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Abstract 

Asymmetric telechelic α-hydroxyl-ω-(carboxylic acid)-poly(ε-caprolactone) (HA-PCL), 

α-hydroxyl-ω-(benzylic ester)-poly(ε-caprolactone) (HBz-PCL) and an asymmetric 

telechelic copolymer α-hydroxyl-ω-(carboxylic acid)-poly(ε-caprolactone-co-γ-

butyrolactone) (HA-PCB) were synthesized by ring-opening polymerization of  ε-

caprolactone (CL). CL and CL/γ-butyrolactone mixture were used to obtain  

homopolymers and copolymer respectively at 150°C and 2 h using ammonium 

decamolybdate (NH4) [Mo10O34] (Dec) as catalyst. Water (HA-PCL and HA-PCB) or 

benzyl alcohol (HBz-PCL) were used as initiators. The three polylactones reached 

initial molecular weights between 2000-3000 Da measured by proton nuclear magnetic 

resonance (1H-NMR). Compression-molded polylactone caplets were allowed to 

degrade in 0.5 M aqueous p-toluenesulfonic acid at 37°C and monitored up to 60 days 

for weight loss behavior. Data showed that the copolymer degraded faster than the PCL 

homopolymers, and that there was not difference in the weight loss behavior between 

HA-PCL and HBz-PCL. Caplets of the three polylactones containing 1% (w/w) 

hydrocortisone were placed in two different buffer systems, pH 5.0 with citrate buffer 

and pH 7.4 with phosphate buffer at 37°C, and monitored up to 50 days for their release 

behavior. The release profiles of hydrocortisone presented two stages. The introduction 

of a second monomer in the polymer chain significantly increased the release rate, being 

the degradation rate for HA-PCB faster than those for HBz-PCL and HA-PCL. At the 

pH studied, only slight differences on the liberation profiles were observed. SEM 

micrographs indicate that hydrolytic degradation occurred mainly by a surface erosion 

mechanism.  
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1. Introduction 

Biodegradable polyesters and co-polyesters have been the focus of extensive research 

for several decades, as a result of their ease of manufacturing and desirable 

characteristics. Their ranges of physical properties and hydrolytic degradation profiles 

have made them attractive candidates for use in a variety of biomedical products such as 

degradable sutures, temporary orthopedic fixtures and controlled pharmaceutical 

delivery matrices. Biodegradable materials degrade in vivo under a controlled manner, 

yielding nontoxic small molecules that can be excreted from the body [1].  

Poly (ε-caprolactone) (PCL) is a hydrophobic and biodegradable polymer that has found 

widespread uses in biomedical applications [2]. PCL is a synthetic polymer used for 

fibrous meshes and porous scaffolds in the field of tissue engineering. [3] However, the 

high degree of crystallinity decreases its biocompatibility with soft tissues and lowers 

its rate of biodegradability. PCL shows a high degree of permeability toward low 

molecular weight drugs (<400 Da), and this property made it attractive for the 

manufacture of long-term and diffusion-controlled delivery drug delivery systems. In 

the scope of the local drug delivery applications, PCL has been successfully tested as a 

vehicle for slow release of drugs at tumor reactions sites [4, 5].  

Ring opening polymerization of lactones provides a convenient route to obtain 

biodegradable aliphatic polyesters, being PCL the most important member of this 

family. Different catalysts have been used to catalyze the polymerization and low-

molecular weight alcohols can be used as initiators and to control the final polymer 

molecular weight. We have reported the use of ammonium decamolybdate 

((NH4)8[Mo10O34] as an efficient catalyst to obtain aliphatic polyesters and their 



copolymers with different architectures [5, 6]. In this work, we have used this catalyst to 

obtain the polymers tested for degradation and as drug delivery carriers. 

The rate of PCL hydrolysis can be accelerated by copolymerization with other lactones. 

In that regard, copolymers of CL with δ-valerolactone and DL-lactide (e.g. a 

commercial suture MONOCRYL, Ethicon) show higher degradation rates [7]. In the case 

of poly (ε-caprolactone-co-γ-butyrolactone) (PCB), the appearance of new physical 

properties and the observance of higher rate of degradation make them amenable for 

tailored applications as biodegradable materials [6, 8]. Therefore biodegradable polymer 

with desired degradation rates should be synthesized and the degradation rate should be 

determined by an effective method. Generally, in vitro degradation of biodegradable 

polymer is studied in buffer solutions. However, the degradation rates of some polymers 

are very slow, and for PCL, it will take more than 1 year to get a complete degradation 

of the polymeric matrices [9].  

