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Abstraet--Humic acid (HA) fractions isolated from a peat and lignite deposit were studied by CP/MAS 
~3C-NMR and pyrolysis-methylation. Loss of carbohydrates, removal of methoxyls and formation of 
catechols during the coalification process was evident. Pyrolysis-methylation released a great variety of 
components, the lignin-derived monomers being the most prominent. A very striking feature was the 
release of benzenecarboxylic moieties after pyrolysis-methylation which have not been observed previously 
by pyrolytic techniques. These moieties were released in higher amounts from the lignite HA, suggesting 
that the content in carboxylic groups increase with coalification, at least up to the lignite stage. Oxidation 
of the C-3 side chain of the lignin structure would produce these benzenecarboxylic acids and benzylic 
ketones. 
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INTRODUCTION 

The characterization of the humic acid (HA) frac- 
tions from low-rank coals has been shown to be 
useful for obtaining information about organic 
source materials, depositional environments and for 
the elucidation of diagenetic pathways during the 
coalification process (Hatcher et al., 1980, 1981, 1982; 
Verheyen and Johns, 1981; Verheyen et al., 1982; 
Ibarra and Juan, 1985; Gonzb, lez-Vila et al., 1994). 
Since peat is considered to be one of the materials 
from which coal is derived, the chemical characteriz- 
ation of peat and its humic matter are essential for 
delineating the chemical transformation of peat in the 
early stages of coal formation. 

In recent years, numerous techniques have been 
applied in the study of coalification of wood polymers 
and have provided new insights into the chemical 
origin of coal. By examining modern wood, wood 
buried in peat swamps, and ancient wood coalified to 
different ranks, with combined NMR and pyrolysis 
techniques, a detailed understanding has been ob- 
tained on the early stages of coalification. Wood 
transformation to coalified wood begins at the peat 
stage, where cellulose is degraded and removed while 
the lignin is selectively preserved (Phiip et al., 1982; 
Stout et al., 1988; Hatcher et al., 1988, 1989; Hatcher, 
1990; Bates et al., 1991). 

Pyrolysis techniques have proved to be particularly 
useful in studying the coalification process, due to the 
detailed information obtained at the molecular level 

and the ease of sample preparation. However, pyro- 
lysis seems to underestimate the potential presence of 
carboxylic bearing units among the structural 'build- 
ing blocks'. In fact, flash pyrolysis of polymers 
containing benzenecarboxylic acid moieties (such as 
fulvic and humic acids) leads to biased structural 
interpretation since it has been shown that these units 
undergo decarboxylation under these conditions 
(Martin et al., 1994a). In the case of humic acids 
from low-rank coals, only a few carboxylic pyrolysis 
products have usually been reported, although the 
presence of carboxylic groups in these materials has 
been determined by spectroscopic and wet chemical 
methods to be around 5% (Martin, 1975; Hatcher, 
1990; Stefanova et al., 1993; Gonzfilez-Vila et al., 
1994). 

In a previous paper (Martin et al., 1994a), we 
proposed pyrolysis in the presence of tetramethyl- 
ammonium hydroxide (TMAH) for the detection of 
benzenecarboxylic acids, which otherwise undergo 
decarboxylation under conventional pyrolysis. This 
technique, also called simultaneous pyrolysis methyl- 
ation (SPM), was introduced by Challinor (1989), 
and produces methyl esters of carboxylic acids and 
methyl ethers of hydroxy compounds. This technique 
has already been successfully applied to assess the 
structure of different natural and artificial polymers 
such as cutins, alkyd resins, polyester fibres and humic 
substances (Challinor, 1989, 1991a, b; Anderson and 
Winans, 1991; de Leeuw and Baas, 1993; Martin 
et al., 1994a, b). It has been demonstrated that the 
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reaction that takes place consists of thermally assisted 
chemolysis rather than the methylation of released 
pyrolysis products (de Leeuw and Baas, 1993; Martin 
et al.. 1994a). 

In this paper, the structural characteristics of the 
HA fractions isolated from a peat, and a lignite 
deposit, have been approached both by solid-state 
~C-NMR and pyrolysis-methylation. We mainly 
focused our attention on the release of carboxylic 
moieties. 

