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Abstract

The aim of this work is to analyse the carbon distribution in austenite during isothermal 

bainite formation and the incomplete reaction phenomenon by means of X-ray diffraction

analysis and atom-probe tomography in high silicon, manganese alloyed steels. Results will 

provide new evidence on the temporary cessation of bainitic ferrite formation at abnormally 

low transformation temperatures.
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1.Introduction

The incomplete reaction phenomenon is defined as the temporary cessation of ferrite 

formation before the fraction of austenite transformed to ferrite, allowed by the lever rule in 

the absence of carbide precipitation at ferrite/austenite boundaries, is reached [1]. Over the 

last 25 years, this phenomenon has been an important issue on the definition of bainite 

transformation mechanisms. Different explanations for the incomplete reaction phenomenon 

have been reported in the literature. Bhadeshia and Edmonds [2] explained this phenomenon 

as a manifestation of the formation of essentially supersaturated bainitic ferrite so that the 

original bainitic ferrite retains much of the carbon content of the parent austenite. The 

partitioning of carbon into the residual austenite occurs immediately after formation. In that 

case, the bainite reaction is expected to cease as soon as the austenite carbon content reaches 

the value at which diffusionless transformation becomes thermodynamically impossible,

since the free energies of the residual austenite becomes less than that of the bainitic ferrite

of the same composition. The locus of points, on a temperature versus carbon concentration 

in austenite plot, where austenite and ferrite of the same chemical composition have the 

same free energy, is known as the oT  curve. The oT   curve is defined similarly but taking 

into account the stored energy of the ferrite due to the displacive mechanism of 

transformation (400 J mol-1). The determination of the carbon content of the residual 

austenite at the termination of bainite reaction, and the experimental validation of oT   curve,

has been essential results to explain the incomplete reaction phenomenon [2-4]. Consistent

with this theory, the characteristic flat top of the C-shaped time-temperature-transformation 

curve for the initiation of bainite transformation at a temperature hT , which is the highest 

temperature at which ferrite can form by a displacive transformation, can be explained [5].

A very early explanation postulated that incomplete transformation is absent since the 

pearlite reaction replaces that of bainite in the incomplete reaction phenomenon range [6]. 

On the other hand, an alternative theory considers bainite as a non-lamellar two-phase 
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aggregate of ferrite and carbide i.e. simply degenerate pearlite [7,8]. According to this 

definition, the upper limiting temperature of the bainite formation should be that of the 

eutectoid reaction ( 1Ae ), so the bainite start temperature, hT , has no fundamental 

significance. Thus, the bainitic ‘bay’ is the highest temperature in the range where the 

coupled-solute drag effect slows down ferrite growth sufficiently so that growth can be 

increasingly supplemented by sympathetic nucleation, in agreement with the increasingly 

refined microstructure at ‘sub-bay’ temperatures [9,10].

Recently [11,12], the various theories proposed for the incomplete reaction phenomenon 

have been critically reviewed bringing back the discussion. According to Aaronson and co-

workers, the currently most promising theories involve the cessation of growth induced by 

the coupled-solute drag effect, accentuated by the overlap of carbon diffusion fields 

associated with nearby ferrite crystals. Although they also admit that additional

experimental-based isothermal transformation studies on the incomplete reaction 

phenomenon and bainite formation are needed, especially for Fe-C-Mn alloys with lower 

strength of coupled-solute drag effect upon ferrite formation, than that in Fe-C-Mo alloys 

widely reported.

Therefore, the aim of this work is to analyse carbon distribution in austenite during 

isothermal bainite formation, and the incomplete reaction phenomenon, by X-ray diffraction 

analysis and atom-probe tomography (APT) in medium carbon, high silicon, manganese 

alloyed steels. Silicon inhibits the formation of cementite in the progress of the bainite 

reaction, essential to study the incomplete reaction phenomenon. Likewise, the oT   curve has 

been validated on a high carbon, high silicon bainitic steel that transforms to bainite at 

200ºC, the temperature at which the diffusion of iron atoms is inconceivable during the 

course of the transformation [13]. These results will provide new evidence on the temporary 

cessation of bainitic ferrite formation at abnormally low transformation temperatures.
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2.Experimental Procedure

