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The selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed antidepressant
drugs, because they are well tolerated and have no severe side effects. They rapidly block serotonin
(5-HT) reuptake, yet the onset of their therapeutic action requires weeks of treatment. This delay is the
result of presynaptic and postsynaptic adaptive mechanisms secondary to reuptake inhibition. The preven-
tion of a negative feedback mechanism operating at the 5-HT autoreceptor level enhances the neuro-
chemical and clinical effects of SSRIs. The blockade of 5-HT2A receptors also seems to improve the clinical
effects of SSRIs. These receptors are located postsynaptically to 5-HT axons, mainly in the neocortex.
Pyramidal neurons in the prefrontal cortex are particularly enriched in 5-HT2A receptors. Their blockade
may affect the function of prefrontal–subcortical circuits, an effect that probably underlies the beneficial
effects of the addition of atypical antipsychotic drugs, which are 5-HT2A receptor antagonists, to SSRIs in
treatment-resistant patients.

Les inhibiteurs spécifiques du recaptage de la sérotonine (ISRS) sont le plus souvent prescrits comme anti-
dépresseurs parce qu’ils sont bien tolérés et ne produisent pas d’effets secondaires graves. Ils bloquent
rapidement le recaptage de la sérotonine (5-HT), mais il faut des semaines de traitement pour que leur ef-
fet thérapeutique se fasse sentir. Ce retard est attribuable à des mécanismes d’adaptation présynaptiques
et postsynaptiques secondaires à l’inhibition du recaptage. La prévention d’un mécanisme de rétroaction
négative fonctionnant au niveau des autorécepteurs de la 5-HT améliore les effets neurochimiques et cli-
niques des ISRS. Le blocage des récepteurs de la 5-HT2A semble aussi améliorer l’effet clinique des ISRS.
Ces récepteurs sont situés dans la région postsynatique par rapport aux axones de 5-HT, principalement
dans le néocortex. Les neurones pyramidaux du cortex préfrontal sont particulièrement riches en récep-
teurs de la 5-HT2A. Leur blocage peut avoir, sur le fonctionnement des circuits préfrontaux-sous-corticaux,
un effet qui sous-tend probablement les effets bénéfiques de l’ajout d’antipsychotiques atypiques, qui sont
des antagonistes des récepteurs de la 5-HT2A, chez les patients résistants au traitement aux ISRS.
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Introduction

The World Health Organization estimates that unipo-
lar depression will be the second most prevalent cause
of illness-induced disability by the year 2020.1 Not sur-
prisingly, antidepressants are the third most com-

monly sold group of therapeutic agents worldwide.
Most of these treatments are based on molecules that
target a single protein in the brain, the serotonin (5-HT)
transporter. These agents, the selective serotonin reup-
take inhibitors (SSRIs), which inhibit 5-HT reuptake,
account for about 80% of all antidepressants on the
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market. Other antidepressant drugs such as the sero-
tonin and noradrenaline reuptake inhibitors (SNRIs) or
the classic tricyclic antidepressants (e.g., amitryptyline,
clomipramine, imipramine) inhibit the reuptake of nor-
adrenaline as well. Some of these old drugs, such as
clomipramine, have a complex pharmacology and
have been proved to be the best antidepressant treat-
ments for severe depression,2,3 although the presence of
their many severe side effects is a very serious limita-
tion to their use. Indeed, the success of the SSRIs lies
mainly in their safety, better tolerability and absence of
severe side effects compared with the tricyclic drugs,
which improves compliance and quality of life of the
patient with depression.

Intensive research efforts have led to the identifica-
tion of many pharmacologic effects of antidepressant
drugs. However, this knowledge has not been effi-
ciently translated into new and more rapid and effec-
tive medicines. Indeed, it should be noted that most
antidepressant drugs act indirectly, that is, by enhanc-
ing the 5-HT tone on 1 or more 5-HT receptors through
the inhibition of reuptake (or deamination in the case
of monoamine oxidase inhibitors [MAOIs]). A few an-
tidepressant drugs (nefazodone, trazodone, mirtazap-
ine) are antagonists of certain receptors, such as 5-HT2A

or α2-adrenoceptors, a property that may underlie their
therapeutic properties. Perhaps the 5-HT receptor more
directly linked with the antidepressant effects of SSRIs
has been the 5-HT1A receptor. On the one hand, preclin-
ical studies have shown an increase of 5-HT1A receptor-
mediated hippocampal transmission after long-term
treatment with SSRIs and other antidepressant drug
classes.4 Despite this experimental evidence, for vari-
ous reasons, most selective 5-HT1A agonists developed
so far have failed to demonstrate clinical effectiveness.
Indeed, the clinical effectiveness and use of the only
marketed compound of this class (buspirone) is very
far from that of other antidepressants, despite claims in
favour of the use of 5-HT1A agonists.5 On the other
hand, presynaptic 5-HT1A autoreceptors are a primary
target of several types of antidepressant drug that en-
hance extracellular 5-HT (SSRIs, MAOIs) or act directly
on such receptors.

