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ABSTRACT 
 

Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions 

downstream of multiple TNF receptors and other receptors which induce interferon-α 

(IFN-α), IFN−β and IFN-λ production, including TLR3 which is deficient in some 

patients with herpes simplex virus-1 (HSV-1) encephalitis (HSE). Mice lacking TRAF3 

die in the neonatal period, preventing direct investigation of the role of TRAF3 in 

immune responses and host defenses in vivo. Here we report autosomal dominant, 

human TRAF3 deficiency in a young adult with a history of HSE in childhood. The 

TRAF3 mutant allele is loss-of-expression, loss-of-function, dominant-negative, and 

associated with impaired, but not abolished TRAF3-dependent responses upon 

stimulation of both TNF receptors and receptors which induce IFN production. 

Nevertheless, TRAF3 deficiency is associated with a clinical phenotype limited to HSE 

and resulting from the impairment of TLR3-dependent induction of IFN-α/β and –λ. 

Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central 

nervous system is critically dependent on TRAF3. 

 

Highlight sentence: Autosomal dominant TRAF3 deficiency is a genetic etiology of 

herpes simplex encephalitis. 

Highlight sentence: The R118W TRAF3 allele is loss-of-function, loss-of-expression, 

and dominant-negative. 

Highlight sentence: Human TRAF3 deficiency impairs the TLR3-dependent induction 

of anti-viral interferons. 
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INTRODUCTION  

Herpes simplex virus (HSV-1) encephalitis (HSE) is a devastating infection of 

the central nervous system (CNS) (Whitley, 2006). HSE is the most common form of 

sporadic viral encephalitis in Western countries, in which its incidence has been 

estimated at approximately 1 in 250,000 individuals per year. The disease peaks in 

childhood, between the ages of three months and six years. During primary infection 

with HSV-1, the virus reaches the CNS via a neurotropic route involving the trigeminal 

and olfactory nerves (Abel et al.; De Tiege et al., 2008). Acyclovir treatment decreases 

the mortality rate in affected children, but substantial neurological impairment is 

nevertheless observed in most survivors, and in particular, in young children. However, 

HSV-1 is widespread and typically innocuous in human populations. 

Childhood HSE was not associated with known immunodeficiencies and the 

mechanism of its pathogenesis remained elusive until we identified the first two genetic 

etiologies of this condition: autosomal recessive UNC-93B deficiency, which abolishes 

Toll-like receptor 3 (TLR3), TLR7, TLR8, and TLR9 signaling (Casrouge et al., 2006), 

and autosomal dominant TLR3 deficiency, which specifically affects TLR3 signaling 

(Zhang et al., 2007). These findings are consistent with the lack of HSE in patients with 

IRAK-4 and MyD88 deficiencies, as these patients have a functional TLR3, but non 

functional TLR7, TLR8, and TLR9 (Picard et al., 2003; von Bernuth et al., 2008; Yang 

et al., 2005) 

Our previous demonstration that STAT1 deficiency, unlike IFN-γR1 or IFN-γR2 

deficiency, confers predisposition to multiple viral diseases, including HSE, suggested 

that impairment of the TLR3-dependent production of IFN-α and IFN-β (type I IFN) 

and IFN-λ (type III IFN) might account for HSE in patients with TLR3 and UNC-93B 

deficiencies (Chapgier et al., 2009; Dupuis et al., 2003). Collectively, these studies 
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suggest that childhood HSE may result from impaired type I and/or type III IFN 

production in response to the stimulation of TLR3 by dsRNA intermediates of HSV-1 in 

the CNS, in at least some children. As only a small fraction of children with HSE carry 

mutations in the TLR3 and UNC-93B genes, we searched for mutations in other genes 

controlling the TLR3 pathway. Here, we report on an autosomal dominant deficiency of 

the TRAF3 adaptor protein in a patient with HSE. This experiment of Nature indicates 

that TLR3-mediated immunity against primary infection by HSV-1 in the central 

nervous system is critically dependent on TRAF3. 
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RESULTS 

Heterozygous TRAF3 mutation in a patient with HSE 

We investigated an 18-year-old French girl (P1) who had suffered from HSE at 

the age of four years (Supplemental data text, note 1) and carried no mutation in the 

coding region of UNC93B1 or TLR3, the mRNAs of which were normally spliced and 

generated in normal amounts. No mutations were found in the coding regions of seven 

other genes known to control the TLR3 – type I IFN pathway, encoding Toll-IL-1 

receptor domain-containing adaptor protein-inducing IFN-β (TRIF), TRAF-interacting 

protein I-TRAF (TANK), the adaptor protein SINTBAD, NAK-associated protein-1 

(NAP1), TANK-binding kinase 1 (TBK1), Iκ-B kinase-ε (IKK-ε), and the transcription 

factor IRF-3. A heterozygous substitution (CT) was found at nucleotide position 352 

(c.352C>T) in exon 4 of the gene encoding TNF receptor-associated factor 3 (TRAF3) 

(Bishop and Xie, 2007; Hacker et al., 2006; He et al., 2007; Oganesyan et al., 2006) in 

genomic DNA (gDNA) from the granulocytes, EBV-transformed B cells (EBV-B cells), 

and SV40-transformed fibroblasts (SV40-fibroblasts) of P1 (Fig. 1A and B). No other 

mutations were found in the coding region of TRAF3. The TRAF3 mutation is missense 

and non conservative, as it replaces an Arg residue at position 118 in the first of the five 

zinc-finger domains with a Trp residue (R118W) (Fig. 1C). R118W was not found in 

the NCBI and Ensembl databases or in up to 1,209 unrelated healthy individuals (2,418 

chromosomes) from the CEPH-Human Genome Diversity panel examined, including 

289 Europeans, ruling out an irrelevant polymorphism. The father, mother and brothers 

of P1 do not carry the R118W mutation. Alignment of the human TRAF3 sequence with 

sequences from the 13 animal species in which TRAF3 has been sequenced showed 

R118 to be strictly conserved throughout evolution (Fig. S1). These data suggest that 
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the de novo R118W germline mutation in TRAF3 may be responsible for the autosomal 

dominant predisposition to HSE in P1. 

 

Impaired TRAF3 production in cells from the patient  

We then assessed the expression of TRAF3 mRNA and protein in cells from P1. 