The chemical composition of the studied steels is given in Table 1. The medium carbon 

steels were supplied as 12 mm hot rolled strips, whereas the high carbon steel was supplied 

as as-cast ingots after homogenization at 1200oC for 48 h. The alloys contain Si to prevent 

the precipitation of cementite during the bainite formation, Mn, Ni, V and Cr for 

hardenability, Mo to prevent temper embrittlement due to P, and Co and Al to increase the 

bainitic ferrite fraction. Further details about their alloying design and manufacturing 

processes can be found elsewhere [14,15]. Dilatometric and metallographic analyses of the 

bainite isothermal transformation have allowed the study of the bainite transformation 

kinetics and the incomplete reaction phenomenon in the selected steels. An Adamel 

Lhomargy DT1000 high-resolution dilatometer has been used for that purpose [16].

Cylindrical dilatometric test pieces of 3 mm in diameter and 12 mm in length were

austenitized at temperatures listed in Table 2 and then isothermally transformed at 

temperatures ranging from 150 to 475ºC for different times before quenching. Prior 

austenite grain size (AGS) was revealed by means of the thermal etching technique [17] and 

measured by the linear intercept method, see also Table 2. Specimens were ground, polished 

and etched in a 2% nital solution. Light Optical Microscopy (LOM) and Scanning Electron 

Microscopy (SEM) were used to examine the resulting microstructures. A JEOL JSM-

6500F Field Emission Scanning Electron Microscope operating at 7 kV was employed for 

this purpose. The volume fraction of bainite was estimated by a systematic manual point-

counting procedure on LOM and SEM micrographs at low magnification. The volume 

fraction of the bainitic ferrite was estimated taking into account that the bainitic sheaves 

contain approximately 85% of bainitic ferrite and 15% of thin films of retained austenite 

[18]. 

The martensite start temperature (MS) was measured by dilatometry. Dilatometry specimens 

were austenised and then rapidly cooled. Each test was performed twice. The formation of 
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martensite during cooling was detected by monitoring the fractional change in dilatation 

with temperature. Metallographic examination by LOM and SEM allowed determining the 

Widmanstätten ferrite (WS), bainite (BS), and lower bainite start temperatures (LBS). 

Transmission Electron Microscopy (TEM) specimens were machined to 3 mm diameter 

rods and electropolished with a twin-jet electropolisher at room temperature in a mixture of 

5% perchloric acid, 15% glycerol and 80% methanol at 40 V until perforation occurred. A 

JEOL JEM-2010 Transmission Electron Microscope was used to examine the 

microstructure at higher magnification.

Quantitative X-ray diffraction analysis was used to determine the volume fraction and 

carbon content of the retained austenite in the steels. After grinding and final polishing with

1 m diamond paste, the samples were etched to obtain an undeformed surface. A Siemens 

D 5000 X-ray diffractometer using unfiltered Cu K radiation, at a scanning speed (2) < 

0.3 degree/min and operating at 40 kV and 30 mA was used. The retained austenite carbon 

content was calculated from the lattice parameters obtained from the (200), (220) and (311) 

diffraction peaks according to ref. [19]. Lattice parameter estimation was performed by 

means of Cohen’s [20] method together with some other extra considerations, described in 

detail in ref. [21], with the purpose of obtaining the most accurate values.

Atom probe tomography specimens were cut from bulk material and electropolished with 

the standard double layer and micropolishing methods [22]. Atom probe analyses were 

performed in the Oak Ridge National Laboratory (ORNL) local electrode atom probe. The 

introduction of this instrument has made dramatic, orders of magnitude improvements in the 

data acquisition rate and the size of the analyzed volume compared to previous types of 

three-dimensional atom probes. In this sense, results on the distribution of carbon in 

austenite at an atomic scale will confirm atom probe investigations performed in the 1980’s 

essentials to explain the incomplete reaction phenomenon at that time [4]. The local 

electrode atom probe was operated with a specimen temperature of 60K, a pulse repetition 

rate of 200 kHz, and a pulse fraction of 0.2.
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Thermodynamic calculations were performed with commercially available software in 

combination with the SGSOL-SGTE (Scientific Group Thermodata Europe database) 

Solution Database 3.0.