Ideally, new antidepressant drugs should be targeted
at the postsynaptic receptor(s) or intracellular sig-
nalling pathways responsible for the therapeutic effects
of existing drugs. In this way, they would overcome
the neuronal adaptive mechanisms (both presynaptic
and postsynaptic) that delay and limit their therapeutic

action. However, the identification of these mecha-
nisms is hampered by many factors, such as the intrin-
sic complexity of the study of brain function, difficul-
ties in assessing the effects of antidepressant drugs in
humans and the lack of reliable animal models of de-
pression. To a large extent, the development of antide-
pressant drugs has been serendipitous or empirical.
Only in a few instances have new therapeutic strategies
been based on neurobiologic grounds.

Possibly because of this indirect action, current anti-
depressants pose 2 main problems: less than optimal
effectiveness and slow onset of action. Hence, they ex-
ert their initial pharmacologic action in hours, but they
require prolonged administration before significant
clinical improvement occurs. Typically, the response
rate for SSRIs is 60% at 6 weeks, where response is de-
fined as a 50% reduction of the initial severity. If one
considers remission, rates drop to 35%–40% at 6 weeks.
In a high proportion of patients, treatment must pro-
ceed for years to prevent relapses and recurrences ade-
quately. The initial delay in clinical action results from
neurobiologic adaptive mechanisms secondary to the
activation of the initial pharmacologic target. These en-
compass presynaptic changes in the activity of
monoamine-containing neurons and postsynaptic
changes in corticolimbic areas, possibly involving
changes in gene expression, that reshape the function
of brain circuits altered in major depression.6 Hence, it
is clear that we are still far from the ideal antidepres-
sant, that is, one with a well-defined, direct target (a
postsynaptic receptor or intracellular messenger) and
high effectiveness and rapid (< 1 wk) onset of action.

The 5-HT system

An extensive review of the characteristics of the sero-
tonergic system is beyond the scope of the present arti-
cle. The reader is referred to several review papers
dealing with the anatomy, physiology, neurochemistry
and neuropharmacology of this neurotransmitter.7–10

However, we would like to underline a few character-
istics of 5-HT neurons that are deemed important for a
better understanding of the neurobiologic effects of an-
tidepressant drugs.

First, there are few 5-HT neurons whose cell bodies
are concentrated in the raphe nuclei of the midbrain.
For example, it has been estimated that the human
brain contains about 250 000 5-HT neurons of a total of
1011 neurons.7 Second, 5-HT neurons are extensively



arborized, and their axons reach all brain areas. For
instance, the rat hippocampus contains a density of
1–4 × 106 serotonergic varicosities/mm3.11 They hardly
make synaptic contacts, because they release 5-HT in a
paracrine manner.7,12 Third, 5-HT neurons are tonically
active with a slow and regular pacemaker-type activity
that ceases during rapid eye movement sleep.7 These 3
characteristics, in combination, make changes in the fir-
ing activity of 5-HT neurons extremely important for
the overall function of the 5-HT system, because they
will influence in a concerted manner a large population
of target neurons in the forebrain.

The activity of 5-HT neurons is tightly controlled by a
number of afferent pathways, mainly including gluta-
matergic inputs from forebrain areas such as the pre-
frontal cortex (PFC), a tonic noradrenergic input from
various pontine nuclei and inhibitory γ-aminobutyric
acid (GABA)-ergic inputs from local interneurons.10 The
role of other transmitters such as histamine or acetyl-
choline and peptides (e.g., substance P, corticotropin-
releasing factor, cholecystokinin, hypocretin-orexin) is
still poorly understood, yet new information is emerg-
ing. Finally, a very important mechanism of control of
5-HT neurons is self-inhibition through 5-HT1A autore-
ceptors. Activation of these receptors by 5-HT leads to
opening of potassium channels in the cell membrane,
hyperpolarization of the cell and a cessation of cell fir-
ing.13,14 Local release of 5-HT in the raphe nuclei from
axonal collaterals or crosstalk between different 5-HT
neurons will thus diminish neuronal firing and produce
a negative feedback regulation of transmitter release.15,16

Selective 5-HT1A receptor agonists also elicit the same ef-
fect by interacting with raphe 5-HT1A receptors.17,18 In ad-
dition, 5-HT1B/1D receptors located on nerve terminals re-
spond to 5-HT released locally in the terminal fields to
inhibit further transmitter release.19 These 2 mechanisms
ensure tight feedback control of the activity of seroto-
nergic neurons and of terminal 5-HT release.

Antidepressants and 5-HT1A autoreceptor
desensitization

5-HT1A receptors are deeply involved in the mechanism
of action of antidepressant drugs. They occur in mam-
malian brain in 2 different populations: on 5-HT neu-
rons of the midbrain raphe nuclei (autoreceptors) and
on neurons postsynaptic to 5-HT nerve terminals,
mainly in cortico-limbic areas. In both regions, 5-HT1A

