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1. Introduction

The fact that theτ is the only lepton massive enough to decay into hadrons makesit an excel-
lent tool to study QCD, both perturbative and non-perturbative, using the precise hadronicτ-decay
data provided by ALEPH [1]. The determination of the QCD coupling αs(Mτ) [2 – 6], which be-
comes the most precise determination ofαs(MZ) after QCD running, is an excellent example. In
this particular case the non-perturbative contributions are strongly suppressed, but in other analy-
ses the non-perturbative effects are sizable and then one can extract important phenomenological
hadronic matrix elements and other non-perturbative QCD quantities. Thanks to the fact that the
spectral function of theτ decay can be separated experimentally in its vector and axial-vector
contributions, we can study their difference that is specially interesting because it vanishes in per-
turbative QCD (in the chiral limit) and therefore it is a purely non-perturbative quantity.

The τ-decay measurement of thisV −A spectral function has been used to perform [7 – 9]
phenomenological tests of the so-called Weinberg sum rules(WSRs) [10], to compute the elec-
tromagnetic mass difference of the pions [8], and to determine several QCD vacuum condensates
[11, 12] relevant for the computation ofε ′

K/εK [13]. The common idea under these studies is the
use of the analyticity properties of the different two-point correlation functions appearing in the
dynamical description of theτ hadronic width. As it is well known, analyticity allows us torelate
different regions of theq2-complex plane. Roughly speaking, one can relate in this wayregions
where we are able to compute analytically, either with Chiral Perturbation Theory (χPT) or with
the short-distance Operator Product Expansion (OPE), withregions where we are not able to com-
pute (except perhaps in the lattice) but that are experimentally accessible. This connection can be
used either to predict observables that we are not able to calculate “directly” or, in the other way
around, to extract the value of QCD parameters that are not fixed theoretically.

UsingχPT [14 – 16], the hadronicτ-decay data can also be related to order parameters of the
spontaneous chiral symmetry breaking (SχSB) of QCD.χPT is the effective field theory of QCD
at very low energies that describes the physics of the SχSB Nambu-Goldstone bosons through an
expansion in external momenta and quark masses, with coefficients that are order parameters of
SχSB. At lowest order (LO), i.e.O(p2), all low-energy observables are described in terms of
the pion decay constantfπ ≃ 92.4 MeV and the light quark condensate. AtO(p4), the SU(3)
χPT Lagrangian contains 12 low-energy constants (LECs),Li=1,···,10 and H1,2 [16], whereas at
O(p6) we have 94 (23) additional parametersCi=1,···,94 (CW

i=1,···,23) in the even (odd) intrinsic parity
sector [18]. These LECs are not fixed by symmetry requirements alone and have to be determined
phenomenologically or using non-perturbative techniques. Values for theLi couplings have been
obtained in the past with an acceptable accuracy (a recent compilation can be found in ref. [19]),
but much less well determined are theO(p6) couplingsCi .

There has been a lot of recent activity to determine the chiral LECs analytically, using as much
as possible QCD information [20 – 29], and from lattice simulations [40 – 43]. This strong effort
is motivated by the precision required in present phenomenological applications, which makes
necessary to include corrections ofO(p6) where the huge number of unknown couplings is the
major source of theoretical uncertainty.

Here we explain how the determination of some of these LECs can be improved significantly
using the most recent experimental data on hadronicτ decays [1]. In particular we will obtain the
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most accurate results for theχPT couplingsL9, L10 andC87 or equivalently, in theSU(2) χPT
language,l5, l6 andc50 [30]. Previous work onL10 usingτ-decay data can be found in refs. [8, 9,
11, 31]. Our analysis is the first one which includes the knowntwo-loop χPT contributions and,
therefore, provides also the SU(3) (SU(2))O(p6) couplingsC87 (c50).

We will first introduce the sum rule relations that we will use, then we will show our results and
finally we will compare them with other recent analytic results and hadronicτ-data determinations.

2. Sum rule approach

s0sth
ReIq2M

ImIq2M

Figure 1: Analytic structure ofΠ(s).