3.Results and discussion

Bainite transformation range and scale of microstructure: from micro to nano

The well known difference in carbide distribution between bainite formed at high and low 

temperatures, viz., intralath and interlath, respectively, appears to exist in a majority of 

steels and makes the classical nomenclature of upper and lower bainite useful, both in 

describing the microstructural appearance and in classifying the overall reaction mechanism.

In upper bainite, the carbides precipitate from carbon-enriched residual austenite. Upper 

bainitic ferrite itself is free from precipitates. The precipitation of carbides in upper bainite 

is a secondary process, not essential to the mechanism of formation of bainitic ferrite except 

where any precipitation from austenite will deplete its carbon content, thereby promoting 

further transformation. Silicon can avoid the precipitation of cementite between the plates of 

bainitic ferrite, but it does not have a significant effect on the formation of cementite inside 

the ferrite plates [23]. Therefore, the formation of lower bainite is not inhibited in these 

steels. The precise role of intra-ferrite carbides in lower bainite formation is not clear. There 

are many observations that reveal that lower bainitic cementite nucleates and grows within 

supersaturated ferrite in a process identical to the tempering of martensite [24]. The slower 

diffusion associated with the reduced transformation temperature provides an opportunity 

for some of the carbon to precipitate in the supersaturated bainitic ferrite. A fine dispersion 

of plate-like carbides is then found inside the ferrite plates, with a single crystallographic 

variant within a given ferrite plate, although it is possible to observe more than one variant 

of carbide precipitation in a lower bainite sub-unit [24,25].
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As an example, a sequence of micrographs for the different products of transformation in 

0.3BAIN2 is shown in Fig. 1. A representative microstructure at relatively late stages of 

transformation at 275ºC, just below the MS temperature assessed by dilatometry, is shown in 

Fig. 1a. The microstructure is identified as self-tempered martensite ( st  ) and some retained 

austenite. An example of the lower bainite microstructure after isothermal transformation at 

325ºC is shown in Fig. 1b. Particles of cementite are easily identified inside the bainitic 

ferrite plates. In contrast, a typical upper bainitic microstructure, where it is possible to 

observe the subunits of bainitic ferrite with retained austenite among them, is displayed in 

Fig. 1c. Concerning the morphology of the austenite remaining after partial transformation 

to bainite, it is possible to distinguish between the blocky morphology of austenite (b)

located between the sheaves of bainite and the films of austenite (f) which are retained 

between the subunits within a given sheaf of bainite. Finally, when the isothermal 

temperature is increased to 450ºC, ferrite having a serrated morphology is identified as 

Widmanstätten ferrite (w), Fig. 1d, that without question can not be confused with 

allotriomorphic ferrite (), as the one easily revealed after transformation at 625ºC, Fig. 1e. 

Equivalent analyses were performed in the other steels and the experimental values of the 

WS, BS, LBS and MS temperatures are shown in Table 3. It is necessary to highlight the fact 

that there is a small interval of temperatures, above the WS and the lowest temperature at 

which allotriomorphic ferrite and pearlite are identified, where no decomposition of 

austenite was observed in the time scale of the experiments. This is a clear indication of the 

separation between those phases formed by a displacive mechanism, (martensite, bainite and 

Widmanstätten ferrite) and those controlled by a reconstructive mechanism (allotriomorphic 

ferrite and pearlite).

Thermodynamic conditions that explain the differences between Widmanstätten ferrite and 

bainite were reported by Bhadeshia [26]. It was shown that the nucleus is identical for 

Widmanstätten and bainitic ferrite, and the difference arises during growth. If diffusionless 

growth cannot be sustained at hT , then the nucleus evolves into Widmanstätten ferrite, so hT
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is identified as WS. Further undercooling is necessary before bainite can be stimulated. But, 

if the driving force at hT  is enough to account for diffusionless growth, then hT  = BS and 

Widmanstätten ferrite does not form. Hence only two types of ferrite growth are considered: 

one which is carbon diffusion controlled, with equilibrium partitioning of carbon, and the 

other involving a full carbon supersaturation, a growth which is, in essence, martensitic.