Quantitative PCR showed baseline TRAF3 mRNA expression in SV40-fibroblasts 

(human fibroblasts immortalized with SV40) (Fig. 2A) and EBV-B cells (human B cells 

immortalized with EBV) (Fig. S2A) from P1 to be normal. The wild-type (WT) and 

mutant TRAF3 alleles were expressed to similar extents, as shown by direct sequencing 

of the RT-PCR product (data not shown). In contrast, TRAF3 protein in SV40-

fibroblasts (Fig. 2A) and EBV-B cells (Fig. S2B) from P1 were only about 17.5% those 

in five unrelated healthy controls (data not shown), as shown by immunoblot analysis. 

Similar results were obtained with two additional antibodies recognizing different 

TRAF3 epitopes at some distance from residue 118 (Fig. S2C). The R118W mutation 

therefore seems to prevent stable TRAF3 protein production. It also seems to have an 

effect on the amount of WT protein generated from the other allele. We stably 

transfected a TRAF3-knockdown RAW mouse macrophage cell line (RAW Traf3-/-) 

(Tseng et al., 2010) with vectors encoding the WT or R118W human TRAF3 allele. 

TRAF3 protein was detected after transfection with the WT construct, but not after 

transfection with the mock vector or the R118W allele, whereas mRNA was detected 

for both the WT and R118W forms (Fig. 2B).  

 

Impaired TLR3 responsiveness of the patient’s fibroblasts 

The induction of IFN-β and, subsequently, of IFN-inducible target genes in 

response to TLR3 agonists is markedly impaired in bone marrow-derived macrophages 
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(BMMs) generated from irradiated C57BL/6 mice, reconstituted with Traf3-/- fetal liver 

cells (Hacker et al., 2006; Oganesyan et al., 2006). We investigated the contribution of 

TRAF3 deficiency to the pathogenesis of HSE in P1, by evaluating the TLR3 pathway 

in SV40-transformed dermal fibroblasts, in which the response to poly(I:C) is TLR3-

dependent (Casrouge et al., 2006; Zhang et al., 2007). In control SV40-fibroblasts, IFN-

β, IFN-λ and IL-6 were secreted in a time- and dose-dependent manner, after TLR3 

stimulation with poly(I:C) (Fig. 2C). In contrast, cells from P1 and from an UNC-93B-

deficient patient did not respond. TNF-α-induced IL-6 production was normal, 

indicating that the differences in IFN-β, IFN-λ and IL-6 production upon TLR3 

stimulation were not due to a general non-responsiveness of the cells (Fig. S2D). 

Similar results were obtained for the IFN-β and IFN-λ mRNAs (Fig. S2E) and for 

analyses of primary dermal fibroblasts (data not shown).  

We dissected the cellular phenotype of P1 further, by studying two transcription 

factors controlling the TLR3-IFN pathway: NF-κB and IRF-3. Accumulation of the NF-

κB p65 subunit in the nucleus in response to poly(I:C) was impaired in P1, as shown by 

ELISA (Fig. 2D), whereas the response to both TNF-α and IL-1β was normal. In 

contrast, the dimerization of IRF-3 in response to poly(I:C) in SV40-fibroblasts from P1 

was less strongly affected, as shown by comparisons with healthy controls and with 

TLR3-deficient and UNC-93B-deficient cells (Fig. 2E) (Casrouge et al., 2006; Zhang et 

al., 2007). The TRAF3 deficiency therefore affected the TLR3 pathway, in terms of the 

activation of NF-κB and, to a lesser extent, IRF-3. This resulted in the impairment of 

cytokine production, with the abolition of IFN-β, IFN-λ and IL-6 induction by 

poly(I:C), in particular.  

 

Complementation of the patient’s cells with wild-type TRAF3 
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P1 fibroblasts were transfected with WT TRAF3 and stable transfectants were 

obtained (Fig. 3A). These cells contained no more than about 30% the amount of 

TRAF3 present in healthy controls. However, they contained more TRAF3 than non 

transfected and mock-transfected P1 cells, which contained only about 17.5% the 

amount of TRAF3 present in controls (Fig. 3A), consistent with the mutant allele being 

structurally dominant-negative. Nevertheless, stable transfection with the WT TRAF3 

allele, unlike mock transfection, complemented the defect in the TLR3-dependent 

induction of IFN-β, IL-6 (Fig. 3B) and IFN-λ (Fig. S3A), indicating that the doubling of 

TRAF3 amounts, although modest, was sufficient to overcome the functional defect. No 

complementation of the phenotype was observed after transfection with R118W TRAF3 

(Figures S3B and S3C). Thus, the WT TRAF3 allele complemented the lack of response 

to TLR3 in P1 fibroblasts, strongly suggesting that the patient’s fibroblastic phenotype 

and, by inference from TLR3 and UNC-93B deficiencies (Casrouge et al., 2006; Zhang 

et al., 2007), the patient’s clinical phenotype of HSE, resulted from TRAF3 deficiency. 

 

The TRAF3 mutant allele is dominant-negative 

The WT TRAF3 allele conferred functional complementation of cells from P1, 

but TRAF3 protein levels remained lower (~30%) than those in the cells of all healthy 

controls tested. This finding is consistent with the much lower than expected amounts of 

TRAF3 in the heterozygous cells of P1 (~ 17.5%). Thus, although the R118W allele is a 

loss-of-expression allele, it may exert a dominant-negative effect, by destabilizing 

proteins produced from the WT allele. Mouse RAW macrophages were used to test this 

hypothesis, because human and mouse TRAF3 proteins are 97% identical and the 

antibodies recognizing human TRAF3 also recognize its mouse ortholog. The amounts 

of mouse TRAF3 in RAW cells stably transfected with human R118W TRAF3 were 
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only about 50% those in non transfected RAW cells, mock-transfected cells or cells 

transfected with human WT TRAF3 (Fig. 3C). Similar results were obtained in transient 

transfection experiments (data not shown). However, this had no functional 

consequences, as IFN-β production after stimulation with poly(I:C) was normal, 

implying that the small amount of protein produced was nonetheless sufficient to 

activate the TLR3 pathway (Fig. 3D), a finding consistent with the successful 

complementation of the patient’s cells by only about 30% the amount of WT human 

TRAF3 generally found in normal cells (Fig. 3A). Similar results were obtained when 

SV40-fibroblasts were stably transfected with the same vectors (Fig. S3D and S3E). 

Moreover transient transfections of RAW Traf3-/- cells showed the R118W mutant form 

to have a dominant-negative effect. In cells co-transfected with a 1:1 ratio of WT 

TRAF3 and mock vector or R118W TRAF3, we found that TRAF3 protein expression 

was 30% lower in the presence of the mutant form (Fig. S4A). The co-transfection of 

cells with different ratios of WT:R118W TRAF3 showed that TRAF3 protein expression 

decreased as the proportion of the mutant form increased (Fig. S4A) Moreover, co-

transfection with a fixed amount of WT TRAF3 and increasing amounts of mutant 

TRAF3 confirmed the negative dominance by revealing a dose-dependent impact of the 

mutant allele, in terms of TRAF3 expression (Fig. S4A). 

