8 two-rowed) with a long tradition of cultivation in Spanish agriculture 

was analyzed for powdery mildew resistance (the detailed composition of the collection can be 

consulted at http://www.eead.csic.es/EEAD/barley/).  

A set of differential lines with known resistance genes was employed for gene postulation. It 

comprises 16 near-isogenic lines of ´Pallas´ (Kølster et al. 1986) carrying genes Mla1, Mla3, Mla6, 

Mla7, Mla9, Mla12, Mla13, Mla22, Mlra, Mlk, Mlat, Mlg, mlo5, MlLa and Mlh, seven European 

varieties with previously identified resistance genes mlo9, Mlu, Ml(Bw), Ml(He), Ml(Kr), Ml(Ab) 

and Ml(St) (Brown and Jørgensen 1991), six Hordeum spontaneum accessions or derived-lines 

possessing Mlf, mlt, Mlj, Mla20, Mla27 and Mla28 (Jahoor and Fischbeck 1987, 1993; Schönfeld et 

al. 1996), lines SI-1, SI-2, SI-5, SI-7, with unknown resistance and SI-6 (Mlf+mlt). The 34 

differentials include most of the genes expected to occur in Europe (Brown and Jørgensen 1991). 

The susceptible variety ´Hanna´ was used to control the inoculation efficiency. All barley plants 

were grown at 16 ºC and continuous light (10,000 lux). 

Pathogen isolates. Twenty-seven isolates of B. graminis f. sp. hordei held at the collection of the 

Julius Kühn-Institute in Kleinmachnow (Germany) were used. The names and origin of the isolates 

are shown in Table 1. The fungi were multiplied on leaf segments of the susceptible cv. ´Igri´. 

Resistance tests. Eleven days after sowing, when the primary leaf was fully expanded, three leaf 

segments of 3 cm in length were excised from each line and placed adaxial surface up in a square 

Petri dish filled with 0.6% agar and 30 ppm benzimidazole. Inoculation was carried out by blowing 
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spores from the infected leaves over the leaf segments using a settling tower. A glass slide was 

placed in the settling tower to monitor inoculum density, which was adjusted to give approximately 

2–4 conidia/mm-2. About twelve days after inoculation, the infection types (IT) were recorded on a 

scale of 0–4 (including intertypes) following the procedure of Jahoor (1986). This scale was 

broadened by including an additional symbol 0(P) for IT characterised by only a few pustules on 

otherwise mildew free leaf segments, which is sometimes expressed when the mlo gene is present. 

Plants showing ITs 0-2 were classified as resistant and plants with ITs higher than 2 were included 

in the susceptible group. 

Data analysis and gene postulation. Complexity and Gilmour Code of isolates were calculated 

using the HaGis Tool (Herrmann et al. 1999). The complexity of an isolate is defined as the number 

of differential lines which exhibit a disease reaction after infection with this isolate. The Gilmour 

method for the assignment of pathogen race names is based on an octal code for the designation of 

virulences/avirulences triplets (Gilmour 1973). Resistance complexity of each individual, 

determined as the number of negative responses (resistance) in its binary representation, and 

resistance frequency (RF), expressed as the proportion of individuals with a resistant reaction on 

each isolate from a given population, were analysed on the SBCC using the Virulence Analysis 

Tool (VAT) software (http://www.uni-giessen.de/va-tipp).  

For gene postulation, all genotypes studied were compared with the differential set and those lines 

giving the same virulence/avirulence profile with all isolates were grouped into the same reaction 

spectrum (RS). Postulation of resistance genes was done on the basis of the gene-for-gene 

hypothesis (Flor 1971) known to be valid for the barley/powdery mildew system (Czembor and 

Czembor 2001). In the case of cultivars the hypothesis that a certain resistance gene is present in a 

host was further supported by using pedigree information, when available.  