MATERIAl. AND METHODS 

A sapric peat from the Padul deposit (Granada, 
south Spain) and a lignite sample from the Pontes de 
Garcia Rodriguez (PGR) deposit (La Corufia, north 
Spain) were selected for this study. Various chemical, 
geochemical and geological data of the selected 
samples have been published elsewhere (Gonzfilez- 
Vila et al., 1994: Martin, 1975; del Rio et al., 1992). 
The peat and lignite samples were ground to less than 
53 ~m and Soxhlet extracted with toluene for 48 h. 
The bitumen free samples were then extracted 
three times with 0.1 M NaOH solutions. The extracts 
obtained after centrifugation were precipitated with 
0.1 M HC1. The humic acids (HA) were then cen- 
trifuged, dialysed against distilled water and freeze- 
dried. The content on humic acids was as follows: 
Padul peat, 78% dry, ash-free; PGR lignite, 56% dry, 
ash-free. Analytical characteristics of the HAs are 
listed in Table 1. 

Pyrol)sis  .ga,~ chromatography-mass  spectrometry 

For pyrolysis in the presence of TMAH, the HA 
samples were first dissolved in the minimum amount 
of TMAH (25% aqueous solution) and dried in a 
desiccator overnight. The syrups were placed on the 
ribbon foil of the CDS pyroprobe and heated to 
500C for 10 s. Separation of the pyrolysis products 
was achieved on a fused silica column (SE-52; J&W 
Scientific) ot" 25 m length and 0.2 mm i.d. The gas 
chromatograph (Hewlett Packard HP-5890) was pro- 
grammed from 40 to 300'~C at a rate of 6C/min.  
Helium (I ml/min flow rate) was used as a carrier gas. 
The mass spectrometer (HP 5988 A) was set at 70 eV. 
Identification was achieved by mass fragmentogra- 
phy, library search and comparison with literature 
data. When possible, the identifications were accom- 
plished by comparison with authentic standards. The 
substitution patterns of the different positional iso- 
mers were established by comparison of relative 
retention times with literature data and, when 
possible, confirmed by co-injection with authentic 
standards. 
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Fig. 1. (CP/MAS) ~C-NMR spectra of the Padul peat and 
Pontes Garcia Rodriguez lignite HAs. 

~ 'C-nuclear magnetic resonance 

High resolution solid-state ~C-NMR spectra of 
the HA samples were collected at 25.2MHz 
under cross polarization-magic angle spinning 
conditions (CP/MAS) using the quantitation con- 
dition described elsewhere (Fr/ind and L/idemann, 
1991). 

RESULTS ANt) DISCUSSION 

Figure 1 shows the solid-state ~3C-NMR spectra of 
the Padul peat and the PGR lignite HAs. Both 
spectra are characterized by prominent bands at 32 
and 130 ppm corresponding to aliphatic and aromatic 
carbons respectively. The total ion chromatograms 
(TIC) of the thermal degradation products, obtained 
after pyrolysis of the peat and lignite humic acids in 
the presence of TMAH, are shown in Fig. 2. The 
identification of the different chromatographic peaks 
are listed in Table 2. The major peaks corresponded 
to lignin derived units and aliphatic moieties (fatty 
acids and alkene/alkane pairs). 

Table I. Elemental composition (wt%) and functional group content (% of coal dry ash-free) of the selected HA 

Total Phenolic 
C H N O + S HiC O;C Ash acidity Carboxyl OH 

HA Padul peat 53,0 4,9 1.3 38.7 1.10 0.55 3.5 8.3 3.0 5.3 
HA PGR lignite 63.9 4.7 1.0 30.4 0.88 0.36 3.8 9,3 3.4 5.9 
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Fig. 2, Total ion chromatogram of the thermal degradation products obtained after pyrolysis of the HA 
fractions from Padul peat and Pontes Garcia Rodriguez lignite, in the presence of TMAH. For peak 

identification refer to Table 2. T: triterpenoids. 