We further investigated the possible effect of the mutant form on the stability of 

trimer formation, by generating TRAF3 deletion constructs without the C-terminal 

region implicated in trimer assembly. The deletion of this region from both the WT and 

R118W forms had no effect on TRAF3 expression in RAW Traf3-/- cells co-transfected 

with the wild-type and deletion constructs (Fig. S4A). Similar results were obtained 

after the co-transfection of cells with the WT construct and other shorter deletions of 

TRAF3 (data not shown). The dominant-negative effect of the R118W allele probably 
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resulted from the inhibition of TRAF3 trimer formation (Pullen et al., 1999), as the 

patient’s TRAF3 expression (17.5%) was close to the expected frequency of 

homotrimers composed of WT subunits only (12.5%) (Fig. S4B). Unstable 

heterotrimers may be more susceptible to protein degradation, resulting in the 

persistence within cells of only the remaining stable homotrimers. Thus, the R118W 

TRAF3 allele exerts a dominant-negative effect in various types of mouse and human 

cells, by decreasing production of the WT protein, thus accounting for the much lower 

total amount of TRAF3 present and the profound impairment of TLR3 responses in 

cells from this heterozygous patient.  

 

Impaired IFN-dependent control of viruses in TRAF3-deficient fibroblasts 

We studied fibroblast responses to vesicular stomatitis virus (VSV) infection, 

which have been shown to be impaired in UNC-93B-deficient and TLR3-deficient 

patients (Casrouge et al., 2006; Zhang et al., 2007). IFN-β, IFN-λ and IL-6 were 

produced in smaller amounts by P1 and UNC-93B-deficient SV40-fibroblasts than by 

control cells (Fig. 4A). The survival of the patient’s SV40-fibroblasts was found to be 

markedly lower than that of control cells, after 24 hours of VSV infection (Fig. 4B). P1 

cells behaved like the cells of patients with TLR3, UNC-93B and STAT1 deficiencies 

(Casrouge et al., 2006; Chapgier et al., 2009; Zhang et al., 2007). Treatment with 

exogenous IFN-α2b complemented the phenotype of TRAF3-deficient, TLR3-deficient 

and UNC-93B-deficient cells, but not that of STAT1-deficient cells (Fig. 4B). We also 

showed that control cells contain VSV replication, whereas cells from P1 and from 

patients with STAT1, UNC-93B and TLR3 deficiencies did not (Fig. 4C). When cells 

from P1, UNC-93B-deficient and TLR3-deficient patients were subjected to prior 

treatment with IFN-α2b, complementation was observed, as viral replication was 
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contained; no such complementation was observed for STAT1-deficient cells (Fig. 4C). 

Finally, we attempted to complement the TRAF3 deficiency in these assays of cytokine 

production, viral replication, and cell death. The production of IFN-β, IFN-λ and IL-6, 

cell survival and viral replication in response to viral infection were restored in P1 cells 

stably transfected with the WT construct, but not in cells transfected with the mutant 

human TRAF3 allele or the mock vector (Fig. 4D-F , S3A and S3C). Thus, P1 cells 

display impaired IFN-β production in response to VSV infection, resulting in higher 

viral replication and cell death, and this phenotype, which is also common to UNC-93B-

deficient and TLR3-deficient cells, results from TRAF3 deficiency. These findings 

identify TRAF3 deficiency as a genetic etiology of HSE, causing disruption of the 

TLR3-dependent induction of anti-viral type I IFN and IFN-λ. 

 

Impact of TRAF3 deficiency on other IFN-inducing pathways 

We also analyzed the impact of TRAF3 deficiency on other pathways, starting 

with the anti-viral pathways inducing type I IFN and IFN–λ (Bishop and Xie, 2007; He 

et al., 2007). Previous studies established a role for TRAF3 in the TLR4, TLR7-TLR8 

(Hacker et al., 2006; Hoebe and Beutler, 2006; Oganesyan et al., 2006) and RIG-I and 

MDA-5 pathways (Michallet et al., 2008). After the activation of TLR4 (LPS) and 

TLR7-TLR8 (R-848), monocyte-derived dendritic cells (MDDCs) from P1 produced 

smaller amounts of IFN-α, IL-12p40 (Fig. 5A), TNF-α, IL-6, and IL-10 (Fig. S5A) than 

cells from eight control subjects. Similar results were obtained after the activation of 

TLR4 and TLR7-TLR8 in monocyte-derived macrophages (MDMs), in terms of the 

production of IFN-λ, IL-12p40 (Fig. 5B), TNF-α, and IL-6 (Fig S5B). TRAF3 is also 

involved in the RIG-I and MDA-5 pathway. We therefore tested this pathway in SV40-

fibroblasts. After activation with poly(I:C) plus Lipofectamine or in vitro transcribed 
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5’PPP-ssRNA (7sk-as), the amounts of secreted IFN-β, IFN-λ and IL-6 were lower than 

those of control cells, UNC-93B-deficient cells (Fig. 5C) and P1 SV40-fibroblasts 

transfected with WT TRAF3 (Fig. S5C). Poly(I:C) plus Lipofectamine is known to 

activate both the RIG-I and MDA-5 pathways, whereas in vitro transcribed 5’PPP-

ssRNA (7sk-as) has been shown to be a RIG-I-specific agonist (Pichlmair et al., 2006). 

These pathways — the RIG-I pathway in particular — are therefore apparently TRAF3-

dependent in human dermal fibroblasts. Finally, we assessed the overall impact of 

TRAF3 deficiency on the production of type I IFN and IFN-λ, by investigating the 

response to several viruses in various cell types. After 40 hours of stimulation, 

peripheral blood mononuclear cells (PBMC) from P1 produced IFN-α (Fig. 5D) and IL-

6, IL-10 and IL-12p40 (Fig. S5D, E and F) in response to the 10 viruses tested, in 

amounts similar to or smaller than those produced by control cells. We investigated the 

production of IFN-β and IFN-λ in SV40-fibroblasts, after stimulation with HSV-1 (Fig. 

5E) and with four other viruses (VSV, para-III, Sindbis virus and EMCV) (Fig. 5F). P1 

fibroblasts had a broader phenotype than cells from healthy controls, UNC-93B-

deficient, TLR3-deficient and MyD88-deficient patients. Thus, TRAF3 deficiency in 

the patient broadly affected type I and type III IFN inducing pathways. 