 

Results 



 7

The twenty-seven isolates of B. graminis f. sp. hordei selected for this work displayed a broad 

spectrum of virulences (Table 1). All isolates were analyzed for complexity and Gilmour Code 

based on a set of 34 barley differential lines. The majority showed high complexity values, ranging 

from 25 (highly virulent) to 0 (avirulent) (Table 1). Fourteen isolates turned out to be virulent to 

more than 50% of the lines from the differential set. The highest complexity values were observed 

for isolates 78 and 75, which infected 25 and 24 barley differential lines, respectively. On the 

contrary, isolates 121 and 120 were avirulent for most lines tested, with complexities of 0 and 3, 

respectively (Table 1). The 27 isolates used in this study all showed different Gilmour codes based 

on the infections on the differential set. Therefore, they represent different pathotypes (Table 1).  

The resistance complexity analysis of the 159 barley landrace-derived SBCC lines showed that 151 

(ca. 95%) resisted to at least one isolate of B. graminis f. sp. hordei and twenty-two lines (13.8%) 

were resistant to 50% of the isolates used (Fig. 1). About 17.2% of all reaction types were classified 

as powdery mildew resistant (scores 0, 1 and 2) (Fig. 2). Some IT scores 0(P), characteristic for the 

resistance gene mlo, were detected (Fig. 2). No line was resistant to all isolates, but at least 3 

landrace-derived lines (SBCC097, SBCC141 and SBCC145) displayed a wide spectrum of 

resistance, with an IT score ≤2 for 23 isolates. Resistance of SBCC097 was characterized by an 

infection type 0(P) to several isolates, whereas lines SBCC141 and SBCC145 showed a 

combination of infection types 0, 1 and 2 (data not shown). Fifteen cultivars showed resistance after 

inoculation with at least one of the isolates tested but only one cultivar showed resistance after 

infection with half of the isolates tested. The most resistant cultivar was ´Kym´ (SBCC171) which 

was susceptible only to six B. graminis isolates. Eight landraces (5%) and none of the cultivars were 

susceptible to all isolates. Mean scores of 2.84 and 2.83 for landraces and cultivars, respectively, 

indicated no differences in overall resistance levels between them. Isolates 75 and 170 were the 

most virulent on the SBCC (RF=0.051), whereas isolate 121 had the lowest levels of infection 

(RF=0.94). 
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Isolates that recognized at least one known resistance gene on the barley differential lines, i.e. they 

are avirulent, were selected for gene postulation. When different isolates recognized the same 

resistance genes, those with the higher complexity were chosen. Gene postulation was performed 

following two steps: firstly, eliminating resistance genes not present in the tested lines and secondly, 

postulating the resistance genes/alleles. Eleven isolates of B. graminis were sufficient to separate all 

different reaction spectra (RS) on the differential set. Patterns of virulence/avirulence of these 

isolates allowed identifying up to 30 resistance genes/alleles on the barley differential lines (Table 

2). Conclusions about the putative presence of known genes in the SBCC were made by comparing 

the RS of these eleven isolates in the tested lines (SBCC landraces and cultivars) with those 

expressed by differential lines. Based on these data, it was possible to distinguish 34 different RS in 

the SBCC (Table 3). Landrace-derived lines were grouped into RS from 1 to 32. RS1 consists of all 

lines without any effective resistance gene based on this set of eleven isolates, i.e., all isolates 

produced IT above 2 on these lines. On the contrary, RS31 (SBCC097) and RS32 (SBCC145) 

include genotypes with resistance to ten and eleven isolates, respectively. Twenty-one RS comprise 

only one accession and the majority of lines were grouped in RS1 (50.2%).   