Noticeable qualitative and quantitative differences 
between the pyrolytic and NMR patterns are ob- 
served. The ~3C-NMR spectrum of the peat HA 
shows signals at 72 and 106 ppm (for the anomeric 
carbon) and a small band at 84 ppm due to cellulosic 
carbon. Although the band at 106ppm is clearly 
present in the lignite spectrum, the others are practi- 
cally absent indicating the loss of carbohydrates 
during the coalification process (Stout et al., 1988; 
Hatcher et al., 1988). The only compound derived 
from polysaccharides detected in the pyrograms of 
both samples was furan-2,5-dicarboxylic acid 

dimethyl ester (peak No. 3). However, in the PGR 
lignite HA, only trace amounts of this compound 
were detected indicating that polysaccharides are 
progressively lost with increasing coalification. The 
related thiophene-2,5-dicarboxylic acid (peak No. 8) 
was identified in both samples suggesting that the 
incorporation of sulphur into the HA structure has 
taken part in the early stages of the coalification 
process. 

Signals corresponding to lignin were also observed 
in the ~3C-NMR spectrum of the Padul peat HA. 
Thus, the spectrum showed a prominent band at 
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Table 2. Identification and relative abundance of the compounds released alter pyrolysis-methylation or the Padul peat and PGR 
lignite HAs 

Padul PGR 
No. Compound m : peat HA lignite HA 

I 3-methoxybenzenecarboxylic acid, methyl ester 135,166 
2 4-methoxyacetophenone 135,150 
3 furan. 2,5-dicarboxylic acid, dimethyl ester 153.184 -+ 
4 4-methoxybenzenecarboxylic acid, methyl ester 135,166 + t 
5 4-methoxybenzeneacetic acid, methyl ester 149,18(t + 
6 1,2-benzenedicarboxylic acid, dimethyt ester 163,194 + -÷ 
7 1,3-benzenedicarboxylic acid, dimethyl ester 163.194 + 
8 2,5-thiophenedicarboxylic acid, dimethyl ester 169.200 + 
9 3,4-dimethoxybenzenemethanol, methyl ether 15 I.I 82 ~ 

I0 3A-demet hoxyacetophenone 165.180 
I 1 3,4-dimethoxybenzoic acid methyl ester 165,196 ~ ~ + ~ 
12 3,4-dimethoxybenzeneacetic acid, methyl ester ! 79.210 ~- 
13 2-propenoic acid, 3-(4-methoxyphenyl), methyl ester 161,192 . ~ t- 
14 3,4,5-trimethoxyacetophenone 195,21(I ; .~ .... 
15 3-methoxybenzene-l,2-dicarboxylic acid, dimethyl ester (t) 193,224 
16 3,4,5-trimethoxybenzoic acid, methyl ester 211,226 i ~ ÷ ~- ~ t 
17 4-methoxybenzene-l,3-dicarboxylic acid. dimethyl ester (t) 193.224 * 
t 8 3,4,5-trimethoxybenzenemethanol, methyl ether 181.212 ~ t 
19 2,3,4-trimethoxybenzenecarboxylic acid, methyl ester t95,226 ~ 
20 2-methoxybenzene-l,5-dicarboxylic acid, dimethyl ester (t) 19:3,224 .- 
21 1,2,4-benzenetricarboxylic acid, trimethyl ester (t) 221,252 4 .+ 
22 3,4-dimethoxybenzene-l,2-dicarboxylic acid, dimethyl ester (t) 223,254 ~ 
23 2-propenoic acid-3-(3.4-dimethoxypheny!) methyl ester 191,222 * 
24 1,3,5-benzenetricarboxylic acid, trimethyl ester (t) 221,252 
25 4,5-dimethoxybenzene-l.3-dicarboxylic acid, dimethyl ester (t) 223.254 -+ 
26 4,5-dimethoxybenzene-l,2-dicarboxylic acid. dimethyl ester (t) 223,254 ~ ! 
27 3-methoxybenzene-l,2,4-tricarboxylic acid, trimethyl ester (t) 251,282 ~ 
28 2-methoxybenzene-l,3,5-tricarboxylic acid, trimethyl ester (t) 251,282 ~ -÷ 
29 5-methoxybenzene-l,3,5-tricarboxylic acid, trimethyl ester (t) 251,282 + ~- 
3(I 1,2,3,4-benzenetetracarboxylic acid, tetramethyl ester (t) 279,310 ~ t 
31 1,2,4,5,benzenetetracarboxylic acid, tetramethyl ester (t) 279,3112 ~ 
32 5-me2hoxybenzene-l,2.3,4-tetracarboxylic acid, tetramethyl ester II) 309,342) 
33 2-methoxybenzene-l,3,4,5-tetracarboxylic acid, tetramethyl ester (t) 309,340 -~ 

. 6 ~ , ~ + : low, medium, high relative abundances. 
: nnt detected. 