 

Impact of TRAF3 deficiency on TNFR pathways 

TRAF3 was initially shown to interact with various TNFRs, such as CD40, LT-

βR, and BAFFR, in particular (Bishop and Xie, 2007; He et al., 2007). It was 

subsequently found to operate downstream from these receptors, as a negative regulator 

of the alternative NF-κB pathway (He et al., 2006; Vallabhapurapu et al., 2008; 

Zarnegar et al., 2008). We first analyzed the CD40 pathway (Cheng et al., 1995; 

Graham et al., 2009). P1 MDDC showed impaired production of IL-6 and IL-12p40 
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after CD40L activation (Fig. 6A and B). We also activated fresh B cells from P1 (who 

has normal counts of the main circulating B-cell subsets, as defined by IgM and CD27 

expression) with CD40L and IL-4 and observed an impairment of proliferation and Ig 

class switch recombination to IgE (data not shown). When EBV-B cells from P1 were 

activated with CD40L, the p52 product was generated without stimulation and was 

therefore constitutively activated, whereas p52 activation was not constitutive in healthy 

controls (Fig. S6A). CD40-deficient cells served as negative controls (Conley et al., 

2009). TRAF3 is also involved in the lymphotoxin-β receptor (LTβR) pathway in 

humans and mice, inducing caspase-3-independent cell death and IL-8 production 

(Chen et al., 2003; Kuai et al., 2003). P1 SV40-fibroblasts displayed lower amounts of 

cell death than control cells (Fig. 6C) or P1 cells transfected with WT-TRAF3 (Fig. 

S6B) after LT-α1β2 stimulation. Moreover, P1 cells produced smaller amounts of IL-8 

than control cells and P1 SV40-fibroblasts transfected with WT-TRAF3 (P1-WT) (Fig. 

6D).  

TRAF3 also controls IL-10 production in response to B cell-activating factor 

receptor (BAFF-R) activation in human and mouse cell lines (Gardam et al., 2008; 

Sasaki et al., 2008; Xu and Shu, 2002). After the activation of BAFF in EBV-B cells, 

the p52 product was generated without stimulation (i.e. it was constitutively activated) 

in cells from P1, but not in cells from healthy controls (Fig. 6E). Similarly, ELISA after 

BAFF activation in EBV-B cells showed that P1 cells produced more IL-10 than control 

cells and that this IL-10 production was not dependent on BAFF activation (Fig. 6F). 

BAFF-R-deficient EBV-B cells were used as negative controls (Warnatz et al., 2009). 

We conclude that TRAF3 deficiency in P1 affects at least the CD40, LTβR and BAFF-

R pathways, as previously shown in mouse and human cell lines. The lack of a 

corresponding overt clinical phenotype is consistent with an incomplete functional 
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defect. By contrast, complete defects in CD40 (Conley et al., 2009) and, to a lesser 

extent, BAFF-R (Warnatz et al., 2009), have been shown to have clinical consequences. 

We would expect the residual signaling threshold below which predisposition to disease 

occurs to vary between pathways.  
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DISCUSSION  

We have identified a patient with a heterozygous de novo R118W germline 

mutation in TRAF3. Previous studies have identified the R118W mutation of TRAF3 as 

a somatic mutation involved in multiple myeloma (Annunziata et al., 2007; Keats et al., 

2007), independently indicating that this allele is deleterious and suggesting that our 

patient might be at risk of this disease. Heterozygosity for the R118W TRAF3 allele 

leads to impairment of the TLR3-dependent induction of type I IFN and IFN-λ, 

resulting in predisposition to HSE. Autosomal dominant TRAF3 deficiency is the third 

genetic etiology of HSE to be identified, after autosomal recessive UNC-93B deficiency 

(Casrouge et al., 2006) and autosomal dominant TLR3 deficiency (Zhang et al., 2007). 

It is a rare genetic etiology of HSE, as no TRAF3 coding mutations have been identified 

in 190 other children with HSE analyzed. TRAF3 deficiency is also the first primary 

immunodeficiency involving a TRAF protein to be identified. The presence of TRAF3 

deficiency in a child with HSE confirms the importance of an intact TLR3-IFN pathway 

for controlling primary HSV-1 infection in the CNS (Zhang et al., 2007). It further 

indicates that TLR3-mediated immunity is not protective with only 10-20% expression 

and function of TRAF3. Mutations in the UNC93B, TLR3, TRIF, and TRAF3 genes each 

affect only a small proportion of children with HSE. These findings suggest that 

predisposition to HSE may result from a collection of diverse, and possibly 

immunologically related single-gene defects (Alcais et al., 2009; Casanova and Abel, 

2007). 

The patient with TRAF3 deficiency and HSE described here is now 18 years old 

and has otherwise remained healthy off any prophylaxis, with normal resistance to other 

infectious diseases, including viral diseases in particular. Residual signaling 

downstream from TLR3 is probably not involved in this resistance, because UNC-93B-
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deficient patients have no detectable residual TLR3 signaling but are nonetheless also 

resistant to common viruses other than HSV-1. Anti-viral IFN responses triggered by 

receptors other than TLR3, whether TRAF3-dependent (somewhat preserved due to the 

incomplete nature of TRAF3 deficiency) or TRAF-3-independent (unaffected by the 

TRAF3 defect), probably account for the normal resistance to viruses observed in this 

TRAF3-deficient patient. With a single 18-year-old patient studied, it is obviously 

impossible to draw firm conclusions regarding the range of infectious phenotypes 

associated with dominant-negative TRAF3 alleles. Other infections may strike this 

patient later in life, and other patients carrying dominant-negative TRAF3 alleles may 

display other infectious phenotypes. Phenotypes other than infectious may also occur. 

The TRAF3 defect also impairs signaling pathways downstream from multiple TNF 

receptors. However, this broad immunological phenotype has had so far no overt 

clinical consequences. This may be transient, as for example the impairment of BAFF 

signaling might perhaps lead to disorders of B cell immunity with increasing age 

(Warnatz et al., 2009). In any case, the weak but detectable residual TRAF3-dependent 

responses in this patient probably account for her survival into adulthood, contrasting 

with the neonatal death of mice with complete TRAF3 deficiency (He et al., 2006; Xu et 

al., 1996). In conclusion, this “experiment of nature” suggests that the first apparent 

clinical consequence of decreases in TRAF3 production and function is predisposition 

to HSE, due to the impairment of TLR3 responses.  
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EXPERIMENTAL PROCEDURES 

Human molecular genetics 

We extracted RNA from Epstein-Barr virus-immortalized lymphoblastoid cell 

lines (EBV-B cells) and immortalized fibroblast cell lines (SV40-fibroblasts), using 

Trizol (Invitrogen, Carlsbad , California, USA), according to the manufacturer’s 

instructions. RNA was reverse transcribed directly, with Oligo-dT (Invitrogen). 