Resistance genes/alleles could be postulated for 38 landrace-derived lines and seven cultivars. It 

was not possible to postulate which resistance genes/alleles are present in 41 landrace-derived lines 

(Table 3). Fourteen different resistance genes/alleles were postulated to be present in the rest of the 

lines, alone or in combination: MlLa, Mlh, Mlg, Mla22, Mla7(Mlu), Mla7(Mlk), Mlk, Mla12, Mla9, 

Mla3, Mla6(Mla14), Mlra and Mla1. The most common alleles were MlLa, Mlh and Mlg, which 

appeared in 14 (8%), 10 (5.7%) and 8 (4.5%) accessions, respectively. RS2 to RS6 were 

conditioned by the gene MlLa alone or combined with unidentified genes. RS9-RS14 included lines 

with the gene Mlh alone or in combination. RS15-RS18 comprised accessions with Mlg alone or in 

combination with other genes. Gene Mla7 (alone or in combination) conditions the resistance of 

spectra RS20-RS25 (Table 3). 
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Cultivars were mostly grouped on RS numbers 1 and 15 and there are two RS (RS33 and RS34) 

that consist of only one cultivar. The most common genes in cultivars were Mlg and Mlh which 

were postulated in four and two cultivars, respectively (Table 4). In eight cultivars it was not 

possible to identify any effective gene with the set of eleven isolates. Information on pedigree, 

when available, was employed to confirm postulated genes.  

Unidentified or unknown resistances in combination with known resistance alleles were suspected 

in sixteen RS which comprise nineteen landrace-derived lines (12%) and three cultivars (18.8%). 

No differences were observed regarding predicted genes between landrace-derived inbred lines and 

cultivars or between winter/spring and two/six-rowed cultivars.  

The set of eleven isolates selected for gene postulation could not disclose the resistance present in 

80 landrace-derived lines and 8 cultivars (RS1). Most presented resistances to a few of the isolates 

left out of the diagnostic panel (only 8 out of them were susceptible to all 27 isolates), and their 

overall resistance level was quite low.  

 

Discussion 

A wide-array of B. graminis f. sp. hordei pathotypes with broad spectra of virulence was used for 

resistance tests. These isolates collectively represented virulence to most major resistance genes 

used in Europe. Among 159 landrace-derived lines investigated, 22 (ca. 14%) showed resistance to 

more than 50% of the isolates used. These percentages of resistance seem smaller than those 

observed in other studies performed on landrace collections (Jørgensen and Jensen, 1997; Czembor, 

2000; Czembor and Czembor, 2000), although variations in methods and isolates used for screening 

among the different studies make comparisons difficult.  

Three landrace-derived lines turned out to be highly resistant, against 23 isolates (SBCC097, 

SBCC141 and SBCC145). Resistance of line SBCC097 was characterized by infection type 0(P) to 

several isolates. This IT is often expressed in barleys with mlo resistance. However, susceptibility 
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of this line to isolates 120, 125, 126 and 179, which are avirulent on P22 (mlo5) and Alexis (mlo9), 

indicates that mlo is not responsible for the resistance of this line. Additional evidences for a non-

based mlo resistance were found in molecular analyses (Silvar et al. 2010b). Lines SBCC141 and 

SBCC145 showed a combination of infection types 0, 1 and 2, which suggests that they might carry 

more than one resistance gene, as it has been reported in similar studies (Czembor 2002, Dreiseitl 

and Bockelman 2003). Interestingly, these three lines showed distinctive RS to the 23 isolates, i.e., 

they are not infected by the same isolates. This suggests the presence of different gene combinations 

and points to the potentially high diversity of the SBCC regarding powdery mildew resistance. 

The distribution of resistant infection type scores normally gives an idea about the minimum 

number of genes involved, since different genes for resistance may condition different reaction 

types (0, 1 or 2) (Czembor 1999). The majority of powdery mildew resistance genes used in Europe 

confers mostly infection types 0 and 1 (Brown and Jørgensen 1991). Five landrace-derived lines 

(SBCC014, SBCC036, SBCC042, SBCC058 and SBCC141) and cv. ´Kym´ (SBCC171) presented 

this type of reaction after inoculation with up to 13 isolates. Indeed, these accessions are included in 

RS25, 26 and 27 where known resistance genes/alleles were postulated. This suggests that these 

lines might possess mainly resistances already described in Europe. Infection type 2 to a wide range 

of isolates was frequent in our work (28.2%). This usually indicates partial resistance to powdery 

mildew (Czembor and Gacek 1995).  