receptors have a somatodendritic location. The activa-

tion of 5-HT1A receptors increases potassium conduc-
tance, thus hyperpolarizing the neuronal membrane and
reducing the firing rate of serotonergic and pyramidal
neurons in the cortex and hippocampus.13,20–22 Most anti-
depressant drugs increase the concentration of 5-HT in
the extracellular brain space by preventing its reuptake.
However, this increase is offset by a negative feedback
operating at the 5-HT cell-body level (Fig. 1). Using the
technique of in-vivo microdialysis, it was shown that the
inhibition of 5-HT reuptake produced by single admin-
istration of the tricyclic antidepressant clomipramine
and the SSRIs caused a marked enhancement of the ex-
tracellular concentration of 5-HT in the midbrain raphe
nuclei.15,23,24 This effect was greater than in the fore-
brain25,26 and accounted for the suppression of 5-HT
cell firing induced by various antidepressant drugs
that block 5-HT reuptake.8,27 The 5-HT1A autoreceptor-
mediated inhibition of cell firing was accompanied by a
reduction of terminal 5-HT release, which thus attenu-
ated the increase in extracellular 5-HT produced by re-
uptake blockade.15,16,24 Consequently, the activation of
postsynaptic 5-HT receptors responsible for the thera-
peutic effect is lower than expected. Terminal autorecep-
tors further limit the increase in synaptic (extracellular)
5-HT produced by SSRIs in different species.28,29

However, the efficacy of this negative feedback re-
sulting in attenuation of cell firing and terminal 5-HT
release is less marked after long-term treatment with
SSRIs. Thus, long-term SSRI treatment resulted in a re-
covery of the firing of 5-HT cells in the dorsal raphe
nucleus (DR) and an increase in extracellular 5-HT
greater than after single administration.8,30 Both effects
are likely to result from the 5-HT-induced desensitiza-
tion of raphe 5-HT1A autoreceptors.8

Potential use of 5-HT1A autoreceptor blockade:
the case of pindolol

In 1993, one of us (F.A.) proposed that “5-HT1A receptor
antagonists could accelerate (and perhaps augment)
the clinical effects of antidepressants by preventing this
negative feedback.”31 This would enable a more rapid
increase of synaptic 5-HT, preventing the inhibition of
5-HT release observed in microdialysis studies and
mimicking the 5-HT1A receptor desensitization pro-
duced by the prolonged administration of antidepres-
sants.8 Given the lack of selective 5-HT1A receptor an-
tagonists for human use, this hypothesis was tested
with the β-adrenoceptor/5-HT1A receptor antagonist
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(±)pindolol. This compound, with an affinity for 5-HT1A

receptors of about 10–8 mol/L, antagonized several ac-
tions mediated by the activation of central 5-HT1A re-
ceptors, such as hypothermia or hormonal secretion.
Since the first study, published in 1994,32 the results of
15 placebo-controlled clinical trials and several open-
label studies using pindolol have been reported.33 In
general, the addition of pindolol (7.5 mg/d) to SSRIs
accelerates the antidepressant response. It is remark-
able that despite current difficulties in evaluating the
onset of antidepressant action and sometimes in dis-
criminating between active drug and placebo in clinical
trials, significant differences were noted in 5 of 7 trials,
with a partial success in another trial. In 2 of these tri-
als, the addition of pindolol also increased the end-
point response rate of the SSRI used (from 59% to 75%
with fluoxetine and from 48% to 81% with paroxe-
tine33). Three studies also examined the ability of pin-
dolol to improve the clinical response to SSRIs in anxi-
ety disorders. Pindolol has been also used in
treatment-resistant patients with dissimilar results. A
few studies reported some benefit of the addition of
pindolol, whereas others have not reported any differ-
ence versus placebo. However, an epidemiologic study
reported a significantly lower incidence of depression
and lower consumption of antidepressants (3-year
follow-up) in patients treated with pindolol for cardio-
vascular purposes, compared with other β-blockers,34

which suggests an overall beneficial effect of pindolol
in affective disorders.

One crucial question regarding the mechanism of ac-
tion of pindolol is the occupation of central 5-HT1A re-
ceptors at the dose used (typically 7.5 mg/d). The com-
parison of the plasma levels of pindolol in treated
patients (about 25 nmol/L)35 with the in-vitro affinity
of pindolol for human 5-HT1A receptors obtained in au-
toradiographic studies36,37 suggests that this pindolol
dose occupies 5-HT1A receptors in the human brain.
This view has been confirmed in positron emission to-
mography (PET) studies. In one of these, pindolol ad-
ministration (7.5 mg/d for 1 wk) to healthy volunteers
produced a significant decrease in [11C]WAY100635
binding and higher occupancy in the DR (40%) than in
the hippocampus (18%).38 Another PET scan study
yielded lower occupancy results in both areas and a
presynaptic versus a postsynaptic difference in recep-
tor occupancy39 in agreement with animal data that
support a preferential action of pindolol on somato-
dendritic 5-HT1A receptors.40,41 One of the conclusions of

Fig. 1A: Inhibition of serotonin (5-HT) reuptake in the
forebrain by selective serotonin reuptake inhibitors
(SSRIs) increases extracellular 5-HT. This effect is atten-
uated by the reduction in 5-HT release that follows the
activation of 5-HT autoreceptors by the SSRI-induced
excess in 5-HT. The increase in extracellular 5-HT is
particularly remarkable in the midbrain raphe nuclei,
which contain the cell bodies of 5-HT neurons. 5-HT1A