Polymerase chain reaction (PCR) was carried out with Taq polymerase (Invitrogen), 

using the GeneAmp PCR System 9700 (Applied Biosystems, Foster City, California, 

USA). The cDNA exons of TRAF3 were amplified by PCR. The primer sequences used 

for the genomic coding region of TRAF3 are shown below. 

The PCR products were purified by ultracentrifugation through Sephadex G-50 

Superfine resin (Amersham-Pharmacia-Biotech, Buckinghamshire, UK) and sequenced 

with the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems). Sequencing 

products were purified by centrifugation through Sephadex G-50 Superfine resin and 

sequences were analyzed with an ABI Prism 3700 apparatus (Applied Biosystems). 

The mutation was confirmed by the analysis of genomic DNA extracted from 

erythrocytes/granulocytes, EBV-B cells and SV40-fibroblasts. DNA was isolated by 

phenol-chloroform extraction, as previously described (Giraffa et al., 2000). 

TRAF3 sequencing primers: 

Forward primer 
1F: ggaccgcgagatgaggaa 
2F: gctcctggctccctactctt 
3F: taatgctgggacatctgctg 
4F: caactcgctcgaaaagaagg 
5F: agccagcctttctacactgg 
6F: agtagctggggaggtggatt 
 
Reverse primer 
1R: cggtcagtgtgcagctttag 
2R: ctcgcaggtctttcctcaag 
3R: gcttggctgtctatcactcg 
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4R: cgtccccgttcaggtagac 
5R: aaaacgtgtcaggtgtgctc 
6R: actgtatttgaaacaaaattgcac 

 

Multiple amino-acid sequence alignment 

 The Homo sapiens TRAF3 (NP_003291.2) amino-acid sequence was aligned 

with other TRAF3 sequences by BLAST, using the protein database of the National 

Center for Biotechnology Information website (NCBI, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple sequence alignment was carried out 

with CLUSTAL W (1.83), based on the TRAF3 amino-acid sequences of Pan 

troglodytes (XP_001164813), Macaca mulatta (XP_001082535.1), Equus caballus 

(XP_001490050.1), Monodelphis domestica (XP_001367040.1), Ornithorhynchus 

anatinus (XP_001507440.1), Mus musculus (NP_035762.2), Sus scrofa 

(XP_001927435.1), Rattus norvegicus (NP_001102194.1), Bos taurus (XP_582595.3), 

Canis familiaris (XP_547989.2), Gallus gallus (XP_421378.1), Oncorhynchus mykiss 

(XP_001507398.1) and Danio rerio (NP_001003513.1). 

 

Cell purification and culture 

Freshly isolated human peripheral blood mononuclear cells (PBMC) were 

isolated by Ficoll-Hypaque density gradient centrifugation (Amersham-Pharmacia-

Biotech) from cytopheresis or whole-blood samples obtained from patients or healthy 

volunteers. PBMCs were stimulated for 40 h, at a density of 2 x 106 cells/ml, in RPMI 

1640 (Invitrogen) supplemented with 10% fetal calf serum (FCS) (Invitrogen).  

Primary human fibroblasts were obtained from biopsies of patients or healthy 

controls, and were cultured in DMEM (Invitrogen) supplemented with 10% FCS. They 

were then transformed with an SV40 vector, as previously described (Chapgier et al., 

2006), to create immortalized fibroblast cell lines: SV40-fibroblasts. The SV40-
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fibroblast cell lines were activated in 24-well plates, at a density of 105 cells/well, for 24 

h (or 2, 10 and 24 h in the poly(I:C) kinetic studies).  

EBV-B cell lines were obtained from patients and normal donors as previously 

described (Pellat-Deceunynck et al., 1999). BAFFR-/- EBV-B cells were kindly 

provided by Klaus Warnatz, PhD. EBV-B cells were cultured in RPMI medium 

supplemented with 10% FCS and were activated in 6-well plates, at a density of 5 x106 

cells/well, for 24 h.   

For the differentiation and culture of monocyte-derived dendritic cells 

(MDDCs), PBMCs freshly isolated by Ficoll-Hypaque density gradient centrifugation 

from healthy controls and patients, were incubated in RPMI 1640 supplemented with 

10% FCS, in cell culture flasks, for 1 hour, at 37°C, under an atmosphere containing 5% 

CO2. The adherent cells (monocytes) were cultured for 8 days in RPMI 1640 

supplemented with 10% FCS, in the presence of GM-CSF (R&D Systems, Minneapolis, 

MN, USA, 50 ng/ml) and IL-4 (R&D Systems, 10 ng/ml). The differentiation and purity 

of these cells were confirmed by staining with antibodies directed against CD1a (PE, 

BD Pharmingen, San Diego, CA, USA) and CD14 (FITC, Becton Dickinson) or a 

conjugated mouse IgG1 isotype control (PE or FITC, Becton Dickinson). Stained cells 

were analyzed by flow cytometry (FACSCanto flow cytometer, Becton Dickinson). For 

stimulation, the cells were plated at a density of 0.25 x 105 cells/well in 48-well tissue 

culture plates and cultured in the presence of GM-CSF and IL-4; MDDCs were 

stimulated for 24 h.  

For the differentiation and culture of monocyte-derived macrophages (MDM), 

PBMCs freshly isolated by Ficoll-Hypaque density gradient centrifugation from healthy 

controls and patients were incubated in RPMI 1640 supplemented with 10% FCS, in 

cell culture flasks, for 1 hour, at 37°C, under an atmosphere containing 5% CO2. The 
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adherent cells (monocytes) were cultured for 10 days in RPMI 1640 supplemented with 

10% FCS, in the presence of Rh-M-CSF (R&D Systems, 10 µg/ml). For stimulation, the 

cells were plated at a density of 0.25 x 105 cells/well in 96-well tissue culture plates and 

stimulated for 24 h. 

All cells were grown at 37°C, under an atmosphere containing 5% CO2. 

 

Determination of mRNA levels by Q-PCR 

Total RNA was extracted from EBV-B cells, SV40-fibroblasts RAW, and 

RAWTRAF3-/- cells, untransfected or transfected. In some cases, the cells were 

stimulated with 25 µg/ml poly(I:C) (InvivoGen, San Diego, CA, USA) for 4 hours. 

