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Abstract
A set of Eucalyptus globulus woods from different origins and growth conditions, giving a wide range of pulp yields (from 40 to 60%) upon

kraft cooking, was analyzed using Py-GC/MS. The carbohydrate-derived compounds and the compounds derived from syringyl (S) and

guaiacyl (G) lignin units were analyzed and the lignin/carbohydrate and S/G ratios determined. Eucalypt woods giving higher pulp yield

released higher amounts of S-type compounds upon Py-GC/MS. A significant correlation was observed between pulp yield and the lignin

composition in terms of the S/G ratio. By contrast, the lignin/carbohydrate ratio obtained by Py-GC/MS did not show a significant correlation

with the pulp yield. This indicates that the lignin composition is a more important parameter influencing pulp yield than the lignin content.

# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Chemical pulping involves the separation of cellulosic

fibers and the removal of lignin by using an alkali solution

and high temperatures and pressures. A major determinant

of the economics of a kraft pulping operation is the yield of

pulp per ton of wood. The content and chemical structure of

wood components, in particular lignin content and its

composition in terms of its p-hydroxyphenyl (H), guaiacyl

(G; 4-hydroxy, 3-methoxyphenyl) and syringyl (S; 4-

hydroxy, 3,5-dimethoxyphenyl) moieties could be important

parameters in pulp production in view of delignification

rates, chemical consumption and pulp yields [1,2]. In

hardwoods, such as eucalyptus, lignins are made up of S and

G units in varying ratios, whereas softwood lignin is made of

G units and small amount of H units, and grass lignins

include the three units [3]. The higher reactivity of the S

lignin with respect to the G lignin in alkaline systems is
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known [4]. Therefore, the S/G ratio in hardwood lignin

should affect the pulping efficiency [5].

In breeding programmes where tree clones suitable for

pulp production are selected, it is important to discriminate

the best clones (giving the highest pulp yield) based on the

chemical structure of lignin. Ideally, this should be done by

analyzing a small wood sample obtained from the trunk

without the need of cutting down the whole tree for cooking

and direct estimation of yield. Several chemical degradative

methods have been used for determining the lignin S/G ratio

in woods. Permanganate and alkaline nitrobenzene oxida-

tion [6,7], as well as acidolysis [8] and thioacidolysis [9,10]

or CuO oxidation [11,12] have been utilized for determining

the S/G ratio. However, these methods often require tedious

and time-consuming procedures and need large amounts of

wood sample (around 100 mg). Spectroscopic methods,

such as FTIR [13], or solid-state 13C NMR [7,12,14–17]

have been used to determine the S/G ratio in various

hardwoods. However, it is often difficult to determine the

precise S/G ratio in lignin owing to both insufficient

sensitivity and poor resolution in the spectra, and lignin
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Table 1

List of wood samples of two E. globulus subspecies with different pulp yields, and values of the syringyl/guaiacyl (S/G) and lignin/carbohydrate (L/HC) molar

ratios calculated upon Py-GC/MS

Sample

No.

Subspecies Reference Density

(kg/m3)

Active

alkali (%)

Pulp

yield (%)

Viscosity

(mL/g)

Py-GC/MS

S/G L/HC

Average CV (%) Average CV (%)