receptors are then activated by 5-HT, released from cell
bodies and dendrites and from axons within the raphe
nuclei, which causes an inhibition of cell firing and, sub-
sequently, of impulse-dependent terminal 5-HT release.
The activation of terminal (5-HT1B) autoreceptors also
reduces 5-HT release. Asterisks denote the possible
sites of action of pindolol in the human brain (unlike in
rodents, pindolol lacks significant affinity for human
5-HT1B receptors).
B: Autoreceptor antagonists potentiate the effects of
SSRIs. Microdialysis experiments in rats indicate that
the blockade of 5-HT1A and/or 5-HT1B receptors with se-
lective antagonists (WAY100635, 0.3 mg/kg subcuta-
neously, and SB224289, 4 mg/kg intraperitoneally, re-
spectively) potentiates the effects of the administration
of the SSRI fluoxetine (FLX) (10 mg/kg intraperi-
toneally) on extracellular 5-HT in the frontal cortex. Re-
sults are mean values (and standard error of the mean)
of extracellular 5-HT. Permission to publish this modi-
fied figure was received from Elsevier (Trends Pharmacol
Sci 2001;22:224-8).33



these studies is that higher dosages (e.g., 3 × 5 mg/d or
greater) should be tested in future augmentation trials
to increase the occupancy of 5-HT1A autoreceptors.

Because selective 5-HT1A receptor antagonists aug-
ment the neurochemical and behavioural effects of
SSRIs, such agents, devoid of the β-blocking properties
of pindolol, should be tested in clinical trials to deter-
mine whether blockade of 5-HT1A receptors may aug-
ment the clinical effects of SSRIs. An important concern
is the lack of selectivity of these new agents for presyn-
aptic versus postsynaptic 5-HT1A receptors.42 The full
blockade of postsynaptic receptors may cancel the in-
creased transmission through hippocampal 5-HT1A re-
ceptors produced by antidepressant drugs in the rat
brain.4 However, because other 5-HT receptors may
also be involved in the effects of SSRIs, the hypothesis
needs to be experimentally tested in clinical trials.

5-HT2A receptors: a possible role in the
augmentation of antidepressant response

In recent years, a number of open-label and placebo-
controlled studies have suggested that atypical an-
tipsychotic drugs and some antidepressants (e.g., mir-
tazapine and mianserin) augment the clinical response
to SSRIs in treatment-resistant patients.43–46 One com-
mon feature of these agents is their ability to occupy
5-HT2 receptors in the brain at clinical doses and to
block 5-HT2-mediated responses, in particular those
mediated by 5-HT2A receptors.47 Likewise, many antide-
pressants downregulate 5-HT2A receptors after repeated
treatment.48 Altogether, these observations support a
role for 5-HT2A receptors in antidepressant drug action.
These receptors are mainly localized in the neocortex,
and its selective blockade by M100907 augments the
antidepressant effect of SSRIs in the differential rein-
forcement of low rate 72 seconds (DRL-72 s) schedule,
a task related to PFC function. This effect does not in-
volve a presynaptic potentiation of the increase in 5-HT
produced by the SSRI, which suggests that the im-
provement in executive functions arises from the
blockade of postsynaptic 5-HT2A receptors.49

PFC, major depression and the 5-HT system

The hippocampus has been the focus of many studies of
and theories about the pathophysiology and treatment
of depression. More recent views on this issue empha-
size the role of the plastic changes in this subcortical

brain structure.6 However, the PFC also plays a major
role in depression. Hence, brain imaging studies have
consistently shown an association between major de-
pression and hypoactivity of the prefrontal lobe.50,51 Fur-
thermore, stroke in the left PFC is associated with a high
incidence of major depression.52 These observations sug-
gest that the PFC plays a main role in depression.

Because of its unique cytoarchitecture and connectiv-
ity, the PFC is deeply involved in higher brain func-
tions and exerts a top–down control of brain functions
through the processing and integration of signals from
other brain areas, including large parts of the neocor-
tex, some thalamic nuclei and the brain stem.53,54 Signal
integration in pyramidal neurons is exerted at various
cellular levels, including apical and basal dendrites,
cell bodies and the axon hillock. The apical dendrites
are highly enriched in serotonergic 5-HT2A receptors,
which are also present in large and medium-sized
GABAergic interneurons that control the activity of
pyramidal neurons in local microcircuits.55–59 Com-
pounds such as lysergic acid diethylamide (LSD) or
2,5-dimethoxy-4-iodoamphetamine (DOI) likely exert
their hallucinogenic action through a massive activa-
tion of 5-HT2A receptors, whereas atypical antipsychotic
drugs are antagonists at 5-HT2A receptors.60,61

Interestingly, in the rodent brain, the medial PFC
(mPFC) innervates, via long glutamatergic axons, a
number of subcortical brain areas that are potentially
involved in depressive symptomatology such as the
nucleus accumbens (anhedonia), the amygdaloid com-
plex (fear, anxiety), limbic structures (depressed mood,
memory impairment), other parts of the PFC (cognitive
disturbances, behavioural withdrawal) or the hypo-
thalamus (hypothalamic–pituitary–adrenal axis, ap-
petite, sleep, sexual drive).62 Therefore, a change in the
activity of prefrontal projection (pyramidal) neurons in
depression may have a strong impact on the function
of these brain structures.