Widmanstätten or bainitic ferrite will thus form when the following two conditions are 

satisfied

Nucleation  Max NG G and

Growth
( ) p

SWG G     ,

  SBG G 

where GSW and GSB are the stored energies per mole of Widmanstätten and bainitic ferrite 

with values of 50 and 400 J/mol, respectively; ( )  pG   is the free energy change 

accompanying transformation of austenite to a mixture of austenite and ferrite under 

paraequilibrium conditions; G  accounts for the free energy change when austenite 

transforms to ferrite without a change in chemical composition; NG is the minimum free 

energy change necessary to achieve a perceptible nucleation rate for bainitic or 

Widmanstätten ferrite; and MaxG  is the maximum possible free energy change for 

nucleation. A graphical solution for the calculation of the BS and WS temperatures using 

thermodynamic theory is reported elsewhere [26] and is shown for 0.3BAIN2 steel in Fig. 2. 

Two well defined regions where Widmanstätten and bainitic ferrite may form in 0.3BAIN2 

steel are predicted, in agreement with metallographic results.

The thermodynamic model described above was used to produce the finest possible bainitic 

microstructure by transformation at the lowest possible temperature [13]. The carbon 
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concentration of NANOBAIN steel (Table 1) was mainly selected to decrease the Bs

temperature as much as possible and to make austenite stronger with the aim of obtaining 

extremely thin platelets of bainite. In the absence of precipitation at ferrite/austenite 

boundaries, the thickness of bainite plates depends primarily on the strength of the austenite 

at the transformation temperature, and the chemical free energy change accompanying 

transformation [27]. This applies specifically when the shape deformation causes plastic 

strain in the adjacent austenite. Strong austenite, or a large driving force, results in finer 

plates. The former because there is a larger resistance to interface motion and the latter 

because an increased nucleation rate leads to microstructural refinement.

TEM micrographs of NANOBAIN transformed at 200ºC for 10 days are presented in Fig. 3. 

Some of the plates of bainite are thin and long, resulting in a fine-scale structure consisting 

of an intimate mixture of austenite and bainitic ferrite. Dislocation debris is evident close to 

an austenite-bainitic ferrite interface in Fig. 3b. The relatively high dislocation density 

associated with bainitic ferrite is often attributed to the fact that the shape deformation 

accompanying the displacive transformation is accommodated at least partially by plastic 

relaxation [28]. It is possible, using X-ray diffraction analysis, to measure the non-uniform 

strains present in ferrite and to relate these values to the dislocation density in the bainitic 

ferrite [29]. Moreover, the true bainitic ferrite plate thickness was determined from TEM 

micrographs by measuring the mean linear intercept in a direction normal to the plate length 

[30]. The dislocation density and the corresponding bainitic ferrite thickness as function of 

transformation temperature is shown in Fig. 4. It is clear that there is a strong correlation 

between both, confirming that plastic strain in the adjacent austenite plays an important role 

on the resultant scale of the microstructure. The observed refinement is mainly a 

consequence of the effect of high carbon content and the low transformation temperature on 

increasing the strength of the austenite in NANOBAIN steel.

Remarkably, the micrographs shown in Fig. 3 and extensive TEM examination of this novel 

microstructure failed to reveal carbide particles inside the bainitic ferrite leading to the 
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doubtful hypothesis that upper bainite was formed at these extremely low temperatures. 

However, after a large and equivalent set of accumulated atom probe results, the presence of 

cementite was confirmed as the lower bainite carbide in NANOBAIN steel. An example of 

a carbon atom map of a carbide particle precipitated inside bainitic ferrite for a sample 

transformed at 200ºC for 10 days is shown in Fig. 5. Despite the apparent lower average 

carbon concentration of the carbide (20  4 at.%), the measured carbon level allows the type 

of carbide precipitated inside bainitic ferrite to be identified as cementite (i.e. 25 at.% for 

cementite versus 30 at.% for -carbide). The absence of -carbide as the initial carbide of

the precipitation sequence in lower bainite formation is explained in terms of carbon trapped

at dislocations by the tempering theory of Kalish and Cohen suggested [31]. They showed 

that it is energetically favourable for carbon atoms to remain segregated at dislocations 

compared with their presence in the -carbide lattice. Hence, if the dislocation density is 

high, as it is for bainite, sufficient carbon can be captured by dislocations so -carbide

precipitation is eliminated in the tempering sequence. In such a case, cementite precipitation 

occurs directly. Atom probe tomography results reported elsewhere [32] revealed that a 

substantial quantity of carbon (7.4 at.% C) was trapped at dislocations in the vicinity of the 

ferrite/austenite interface in NANOBAIN steel. 