1 E. globulus ssp. globulus T5 580 13.0 59.6 1451 5.5 3.3 0.94 5.5

2 E. globulus ssp. globulus T6 600 13.5 58.9 1348 5.0 3.0 0.75 3.5

3 E. globulus ssp. globulus Plus 522 567 12.0 55.8 1528 6.4 1.0 1.05 7.7

4 E. globulus ssp. globulus Elite 2002 556 14.0 55.2 1369 5.0 2.7 0.76 4.4

5 E. globulus ssp. globulus Elite 5002 438 14.0 54.1 1418 4.0 0.5 1.13 1.5

6 E. globulus ssp. globulus Elite 4009 556 16.0 52.5 1217 4.1 0.5 0.74 5.6

7 E. globulus ssp. globulus Elite 4500 477 16.0 49.8 1294 4.3 4.8 1.31 9.2

8 E. globulus ssp. globulus 115-2-PM 10 578 17.0 49.1 1174 5.3 2.4 1.43 5.2

9 E. globulus ssp. globulus 334-1-AR 2 613 20.0 46.6 1143 4.6 1.3 0.86 15.3

10 E. globulus ssp. pseudoglobulus 2 547 22.0 44.8 1135 3.5 4.0 0.71 8.4

11 E. globulus ssp. pseudoglobulus 4 663 24.0 42.0 1089 3.5 2.5 0.58 5.8

12 E. globulus ssp. pseudoglobulus 6 665 26.0 40.8 1062 4.0 2.2 0.64 5.8

The reproducibility of the data is reflected in the coefficient of variation (CV, %).
extraction is always required. On the other hand, pyrolysis-

gas chromatography/mass spectrometry (Py-GC/MS) is

rapid and highly sensitive for characterizing the chemical

structure of lignin, which allows the analysis of very small

amounts of sample without prior manipulation and/or

isolation [18–20]. Py-GC/MS has also been successfully

used for the calculation of the S/G ratios in wood, and

especially in eucalypt species [21–23].

The objective of this work is to evaluate the influence of

lignin composition (in terms of the S/G ratio observed by Py-

GC/MS) in the pulp yield. A series of Eucalyptus globulus

Labill. wood samples from different origins and growth

conditions, which are used as raw material from paper pulp

production with a wide range of pulp yields upon kraft

cooking, have been selected for this study.
2. Material and methods

Wood samples taken from 12 E. globulus trees (8–11-

year-old) from different origins and growth conditions,

which gave very different pulp yields upon kraft cooking,

were used for this study. The wood samples (discs collected

at a standard height) were chopped and mixed with different

alkali charges to achieve pulp kappa number 16. Kraft

cooking were performed using 200 g of wood under the

following cooking conditions: 3.5:1 liquor to wood ratio;

165 8C cooking temperature; cycle: 90 min heating up and

50 min at cooking temperature; 25% sulphidity; active alkali

variable depending on the cooking. For Py-GC/MS analysis,

the eucalypt samples were milled into fine powders. Five

replicates were performed for each analysis.

2.1. Pyrolysis-gas chromatography/mass spectrometry

Analytical pyrolysis was performed using a CDS

Pyroprobe AS-2500 Autosampler. The sample (typically
100 mg) was placed in a quartz tube, 2 mm � 40 mm and put

into the sample tray. The pyrolysis was carried out at 550 8C
for 10 s. The pyrolysis chamber was kept at 250 8C and

purged with helium in order to transfer the pyrolysis

products as quickly as possible to the GC column. The

pyrolyser was connected to an Agilent 6890 gas chromato-

graph equipped with an on-column injector and a fused silica

capillary column (DV-1701, 60 m � 0.25 mm ID, 0.25 mm

film thickness) coupled to an Agilent 5973N mass spectro-

meter. The chromatograph was programmed from 45 8C
(4 min) to 280 8C at a rate of 4 8C min�1. The final

temperature was held for 15 min. The injector was set at

250 8C, while the CG/MS interface was kept at 280 8C. The

compounds were identified by comparing the mass spectra

thus obtained with those of the Wiley computer libraries, by

mass fragmentography and by comparison with literature

data [18,19].
3. Results and discussion

The series of eucalypt woods selected for this study

corresponded to two E. globulus subspecies, namely E.

globulus ssp. globulus Labill. and E. globulus ssp.

pseudoglobulus Naudin ex Maiden (Table 1). The woods

gave a broad range of pulp yields upon kraft cooking. In

order to investigate whether the differences in pulp yields are

related to the content and composition of the main wood

components, carbohydrates and lignin, the wood samples

were analyzed by Py-GC/MS. Fig. 1 shows a representative

pyrogram of an eucalypt wood sample. The compounds

released arise mainly from the carbohydrate and lignin

moieties. The identity of the compounds identified is listed

in Table 2. The main lignin-derived compounds are guaiacol

(7), 4-methylguaiacol (8), 4-vinylguaiacol (12), syringol

(15), trans-isoeugenol (18), 4-methylsyringol (19), 4-

ethylsyringol (22), 4-vinylsyringol (24), 4-allylsyringol
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Fig. 1. Py-GC/MS chromatogram of a representative sample of E. globulus wood (sample 1). The numbers refer to the compounds listed in Table 2.