Moreover, there is a reciprocal connectivity between
the mPFC and the brainstem aminergic nuclei. The ven-
tral tegmental area/substantia nigra pars compacta, the
raphe nuclei and the locus coeruleus give rise to the
dopaminergic, serotonergic and noradrenergic innerva-
tion of most forebrain structures, including those that
are potentially involved in depression (with the excep-
tion of the substantia nigra pars compacta, which is
more involved in motor function). The pyramidal neu-
rons in intermediate–deep layers of the PFC play a
fundamental role in prefrontal function. Owing to their
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large apical dendrites, they integrate incoming excita-
tory signals from various cortical layers and from sub-
cortical areas (mainly the mediodorsal thalamus) and
project, via long axons, to the aforementioned areas.
Modulatory inputs arise from the brainstem aminergic
nuclei, thus closing mPFC-brainstem circuits, whereas
local control is exerted by GABAergic interneurons.62

Pyramidal neurons and GABAergic interneurons are
enriched in aminergic receptors, such as 5-HT1A, 5-HT2A,
5-HT2C, 5-HT3, dopamine D1, D2 and α-adrenoceptors.

Consistent with these anatomical relationships, evi-
dence in recent years indicates that the mPFC has a
profound influence on the activity of brainstem amin-
ergic neurons. The stimulation of this cortical area in-
creases burst firing of dopaminergic neurons of the
ventral tegmental area, and prefrontal lesions reduce
the number of spontaneously active dopamine neu-
rons.63,64 Likewise, an excitatory input of the mPFC on
noradrenergic neurons of the locus coeruleus has been
documented.65 Finally, more recent observations sup-
port the notion that most 5-HT neurons of the DR are
under prefrontal control.59,66,67 Given that most pharma-
cologic treatments of a large number of neuropsychi-
atric disorders target 5-HT neurons, the study of the
mPFC–raphe circuit may provide new clues to under-
standing the pathophysiology of these disorders, in-
cluding depression and schizophrenia.

Modulation of the activity of 5-HT neurons
by the mPFC

Tracing studies indicate that the mPFC innervates DR
5-HT neurons.62,66,68–71 The electrical stimulation of the
mPFC at a physiologic frequency results in a short-
latency (about 17 ms) monosynaptic activation of 5-HT
neurons in the DR, which is mediated by ionotropic
glutamate receptors 2-amino-3-(3-hydroxy-5-
methylisoxazol-4-yl)propionate (AMPA)/kainate (KA)
and N-methyl-D-aspartate (NMDA) (Fig. 2).67 Likewise,
long-latency (about 35 ms) and long-duration (up to
about 150 ms) inhibitions are also observed that result
from 5-HT1A autoreceptor activation by recurrent collat-
erals or crosstalk between 5-HT neurons in response to
the stimulus-triggered excitation and release of 5-HT.
Likewise, descending excitatory axons from the mPFC
can also inhibit 5-HT neurons via GABAergic interneu-
rons.67,72 Thus, the activity of individual 5-HT neurons
can be finely tuned by the mPFC through direct (excita-
tory) or indirect (inhibitory, via 5-HT1A or GABAA re-

ceptor activation) inputs, although the overall influ-
ence of the mPFC on the bulk of 5-HT neurons appears
to be excitatory. Thus, the application of the 5-HT1A and
5-HT2A agonists in the mPFC to inhibit and excite, re-
spectively, local projection neurons resulted in a paral-
lel modulation of the firing rate of 5-HT neurons in the
midbrain.59,67 Moreover, these changes were accompa-
nied by a similar change in 5-HT release in the
mPFC,59,67 which supports the idea that postsynaptic
5-HT1A and 5-HT2A receptors in the PFC can contribute
to the distal feedback control of 5-HT neuronal activity
and terminal 5-HT release through the modulation of
descending excitatory afferents (Fig. 2).

Modulation of the activity of cortical pyramidal
neurons in the mPFC by 5-HT1A and 5-HT2A

receptors

The PFC of the rodent, primate and human brain is
densely innervated by 5-HT axons and is highly en-
riched in various receptors, notably the 5-HT1A and
5-HT2A subtypes.38,73–78 Clues about a role of 5-HT recep-
tors in prefrontal function are numerous, including:
• the hallucinogenic action of 5-HT2A receptor agonists

(e.g., LSD, DOI) and the 5-HT2A antagonist action of
atypical antipsychotic drugs, some of which are also
5-HT1A receptor agonists60,61

• the involvement of prefrontal 5-HT2A receptors in
working memory79

• the involvement of 5-HT1A receptors in memory and
anxiety80–82

• the existence of 5-HT receptor abnormalities in the
frontal lobe of psychiatric patients83–85

Furthermore, 5-HT1A and 5-HT2A receptors mediate
the changes in cortical dopaminergic transmission in-
duced by atypical antipsychotic drugs.86 Together,
these observations support an important role for
5-HT1A and 5-HT2A receptors in the normal and patho-
logic function of the PFC.