(t) the positional isomers were tentatively assigned according to the relative retention 
and Skinner (19741 and Spiteller (1981) 

tunes gzven by Schnitzer {1974), Schnitzer 

56 p p m  due  to m e t h o x y l  c a r b o n s ,  at 115 p p m  f rom 

the  c o m b i n e d  s igna ls  o f  C-2,  C-5 a n d  C-6 in gua iacy l  

uni ts ,  a n d  at 148 p p m  f r o m  the  o x y g e n - s u b s t i t u t e d  

a r o m a t i c  c a r b o n s  (C-3 and  C-4) in gua iacyl  units .  

These  b a n d s  d i s a p p e a r  in the  s p e c t r u m  o f  the  l ignite 

H A .  A t  the  s a m e  t ime,  a b a n d  at  155 p p m  due  to 

hyd roxy l s  a t t a c h e d  to a r o m a t i c  r ings  t ca t echo l s l  

a p p e a r s  in the  l ignite H A  s p e c t r u m ,  which  is a b s e n t  

in the  pea t  H A  spe c t rum.  T h i s  ind ica tes  the  d e m e t h y l -  

a t ion  o f  the  m e t h o x y l  g r o u p s  in the  l ignin m a c r o -  

molecule ,  d u r i n g  the  coal i f ica t ion  process ,  a n d  their  

g r a d u a l  t r a n s f o r m a t i o n  in to  ca techo l  s t ruc tu res ,  in 

a g r e e m e n t  wi th  H a t c h e r  et al. (1988). O t h e r  p e a k s  o f  

s ignif icance in bo t h  spec t ra  are  t hose  a s s igned  to 

c a r b o n y l  c a r b o n s  in ca rboxy l  g r o u p s  (175 p p m )  and  

a l d e h y d e / k e t o n e  g r o u p s  (200 ppm) .  T hese  p e a k s  are  
b r o a d  a n d  c o m p r i s e  a r o u n d  10% o f  the  total  ca rbon .  

It is likely tha t  a g rea te r  par t  o f  these  ca rbony l  
c a r b o n s  o r ig ina te  f r o m  oxid ized  l i gnm res idues ,  

especial ly  t hose  oxid ized  at  the  co-carbon in the  

3 -ca rbon  side chain .  T he i r  relat ive a b u n d a n c e  in the  

spec t ra  o f  the  pea t  a n d  l ignite H A s  is g rea te r  t h a n  in 

the  pub l i shed  spec t ra  for  l ignins.  

L ign in -de r ived  uni t s  with  ca rboxy l  g r o u p s  have.  

however ,  no t  been  de tec ted  p rev ious ly  by c o n v e n -  
t ional  pyrolys is .  T e g e l a a r  et al. [19891 no t ed  tha t  

esterif ied p - c o u m a r i c  acid gene ra t e s  p - c o u m a r i c  acid 

as  a p r imary  pyro lys i s  p r o d u c t  tha t  s u b s e q u e n t l y  

u n d e r g o e s  d e c a r b o x y l a t i o n  g iv ing  rise to p -v iny l -  

phenol .  M o r e  recently,  il has  been s h o w n  with 

s t a n d a r d  c o m p o u n d s  t ha t  benzeneca rboxy l i c  moie t i es  

u n d e r g o  d e c a r b o x y l a t i o n  u n d e r  c o n v e n t i o n a l  pyro-  

lysis ( M a r t i n  et al.. [994a9 a n d  this  cou ld  be the  

r ea son  why  the  p resence  o f  ca rboxy l  g roups ,  in 

l ign in-der ived  uni ts ,  have  been ove r looked  in the  

past .  Pyro lys is  in the  p resence  o f  T M A H .  however ,  

avo ids  d e c a r b o x y l a t i o n  and  p r o d u c e s  m e t h y l  es ters  o f  