Table 2

List of compounds identified in the Py-GC/MS of E. globulus wood

No. Mass fragments Compound Formula MW Origin

1 39/95/96 Furfural C5H4O2 96 C

2 53/69/81/97/98 Furfuryl alcohol C5H6O2 98 C

3 55/69/70/98 2,3-Dihydro-5-methylfuran-2-one C5H6O2 98 C

4 55/84 (5H)-Furan-2-one C4H4O2 84 C

5 57/58/85/114 4-Hydroxy-5,6-dihydro-(2H)-pyran-2-one C5H6O3 114 C

6 55/71/84/112 3-Hydroxy-2-methyl-2-cyclopenten-1-one C6H8O2 112 C

7 81/109/124 Guaiacol C7H8O2 124 LG

8 95/123/138 4-Methylguaiacol C8H10O2 138 LG

9 122/137/152 4-Ethylguaiacol C9H12O2 152 LG

10 57/69/70/82/85 5-Hydroxymethyl-2-tetrahydrofuraldehyde-3-one C6H8O4 144 C

11 56/84/114 Dihydrohydroxypyran-1-one C5H6O3 114 C

12 107/135/150 4-Vinylguaiacol C9H10O2 150 LG

13 131/149/164 Eugenol C10H12O2 164 LG

14 69/97/109/126 5-Hydroxymethyl-2-furfuraldehyde C6H6O3 126 C

15 111/139/154 Syringol C8H10O3 154 LS

16 131/149/164 cis-Isoeugenol C10H12O2 164 LG

17 43/87/97/113/144 2-Hydroxymethyl-5-hydroxy-2,3-dihydro-(4H)-pyran-4-one C5H8O4 144 C

18 131/149/164 trans-Isoeugenol C10H12O2 164 LG

19 125/153/168 4-Methylsyringol C9H12O2 168 LS

20 109/151/152 Vanillin C8H8O3 152 LG

21 122/137/166 Homovanillin C10H14O2 166 LG

22 167/182 4-Ethylsyringol C10H14O3 182 LS

23 123/151/166 Acetoguaiacone C9H10O3 166 LG

24 137/165/180 4-Vinylsyringol C10H12O3 180 LS

25 122/137/180 Guaiacylacetone C10H12O3 180 LG

26 167/179/194 4-Allylsyringol C11H14O3 194 LS

27 123/167/196 4-Propylsyringol C11H16O3 196 LS

28 123/151/180 Propiovanillone C10H12O3 180 LG

29 167/179/194 cis-4-Propenylsyringol C11H14O3 194 LS

30 57/60/73/98 Levoglucosane C6H10O5 162 C

31 167/179/194 trans-4-Propenylsyringol C11H14O3 194 LS

32 167/181/182 Syringaldehyde C9H10O4 182 LS

33 167/196 Homosyringaldehyde C10H12O4 196 LS

34 153/181/196 Acetosyringone C10H12O4 196 LS

35 107/135/147/178 Coniferylaldehyde C10H10O3 178 LG

36 167/210 Syringylacetone C11H14O4 210 LS

37 181/210 Propiosyringone C11H14O5 210 LS

38 137/165/180/180/208 Sinapaldehyde C11H12O4 208 LS

C: cellulose; LG: lignin guaiacyl units; LS: lignin syringyl units.
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Fig. 2. Plot of the pulp yield of the selected samples vs. the S/G ratio

estimated upon Py-GC/MS. The numbers refer to the wood samples listed in

Table 1. Key labels for the different populations are: E. globulus ssp.