Approaching oT   curve during bainite formation

The evolution of the carbon content in austenite, as determined from X-ray diffraction 

analysis, during transformation at 300ºC in NANOBAIN steel is shown in Fig. 6. As 

bainitic ferrite formation progresses, austenite is gradually enriched in carbon from the 

overall carbon content (Xo) to that given by the To curve. Similarly, the carbon content of 

the austenite at the termination of phase transformation for different temperatures in all 

studied steels is shown in Fig. 7. The calculated values for oT   and paraequilibrium 3eA 

phase boundaries are also plotted. Likewise, the same type of calculation, but not 
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considering the stored energies of the related phases, are presented as To and 3Ae . The 

measured concentrations in austenite at temperatures below the BS temperature (See Table 3 

and Fig. 7) lie closer to the oT  or To value boundaries and far from the paraequilibrium 

phase boundaries ( 3Ae  and 3eA  lines) for all the studied steels. The results are consistent 

with a mechanism in which the bainite grows without diffusion, but with excess carbon 

partitioning into the austenite soon after transformation. The reaction is said to be 

incomplete since transformation stops before the phases achieve their equilibrium 

compositions.

In general, the partitioning of carbon into the austenite and the precipitation of carbides 

from a supersaturated matrix as in lower bainite (carbide precipitation at the interface as in 

upper bainite is not applicable here because of the high silicon content in the studied steels) 

are competitive processes, the relative rates depending on alloy chemistry and 

transformation temperature. The incomplete reaction phenomenon is not well pronounced in 

steels where cementite precipitation dominates, as in plain carbon steels [2]. In this work, no 

different trend is observed in the carbon content of the austenite at temperatures below LBS

temperature (Fig. 7), suggesting that cementite precipitation is not a dominant process 

during the bainite reaction in the studied steels. 

In contrast, the measured carbon content of retained austenite at temperatures above the BS

temperature in 0.3BAIN1 - 3 steels corresponds to that given by the 3Ae  and 3eA  lines. The 

presence of Widmanstätten ferrite and the absence of precipitation in the microstructure 

formed at the highest temperatures in these steels (see example in Fig. 1d) suggests that this 

trend is consistent with the difference between the growth mechanisms for Widmanstätten 

and bainitic ferrite formation, the former involving carbon diffusion control, with 

equilibrium partitioning of carbon, and the latter involving a full carbon supersaturation, a 

growth which is, in essence, martensitic [26].

The role of carbon on the incomplete reaction phenomenon
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A comparison of the carbon concentration in austenite at the termination of bainite 

transformation for different temperatures in two steels with different average carbon content 

(0.2BAIN and 0.3BAIN4 steels) is presented in Fig. 8. It is clear that there is no dependence 

on the average carbon content. This result is consistent with oT  calculations, as both steels 

exhibit the same oT  curve. By contrast, Quidort et al [33] observed a strong influence of the 

carbon content of the steel on the carbon concentration of the austenite at bainite stasis (i.e., 

when the bainite transformation ends) in three high silicon steels with an average carbon 

content ranging between 0.12 and 0.43 wt-%. They proposed that the plastic resistance of 

austenite is responsible for the incomplete transformation and they evaluated the 

implications of the process of plastic accommodation in the austenite matrix, considering 

plastic deformation as an additional source of Gibbs energy dissipation during bainite 

transformation. Again, the results in Fig. 8 confirm that the incomplete reaction 

phenomenon is a manifestation of the formation of bainitic ferrite with a full supersaturation 

of carbon followed by carbon partitioning between bainitic ferrite and austenite. The driving 

force for the formation of new plates decreases as the carbon concentration in the 

untransformed austenite approaches the oT   composition, at which the free energy of ferrite 

and austenite phases of the same composition become identical [2,5]. 

Heterogeneous distribution of carbon in austenite

Experimental results shown in Fig. 7 indicate that in certain cases, the measured carbon 

concentrations exceed the oT  concentration. This is a consequence of the fact that the 

austenite films entrapped between neighbouring sub-units of bainitic ferrite have a higher 

carbon content than the blocks of residual austenite located between the sheaves of bainite, 

which may transform to martensite during subsequent quench [2]. This inhomogeneous 

distribution of carbon would allow the transformation to proceed to an extent somewhat 
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greater than that allowed by the thermodynamic conditions based on an uniform carbon 

assumption.