RNA was reverse transcribed directly, using Oligo-dT, to determine TRAF3, IFN-β and 

IFN-λ mRNA levels. The β-glucuronidase (GUS) or 18S rRNA gene was used for 

normalization. Quantitative real-time PCR (Q-PCR) was performed with Applied 

Biosystems Assays-on-Demand™ probe/primer combinations and 2 x universal reaction 

mixture, in an ABI PRISM® 7700 Sequence Detection System. Results are expressed 

using the ∆∆Ct method, as described by the manufacturer. 

 

Immunoblots 

Total cell extracts were prepared from SV40-fibroblasts, EBV-B cells and RAW 

and RAW-TRAF3-/- cells, either not transfected or stably transfected with pWPI, pWPI-

TRAF3, pBABE or pBABE-TRAF3-R118W. In some cases, SV40-fibroblasts were 

activated by incubation with 25 µg/ml poly(I:C) for 24 h. Equal amounts of protein 

from each sample were separated by SDS-PAGE and blotted onto iBlot TM Gel Transfer 

Stacks (Invitrogen). These nitrocellulose membranes were then probed with anti-

TRAF3 polyclonal antibody (Abcam, Cambridge, MA, USA) or anti-NF-kB2 p100/p52 



 21 

(18D10) rabbit mAb (human specific) (Cell Signaling Beverly, MA, USA) followed by 

a secondary horseradish-conjugated donkey anti-rabbit IgG (GE Healthcare, 

Buckinghamshire, UK). Membranes were stripped and reprobed with an antibody 

against GADPH (Santa Cruz Biotechnology Inc., Santa Cruz, CA), to control for 

protein loading. Antibody binding was detected by enhanced chemiluminescence (ECL; 

Amersham-Pharmacia-Biotech). Antibody-2 is an anti-TRAF3 polyclonal antibody 

(Cell Signaling Technology).  

 

Stimulations 

We used the following Toll-like receptor (TLR) agonists: a synthetic analog of 

dsRNA, polyinosinepolycytidylic acid (poly(I:C), a TLR-3 agonist, at a concentration of 

25 µg/ml);  lipopolysaccharide (LPS Re 595 from Salmonella minnesota, a TLR-4 

agonist, at 10 µg/ml; Sigma, St Louis, MO, USA); resiquimod hydrochloride (R-848, a 

TLR-7 and -8 agonist, at 3 µg/ml; GLSynthesis Inc., Worcester, MA, USA); IL-1β (at 

20 ng/ml; R&D Systems Inc.); TNF-α (at 20 ng/ml; R&D Systems Inc.). All agonists 

and reagents were endotoxin-free. For all stimulations of PBMCs with TLR agonists 

other than LPS, cells were incubated with polymyxin B (10 µg/ml) (Sigma) at 37°C, for 

30 minutes before activation.  

For RIG-I/MDA5 stimulation, we used 0.25 µg of poly(I:C) or 0.1 µg of non 

coding RNA (7sk-as), kindly provided by Caetano Reis e Sousa (Pichlmair et al., 2006), 

and carried out transfection with LipofectamineTM Reagent (Invitrogen), according to 

the kit manufacturer’s instructions. 

 LTα1β2 (R&D Systems, 65 ng/ml) was used to activate lymphotoxin-β receptor 

(LTβR), with or without IFN-γ (Imukin; Boehringer Ingelheim, Ingelheim, Germany), 

at a concentration of 80 IU/ml. B cell-activating factor receptor (BAFF-R) was activated 
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with human BAFF (Miltenyi Biotec, Bergisch Gladbach, Germany) at a concentration 

of 100 ng/ml.  

For viral stimulation, we used: 1) dsDNA viruses: herpes simplex virus-1 (HSV-

1, strain KOS-1, multiplicity of infection (MOI) = 1); HSV-1 inactivated by ultraviolet 

(UV) radiation (HSV-1i); BK virus (BKV, an isolate from a patient, provided by Pierre 

Lebon, Paris, France, MOI= 0.02). 2) ss(-)RNA viruses: vesicular stomatitis virus 

(VSV, strain Indiana, MOI= 1), Newcastle disease virus (NDV, strain BR24 444, MOI 

= 0.5), measles virus (measles V, strain Edmonston, MOI = 0.004), Sendai virus (Sendai 

V, strain E92, MOI= 12.5), parainfluenza virus III (para-III, strain EA102, MOI= 0.04), 

mumps virus (mumps V, vaccine strain Urabe, MOI = 0.04). 3) ss(+)RNA viruses: 

sindbis virus (sindbis V, strain VR1248 ATCC, MOI= 0.2), encephalomyocarditis virus 

(EMCV, MOI = 0.1). 

In some experiments, cells were treated with IFN-α (intron A, Schering-Plough, 

Kenilworth, NJ, USA) at a concentration of 105 IU/ml before stimulation. CD40 was 

activated in MDDC, as previously described (Filipe-Santos et al., 2006). In EBV-B 

cells, CD40 was activated with soluble human MegaCD40LTM(ENZO Life Science Inc., 

Farmingdale, NY, USA) at a concentration of 2 µg/ml. 

Cell supernatants were recovered and their cytokine concentrations determined 

by ELISA. 

 

Cytokine determinations 

The production of IFN-α, -β, -λ, IL-6, IL-8, IL-10, IL-12p40 and TNF-α was 

assessed by ELISA. An ELISA was carried out for each of IFN-α (AbCys SA, Paris, 

France), IFN-β (TFB, Fujirebio, Inc., Tokyo, Japan), IL-6, IL-8, IL-10, TNF-α 

(Sanquin, Amsterdam, Holland), IL-12p40 and mouse IFN-β (R&D Systems), 
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according to the kit manufacturer’s instructions. The ELISA for IFN-λ was carried out 

as previously described (Zhang et al., 2007). 

 

Signal transduction studies in SV40-fibroblasts 

Cell nuclear extracts were prepared from SV40-fibroblasts, following incubation 

with or without Poly(I:C), TNF-α and IL-lβ. NFkB ELISA (Active Motif, Calrsbad, 

CA, USA) was carried out according to the kit manufacturer’s instructions.  

For the detection of IRF-3 dimerization, whole-cell extracts were prepared from 

SV40-fibroblasts with or without Poly(I:C) (25 µg/ml) treatment for 1 or 2 h. The IRF-3 

monomers and dimers were separated by native PAGE in the presence of 1% sodium 

deoxycholate (DOC) (Sigma). Total cell extracts (50 µg of protein) were diluted 1:5 in 

non denaturing sample buffer (312.5 mM Tris–HCl, pH 6.8, 50% glycerol, 0.05% 

bromophenol blue and 5% DOC) and separated by electrophoresis in a 7.5% 

polyacrylamide gel, in 25 mM Tris and 192 mM glycine, pH 8.4, with 1% DOC present 

in the cathode chamber only. The gel was blotted onto a membrane, which was then 

probed with the anti-IRF-3 antibody (FL-425, Santa Cruz Biotechnology) followed by a 

secondary horseradish-conjugated anti-rabbit IgG. 