globulus wood (*) and E. globulus ssp. pseudoglobulus wood (&).
(26), cis- and trans-4-propenylsyringol (29 and 31),

syringaldehyde (32), homosyringaldehyde (33), acetosyr-

ingone (34), syringylacetone (36), propiosyringone (37) and

sinapaldehyde (38). In all cases, the lignin-derived S-type

phenols are present in higher abundances than the respective

G-type phenols. Among the carbohydrate-derived com-

pounds, the main ones are furfural (1), 2,3-dihydro-5-

methylfuran-2-one (3), (5H)-furan-2-one (4), 4-hydroxy-

5,6-dihydro-(2H)-pyran-2-one (5), 3-hydroxy-2-methyl-2-

cyclopenten-1-one (6), 5-hydroxymethyl-2-furfuraldehyde

(14), 2-hydroxymethyl-5-hydroxy-2,3-dihydro-(4H)-pyran-

4-one (17) and levoglucosane (30). Relative peak molar

areas were calculated for carbohydrate, and lignin G- and S-

type degradation products. The lignin S/G and lignin/

carbohydrate (L/HC) ratios were determined for each

sample and the average for the five replicates calculated.

It must be noted here that the observed L/HC ratio does not

reflect the real content of each moiety since pyrolysis is

known to highly underestimate the cellulose content due to

intense charring and extensive degradation to non-chroma-

tographied products. However, the L/HC ratio observed after

pyrolysis can still be used for comparison of the relative

amounts of each moiety.

Table 1 shows the values for the S/G and lignin/

carbohydrate ratios calculated upon Py-GC/MS. The good

reproducibility of the Py-GC/MS data is reflected in the

coefficient of variation of both the S/G and L/HC ratios. A

better reproducibility is observed for the S/G ratio (less than

5%) than for the L/HC ratio. The S/G ratios of the E.

globulus wood samples selected for this study ranged from

3.5 to 6.4, while the lignin/carbohydrate ratio ranged from

0.58 to 1.43, indicating the high variability of the

carbohydrate and lignin content and lignin composition

among samples from the same wood species. It has already

been reported that the lignin S/G ratio in eucalypt wood

exhibits considerable variation depending on the origins of

the tree [22], in trees from the same origin [23] and even

within the same tree [21].

In general, it can be observed that wood samples having

higher pulp yields (i.e. E. globulus ssp. globulus T5, T6 and

Plus no. 522 woods; samples 1–3) generally present higher

S/G ratios than those wood samples having lower pulp yields

(i.e. the E. globulus ssp. pseudoglobulus 2, 4 and 6 woods;

samples 10–12). These results seem to indicate that the

lignin composition in terms of the S/G ratio can be

correlated with the pulp yield. The plot of the pulp yield

versus the S/G ratio estimated upon Py-GC/MS is shown in

Fig. 2. A significant correlation (r = 0.680; P < 0.02) was

observed between the lignin compositions of the different

woods, as reflected by the S/G ratio, and the pulp yield for

the series of eucalypt wood samples studied. Pulp yield

increases as the S/G ratio of a wood increases. This is

explained because the S units are mainly linked by more

labile ether bonds (at the C4 position of the aromatic rings)

whereas C–C linkages (at the free C5 position) also exist

between the G units, as described in lignin structural models
[24,25]. Higher proportions of S-lignin units allow their

easier removal during kraft pulping. This results in lower

alkali consumption during pulping, less degradation of

cellulose and, consequently, higher pulp yields. In any case,

the significant regression coefficient value obtained con-

firms that the lignin composition is an important parameter

that affects pulp yield. However, other factors besides the

lignin composition seem to affect the pulp yield. Our results

with E. globulus woods and pulps are in agreement with

previous results [26–28], including those from González-

Vila et al. [16] that showed a correlation between lignin S/G

ratio in different eucalypt species, as estimated by pyrolysis

in the presence of tetramethylammonium hydroxide, and the

ease of delignification estimated as the active alkali used.

In contrast, a correlation between the lignin and

carbohydrate contents (estimated as the L/HC ratio

calculated upon Py-GC/MS) and the pulp yield, was not

observed (Fig. 3). This fact seems to indicate that the lignin

composition is a more important parameter influencing pulp

yield than the lignin content estimated upon Py-GC/MS. The

three E. globulus ssp. pseudoglobulus woods (samples 10–

12) seem to be the responsible for the rare regression

observed between L/HC ratio and pulp yield (woods with

high lignin content have higher pulp yields) since they show

very low pulp yields despite having very low L/HC ratios.