ca rboxy l ic  ac ids  a n d  me thy l  e thers  o f  hydroxy l  

g roups ,  as ha s  been d e m o n s t r a t e d  wi th  s t a n d a r d  

c o m p o u n d s  ( M a r t i n  et al.. 1994a) a n d  wi th  a l ipha t ic  

po lyes te rs  (de Leeuw and Baas .  19931. T h e  m e c h a n -  

i sm o f  pyro lys i s  in the  presence  o f  T M A H  has  also 

been desc r ibed  in detai l  in these  p a p e r s  (de Leeuw and  
Baas.  1993: M a r t i n  et al.. 1994a). 

In  a g r e e m e n t  wi th  N M R  data.  the  m a i n  d i a g n o s u c  

g r o u p s  a m o n g  the  pyro lys i s  p r o d u c t s  o f  the  pea t  and  

l ignite H A s  were the  me thy l  der iva t ives  o f  the  p h e n o -  

lic c o m p o u n d s ,  cha rac te r i s t i c  o f  l ignins.  T h e  methy l -  
a ted  ca rboxy l ic  g roups ,  re leased in the  pyro lysa te .  

arise f rom bo th  free ca rboxy l  g r o u p s  and  ester  

moie t i es  p resen t  m the  HA m a c r o m o l e c u l e .  Also.  
the  m e t h o x y l  g r o u p s  at C-4 in the  l ignin moie t i es  

ar ise  f r o m  b o t h  free --OH groups ,  wh ich  b e c o m e  

m e t h y t a t e d ,  and  by T M A H - a s s i s t e d  c leavage  o f  the  
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alkyl-aryl ether bond leading to the formation of a 
methoxyl group. The three main structural units 
(p-coumaryl, guaiacyi and syringyl) were identified. It 
is interesting to note the absence of the methyl 
derivatives of coniferyl and synapyl alcohols in the 
pyrolysates of both samples. Stout et al. (1988) also 
noticed a rapid decrease in intensity of the coniferyl 
and synapyl alcohol during early coalification. How- 
ever, the most striking feature of the pyrograms was 
the release of high concentrations of benzenecar- 
boxylic acid moieties from both samples which have 
not been released previously from HAs by conven- 
tional pyrolysis. It is known that peat accumulations 
require anaerobic conditions to preserve sufficient 
organic matter for coal formation. Under such 
circumstances, it is likely that lignin in peat HA 
remains relatively unaltered. The release, by pyrolysis- 
methylation, of higher amounts of benzenecarboxylic 
acids from the lignite HA suggests that oxidation of 
lignin occurs with increasing coalification. The lignin 
molecule is thus gradually transformed to an oxidized 
framework. The placement of the carboxyl and car- 
bonyl groups in the lignin-derived compounds ident- 
ified in Table 2 indicates that such oxidative alteration 
affects the 3-carbon side-chain of the lignin. The 
presence of carbonyl and carboxyl groups, located at 
the or-carbon of lignin monomeric units, was pre- 
viously presupposed in the structural model for low- 
rank coals proposed by Hatcher (1990) and based 
solely on lignin as the only component, due to the 
propensity that these carbon units have for oxidation. 
Several other compounds, with the carboxyl group 
located at the fl and 7 carbons, such as benzeneacetic 
acids (peak Nos 5 and 12) and benzenepropionic acids 
(peak Nos 13 and 23) respectively, were also identified 
among the pyrolysis products. The benzenepropionic 
acids were mainly released from the peat HA and 
in very low amounts from the lignite HA, indicating 
that they are produced in the early stage of the 
coalification process but are subsequently oxidised 
and disappear with increasing coalification. The 
benzeneacetic acids, on the contrary, are not present 
in the peat HA but appear in the lignite HA suggesting 
their formation at this later stage. 