Shelf et al. [34] proved quantitatively the existence of non-uniform distributions of carbon 

in the retained austenite by measuring austenite lattice spacing from TEM lattice fringes. 

Atom probe tomography can directly determine the distribution of carbon in austenite. 

Carbon atom maps obtained from 0.3BAIN1 steel isothermally transformed at 325ºC for 

1350 s are shown in Figs. 9a and 9b. The distribution of carbon atoms in the analysis 

volume is not uniform and carbon-enriched and carbon-depleted regions are clearly 

distinguishable. As no crystallographic information is available, the carbon-enriched regions 

of the atom maps are assumed to represent a region of austenite as its carbon content is 

higher than the average value of 1.32 at.% and the low carbon (< 1 at.%) regions indicates 

the ferrite phase. This figure shows two examples of an austenite-ferrite interface for two 

different sizes of austenite regions. The corresponding carbon concentration profiles are also 

presented in Figs. 9c and 9d for the specimens shown in Figs. 9a and 9b, respectively. The 

average carbon content in the 80-nm-thick austenite region of the carbon atom map in Fig. 

9a is 6.4  1.8 at.% C, similar to the corresponding X-ray (6.0  0.3 at.% C) and oT (5.5 

at.%) values, whereas the average carbon content in the 3.5 nm thick austenite film of the 

carbon atom map in Fig. 9b is 9.8  0.4 at.% C, well beyond the oT (5.5 at.%) curve, but 

less than the paraequilibrium 3Ae boundary (17.3 at.%). Atom probe results confirm that 

finer austenite films accumulate higher amounts of carbon during bainite formation. The 

local carbon content in blocky austenite must be lower than the average given by X-ray 

diffraction analysis; unfortunately, coarse features observed in SEM, such as blocky 

austenite (Fig. 1c), are not readily observed in APT, without special lift-out specimen 

preparation methods, due to the more limited volume of analysis.
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4. Summary

Experimental results on the temporary cessation of bainitic ferrite formation in medium and 

high carbon, high silicon, manganese alloyed steels confirm that the incomplete reaction 

phenomenon can be explained in terms of the diffusionless growth of bainite sub-units. The 

partitioning of carbon into the residual austenite occurs immediately after formation. The 

bainite reaction ceases as soon as the austenite carbon content reaches the oT value. Results 

provide new evidence on the explanation for the incomplete reaction phenomenon at 

abnormally low transformation temperatures. Moreover, direct quantitative proof for the 

non-uniform distribution of carbon in the retained austenite has been provided by local 

electrode atom probe tomography. These results are complementary to former experimental 

evidence using austenite lattice spacing from TEM lattice fringes.

Acknowledgement

The authors acknowledge the support of Spanish Ministerio de Ciencia y Tecnología Plan 

Nacional de I+D+I (2004-2007), funding this research under the contracts PTR95-0995 and 

MAT2007–63873. Research at the Oak Ridge National Laboratory SHaRE User Facility 

was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, 

U.S. Department of Energy.

References

[1] Hehemann RF, Kinsman KR. Aaronson HI. Metall Trans 1972; 3: 1077.

[2] Bhadeshia HKDH, Edmonds DV. Acta Metall 1980; 28: 1265.

[3] Bhadeshia HKDH, Edmonds DV. Metall. Trans 1979; 10A: 895.



15

[4] Bhadeshia H KDH, Waugh AR. Acta Metall 1982; 30: 775.

[5] Zener C. Trans AIME 1946; 167: 50.

[6] Hehemann RF Troiano AR. Met Progr 1956; 70: 97.

[7] Aaronson HI. The decomposition of austenite by diffusional processes. Zackary VF 

Aaronson HI, editors. New York: Interscience Publishers, 1962. p. 387.

[8] Aaronson HI. The mechanism of phase transformations in crystalline solids. London:

The Institute of Metals, 1969. p. 270.

[9] Aaronson HI, Spanos G, Reynolds Jr WT. Scr Mater 2002; 47: 139.