Hydrocortisone ((11β) 11,17,21-trihydroxy-(11beta)-pregn-4-ene-3,20-dione) is a 

hydrophobic corticosteroid drug used in the treatments of allergies and inflammations. 

It relieves symptoms related to certain hormone shortage and has an 

immunosuppressive action. Hydrocortisone is applied as topical and oral administration 

or intravenous injection. It can also be combined with antibiotics and antifungal agents 

to treat infections. Hydrocortisone has been used to treat certain types of cancer such as 

leukemia, lymphoma and multiple myeloma [10]. In this study, hydrocortisone was used 

as a drug model.  

A common procedure to test different systems for controlled release applications is the 

incorporation of the active agent into a biodegradable polymer matrix, followed by the 

study of its degradation behavior under hydrolytic conditions. Degradation rates for 

polymers mainly reside on polymer characteristics, such as chemical structure, water 



permeability (hydrophilicity/hydrophobicity), morphology and molecular weight.  It is 

known that aliphatic polyesters provide a good permeable system for steroid release. 

However, degradation times observed for these polymers are relatively long [11,12]. For 

poly(ε-caprolactone), degradation can be accelerated by using (a) low-molecular weight 

samples and (b) by copolymerization with other monomers such as γ-butyrolactone, BL.  

In this article, degradation and hydrocortisone release behavior from caplets made from 

(a) poly(ε-caprolactone) with different end groups, and (b) (ε-caprolactone-co-γ-

butyrolactone) (HA-PCB) were studied. Effects of end-groups and copolymerization 

(by insertion of butyrolactone onto the polymeric chains) on degradation and of drug 

release from these polymers were evaluated. Results show that significant higher rates 

of degradation and hydrocortisone release are obtained for the copolymer system.  

2. Experimental 

2.1 Materials 

CL (Aldrich Chemicals Co.), BL (Aldrich) were dried over calcium hydride and 

destilled under reduced pressure before used. Distilled water was purchased from Baker. 

Benzyl alcohol (BzOH),  p- toluenesulfonic acid and hydrocortisone were purchased 

from Aldrich and used without further purification. Ammonium heptamolybdate 

tetrahydrate (NH4)6 [Mo7O24] (Hep)(Fluka) was grounded in a mortar and passed 

through a 100 mesh sieve before used [2, 5]. 

2.2 Synthesis of poly(ε-caprolactone)s and poly(ε-caprolactone-co-γ-butyrolactone) 

α-Hydroxyl-ω-(carboxylic acid)-poly(ε-caprolactone) (HA-PCL),    α-hydroxyl-ω-

(benzyl ester)-poly(ε-caprolactone) (HBz-PCL) and α-hydroxyl-ω-(carboxylic acid)-

poly(ε-caprolactone-co-γ-butyrolactone) (HA-PCB) were synthesized by ring-opening 

polymerization with ammonium decamolybdate (NH4)8[Mo10O34] (Dec) as catalyst, 

using an initial monomer/catalyst ratio of 20,000, as described elsewhere[5, 6]. Water was 



used as initiator for HA-PCL and HA-PCB, and benzyl alcohol for HBz-PCL. A 

monomer/initiator ratio of 20 was used, in order to obtain polymers in the range 

between 2000 and 3000 Da. Polymerizations were carried out in 100 mL vials 

previously dried and purged with dry nitrogen. Vials were stoppered with a rubber 

septum and placed in a thermostated bath at 150°C for 2 h. Final polymers were 

carefully crystallized from chloroform/methanol and dried under vacuum. No monomer 

was detected by 1H-NMR in the final polymer used for the tests. 