Both receptors are abundantly expressed by pyrami-
dal neurons.55–58,87–89 5-HT2A receptors are also present in
GABA interneurons55,57 and catecholaminergic axons in
the mPFC.89 The activation of 5-HT1A receptors hyper-
polarizes prefrontal neurons in vitro by increasing
potassium conductance, which reduces firing rate20–22

and opposes the effect of AMPA receptor stimulation.90

On the other hand, 5-HT2A receptor activation has been
reported to evoke both neuronal excitation and inhibi-
tion.20,91–95 The former action involves an enhancement



of AMPA-mediated inputs onto pyramidal neurons,92,93

whereas inhibitory actions are mediated through an in-
crease of synaptic GABA inputs,95 possibly through the
activation of 5-HT2A receptors in local-circuit GABAer-
gic interneurons.57

In-vivo actions of 5-HT2A receptor activation in cortical
pyramidal neurons

Consistent with the in-vitro studies described earlier,
the intravenous administration of the 5-HT2A/2C receptor
agonist DOI affected the firing rate of identified pyra-
midal neurons recorded extracellularly. DOI excited (to

481% of baseline) 38% (21/56) of the neurons recorded,
inhibited (to 11% of baseline) 30% (17/56) of the neu-
rons recorded and left the rest unaffected.96 Considering
all neurons, DOI increased 2.4-fold the pyramidal firing
rate (Fig. 3). These effects were antagonized by the
5-HT2A receptor antagonist M100907.96 Likewise, the elec-
trical stimulation of the DR at a physiologic frequency
(0.9 Hz) evoked 5-HT2A-mediated excitations in pyrami-
dal neurons of the mPFC. Peristimulus-time histograms
showed the presence of excitations (Fig. 3), which had a
mean duration of 80 (standard error of the mean [SEM]
8) ms and had a mean latency of 82 (SEM 8) ms
(n = 19).96 On occasion, these excitations were some-
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Fig. 2: Medial prefrontal cortex (mPFC)–dorsal raphe (DR) circuit. Stimulation of projection neurons in the mPFC in-
creases propagation of action potentials through descending excitatory axons that innervate the DR, among other sub-
cortical areas. These excitatory afferents control the activity of 5-HT neurons through 3 different mechanisms:
(1) directly, via N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate/kainate
(AMPA/KA) receptors; (2) indirectly, via γγ-aminobutyric acid (GABA) interneurons and activation of GABAA receptors;
and (3) via activation of 5-HT1A autoreceptors by recurrent collaterals or crosstalk between different 5-HT neurons. The
panels on the right show peristimulus-time histograms of mPFC-induced excitation (A1, corresponding to a iGluR-
mediated response; mean latency 16 ms, mean duration 17 ms) and inhibition (A2, corresponding to GABAA and/or
5-HT1A-mediated responses; mean latency 36 ms, mean duration 150 ms) recorded in DR 5-HT cells.
B: The local application in the mPFC of 8-OH-DPAT and 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-HT1A and 5-HT2

receptor agonists, respectively, decreases and increases the firing rate of 5-HT neurons in the DR as a result of the inhi-
bition and stimulation of the activity of mPFC pyramidal neurons projecting to the DR. iGluR = ionotropic glutamate
receptor, mGluR = metabotropic glutamate receptor. Permission to publish these modified figures was received from
the Society for Neuroscience (J Neurosci 2001;21:9856-66, J Neurosci 2001;21:9917-29).59,67
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times preceded by short latency inhibitions, as in the
neuron shown in Fig. 3. The success rate of ortho-
dromic activation varied between neurons and was
51% (SEM 8%) on average. In most pyramidal neurons
examined, orthodromic and antidromic excitations
were recorded, showing the existence of a strong recip-
rocal DR–mPFC interplay (Fig. 3, Fig. 4). As observed
for the effect of DOI, the DR-induced excitations were
reversed by the intravenous administration of the se-
lective 5-HT2A receptor antagonist M100907 in most in-
stances. The mean success rate dropped from 62% to
15% after the administration of M100907 (n = 10).96

The excitatory effects of DOI appear to involve inter-
action with glutamatergic transmission. Hence, DOI
could increase the excitatory effects of glutamate on
prefrontal neurons.91 Likewise, the 5-HT2A receptor-
mediated excitatory postsynaptic currents (EPSCs)
evoked by 5-HT in layer V pyramidal neurons in rat
mPFC in vitro are cancelled by blockade of AMPA re-

ceptors and metabotropic glutamate receptor (mGluR)
II activation.92,93 Moreover, the modulation of prefrontal
NMDA transmission by 5-HT and 1-[2,5-dimethoxy-4-
bromophenyl]-2-aminopropane (DOB) appears to in-
volve presynaptic and postsynaptic 5-HT2A receptors.94

Our own data indicate that the selective mGluR II ago-
nist LY-379268 reversed the excitatory effect of DOI on
pyramidal neurons in vivo.96 Previous in-vitro studies
suggested a role of 5-HT2A receptors putatively located
on thalamocortical afferents.93,97 According to this view,
5-HT2A receptor activation would increase glutamate
release from thalamic afferents, thus increasing sponta-
neous EPSCs through the activation of pyramidal
AMPA receptors. However, this view is at variance
with recent anatomical data indicating that the small
proportion of terminal 5-HT2A receptors in the rat
mPFC (compared with those in a somatodendritic loca-
tion) are not located on glutamatergic axons.89 Like-
wise, our in-vivo data suggest that 5-HT2A receptors