[10] Reynolds Jr WT, Li FZ, Shui CK, Aaronson HI. Metall Trans 1990; 21A: 1433.

[11] Aaronson HI, Reynolds Jr WT, Purdy GR. Metall Mater Trans 2004; 35A: 1187.

[12] Aaronson HI, Reynolds Jr WT, Purdy GR. Metall Mater Trans 2006; 37A: 1731.

[13] Caballero FG, Bhadeshia HKDH. Current Opinion in Solid State and Materials 

Science 2004; 8, 251.

[14] Caballero FG, Santofimia MJ, Capdevila C, García-Mateo C, García de Andrés C.

ISIJ Inter 2006; 46: 1479.

[15] García-Mateo C, Caballero FG, Bhadeshia HKDH. ISIJ Inter 2003; 43: 1821.

[16] García de Andrés C, Caballero FG, Capdevila C, Álvarez LF. Materials 

Characterization  2002; 48: 101.

[17] García de Andrés C, Caballero FG, Capdevila C, San Martín D. Materials 

Characterization 2003; 49: 121.

[18] Bhadeshia HKDH, Edmonds DV. Metal Sci 1983; 17: 411.

[19] Dyson DJ, Holmes B. J. Iron Steel Inst. 1970; 208: 469.

[20] Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd Edition. New York:

Prentice Hall, 2001.

[21] García-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH. Mater Sci Technol 2004; 

20: 814.



16

[22] Miller MK. Atom probe tomography. New York (NY): Kluwer Academic/Plenum 

Press, 2000, p. 28.

[23] Kozeschnik E, Bhadeshia HKDH. Mater Sci Technol 2008; 24: 343.

[24] Bhadeshia HKDH. Acta Metall 1980; 28: 1103.

[25] Chang LC. Mat Sci Eng A 2004; 368 : 175.

[26] Bhadeshia HKDH. Acta Metall 1981; 29: 1117.

[27] Singh SB, Bhadeshia HKDH. Mater Sci Eng 1998; 245A: 72.

[28] Bhadeshia HKDH, Christian JW. Metall Trans 1990; 21A: 767

[29] Garcia-Mateo C, Caballero FG. ISIJ Int 2005; 45: 1736.

[30] García-Mateo C, Caballero FG, Bhadeshia HKDH. ISIJ Int 2003; 43: 1821.

[31] Kalish D, Cohen M. Mater Sci Eng 1970; 6: 156.

[32] Caballero FG, Miller MK, Babu SS, Garcia-Mateo C. Acta Mater 2007; 55: 381.

[33] Quidort D, Bouaziz O, Brechet Y. Austenite formation and decomposition. Buddy 

Damm E, Merwin MJ, editors. Warendale (PA): TMS, 2003. p. 15.

[34] Self P, Bhadeshia HKDH, Stobbs WM. Ultramicroscopy 1981; 6: 29.



17

Figure Captions

Figure 1. Optical and scanning electron micrographs of 0.3BAIN2 steel: (a) 7200 s at 

275ºC; (b) 1800 s at 325ºC; (c) 1800 s at 400ºC; (d) 1800 s at 450ºC; and (e) 7200 s at 

625ºC. ’ is martensite, st’ is self-tempered martensite; lb is lower bainitic ferrite; ub is 

upper bainitic ferrite; f is austenite films; b is blocky austenite; w is Widmanstätten 

ferrite;  is allotriomorphic ferrite; and P is pearlite.

Figure 2. Graphical solution for the determination of BS and WS in 0.3BAIN2 steel.

Figure 3. Transmission electron micrographs of (a) microstructure obtained at 200ºC for 10 

days in NANOBAIN steel; (b) dislocation debris close to austenite-bainitic ferrite interface. 

b is bainitic ferrite; and f is austenite films.

Figure 4. Dislocation density in bainitic ferrite and bainitic ferrite plate thickness in 

NANOBAIN steel after isothermal transformation at different temperatures ensuring that 

bainitic transformation was finished.

Figure 5.- (a) Carbon atom map and (b) carbon concentration profile showing cementite 

particle precipitated inside bainitic ferrite in NANOBAIN steel transformed at 200ºC for 10 

days. b is bainitic ferrite and  is cementite.