 

Cell viability assay 

The viability of SV40-fibroblasts was assessed by resazurin oxidoreduction 

(TOX-8) (Sigma). Cells were plated, in triplicate, in 96-well flat-bottomed plates (2 x 

104 cells/well), in DMEM supplemented with 2% FCS; 24 hours later, cells were 

infected by incubation for 24 hours with VSV at the indicated multiplicity of infection 

(MOI). Resazurin dye solution was then added (5 µl per well) to the culture medium, 

and the samples were incubated for an additional two hours at 37°C. Fluorescence was 
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then measured at a wavelength of 590 nm, using an excitation wavelength of 531 nm. 

Background fluorescence, calculated for dye and complete medium alone (in the 

absence of cells) was then subtracted from the values for all the other samples; 100% 

viability corresponds to the fluorescence of uninfected cells. For assays of cell 

protection upon viral stimulation, cells were treated with IFN-α (105 IU/ml) for 24 

hours before infection, and during infection. 

 

Viral infection  

For viral infection, 105 SV40-fibroblasts were plated in individual wells of 24-

well plates and infected, at a MOI of 10, in DMEM supplemented with 2% FCS. The 

Stat-1-deficient patient studied has been described elsewhere (2). After 30 minutes, cells 

were washed and incubated in 500 µl of medium. The supernatants were frozen at the 

time points indicated in the figures. Viral titers were determined by calculating the 50% 

tissue culture infectious dose (TCID50), as described by Reed and Muench, after the 

inoculation of Vero cell cultures in 96-well plates. For assays of cell protection upon 

viral stimulation, cells were treated with IFN-α (105 IU/ml) for 18 hours before 

infection, as appropriate. 

 

Determination of cell death via the LTβR pathway 

We assessed levels of SV40-fibroblast cell death via the LTβR pathway by 

TOX-8 assays. Cells were plated, in triplicate, in 96-well flat-bottomed plates (2 x 104 

cells/well), in DMEM supplemented with 2% FCS; 24 hours later, cells were treated 

with LTα1β2 (65 or 100 ng/ml), with or without IFN-γ at a concentration of 80 IU/ml 

and incubated for 72 h. Resazurin dye solution was then added (5 µl per well) to the 

culture medium, and the samples were incubated for an additional two hours at 37°C. 
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Fluorescence was then measured at a wavelength of 590 nm, using an excitation 

wavelength of 531 nm. Background fluorescence, calculated for dye and complete 

medium alone (in the absence of cells) was then subtracted from the values for all the 

other samples; 100% viability corresponds to the fluorescence of non stimulated cells.  

 

Site-directed mutagenesis and cloning 

Site-directed mutagenesis was performed with QuikChange®II XL (Stratagene, 

La Jolla, CA, USA), using the pCR4.0-TRAF3 plasmid (kindly provided by Jonathan 

Keats, PhD). The TRAF3-R118W gene generated by mutagenesis was inserted into the 

pBABE-puro expression vector (Addgene, Cambridge, MA, USA) (pBABE-TRAF3-

R118W).  

Two TRAF3 C-terminal deletions without amino acids 289-568 were created in 

the pBABE-puro expression vector: 

- pBABE-TRAF3-∆(289-568) 

- pBABE-TRAF3-R118W-∆(289-568) 

 

Stable transfections 

Cells (SV40-fibroblasts, RAW and RAW-TRAF3-/- cells (kindly provided by 

Michael Karin, PhD)) were transfected by electroporation at 250 V and 960 mF, in 

phosphate-buffered saline (107 cells/ 0.5 ml). We used 5 µg of pWPI-TRAF3 (kindly 

provided by Jonathan Keats, PhD) or pBABE-TRAF3-R118W, linearized with FspI 

(New England Biolabs, Beverly, MA, USA), for transfection. Transfectants were 

selected by sorting cells expressing green fluorescent protein (GFP) for pWPI-TRAF3, 

or in 0.5 mg/ml puromycin 24 h after electroporation for pBABE-TRAF3-R118W. The 
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presence of TRAF3 was checked by Q-PCR and western blotting. The same conditions 

were used for the transfection of cells with mock vectors. 

 

Transient transfections 

RAW and RAW-TRAF3-/- cells were transfected with 2 µg of plasmid (all derived from 

the pBABE-puro expression vector) at various ratios, in the presence of the FuGENE 

®HD Transfection Reagent (Roche Applied Science, Indianapolis, IN, USA), according 

to the kit manufacturer’s instructions. 
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FIGURE LEGENDS 

Fig. 1. Heterozygous TRAF3 mutation in a child with HSE (P1)  

(A) Family pedigree, with allele segregation. The patient with HSE, in black, is 

heterozygous for the mutation. (B) Heterozygous c.352C>T mutation in patient 1 (P1). 

The sequence of the polymerase chain reaction products of genomic DNA from 

leukocytes of a control (C) and P1 is shown. (C) Schematic representation of TRAF3 

protein structure. Human TRAF3 has eleven exons, encoding a protein composed of a 

ring finger and five zinc-finger domains in the N-terminal region, followed by an 

isoleucine zipper and a TRAF domain in the C-terminal region. P1 carries the c.352C>T 

mutation, which results in an arginine (R) to tryptophan (W) substitution at amino-acid 

position 118 (R118W) in the first zinc-finger domain.  
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Fig. 2. TRAF3 expression levels and TLR3 response of a child with HSE (P1) 

(A) (Top) TRAF3 mRNA expression in SV40-fibroblasts from a control (C) and P1. β-

glucuronidase (GUS) was used for normalization. (Bottom) Representative immunoblot 

analysis of TRAF3 in SV40-fibroblasts from a control (C) and P1. TRAF3 (%) indicates 

densitometry results, normalized with respect to GADPH and expressed as a percentage 

of control TRAF3. The control is a representative example of the five controls analyzed. 

(B) (Top) TRAF3 mRNA levels normalized with respect to 18S rRNA and (Bottom) 

immunoblot analysis of TRAF3 in RAW cells and RAW Traf3-/- cells not transfected 

and stably transfected with human wild-type (WT) (pWPI-TRAF3) or R118W mutant 

TRAF3 (pBABE-TRAF3-R118W) constructs. As a negative control, we transfected 

cells with a mock WT vector (Mock-1, pWPI) or with a mock R118W mutant vector 

(Mock-2, pBABE). TRAF3 (%) indicates densitometry results normalized with respect 

to GADPH amounts and expressed as a percentage of TRAF3 amounts in RAW cells. 