Fig. 3: Intravenous administration of the 5-HT2A/2C receptor agonist DOI to anesthetized rats increases (A) and
decreases (B) the firing rate of identified pyramidal neurons in the rat mPFC. The proportion of neurons excited, as
well as the percent increase, was greater than the proportion of inhibited neurons, which resulted in an overall increase
of 240% of the baseline firing rate (n = 56). In most instances, the excitatory and inhibitory effects of DOI were reversed
by the selective 5-HT2A antagonist M100907. Panels C and C′′ show peristimulus-time histograms of the excitation of a
pyramidal neuron in the mPFC evoked by the electrical stimulation of the DR nucleus (0.9 Hz, 0.2-ms square pulses,
1 mA) in basal conditions (C) and after the systemic administration of the selective 5-HT2A antagonist M100907
(500 µg/kg intravenously) (C′′). In most instances, the recorded neurons were antidromically activated from the DR or
the median raphe nucleus (delay 20 ms), indicating the existence of marked reciprocal interactions between the mPFC
and 5-HT neurons in the raphe nuclei. Arrows mark the stimulus artifact. Bin size 4 ms, 170 sweeps. Data from Cereb
Cortex 2003;13:870-82.96



responsible for the action of DOI are not located in
such terminals, because extensive lesions of the thala-
mic nuclei projecting to the mPFC do not alter the ac-
tion of DOI.96 Hence, it is likely that the activation of
postsynaptic 5-HT2A receptors in pyramidal neurons
mediates the excitatory effect of DOI. Because this ac-
tion depends on glutamatergic inputs, it may involve a
5-HT2A-mediated synergism with AMPA-mediated
transmission (for instance, increasing Ca2+ entry98).
These glutamatergic inputs may arise from different
cortical or subcortical projections to the mPFC, an issue
that deserves further investigation.

In-vivo actions of 5-HT1A receptor activation in cortical
pyramidal neurons

Early microiontophoretic studies revealed a predomi-
nantly inhibitory action of 5-HT on cortical neurons.7

This effect may involve direct (e.g., 5-HT1A-mediated) or
indirect (GABA-mediated) actions of 5-HT.22,91,99 In-vitro
intracellular recordings of pyramidal neurons in the
PFC suggested that 5-HT1A receptor activation hyperpo-
larized pyramidal neurons,20,100 possibly by opposing the
effects of AMPA-mediated transmission.90 There is lim-
ited evidence of the effect of the systemic administra-
tion of 5-HT1A agonists on the activity of mPFC neurons.
These agents display a biphasic pattern of response,
with an initial excitatory phase followed by a reduction
of firing rate at higher doses.101 On the other hand, the
electrical stimulation of the DR also inhibits presumed
pyramidal prefrontal neurons, an effect dependent on
the extracellular 5-HT concentration in the mPFC.102 We
performed a systematic study of the inhibitory effects of
DR and the median raphe nucleus (MnR) stimulation
on mPFC pyramidal neurons, identified by antidromic
stimulation from these nuclei.103 Fig. 4 shows the in-
hibitory effect of the stimulation of the MnR on a mPFC
pyramidal neuron of a rat anesthetized with chloral hy-
drate. As previously shown for the DR,102 stimulation of
the MnR inhibited the pyramidal neuron, with a short
latency and a duration of 100 milliseconds in this partic-
ular case. This effect was mediated by 5-HT1A receptors,
as shown by the partial reversal exerted by the selective
5-HT1A antagonist WAY-100635.104

5-HT1A–5-HT2A receptor interaction in mPFC
pyramidal neurons

Previous reports indicate that 5-HT1A receptor agonists
suppress the DOI-induced head shakes, an effect medi-
ated by 5-HT2 receptors.47 Both electrophysiologic20,22

and immunohistochemical59 evidence suggested the co-
expression of 5-HT1A and 5-HT2A receptors in the PFC.
Therefore, because 5-HT2A receptors excite and those of
5-HT1A inhibit the activity of pyramidal neurons, it is
conceivable that the behavioural observations noted
earlier are mediated by opposing effects of DOI and
5-HT1A receptor agonists in cortical motor areas. We
tested whether such an interaction exists in the mPFC
by examining the effects of DOI and 5-HT1A agonists on
terminal 5-HT release in the mPFC. As reviewed ear-
lier, the electrical activity of DR 5-HT neurons and the
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Fig. 4: Stimulation of the median raphe nucleus inhibits
prefrontal pyramidal neurons through the activation of
5-HT1A receptors. In the upper panel, a peristimulus-
time histogram shows the presence of an inhibition (la-
tency 32 ms, duration 100 ms) evoked by the electrical
stimulation of the median raphe nucleus (0.9 Hz, 0.2-ms
square pulses, 2 mA). The lower panel shows the block-
ade of the inhibition by intravenous administration of
the selective 5-HT1A receptor antagonist WAY-100635
(40 µg/kg). Bin size 4 ms, 180 sweeps.
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terminal release of 5-HT in the mPFC are under the in-
fluence of postsynaptic 5-HT receptors in this area,
possibly located on excitatory afferents to the DR.59,67