Figure 6.- Carbon content in austenite and bainitic ferrite fraction of the microstructure 

obtained in NANOBAIN steel by isothermal transformation at 300ºC for 4 to 19 h; Xo

represents the overall carbon content of the steel. oT  and the para-equilibrium A3 curves 
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were calculated for the studied steel using commercially available software in combination 

with the SGSOL-SGTE Solution Database 3.0.

Figure 7.- Calculated phase boundaries for all steel grades together with X-ray experimental 

data representing the carbon concentration of the austenite which is left untransformed after 

cessation of the bainite/Widmanstätten reaction.

Figure 8.- Influence of average carbon content on incomplete reaction phenomenon.

Figure 9.- (a), (b) Carbon atom maps; and (c), (d) corresponding concentration profiles 

across austenite-ferrite interface in 0.3BAIN1 steel transformed at 325ºC for 1350 s. b is 

bainitic ferrite and  is austenite.



Table 1: Chemical composition of studied steels, wt-%

Steel C Si Mn Ni Cr Mo Co Al V

0.2BAIN 0.21 1.46 1.56 --- 1.49 0.25 --- --- ---

0.3BAIN1

(at.%)

0.29

(1.32)

1.48

(2.87)

2.06

(2.04)

---

0.43

(0.45)

0.27

(0.15)

--- --- ---

0.3BAIN2 0.29 1.45 1.97 --- 0.95 0.26 0.67 --- ---

0.3BAIN3 0.31 1.40 1.97 1.7 1.41 0.26 1.13 1.01 ---

0.3BAIN4 0.29 1.49 1.56 --- 1.47 0.25 --- --- ---

NANOBAIN

(at.%)

0.98

(4.34)

1.46

(2.76)

1.89

(1.82)
---

1.26

(1.28)

0.26

(0.14)
--- ---

0.09

(0.09)

Table(s)



Table 2: Austenitisation conditions and corresponding prior austenite grain size (PAGS) of 

studied steels

Steel Austenitisation Conditions PAGS, m

0.2BAIN 950ºC for 300 s 12  3

0.3BAIN1 925ºC for 300 s 12  5

0.3BAIN2 925ºC for 300 s 14  5

0.3BAIN3 925ºC for 300 s 15  7

0.3BAIN4 900ºC for 300 s 12  3

NANOBAIN 1000ºC for 900 s 49  3



Table 3: Experimental transformation temperatures in ºC of studied steels

Steel WS, ºC BS, ºC LBS, ºC MS, ºC

0.2BAIN --- 500  12 375  12 368  2

0.3BAIN1 525  12 450  12 350  12 299  8

0.3BAIN2 500  12 400  12 350  12 296  7

0.3BAIN3 450  12 400  12 350  12 316  10

0.3BAIN4 --- 450  12 350  12 322  19

NANOBAIN --- 335  12 335  12 123  4



Figure 1

http://ees.elsevier.com/am/download.aspx?id=231291&guid=2a6d0916-1614-4082-a504-837afca64710&scheme=1


Figure 2

http://ees.elsevier.com/am/download.aspx?id=231292&guid=968d4ad3-1b5e-4844-84ff-f02b89c732b9&scheme=1


Figure 3

http://ees.elsevier.com/am/download.aspx?id=231293&guid=76823c37-f0f2-411d-8c1d-6cce75cb7a17&scheme=1


Figure 4

http://ees.elsevier.com/am/download.aspx?id=231294&guid=7feb8255-2cfa-45d7-88e5-c82517f474f7&scheme=1


Figure 5

http://ees.elsevier.com/am/download.aspx?id=231295&guid=21f9b241-6896-4a22-8276-3b94f143c0e7&scheme=1


Figure 6

http://ees.elsevier.com/am/download.aspx?id=231296&guid=2f5ed55a-690e-46f5-893e-940cdbdff28b&scheme=1


Figure 7

http://ees.elsevier.com/am/download.aspx?id=231297&guid=2859eef9-26eb-4530-a54b-ffa48fad60d3&scheme=1


Figure 8

http://ees.elsevier.com/am/download.aspx?id=231298&guid=9d34fa63-53ac-4c26-9ac1-7f01715843d5&scheme=1


Figure 9

http://ees.elsevier.com/am/download.aspx?id=231299&guid=a54eca82-39c0-4eb5-99f8-c5c2eb2b490a&scheme=1