NMR data for HA-PCB copolymer: [6]  1H NMR (300 MHz, CDCl3, ppm): δ 

4.12 (t, 2H, [−CH2O−], BL), 4.06 (t, 2H, [−CH2O−], CL), 3.68 (t, 2H, [−CH2OH], BL), 

3.64 (t, 2H, [−CH2OH], CL), 2.39 (t, 2H, [−CH2CO2−], BL), 2.31 (t, 2H, [−CH2CO2−], 

CL), 1.96 (q, 2H, [−CH2−], BL), 1.65 (m, 4H, [−(CH2)2−], CL), 1.38 (q, 2H, [−CH2−], 

CL). 13C NMR (50 MHz, CDCl3, ppm): δ 176.80 [end-group −COOH], 173.60 [ester 

end-group −C=O], 173.41 [ester −C=O], 173.25 and 172.70  [ester −C=O, BL], 64.19 

[−CH2O−, CL], 63.96  [−CH2O−, CL], 63.14  [−CH2O−, BL], 62.29 [−CH2OH, CL] and 

61.68 [−CH2OH, BL], 34.04 [−CH2CO2−, CL], 33.92 [−CH2CO2−, CL], 33.83 and 

33.46 [−CH2CO2−, CL],  32.08 [−CH2CH2OH], 30.58  [−CH2COO−, BL] , 28.14 

[−CH2CH2OCO−, CL], 25.33 [−CH2(CH2)2OCO−, CL], 25.12 [−CH2(CH2)2OCO−, 

CL], 24.50 [−CH2(CH2)2OCO−, CL], 24.38 [−CH2CH2CO2−, CL], 

24.18[−CH2CH2COO−, CL], 23.87 [−CH2(CH2)2OCO−, BL].    

 

2.3 Caplets preparation 

HA-PCL, HBz-PCL homopolymers and HA-PCB copolymer were compression molded 

at 4 tons and room temperature to yield caplets of 7 mm diameter and 1.5 mm thickness. 

Weights were in the range between 45 and 55 mg.  

2.3.1 Preparation of Caplets containing 1% hydrocortisone (w/w) 



HA-PCL, HBz-PCL homopolymers and HA-PCB copolymer were mixed in solution 

(THF as solvent) with 1% (w/w) of hydrocortisone; the solution previously frozen was 

dried at vacuum and room temperature. The powder was compression molded at 4 tons 

and room temperature to yield caplets of 7 mm diameter and 1.5 mm thickness and 

weights in the range between 45 and 55 mg.  

2.4 In vitro hydrocortisone release studies of polylactones caplets  

Hydrocortisone release was evaluated by UV-vis spectroscopy. The polylactones caplets 

(50mg and 7.0 X 1.5 mm) were placed in 15 ml of 0.1M aqueous citrate buffer at pH 

5.0 or 0.1M aqueous phosphate buffer at pH 7.4 (both containing 0.05% w/v sodium 

azide as preserving agent) in a oven incubator at 37°C. The hydrocortisone 

concentration (248 nm) was determined by UV-Vis spectrophotometer 8453 (Agilent 

Germany), taking upper layer aliquot (3.0 ml) for UV-Vis measurement. Samples were 

then returned to the original solution. Three runs were made for each sample tested at 

pH = 5.0. 

2.5 In vitro degradation 

The polylactones caplets previously weighed were placed in 50 mL falcon tubes 

containing 10 mL of 0.5 M aqueous p-toluenesulfonic acid (pH = 0.7) and maintained at 

37°C in an incubator. Samples were removed at select times within 58 days, filtered 

through a 0.45-μm membrane (Gelman Laboratory Nylaflo ®), and washed with 

distilled water. The solid samples were collected and dried in vacuum at room 

temperature over 3 days. The remaining polymer solid was then weighed to determine 

the dry weight. The percentage of the weight remaining was calculated from the ratio of 

the dry weight divided by the initial weight of the polymers. Three runs were made for 

each sample. 

2.6 Analysis and characterization  



Differential scanning calorimetry (DSC) analysis was carried in a Mettler 

Toledo (DSC 822e) calorimeter. Samples weighting 5 to 15 mg, were sealed in 

aluminum pans. Samples were heated at 10 °C min-1 under nitrogen purge from 25 to 

80ºC, then cooled at -90ºC, hold at this temperature for 12 minutes, and reheated at 10 

°C min-1 from -90 to 80ºC. Data were recorded from the first run. 

 Surface morphologies of polymers films were recorded with a scanning electron 

microscope (SEM) LEICA S420σ, after coating samples with gold. 

 Wide-angle X-ray diffraction (WAXD) patterns were obtained by means of a 

Phillips PW 1130 diffractometer (Cu Kα radiation), at a scan rate of 2° min-1 over the 5-

35 2θ. 