Although the electrical stimulation can also inhibit
5-HT neurons via GABA interneurons,67,72 it appears
that the overall influence of mPFC neurons on seroto-
nergic function is excitatory, because the activation of
5-HT2A and 5-HT1A receptors in the mPFC (with local
DOI and 8-OH-DPAT applications, respectively) in-
creased and decreased, respectively, the firing of 5-HT
neurons in the DR and the terminal 5-HT release in the
mPFC.59,67,96 Hence, the in-vivo 5-HT release in the
mPFC may be taken as a surrogate measure of the
overall influence of prefrontal inputs to DR 5-HT neu-
rons (Fig. 5), using an experimental model reported
elsewhere.59 Figure 5 shows the increase of 5-HT re-
lease elicited by the local application of DOI in the
mPFC of freely moving rats and the reversal of the ef-
fect induced by the co-perfusion of the 5-HT1A agonists
BAY x 3702, 8-OH-DPAT, buspirone or ipsapirone. The
5-HT1A-mediated reduction of the DOI-stimulated 5-HT
release in the mPFC was antagonized by the earlier
treatment of the rats with pertussis toxin, which un-
couples the 5-HT1A receptor protein from the potassium

channel,105 and by EEDQ, a chelating agent that inacti-
vates several G protein-coupled receptors.106

Functional consequences and therapeutic
implications of 5-HT2A receptor blockade
during SSRI treatment

The data outlined here indicate that the generation of
nerve impulses in pyramidal neurons of the mPFC is
regulated in the opposite manner by postsynaptic
5-HT2A and 5-HT1A receptors. The physiologic and
pharmacologic activation of 5-HT2A receptors results in
an overall increase in pyramidal activity, whereas that
of 5-HT1A receptors inhibits pyramidal activity. The
functional interaction between both receptors can be
accounted for by their high degree of co-expression
(nearly 80%) in the same neuronal populations in the
PFC, as assessed by double in situ hybridization,104

which suggests that these interactions occur at the cel-
lular level and are later translated at the circuit level
(Fig. 5). Atypical antipsychotic drugs are 5-HT2A recep-
tor antagonists60,61 and behave as functional 5-HT1A re-
ceptor agonists.86 Hence, it is possible that they partly
exert their therapeutic action by reducing the activity

Fig. 5A: The local application by reverse dialysis of the 5-HT2A/2C receptor agonist DOI (100 µmol/L) increases the in-vivo
5-HT release in the mPFC through the selective activation of 5-HT2A receptors.59,96 This effect is counteracted by the co-
perfusion of various selective 5-HT1A receptor agonists: BAY x 3702, 30 µmol/L; 8-OH-DPAT, 100 µmol/L; or buspirone,
300 µmol/L.104 The opposite action of 5-HT2A and 5-HT1A agonists on 5-HT release in the mPFC is likely to be mediated
by changes in the prefrontal inputs onto raphe 5-HT neurons, which subsequently result in parallel changes in terminal
5-HT release.
B: As observed after its systemic administration, DOI is likely to increase the firing rate of pyramidal neurons in the
mPFC that project to DR 5-HT neurons (see also Fig. 2). This effect would be counteracted by the 5-HT1A receptor-
mediated pyramidal hyperpolarization resulting from the co-application of the 5-HT1A agonists. Atypical antipsychotic
drugs and other agents acting as 5-HT2A receptor antagonists may alter the existing balance between 5-HT2A and 5-HT1A

and, possibly, other receptors in the mPFC, thus changing the pyramidal output to subcortical structures whose de-
rangements are suspected of underlying depressive symptoms.



of pyramidal neurons in the mPFC. These project
to the ventral tegmental area and control the activity
of dopaminergic neurons.63,64,107 Hence, the 5-HT2A-
mediated attenuation of the excitatory pyramidal out-
put to subcortical structures may result in a reduction
of the activity of ascending dopaminergic neurons.
This would reduce the hyperactivity of the mesolimbic
pathway108 without concurrently blocking D2 receptors
in the nigrostriatal pathway, an action that might ex-
plain the lesser extrapyramidal side effects of atypical
antipsychotics.

However, the effect of 5-HT2A receptor blockade may
be more complex during SSRI treatments, namely,
when atypical antipsychotics are used to augment the
therapeutic effect of antidepressant drugs. In such con-
ditions, the tone on cortical 5-HT receptors is presum-
ably greater than normal because of the increase in
extracellular 5-HT produced by long-term SSRI admin-
istration.30 Second, other 5-HT receptors, such as 5-HT1B,
5-HT2C or 5-HT4/6/7, are present in this brain area, may
also control pyramidal cell activity and may therefore
additionally modulate the opposite actions of 5-HT1A

and 5-HT2A receptors on pyramidal output. The effect of
long-term SSRI treatment on these receptors is still
poorly known. As mentioned earlier, 5-HT2A receptors
in pyramidal and GABAergic neurons are responsible
for the excitatory and inhibitory effects of 5-HT, respec-
tively, on pyramidal neurons.92,95 In the basal in-vivo sit-
uation, 5-HT2A-mediated excitatory effects appear to
predominate,96 yet this balance may be altered by SSRI
treatments, which, contrary to the tricyclic drugs, ap-
pear to upregulate 5-HT2A receptor binding.109 Clearly,
more research is needed to determine how SSRI treat-
ments may alter the balance between 5-HT-mediated
excitatory and inhibitory inputs onto prefrontal neu-
rons. This information will improve our understanding
of the role played by 5-HT2A receptors in antidepressant
treatments, and more specifically, how 5-HT2A receptor
blockade may affect the prefrontal circuits involving
areas relevant to the treatment of depressive symptoms.
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