The RS spectra and IT inferred by any of the landrace-derived lines and cultivars were compared 

with those of the differential set after simultaneous infection type readings. Eleven B. graminis 

pathotypes were sufficient to distinguish 30 genes/alleles on the differential set as well as to 

separate the major resistance spectra. The addition of more isolates would increase the number of 

RS but it would not provide any additional information on the genes/alleles present in tested lines. 

Similar conclusions have been driven in similar works (Dreiseitl and Jørgensen 2000, Dreiseitl and 

Rashal 2004, Dreiseitl and Yang 2007).  
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The most common alleles in the SBCC were MlLa, Mlh, Mlg, Mla6 and Mla7. The genes MlLa 

(resistance ´Laevigatum´) and Mlg (resistance ´Weihenstephan´) have been the most widely used in 

European barley breeding (Brown and Jørgensen, 1991). The absence of linkage between MlLa 

(2H) and Mlg (4H) (Chelkowski et al. 2003, Korell et al. 2008) facilitated their use in combination. 

These two genes, together with Mlh (from ´Hauters´) were among the first genes widely introduced 

in Europe, especially in winter barley (Brown and Jørgensen 1991). Nowadays, they are “defeated” 

genes and virulences to La, g and h have been commonly reported in powdery mildew populations 

from North Africa and Europe (Yahyaoui et al. 1997, Hovmøller et al. 2000).  

The most frequent Mla alleles in European cultivars are Mla7, Mla12, Mla6 and Mla3. All were 

postulated in Spanish barleys, although Mla7 and Mla6 were the most common ones. Mla7 (named 

after ´Lyallpur´) was originally described in landraces from the Indian subcontinent and was also 

detected in landraces from China (Jørgensen 1994, Dreiseitl and Yang 2007). The Mla6 allele (from 

´H. spontaneum´) was cloned by Halterman et al. (2001) and it confers a rapid defence response 

phenotype. Mla14 is often postulated to be very similar to Mla6, and for this reason we kept the 

nomenclature as Mla6(Mla14). Interestingly, the alleles MlLa, Mlh, and Mla7 have not been 

commonly described in landrace material. On the contrary, genes Mlg, Mla6, Mlk, Mla1 and Mla12, 

which were identified in the Spanish barleys, were also detected in landraces from Tunisia, 

Morocco, Jordan and Greece (Czembor 1999, 2000, 2001; Czembor and Czembor, 1999). All these 

countries belong to the Mediterranean region. Co-evolution between powdery mildew populations 

and landraces from different countries might result in the presence of common resistance alleles in 

the Mediterranean areas. Curiously, we could not identify other alleles, such as Mlat (´Atlas´), 

which were originally described in germplasm from North Africa (Jørgensen 1994) and have been 

frequently reported in landraces coming from Morocco, Jordan and Greece, (Czembor and Czembor 

1999, 2000; Czembor 2001). In the same way, we did not detect any of the Ml-genes: a20, a27, a28, 

f, j or t, even though they could have been identified with the differential set used. These genes were 
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all derived from H. spontaneum accessions collected in the Mediterranean region (primarily from 

Israel) (Jahoor and Fischbeck 1987, 1993; Schönfeld et al. 1996). Some wild barley lines carrying 

Mla16. a17, a18, a19 and a26 genes were also included in the differential set during the 

experimental work. They were subsequently discarded for the differential set due to the absence of 

compatible reactions (susceptibility) with the 27 isolates used (data not shown). The absence of 

isolates coming from the same regions as these H. spontaneum sources in our panel of isolates 

might explain this result, as it was observed in other studies (Dreiseitl and Dinoor 2004). 

Powdery mildew resistance genes present in cultivars did not differ from those in landrace-derived 

lines. This is not surprising considering that some of the cultivars originated from local landraces. 