 Solution 1H spectra were recorded at room temperature on a Varian Unity Inova 

500 (500 MHz 1H) spectrometer. Chloroform-d (CDCL3) was used as solvent. Spectra 

were referenced to the residual solvent signal at 7.26 ppm. 

GPC-MALLS spectra were determined using a multidetector system: a multi-

angle light scattering (MALS) Dawn EOS photometer, that measures the intensity of the 

scattered light at 16 angular locations ranging from 12.5° to 164.9°; a ViscoStar 

viscometer for measuring the differential pressure in a four-capillary bridge; an 

interferometer refractometer detector (Optilab rEX) as a concentration detector. The 

MALS photometer uses a GaAs laser operating at a nominal wavelength of 690 nm. The 

chromatographic set-up used consists of an Alliance HPLC Waters 2695 Separation 

Module having a vacuum degassing facility online, an autosampler, a quaternary pump, 

a columns thermostat, and a Waters 2414 Differential Refractometer for determining the 

distribution of molecular weight. A bank of four columns with the following 

characteristics was used: HSPgel: HR 1.0, HR 2.5, HR 4.0, and HR MB-M (dimensions 

150 mm x 6.0 mm) with pore sizes of 50 Å, 500Å, 1.0E+4 and a mixed bed pore size 



(100 Å to 1.0E+6 Å) respectively, and particle size 3 and 5 µm. HPLC Tetrahydrofuran 

(THF), previously filtered (in a 0.45 µm pore size filter) and degassed, was used as the 

eluent. Typical conditions were: flow rate of 0.5 ml/min; 100 µL injection volume; 

analysis time per sample 35 min. The temperature of the columns was controlled at 33 

ºC by the thermostat. The relative values of molecular weight distribution were obtained 

by using Alliance Empower software. However, to obtain the absolute values, the 

ASTRA software version 5.3.2.10 (Wyatt Technology Corp., Santa Barbara, CA) was 

used.  

3. Results and discussion 

3.1 Characterization of polymer samples 

 The number-average molecular weights for the three studied polylactones, and 

thermal and degradation properties for their 1% hydrocortisone composites, are 

summarised in Table I. 

Number-average molecular weights (Mn) and copolymer composition were 

calculated by 1H-NMR [5,6]. The number-average molecular weights of the three 

polylactones were in the range of 2000-3000 Da. It was found that a 7% of BL insertion 

was achieved. Mn and Mw values are overestimated by GPC-MALLS, but give an idea 

of the samples polydispersities. 

Because of the importance of the crystallinity on the degradation, we carried out 

a detailed study on the crystallinity of our materials. 

Degree of crystallinity is closely related with the molecular weight Mn, and this 

value increases as the molecular weight decreases. The three precipitated polylactones 

possess high degrees of crystallinity, in the range 78 to 84 (HA-PCL > HA-PCB > HBz-

PCL), due to CL segments crystallization[13, 14]. For our copolymer HA-PCB we did not 

find a significant lowering in CL segments crystallinity found by other authors [8]. It is 



reported that PCL melting points occur in the range of 59-64 °C, and the values of Tm 

depend upon the crystallite size [14]. Observed melting points obtained from the 

endotherm maxima for the polymers studied here are different (see Fig. 1 and Table 1), 

with copolymer HA-PCB showing a significant lower value than those recorded for the 

homopolymers. Both homopolyesters show higher melting points than copolymer, being 

lower that for HBz-PCL (Tm = 60.3 °C). If we relate this value to the size of the PCL 

crystallites, it is obvious that the bulky benzyl end-group interferes the ordering for 

crystallization more than carboxylic acid groups, and that the inclusion of a comonomer 

in the main chain has even a stronger effect. In the second scan, after melting at 

approximately 10ºC lower than in the first scan, the same trend is observed for the 

melting point, indicating again the difference in crystallites sizes, but the amount of 

crystallinity for co-polymer HA-PCB is higher than for homopolymers HA-PCL and 

HBz-PCL (63, 60, 59% respectively). This difference is explained by the faster 

crystallization of the shorter segments of caprolactone in the copolymer.  