The basic objects of the theoretical analysis are the two-point correlation functions of the non-
strange vector (J µ

ud = Vµ
ud = uγµd) and axial-vector (J µ

ud = Aµ
ud = uγµγ5d) quark currents:

Πµν
ud,J (q) ≡ i

∫

d4x eiqx 〈0|T
(

J µ
ud(x)J

ν
ud(0)†)|0〉

= (−gµνq2 +qµqν) Π(1)
ud,J (q2) + qµqν Π(0)

ud,J (q2) . (2.1)

In particular, we are interested in the differenceΠ(s) ≡ Π(0+1)
ud,V −Π(0+1)

ud,A , and we will work in the

isospin limit (mu = md) whereΠ(0)
ud,V(q2) = 0. The analytic behaviour of this correlator is shown

in Fig.1, together with the complex circuit that we will use to apply Cauchy’s theorem. As we
are interested in relating theχPT domain (very low energies) with theτ data, we multiply this
correlator by a weight function of the form 1/sn with n > 0. In this way we generate a residue at
s= 0. Taking into account the OPE associated with our correlator at large momenta and working
with the casesn = 1,2, one gets the following sum rules (see ref. [30] for a careful derivation):

−8Leff
10 ≡

∫ ∞

sth

ds
s

1
π

ImΠ(s) =
2 f 2

π
m2

π
+ Π(0) , (2.2)

16Ceff
87 ≡

∫ ∞

sth

ds
s2

1
π

ImΠ(s) =
2 f 2

π
m4

π
+

dΠ
ds

(0) , (2.3)

where the integrations start at the thresholdsth = 4m2
π . These two relations represent the starting

point of our work and define the effective parametersLeff
10 andCeff

87. Their interest stems from the
fact that the l.h.s. can be extracted from the data (see Section 3), while the r.h.s. can be rigourously
calculated withinχPT in terms of the LECs that we want to determine (see Section 4).
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3. Determination of the effective parameters
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Figure 2: Leff
10(s0) andCeff

87(s0) from different sum rules. For clarity, we do not include the error bands
associated with the modified weights.

We use the recent ALEPH data on hadronicτ decays [1], that provide the most precise mea-
surement of theV −A spectral function. In the integrals of equations (2.2) and (2.3) we are forced
to cut the integration at a finite values0, neglecting in this way the rest of the integral froms0 to
infinity. The superconvergence properties ofΠ(s) at large momenta imply a tiny contribution from
the neglected range of integration, provideds0 is large enough. Nevertheless, this generates a the-
oretical error called quark-hadron duality violation (DV)1. From thes0-sensitivity of the effective
parameters one can assess the size of this error.

In Fig. 2, we plot the value ofLeff
10 obtained for different values ofs0 (solid lines), with the

one-sigma experimental error band, and we can see a quite stable result ats0&2 GeV2. The weight
function 1/s decreases the impact of the high-energy region, minimisingthe DV. The resulting
integral is then much better behaved than the correspondingsum rules withsn (n≥ 0) weights.

There are some possible strategies to estimate the value ofLeff
10 and his error. One is to give

the predictions fixings0 at the so-called “duality points”, two points where the firstand second
WSRs [10] happen to be satisfied. In this way we getLeff

10 = −(6.50± 0.13) · 10−3, where the
uncertainty covers the values obtained at the two “duality points”. If we assume that the integral
(2.2) oscillates around his asymptotic value with decreasing oscillations and we perform an average
between the maxima and minima of the oscillations we getLeff

10 = −(6.5± 0.2) · 10−3. Another
way of estimating the DV uses appropriate oscillating functions defined in [33] which mimic the
real quark-hadron oscillations above the data. These functions are defined such that they match
the data at∼ 3 GeV2, go to zero with decreasing oscillations and satisfy the twoWSRs. We
find in this wayLeff

10 = −(6.50± 0.12) · 10−3, where the error spans the range generated by the
different functions used. These estimates are in good agreement with each other and give us a first
determination, but the most precise way to evaluate the error can be obtained taking advantage
of the WSRs to construct modified sum rules with weight factors w(s) proportional to(1− s/s0),
in order to suppress numerically the role of the suspect region arounds∼ s0 [3]. Fig. 2 shows
the results obtained withw1(s)≡ (1−s/s0)/s (dashed line) andw2(s)≡ (1−s/s0)

2/s (dot-dashed
line). These weights give rise to very stable results over a quite wide range ofs0 values. One gets

1From a different but equivalent perspective, we are assuming that the OPE is a good approximation forΠ(s) at any
|s|=s0, what is not expected to happen near the real axis, and that produces the DV.
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Leff
10 = −(6.51±0.06) ·10−3 usingw1(s) andLeff

10 = −(6.45±0.06) ·10−3 usingw2(s). Taking into
account all the previous discussion, we quote as our final result:

Leff
10 = −(6.48±0.06) ·10−3 . (3.1)

We have made a completely analogous analysis to determineCeff
87. The results are shown in

Fig. 2. The solid lines, obtained from Eq. (2.3), are much more stable than the corresponding results
for Leff