Whenever possible, the alleles inferred on the cultivars were confirmed by tracing the resistance 

genes in pedigrees. The Cereal Pathogen Resistance Allele Database (http://cprad.scri.ac.uk) 

(CPRAD) hosted at the Scottish Crop Research Institute website, was employed to check the 

pathogen resistance alleles that have been previously reported in several barley genotypes. Cultivars 

from the SBCC were grouped in 6 different RS and five different resistance genes/alleles were 

postulated. The spring two-rowed British cultivar ´Kym´ (SBCC171) showed the highest level of 

resistance among the cultivars. We established the presence of Mla9 in this variety in combination 

with Mlg and MlLa, which is in agreement with Brown and Jørgensen (1991) and with data 

available at the CPRAD catalogue. Resistance gene Mlg was also postulated in other three cultivars. 

Two of these, ´Dobla´ (SBCC164) and ´Zaida´ (SBCC175) share the parent ´Union´ in their 

pedigree, which contains the Mlg gene. Additional genes (Mla7 and Mlk) of the parental lines 

(´Nymphe´ and ´Adorra´) were not detected in our cultivars. For cv. ´Alpha´, it was not possible to 

find out the resistance genes present on its pedigree information (Ager×(Ager×Ceres)). Caffier and 

Vallavieille-Pope (1996) did not find any specific resistance in the French cultivar ´Barbarrousse´. 

MlLa was suggested for this cultivar in our test, but unfortunately, there is no information on the 

resistance of ´Hatif de Grignon´ and ´Ares´, which might be the donors of this gene. The gene Mlh 
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was postulated in cv. ´Hassan´, but none of the respective parents contains this gene. On the 

contrary, according to the CPRAD catalogue, this cultivar possess the Mla12 allele (from 

´Arabische´), which was not identified in our experiments. No gene was identified in Spanish 

cultivars derived from local landraces using these eleven isolates, except for ´Pané1´, in which Mlh 

was inferred.   

Previous tests on the SBCC (Silvar et al. 2010a) carried out with a lower number of isolates, 

revealed slightly higher levels of resistance to powdery mildew than found in this study. These 

former experiments were carried out in greenhouse assays on potted plants, whereas the results 

presented here come from tests performed on detached leaves assays. There are two reasons that 

could explain these differences. The first, and most important one, is the existence of differences 

among the isolates. The set of isolates used in previous studies possessed a narrow virulence 

spectrum compared to the group of isolates employed in this study. We used only three common 

isolates (78, 79 and 126) and data on these were very similar in both experiments. The second 

explanation is the severity of infection, which is always higher on the detached leaves experiments 

due to a higher density of inoculum, in comparison to greenhouse tests.  

The most remarkable aspect of this work is the diversity detected in the SBCC regarding powdery 

mildew resistance. The majority of resistance spectra are composed only by one line and in several 

lines the presence of unknown genes alone or in combination with known genes was postulated. 

Presence of a high number of unknown genes in barley landraces is in agreement with findings from 

other studies (Jørgensen and Jensen 1997, Czembor and Czembor 1999, Czembor 2000). Studies on 

bi-parental populations derived from the most resistant lines supports such variability. Landrace 

derived line SBCC097 (Silvar et al. 2010b) possesses a resistance totally different from the line 

SBCC145 (unpublished data), and, in both cases, they seem to represent potentially new alleles or 

loci distinct from the ones described so far. From our point of view, the great value of Spanish 
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landraces as sources of new resistances against powdery mildew lies mainly in these 

uncharacterised resistances, than in the inferred genes.  

Obviously, further investigation in the SBCC will be needed to confirm the postulated resistance 

genes as well as to investigate the unknown resistances, which may be influenced by different levels 

of partial or quantitative resistance. Nevertheless, preliminary results in this paper suggest that some 

Spanish landraces may significantly contribute to the diversification of powdery mildew resistance 

gene pools used in breeding programmes. 
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Table 1. Name, origin, complexity and Gilmour Code for the twenty-seven B. graminis f. sp. hordei 

isolates used in this work based on a set of 34 differential barley lines. 