The same trends observed for precipitated polylactones are found for caplets 

made from the polylactones: the evaporated 1% hydrocortisone composites and the 1% 

hydrocortisone composite caplets. Respect to the absolute values, in the second scan, 

the difference in the results for these series of materials is within 1ºC for the melting 

point, and within 3% in the enthalpy value, showing that crystallization is not 

significantly modified by the addition of the hydrocortisone neither by the method of 

preparation (precipitated powder or caplets). However, the difference in absolute values 

is bigger for the first scan, as a consequence of the previous thermal history of the 

material. For this reason, we have determined as precisely as possible (Table I) the 

crystallization value of the 1% hydrocortisone caplets, which are the samples tested for 

hydrocortisone release. 



The WAXS difractograms show a typical crystalline pattern of PCL crystals 

(peaks at 21.5 and 23.8, corresponding to PCL) [13]. The observed pattern for HA-PCB 

pattern is alike to those observed for HA-PCL and HBz-PCL, showing that the presence 

of BL does not have an important effect in the crystalline pattern observed by WAXS. 

Degradation rates are significantly different for copolymer with respect to 

homopolymers, but only a small difference could be detected between HA-PCL and 

HBz-PCL.  

3.2   Hydrolytic acid degradation of polymer caplets  

In order to test the degradation properties of caplets, an accelerated stability test 

was performed. Degradation test performed at pH = 7.4 phosphate buffer (physiological 

conditions) involves degradation times ranging from one to two years. Accelerated 

degradation methods allow obtaining degradation results in a shorter period of time. The 

in vitro hydrolytic degradation of polylactone caplets were carried out at 37°C in 0.5 M 

aqueous p-toluenesulfonic acid as degradation catalyst [4].  

 The possible factors contributing to accelerated degradation are the degree of 

crystallinity and the nature and number of the end groups [9, 15]. 

Figure 2 illustrates the weight loss occurred after immersion in 0.5 M aqueous p-

toluenesulfonic acid at 37 °C. As it can be seen, and taking into account the values of 

CL crystallinity and of the remaining amorphous material for these polylactones, at the 

experimental conditions tested the degradation depends also on 1) the chemical 

structure of the chain and 2) the nature of end groups. For the homopolymers, the lower 

crystallinity of the HBz-PCL polymer respect to HA-PCL polymer is compensated by 

the hydrophobicity of the benzyl group respect to the carboxylic group, and both 

homopolymers follow the same degradation profile. For the copolymer HA-PCB, with 

carboxylic acid end groups and molecular weight practically the same as for 



homopolymer HA-PCL, the effect of the introduction of the BL units, less stable to 

hydrolysis than CL units, combined with a higher amount of amorphous material, leads 

to a faster degradation rate.  

 Surface morphology changes were followed by SEM. Figures 3, 4 and 5 show 

the SEM micrographs of HA-PCL caplets before degradation and after 8 and 22 days 

respectively under hydrolytic acid degradation. These images are consistent with a 

degradation mechanism by erosion. Initially, the surface appears fairly flat, and surface 

morphology is induced by the mold used for compression molding. After 8 days of 

degradation by p-toluensulfonic acid, a homogeneous and porous structure indicating 

hydrolytic attack at the amorphous phase at the surface is observed. After 15 and 22 

days, the severity and frequency of surface cracks increased with the time. Similar 

behavior is observed for HBz-PCL (not shown) and HA-PCB polylactones, although for 

HA-PCB, the appearance of cracks began earlier, at 8 days of hydrolytic degradation 

(see Fig. 6). 

3.3 In vitro drug release studies of polylactones caplets 

 Polymer samples with no residual monomers (less than 0.1% as determined by 

1H-NMR) were used for the tests. The model low molecular weight drug was 

hydrocortisone, which is a hydrophobic molecule. A hydrophobic drug is supposedly 

more compatible with the polyester carrier, hydrophobic in nature, and the resulting 

composite should be stable with time, avoiding a possible leaching of the drug, that 

would be more likely if the drug were hydrophilic in nature. In addition, if drug was not 

soluble on the polymer, would form microdomains of pure drug embedded in the 

polymeric matrix, and the release profile would not be probably steady, but irregular. A 

1% weight concentration of hydrocortisone was chosen as this is the usual concentration 

found on commercial formulations. 