10, due to the 1/s2 factor in the integrand. The dashed and dot-dashed lines have been obtained

with the modified weights w3(s) ≡ 1
s2

(

1− s2

s2
0

)

and w4(s) ≡ 1
s2

(

1− s
s0

)2(

1+2 s
s0

)

. The agreement
among the different estimates is quite remarkable, and our final result is

Ceff
87 = (8.18±0.14) ·10−3 GeV−2 . (3.2)

Our result forLeff
10 agrees with [8, 11, 31], but our estimation includes a more careful assessment of

the theoretical errors. The 3.2σ discrepancy between the estimation of ref. [9] and ours is caused
by an underestimation of the systematic error associated with the duality-point approach used in
that reference. Only in ref. [31]Ceff

87 is also determined and it is in good agreement with our result.

4. Determination of the χPT couplings

Using the results of ref. [32] to calculate inχPT the r.h.s. of equations (2.2) and (2.3), we get

−8 Leff
10 = − 8 Lr

10(µ)+G4
1L(µ)+ G6

0L(µ)+G6
1L(µ)+G6

2L(µ) , (4.1)

16Ceff
87 = H4

1L + 16Cr
87(µ)+H6

1L(µ)+H6
2L(µ) , (4.2)

where the functionsGm
nL(µ),Hm

nL(µ) are corrections of orderpm generated at then-loop level, which
explicit analytic form [30] is omitted for simplicity.

Working atO(p4), the determination of the chiral couplingL10 is straightforward. One gets

Lr
10(µ =Mρ) = −(5.22±0.06) ·10−3 . (4.3)

At order p6, the numerical relation is more involved because the small correctionsG6
0L,1L(µ)

contain some LECs that represent the main source of uncertainty for Lr
10. It is useful to clas-

sify the O(p6) contributions through their ordering within the 1/NC expansion. The tree-level
term G6

0L(µ) contains the onlyO(p6) correction in the large–NC limit, 4m2
π(Cr

61−Cr
12−Cr

80);
this correction is numerically small because of them2

π suppression and can be estimated with a
moderate accuracy [25, 26, 32, 34, 35]. At NLOG6

0L(µ) contributes with a term of the form
m2

K(Cr
62−Cr

13−Cr
81). In the absence of information about these LECs we will adoptthe conserva-

tive range|Cr
62−Cr

13−Cr
81| ≤ |Cr

61−Cr
12−Cr

80|/3, which generates the uncertainty that will dominate
our final error onLr

10. Also at this order in 1/NC there is the one-loop correctionG6
1L(µ), that is

proportional toLr
9 which is better known [36]. Calculating the 1/N2

C suppressed two-loop function
G6

2L(µ) and taking all these contributions into account we finally get the wantedO(p6) result:

Lr
10(Mρ) = −(4.06±0.04Leff

10
±0.39LECs) ·10−3 = −(4.06±0.39) ·10−3 , (4.4)

where the error has been split into its two main components.
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A recent reanalysis of the decayπ+ → e+νγ [35], using new experimental data, has provided
quite accurate values for the combinationL9+L10, both at orderp4 andp6, that combined with our
results forLr

10(Mρ) give us

Lr
9(Mρ) =







(6.54±0.15) ·10−3 [O(p4)],

(5.50±0.40) ·10−3 [O(p6)].
(4.5)

Repeating the process we have done forLr
10 with Cr

87 (where the only LEC involved isLr
9) we get

Cr
87(Mρ) = (4.89±0.19) ·10−3 GeV−2 . (4.6)

5. SU(2) χPT

Up to now, we have discussed the LECs of the usual SU(3)χPT (χPT3). It turns useful to con-
sider also the effective low-energy theory with only two flavours of light quarks (χPT2). In some
cases, this allows to perform high-accuracy phenomenological determinations of the corresponding
LECs at NLO. Moreover, recent lattice simulations [43, 42] with two dynamical quarks are already
able to obtain the SU(2) LECs with sufficient accuracy and this is an important check for them.