The results presented here suggest that the content 
of carboxyl groups in the lignin macromolecule 
increase during the first steps of the coalification 
process from peat to lignite in agreement with the 
model proposed by Hatcher (1990) for the transform- 
ation of lignin up to low-rank coal levels. According 
to this model, the content of carboxylic groups in the 
lignin macromolecule increases during the first stages 
of the coalification process, and reaches the maxi- 
mum at the lignite stage. After that, the content of 
carboxyl groups decreases with increasing matu- 
ration. The low amounts of carbonyl and carboxyl 
groups present in this model was equated with the 
low amounts detected by NMR. However, measure- 
ments of carboxyl and carbonyl carbons are not 
precise due to the broadness of the NMR peaks. The 
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increase of the carboxyl groups in the lignin macro- 
molecule during coalification seems also to be related 
to the increase of the carboxyl content in the HA 
fractions from peat to lignite, as determined by wet 
chemical methods. According to the results presented 
in this paper it seems that the HA from PGR lignite 
is highly oxidized while the HA from Padui peat is 
only partly oxidized. Ibarra and Juan (1985) also 
observed the same trend in the analysis of HAs 
extracted from a series of coals of different rank. This 
trend has only been observed by wet chemical and 
spectroscopic methods and now has been confirmed 
by pyrolytic techniques. 

Finally, a series of fatty acids (mono- and dicar- 
boxylic acids) from C~2 to C30, as well as some 
methoxylated counterparts, were also produced. 
These series might derive from the ester bound fatty 
acids in the HA macromolecular network. The distri- 
bution of fatty acids, with a strong even over odd 
predominance and maxima at El6 and C26, reflects the 
contribution of higher plant waxes. The ~,~o-alkane- 
dioic acids may act as bridges in the macromolecular 
network, their content being related to the degree of 
cross-linking of the macromolecular structure. A 
bacterial contribution was evidenced by the release of 
the iso- and anteiso-C~5 and C17 fatty acids. Minor 
amounts of triterpenoid acids were also released by 
pyrolysis-methylation. They arise either from higher 
plants (oleanane and ursane skeletons) or bacteria 
(hopane skeletons). Since the HAs were exhaustively 
extracted with organic solvents before pyrolysis, these 
triterpenoids must be covalently bound to the HA 
structure, possibly by ester bonds. Additional ali- 
phatic series identified in the pyrograms were n-alka- 
nes and n-aikenes, with chain lengths up to Ca0. These 
aliphatic hydrocarbons have been observed in other 
peat and coal pyrolysates and indicate the presence of 
significant amounts of polyalkyl components (Kotra 
and Hatcher, 1988). As previously suggested for 
similar materials, the major contributors to the alkyl 
components in peat and lignite might be the new 
types of non-saponifiable, highly aliphatic biopoly- 
mers similar to those recently identified in present- 
day and fossil plant cuticles, and in the cell walls of 
some species of algae (Nip et al., 1986; Largeau et al., 
1986). Such biopolymers yield, by conventional py- 
rolysis, a series of n-alkanes/n-alkenes with a distri- 
bution similar to that found in our HA samples. 
Although the above biopolymers are minor constitu- 
ents of the original biomass, they are more refractory 
than other major vegetable components, including 
lignin, and could concentrate in the sediment during 
diagenesis. They are also responsible for the sharp, 
narrow signal at about 32ppm in the ~3C-NMR 
spectra of the HA samples. 

CONCLUSIONS 

Attempts to describe structural models for low- 
rank coals have often overlooked the presence of 
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carboxyl  g roups  in their  s t ructure .  This  has been due 
to the l imi ta t ions  o f  the  techniques  used (pyrolysis  
and  oxidat ive  deg rada t i on  mainly).  The  first s teps o f  
the coal if icat ion process  are charac te r ized  by the 
progress ive  decrease  o f  polysacchar ides ,  demethy la -  
t ion o f  methoxyl  g roups  and  the  f o r m a t i o n  o f  cate- 
chols  and  also by a progress ive  ox ida t ion  and 
en r i chmen t  in carboxyl ic  g roups  in the lignin mac ro -  
molecule.  Such oxidat ive  a l te ra t ion  affects the 3-car- 
bon  s ide-chain o f  the lignin giving rise main ly  to 
benzenecarboxyl ic  acids and  benzylic ketones .  A 
m o r e  comple t e  knowledge  o f  the role o f  carboxyl ic  
g roups  dur ing  the coal if icat ion process  will arise f rom 
the analysis  by pyro lys i s -methy la t ion  o f  a wider  set o1" 
coals  o f  increas ing rank.  
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