The release profiles for hydrocortisone at two different pH values for three 

formulations are shown in Fig. 7 and 8. The release of hydrocortisone was a two-stage 

process: an initial rapid release stage (burst; value calculated by visual observation from 

the change in the curve slope) followed by a second slower release stage. At 55 days, 

the amount of hydrocortisone released from HA-PCB caplets was about 75%, while 

HBz-PCL and HA-PCL tablets released about 31% and 26% of their initial 

hydrocortisone content, respectively. Only a limited influence of pH was observed, with 

a slightly faster release at acid pH, being the difference of 10% for the caplets prepared 

with HA-PCB, and 4% for HA-PCL. A higher burst was observed for HA-PCB (44 ± 

4%), and HA-PCL and HBz-PCL formulations showed a burst significantly lower than 

HA-PCB (12 ± 2% and 18 ± 1% respectively). Concerning the second stage of 

hydrocortisone release, the three polylactones displayed a controlled delivery of 

hydrocortisone for more than 40 days. 

When crystallization occurs, the crystallizing phase is a pure phase, and 

therefore, in the prepared samples, the drug is supposedly dissolved in the amorphous 

phase of the semicrystalline carrier, which in turn is the more accessible phase for 

degradation. For the homopolymers, with similar degradation rates, the hydrocortisone 

release at the burst is related to the amount of amorphous material, and release is faster 

for HBz-PCL. After the burst, the slope for the release trace is related to the degradation 

rate, and therefore is the same for both homopolymers. For copolymer HA-PCB, 

amorphous material measured by DSC starting from 25ºC is similar to HBz-PCL 

homopolymer (see column 9 of Table 1). However, melting endotherm is quite 

different, and the melting temperature is in the order HA-PCL > HBz-PCL > HA-PCB. 

At the test temperature, 37ºC, part of the crystallinity calculated by DSC is lost, and in 

more extent for the HA-PCB copolymer, resulting on a higher initial burst. In summary, 



the amount of amorphous phase exposed by the polymer at the test temperature seems 

to govern the initial burst during release. 

Once the initial burst is overcome, the release rate is more related to the 

degradation rate of the carrier. The slope of the linear steady release profile at the 

second stage is higher for the copolymer than for the homopolyesters, demonstrating 

again that degradation rate is higher due to the inclusion of labile BL units. For the two 

polycaprolactone homopolymers, having the same degradation rate as already shown in 

figure 1, the observed slope is almost the same.  

Kinetics and mechanism of drug release. 

 Results of the drug release study are reported in terms of diffusion efficiency, 

calculated considering the entire time interval 0-55 days, over which the release curves 

that are depicted in fig. 7 and 8 were registered. 

 Kinetics and release mechanisms can be evaluated on the basis of the equation of 

Ritger and Peppas [16-18]. 

 

Mt/M∞ = k tn 

 

Where Mt/M∞ is the fraction released at time t, k is a proportionality constant 

which takes into account the matrix characteristics, and n is an exponent whose value is 

indicative of the drug release mechanism. The equation was applied to the first 60% of 

fractional release from caplets like Ritger and Peppas suggested. The parameters k and n 

can be obtained from initial experimental data trough square root of dimensionless time 

and the fraction release values ≤ 0.60 to the resulting linear curves. This analysis gives k 

and n as slope and exponent, respectively. The values of k and n obtained from the 

curves of the different matrices are reported in table 2. 



 It can be seen that n values varied from 0.85 to 1.13. Taking into account the 

criteria assumed to be valid in the treatment of drug release from non-swellable 

devices[19], these values suggest that release mechanism could be considered, in a 

general way, as non-Fickian. However, obtained values were very close to the zero 

order limit of n = 1, where the corresponding release mechanism (rate of hydrolysis) is 

independent of time. 

 

CONCLUSIONS 

In this work, we investigated how the polymer architecture (different functional 

end groups or insertion of a second monomer) can affect the behaviour of polylactone 

caplets in the release of a hydrophobic drug. 

Degradation studies have shown that in these semicrystalline polylactones of 

similar molecular weight and with degree of crystallinity in the same order, the effect of 

the end-group for Mn values above 2000 Da is not very significant, and the inclusion of 

more labile co-monomers is determinant to increase the degradation rate. 