In SU(2) χPT, there are ten LECs,l i=1,..7 andh1,2,3, at O(p4) (NLO) [15]. Using theO(p6)

relation betweenl r
5(µ) andLr

10(µ), recently obtained in ref. [37], we get

l5 =







13.30±0.11 [O(p4)],

12.24±0.21 [O(p6)].
(5.1)

Analogously to theSU(3) case, the combinationl6− l5 has been determined from the analysis of
π → lνγ [44]. In combination with our determinations forl5 this gives us2

l6 =







15.80±0.29 [O(p4)],

15.22±0.39 [O(p6)].
(5.2)

Making use of the recent results obtained in reference [37] we can also rewrite our result for
Cr

87 in theχPT2 language, getting in this way the first determination ofcr
50

cr
50(Mρ) = (4.95±0.19) ·10−3 GeV−2 . (5.3)

6. Summary and comparison with previous estimates

Tables 1 and 2 summarize our determinations of chiral LECs atO(p6) andO(p4), respectively.
They have been obtained through a sum rule analysis that onlyuses general properties of QCD and
the measuredV−A spectral function [1], and taking into account the results of refs. [35, 44].

Our determination ofLr
10 (l5) is the first one extracted fromτ-decay data atO(p6). We can

make an indirect and interesting check comparing ourO(p6) result for Lr
9 (l6) with the value

2Actually, at orderp4, the most precise value of the combinationl6− l5 is obtained if we calculate it from theSU(3)

combinationL9 +L10 of ref. [35]. In this way we have obtained a prediction forl6 that supersedes that of ref. [30].

6
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χPT2 χPT3

l5 = 12.24±0.21 Lr
10(Mρ) = −(4.06±0.39) ·10−3

l6 = 15.22±0.39 Lr
9(Mρ) = (5.50±0.40) ·10−3

cr
50 = (4.95±0.19) ·10−3 GeV−2 Cr

87(Mρ) = (4.89±0.19) ·10−3 GeV−2

Table 1: Results for theχPT LECs obtained atO(p6).

χPT2 χPT3

l5 = 13.30±0.11 Lr
10(Mρ) = −(5.22±0.06) ·10−3

l6 = 15.80±0.29 Lr
9(Mρ) = (6.54±0.15) ·10−3

Table 2: Results for theχPT LECs obtained atO(p4).

Lr
9(Mρ) = (5.93± 0.43) · 10−3 (l6 = 16.0± 0.5± 0.7) obtained from the charge radius of the

pion [36] ([45]). The agreement is very good and the improvement in the numerical value ofl6 is
remarkable.

At order p4 we do have a previous estimate ofLr
10 from τ data [8] that foundLr

10(Mρ) =

−(5.13± 0.19) · 10−3, through a simultaneous fit of this parameter and the OPE corrections of
dimensions six and eight to several spectral moments of the hadronic distribution. This determi-
nation is in good agreement with ourO(p4) result. Our quoted uncertainty has an smaller ex-
perimental contribution and includes a better assessment of the theoretical uncertainties. We can
also perform an indirect check through the comparison of ourO(p4) result forLr

9 with the value
Lr

9(Mρ) = (6.9±0.7) ·10−3 obtained from the charge radius of the pion [19]. We see againa very
good agreement and a clear improvement in the precision.

If we shift now from phenomenology to theory, we can compare our results with those obtained
from analytical approaches and lattice simulations. Our determinations ofLr

10(Mρ) andCr
87(Mρ)

agree within errors with the large–NC estimates based on lowest-meson dominance [21, 24, 32, 38],
L10 ≈ −3 f 2

π/(8M2
V) ≈ −5.4 ·10−3 andC87 ≈ 7 f 2

π /(32M4
V) ≈ 5.3 ·10−3 GeV−2, and with the re-

sult of ref. [28] for C87, based on Padé approximants. These predictions however areunable
to fix the scale dependence which is of higher-order in 1/NC. More recently the resonance chi-
ral theory Lagrangian [24, 39] has been used to analyse the correlator Π(s) at NLO order in the
1/NC expansion. Matching the effective field theory descriptionwith the short-distance QCD be-
haviour, both LECs are determined, keeping full control of theµ-dependence. The predicted values
Lr

10(Mρ) = −(4.4±0.9) ·10−3 andCr
87(Mρ) = (3.6±1.3) ·10−3 GeV−2 [29] are in perfect agree-

ment with our results, although less precise.
The most recent lattice calculations find the following results (orderp4):

Lr
10(Mρ) =

{

−(5.2±0.5) ·10−3 [40],
−(5.7±1.1±0.7) ·10−3 [41],

l6 =

{

14.9±1.2±0.7 [42],
11.9±0.7±1.0 [43].

(6.1)

They are in good agreement with our determinations (although still far from the phenomenological
precision), but for the last one that is slightly smaller. Asdiscussed in ref. [43], this is partly due to

7
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the deviation of the lattice determination of the pion decayconstant from theχPT one.
Therefore we can conclude that the different analytical approaches and the various lattice

calculations agree very well with our precise phenomenological values.
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