 

Isolate Origin Complexity Gilmour Code 

75 Denmark 24 77777457640 
78 Denmark 25 77773357650 
79 Austria 21 77773741240 
 82 Austria 19 77777541000 
114 Denmark 9 57506000000 
116 Denmark 8 67064000000 
118 Denmark 7 72114000000 
120 Denmark 3 40005000000 
121 Denmark 0 00000000000 
122 Denmark 8 72106040000 
125 Denmark 18 77753061240 
126 Denmark 14 77674420000 
127 Denmark 16 77652541200 
164 Germany 15 77774600000 
167 Germany 12 77724000400 
168 Germany 16 77632316000 
170 Germany 19 77775620410 
176 Germany 20 77773061640 
178 Germany 20 75773716010 
179 Germany 14 77740200130 
180 Germany 19 75775336000 
199 Sweden 20 77772716400 
211 Sweden 23 77772777100 
212 Sweden 20 77776716000 
221 Germany 17 77775400120 
224 Germany 18 77755020126 
225 Germany 18 77763420124 
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Table 2. Infection types of eleven selected isolates of B. graminis f. sp. hordei on a differential set 

of 34 barley lines. 
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    B. graminis f. sp. hordei isolates 
Accession Gene 

  
Code1 75 114 116 122 127 168 170 179 180 211 224 

P01 Mla1 Al 1 0 0 0 0 1 0 2-3 0 3 3 
P02 Mla3 Ri 2 1 1 1-2 1 2 4 1-2 2-3 3 3 
P03 Mla6, (Mla14) Sp 4 2 3 0 0 4 4 0 3 3 0 
P04B Mla7, Mlu Ly,u 4 2-3 2 1-2 3 4 4 2-3 3 4 3 
P06 Mla7, (Mlk) Ly 4 1 1 1 3 4 3 2-3 3 3 3 
P08B Mla9 MC 4 1 0 3 3 0 0 0 0 3 0 
P10 Mla12 Ar 4 2-3 1 4 1 2 2-3 2-3 3 3 3 
P11 Mla13,Ml(Ru3) Ru 1 1 0 0 4 4 1 0 3 3 0 
P12 Mla22 - 4 3 3 3 0 0 3 0 3 0 4 
P14 Mlra Ra 4 3-4 3 1 4 4 4 3 3 4 4 
P17 Mlk Kw 4 4 1 4 4 4 2 1-2 2 3 2 
P20 Mlat At 2-3 2 1-2 2 2 2 3 2 3 2 4 
P21 Mlg,(Ml(CP)) We 4 0 3 0 3 0 4 3 3 3 4 
P22 mlo5 - 0 0 0(P) 0 0 0 0(P) 2 0 0(P) 0 
P23 MlLa La 4 3 2-3 2-3 4 2-3 3 3 2 3 4 
P24 Mlh Ha 3-4 0(P) 3 4 4 4 3 3 4 3 4 
Alexis mlo9 - 0(P) 0 0 0 0 0 0(P) 0 0(P) 0(P) 0 
Banteng Mlu - 4 3 2-3 1 3 4 3 3 3 3 4 
Borwina Ml(Bw) - 4 2-3 0(P) 3 2-3 3 3 3 3 3 3 
Hellas Ml(He) - 4 4 3 4 4 4 4 3 3 4 4 
Kredit Ml(Kr) - 3 1-2 1-2 2 3 4 3 2 3 3 2-3 
Lotta Ml(Ab) - 0 0(P) 0(P) 0(P) 0 3 3 2-3 3 3 1 
Steffi Ml(St) - 2-3 0 0 0 4 2 3 1 2 3 2 
HSY-78*A Mlf - 3 1 0 1 0 2-3 1-2 0 2-3 3 0 
RS137-28*E Mlj - 2-3 2 0 1 0 2 2-3 0 1-2 1-2 0 
RS42-6*O Mlt - 4 2 0 0 0 3 2 0 3 2-3 0 
RS-145-39 Mla20 - 1 0 0 0 0 0 2 0 0 2 2-3 
RS-1-8 Mla27 - 0 0 0 0 0 1 0 2-3 0 2 4 
1B-151 Mla28 - 3 1 0 1 0 3 1 0 2-3 3 0 
SI-1 Ml(SI-1) - 0 0 0 0 0 0 0 0 0 1 3 
SI-2 Ml(SI-2) - 1 0 0 0 0 0 2-3 2-3 2 0 2 
SI-5 Ml(SI-5) - 4 0 0 1 3 0 1 0 0 3 0 
SI-6 Mlf,mlt - 3 0 0 2 2 0 0 0 0 1-2 0 
SI-7 Ml(SI-7) - 2-3 1 0 2 2-3 0 0 0 0 2 0 
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Table 3. Resistance spectra and postulated resistance genes/alleles in 159 landrace-derived inbred lines from the SBCC to infection by eleven 