The release of a hydrophobic drug, hydrocortisone, at a 1% weight 

concentration, takes place in two differentiate stages: an initial burst mainly influenced 

by the amount of amorphous material on polymeric carrier at the 37ºC of the test 

temperature, stronger when crystallinity is lower, and a linear stage mainly influenced 

by the hydrolytic stability of the polymeric carrier, dependent on the inclusion of labile 

co-monomers. Release rate is increased at acid pH as expected, although this effect is 

not very strong, with a difference of 10% for the copolymer HA-PCB, and 4% for 

polycaprolactone HA-PCL. 
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TABLE 1.  Thermal characteristics and degradation properties of polylactone caplets 
containing 1% hydrocortisone. 

 
a Obtained by 1H-NMR  
b Obtained by GPC-MAALS; P.I. = Polydispersity index: Mw/Mn 
c Calculated from the CL content in the polylactone and ratioing against crystallization 
heat for pure high molecular weight PCL 16.9 KJ/mol [20]   
d Weight of (non- crystallized CL + end groups + 1% hydrocortisone) for 
homopolymers, and (+ BL content) for the copolymer  
 
 
 
 
 
TABLE 2. Values k and n (± 95% confidence intervals) obtained by plotting 
hydrocortisone fraction release vs square root of dimensionless time curves from slabs 
of different compositions at pH 5.0 and 7.4. R2 values are also reported.  
 
Matrix k n R2 

HA-PCL (pH 7.4) 0.17 ± 0.09 0.85± 0.03 0.991 
HA-PCL (pH 5.0) 0.15 ± 0.01 0.92± 0.02 0.994 
HBz-PCL (pH 7.4) 0.16 ± 0.01 1.05 ± 0.09 0.990 
HBz-PCL (pH 5.0) 0.16 ± 0.01 1.03 ± 0.04 0.997 
HA-PCB (pH 7.4) 0.15 ± 0.02 1.13 ± 0.13 0.984 
HA-PCB (pH 5.0) 0.15 ± 0.18 1.10 ± 0.11 0.988 
 
 
FIGURE CAPTIONS 
 
Fig.1. DSC thermograms of PCL copolymer and PCL homopolymers (HA-PCB, HBz-

PCL and HA-PCL).  

Fig.2. Hydrolytic degradation of polylactone tablets by immersion in 0.5 M aqueous p-

toluene sulfonic acid at 37°C (■) HA-PCL, (●) HBz-PCL and (▲) HA-PCB. Means and 

S.E.M. are shown. 

Polylactone Mna  Mnb  Mwb P.I.b Tm 
(°C) 

ΔHm 
(J/g) 

%CLc 
cryst. 

% weightd 
amorphous 

Degradation 
Rate (%/day) 

HA-PCL 2920 4000 6500 1.63 65.4 121.7 83.5 13.8 1.36 
HBz-PCL 2810 5500 6600 1.20 60.3 110.5 78.4 20.7 1.43 
HA-PCB 2130 3900 5400 1.38 57.5 110.9 80.7 20.7 1.72 



Fig.3. SEM micrograph of HA-PCL caplets before hydrolytic acid degradation. 

Fig.4. SEM micrograph of HA-PCL caplets after 8 days of hydrolytic acid degradation. 

Fig.5. SEM micrograph of HA-PCL caplets after 22 days of hydrolytic acid 

degradation. 

Fig.6. SEM micrograph of HA-PCB caplets after 8 days of hydrolytic acid degradation. 

Fig.7. Release profiles of hydrocortisone from caplets compressed at 4 ton evaluated in 

buffer at pH 7.4 and 37°C .  

Fig.8. Release profiles of hydrocortisone from caplets compressed at 4 ton evaluated in 

buffer at pH 5.0 and 37°C. 
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Fig.3. SEM micrograph of HA-PCL caplets before hydrolytic acid degradation. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig.4. SEM micrograph of HA-PCL caplets after 8 days of hydrolytic acid degradation. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.5. SEM micrograph of HA-PCL caplets after 22 days of hydrolytic acid 

degradation. 



 
 
 
 
 
 
 

 
 
 
 
Fig.6. SEM micrograph of HA-PCB caplets after 8 days of hydrolytic acid degradation. 

 

 

 

 

 

 



 

 

 

 

Fig.7. Release profiles of hydrocortisone from caplets compressed at 4 ton evaluated in 

buffer at pH 7.4 and 37°C .  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig.8. Release profiles of hydrocortisone from caplets compressed at 4 ton evaluated in 

buffer at pH 5.0 and 37°C. 

 