This low yield (regardless of their higher content in

carbohydrates) can be explained because these samples

show the lowest S/G ratio among all the analyzed samples.

On the other hand, the contrary occurs with sample 8 or

sample 3, that despite having high lignin/carbohydrate

values (low cellulose content), they present higher yields

probably due to their very high S/G ratio. This fact is also

observed in Fig. 4 that shows the plot of the S/G ratio versus

the L/HC ratio for the different wood samples. It can be

observed that a correlation exists between both parameters.
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Fig. 3. Plot of the pulp yield of the selected samples vs. the lignin/

carbohydrate ratio estimated upon Py-GC/MS. The numbers refer to the

wood samples listed in Table 1. Key labels for the different populations are:

E. globulus ssp. globulus wood (*) and E. globulus ssp. pseudoglobulus

wood (&).
In general, wood samples with higher lignin content (and

therefore lower cellulose content) have higher S/G ratio,

which will be therefore easily delignified.

The data reported here gives an evidence of the influence

of the lignin composition (S/G ratio) of E. globulus wood in

the pulp yield. This allows considering the inclusion of

lignin composition, in terms of the S/G ratio, as a selection

parameter in clonal breeding programs for pulpwood

production. Since Py-GC/MS analysis only needs a

minimum amount of sample, it can be applied to non-

destructive sampling in the tree and, therefore, makes it a

useful procedure to asses the S/G ratio of a large number of
Fig. 4. Plot of the S/G ratio vs. the lignin/carbohydrate ratio estimated upon

Py-GC/MS for the different E. globulus wood samples selected for this

study. The numbers refer to the wood samples listed in Table 1. Key labels

for the different populations are: E. globulus ssp. globulus wood (*) and E.

globulus ssp. pseudoglobulus wood (&).
samples. However, correlation levels shown above do not

allow using Py-GC/MS as a unique parameter to predict the

pulp yield of different woods. Combination with other

techniques, such as near infrared (NIR) [29–31] or FT-

Raman spectroscopy [32,33] could be appropriate in tree

breeding programmes.
Acknowledgements

This study has been supported by Grupo Empresarial

ENCE S.A. and the Spanish Ministerio de Ciencia y

Tecnologı́a (MCyT) (project AGL2002-00393). A.G.

acknowledges a ‘‘Ramón y Cajal’’ contract of the Spanish

MCyT.
References

[1] H. Chang, K.V. Sarkanen, Tappi J. 56 (1973) 132–134.

[2] J.C. del Rı́o, A. Gutiérrez, M.J. Martı́nez, A.T. Martı́nez, J. Anal. Appl.

Pyrol. 58/59 (2001) 441–453.

[3] K.V. Sarkanen, H.L. Hergert, in: K.V. Sarkanen, C.H. Ludwig (Eds.),

Lignins—Occurrence, Formation, Structure and Reaction, Wiley-

Interscience, New York, 1971, pp. 43–94.

[4] Y. Tsutsumi, R. Kondo, K. Sakai, H. Imamura, Holzforschung 49

(1995) 423–428.

[5] D. Collins, C. Pilotti, A. Wallis, Appita J. 43 (1990) 193–198.

[6] M. Tanahashi, T. Higuchi, Meth. Enzymol. 161 (1992) 101–113.

[7] Y. Xie, S. Yasuda, Nordic Pulp Pap. Res. J. 19 (2004) 18–21.

[8] K. Lundquist, in: S.Y. Lin, C.W. Dence (Eds.), Methods in Lignin

Chemistry, Springer-Verlag, Berlin, 1992, pp. 289–300.

[9] C. Lapierre, B. Monties, C. Rolando, Holzforschung 40 (1986) 113–

119.

[10] T. Ona, T. Sonoda, K. Ito, M. Shibata, Holzforschung 51 (1997) 396–

404.

[11] J.I. Hedges, D.C. Mann, Geochim. Cosmochim. Acta 43 (1979) 1803–

1807.
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