selected isolates of Blumeria graminis f.sp. hordei 

    B. graminis f.sp. hordei isolates     
RS Nº lines 75 114 116 122 127 168 170 179  180 211 224 Postulated Genes Code1 

1 80 4 3 3 3 4 3 3 2-3 4 3 4 None - 
2 4 3 3 3 3-4 3-4 3 3-4 3 1 3 3 MlLa La 
3 1 3-4 3 3-4 3 3-4 3-4 3 0-1 1 3 2-3 MlLa,? La 
4 3 3-4 3 3 3 0(P) 3 3-4 0 0(P) 3 3 MlLa,? La 
5 1 4 2-3 2-3 3 0(P) 2-3 2-3 0 0 0(P) 2-3 MlLa,? La 
6 1 3 2-3 2-3 3 0(P) 2-3 3 0 0 2 2 MlLa,? La 
7 1 3 2-3 2-3 2 2 3 3 0 3 2-3 4 Mlra,? Ra 
8 1 2-3 2-3 2-3 2-3 0(P) 2 3 0 2 2 3 MlLa,Mla22 La 
9 2 3-4 0-1 3 3 4 3-4 3-4 3 4 3-4 4 Mlh Ha 
10 1 2-3 2 2-3 2-3 2 2-3 2-3 2-3 4 3 4 Mlh,? Ha 
11 1 3 2 3 3 3 3 3 0 3 3 4 Mlh,? Ha 
12 1 2-3 0(P) 2 2-3 1 3 2-3 1 3 2-3 3 Mlh, ? Ha 
13 1 2-3 1 2-3 2-3 2 2 3 2-3 2 2 2-3 Mlh,MlLa,? Ha, La 
14 2 3 2 1-2 3 2 3 2-3 0 1 1-2 2 Mlh, MlLa, ? Ha, La 
15 2 4 0 3 0 4 0 3-4 3 3-4 3-4 3-4 Mlg We 
16 1 2 0(P) 2-3 2 0 2 2 0 4 3 4 Mlg,? We 
17 1 3 0 2-3 0 0 2 3 2 4 1 1 Mlg, Mla22, Mla6(Mla14) We, Sp 
18 1 1 0 4 0 0 1 4 0 4 0 1 Mlg, Mla22, Mla6(Mla14), ? We. Sp 
19 2 3 2-3 2 2 0-1 3 2-3 0 3-4 3 2 Mla7(Mlu), Mla6(Mla14) Ly, u, Sp 
20 1 3 3 0 1 0(P) 2-3 2 0 1 3 1 Mla7(Mlu), Mlk, ? Ly, u, Kw 
21 1 2 2-3 1 2 2 2 2-3 3 4 2 3 Mla7(Mlu), Mla12, ? Ly, u, Ar 
22 2 3 0 0-1 1 0(P) 3 3 0 3-4 3 0 Mla7(Mlk), Mla6(Mla14) Ly, Sp 
23 1 2 2 2 2 2 2-3 2-3 3 3 2 4 Mla7(Mlk), ? Ly 
24 1 2-3 2 2 2 2 2-3 2-3 3 0(P) 2 3 Mla7(Mlk), MlLa, ? Ly, La 
25 1 3-4 0 0 1 0 3 0 0 0 3 0 Mla7(Mlk), Mlk, Mla6(Mla14) Ly, Kw, Sp 
26 1 1 0 0 0 0 1 2-3 0 3 2 2 Mla3, Mla6(Mla14), Mla22 Ri, Sp 
27 3 0 0 0 0-1 0 0-1 0-1 3 0 3-4 4 Mla1 Al 
28 1 3-4 3 3 2-3 2 3 3 0 3 2-3 2-3 ? - 
29 2 2-3 2-3 3 3 0(P) 2-3 2-3 2-3 2-3 3 3 ? - 
30 36 3 3 3 3 3 3 3 0-1 4 2-3 4 ? - 
31 1 1 0(P) 0 1-2 2 2 0(P) 2-3 0(P) 2 2 ? - 
32 1 2 0 1-2 0 0 1 0 0 2 0 0 ? - 

1Anonymous 1991
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Table 4. Resistance spectra and postulated resistance alleles in 16 cultivars from the SBCC to infection by eleven selected isolates of Blumeria 

graminis f.sp. hordei 

 

Name Cultivar Description Origin Pedigree RS Postulated genes Code1 

SBCC160 Ager  winter, 6-rowed France (Bordia x Kenia) × Weihenstephan 259-711 1 None - 

SBCC161 Albacete  facultative, 6-rowed Spain Spanish selection from local landrace 1 None - 

SBCC162 Almunia winter, 6-rowed Spain Spanish selection from local landrace 1 None - 

SBCC163 Barberousse winter, 6-rowed France 
(Hauter × (Hatif de Grignon x Ares)) × 
Ager 

3 MlLa,? La 

SBCC164 Dobla  winter, 6-rowed Spain Union × Nymphe 15 Mlg Ha 

SBCC165 Hatif de Grignon  winter, 6-rowed France French selection from local landrace 1 None - 

SBCC166 Monlon  winter, 6-rowed France Breustedt Schladener × Hatif de Grignon 1 None - 

SBCC167 Pane1 facultative, 6-rowed Spain Spanish selection from local landrace 11 Mlh,? Ha 

SBCC168 Alpha  winter, 2-rowed France Ager × (Ager × Ceres) 15 Mlg We 

SBCC169 Beka spring, 2-rowed France Bethge XIII × Kneifel 1 None - 

SBCC170 Hassan  spring, 2-rowed Holland Delta × (Agio × Kenia 3 × Arabische) 33 Mlh,? Ha 

SBCC171 Kym  spring, 2-rowed Great Britain Georgie × Hanna 34  Mlg, MlLa,Mla9 We, La, MC 

SBCC172 Pallas  spring, 2-rowed Sweden Mutant derived from Bonus 30 ? - 

SBCC173 Trait d'Union  spring, 2-rowed France Weih. Melh II × Firlbeck 621 1 None - 

SBCC174 Wissa  spring, 2-rowed Germany (Weih. Melh. I × Breun IN 2511) × Isaria 1 None - 

SBCC175 Zaida  spring, 2-rowed Spain Adorra × Union 15 Mlg We 
1Anonymous 1991 
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Figure 1. Distribution of resistance complexities observed for cultivars and landrace-derived inbred lines 

from the SBCC based on twenty-seven isolates of B. graminis f. sp. hordei. 
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Figure 2. Distribution of infection types observed for cultivars and landrace-derived inbred lines from the 

SBCC based on twenty-seven isolates of B. graminis f. sp. hordei. 

 