(C) Production of IFN-β (measured in structural units, IU/ml), IFN-λ and IL-6 by 

SV40-fibroblasts after poly(I:C) stimulation (25 µg/ml), at various time points (left 

panels) and for various doses of poly(I:C), for 24 hours (right panels), as assessed by 

ELISA. C is the positive control and P1 is patient 1; UNC93B-/- is the UNC-93B-

deficient patient. (D) NF-κB ELISA of nuclear extracts from SV40-fibroblasts from a 

control (C), P1 and a NEMO-deficient patient (negative control), after stimulation with 

TNF-α and IL-1β for 30 minutes, or stimulation with poly(I:C) for 120 minutes. (E) 

IRF-3 monomers and dimers in total cell extracts of SV40-fibroblasts from a control (C) 

and P1, after stimulation with poly(I:C) for 1 and 2 hours, as assessed by immunoblot. 

TLR3- and UNC-93B-deficient patients were used as negative controls.  
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Fig. 3. Complementation of the patient’s cells and dominant negative effect 

(A) Immunoblot analysis of TRAF3 amounts in SV40-fibroblasts from a control (C) 

and P1, not transfected (P1) and stably transfected with human WT TRAF3 (P1 WT) or 

mock vector (P1-mock), with and without stimulation with poly(I:C) for 24 h. TRAF3 

(%) indicates densitometry results normalized with respect to GADPH amounts and 

expressed as a percentage of control TRAF3 amounts. (B) Production of IFN-β and IL-

6, as assessed by ELISA, in SV40-fibroblasts from a control (C), P1, an UNC-93B-

deficient patient (UNC93B-/-), P1 cells transfected with human WT TRAF3 (P1-WT) or 

mock vector (P1-mock). (C) Immunoblot analysis of TRAF3 amounts in RAW cells, 

non transfected RAW Traf3-/- cells, and RAW cells stably transfected with R118W 

mutant TRAF3 (R118W), WT TRAF3 (WT) or mock vector (Mock). (D) IFN-β 

production, as assessed by ELISA, in RAW cells, not transfected or transfected with 

R118W mutant TRAF3 or mock vector. All transfections generated stable cell lines. 

Glyceraldehyde phosphate dehydrogenase (GADPH) was used as an internal expression 

control for WB. The panels illustrate results from a single experiment, representative of 

three. Mean values + SD were calculated from three independent experiments. 
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Fig. 4. SV40-fibroblast studies: production of type I IFN and cytokines  
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(A) Production of IFN-β, IFN-λ and IL-6 after stimulation with VSV, as assessed by 

ELISA, in SV40-fibroblasts from a control (C), P1 and an UNC-93B-deficient patient 

(UNC93B-/-). (B) Viable cell percentages, estimated by resazurin oxidation/reduction, 

for SV40-fibroblasts from a healthy control (C), P1, TLR3+/-, UNC93B-/- and STAT1-/-

patients, 24 h after infection with VSV, at various multiplicities of infection. The cells 

were either not treated (left panel), or were subjected to prior treatment (right panel) 

with recombinant IFN-α for 18 hours. (C) VSV titers, estimated on Vero cells, in SV40-

fibroblasts from a healthy control (C), P1, STAT1 -/-, UNC93B -/- and TLR3 +/- patients, 

at various times after VSV infection without (left panel) or with (right panel) 18 hours 

of pretreatment with IFN-α. (D) The production of IFN-β and IL-6, assessed by ELISA, 

in SV40-fibroblasts from a control (C), P1 (UNC93B -/-), P1 SV40-fibroblasts 

transfected with human WT TRAF3 (P1-WT) or mock vector (P1-mock). (E) Viable 

cell percentages, estimated by resazurin oxidation and reduction, for SV40-fibroblasts 

from a healthy control (C), P1, P1 cells transfected with WT TRAF3 (P1-WT) and P1 

cells transfected with mock vector (P1-mock), 24 hours after infection with VSV, at 

various multiplicities of infection. The cells were either not treated (left panel), or 

subjected to prior treatment (right panel) with recombinant IFN-α for 18 hours. (F) 

VSV titers, estimated on Vero cells, in SV40-fibroblasts from a healthy control (C), P1, 

P1 cells transfected with WT TRAF3 (P1-WT) or mock vector (P1-mock), at various 

times after VSV infection, without (left panel) or with (right panel) 18 hours of 

pretreatment with IFN-α. Mean values + SD were calculated from three independent 

experiments. 
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Fig. 5. Production of type I IFN and cytokines in immune system cells 

(A) Production of IFN-α and IL-12p40 after stimulation with LPS and R-848, as 

assessed by ELISA, in MDDCs. C is the positive control (one of the eight controls 

tested) and P1 is patient 1. (B) Production of IFN-λ and IL-12p40 after stimulation with 

LPS and R-848, as assessed by ELISA, in MDMs. C is the positive control (one of the 

eight controls tested) and P1 is patient 1. (C) Production of IFN-β, IFN-λ and IL-6, as 

assessed by ELISA, in SV40-fibroblasts after stimulation with poly(I:C)+Lipofectamine 

or 7sk-as. C is the positive control and P1 is patient 1; UNC93B -/- is an UNC-93B-

deficient patient. (D) IFN-α production after stimulation with poly(I:C) and various 

viruses, as assessed by ELISA, in PBMCs. C is the positive control and P1 is patient 1. 

The panel illustrates results from a single experiment, representative of two. (E) 

Production of IFN-β and IFN-λ, as assessed by ELISA, in SV40-fibroblasts after 

stimulation with HSV-1. C is the positive control and P1 is patient 1; UNC93B -/- is an 

UNC-93B-deficient patient. Mean values + SD were calculated from three independent 

experiments. (F) Production of IFN-β and IFN-λ, as assessed by ELISA, in SV40-

fibroblasts, after stimulation with various viruses. C is the positive control and P1 is 

patient 1; UNC93B -/-, TLR3 +/- and MyD88 -/- are patients with the corresponding 

genotypes.  
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Fig. 6. TRAF3 in TNFR pathways  

The production of IL-6 (A) and IL-12p40 (B) was assessed by ELISA in MDDC, after 

24 h of incubation with L-cells transfected with human CD40L (CD40L) and non 

transfected L-cells (Neg control), for a healthy control (C) and P1. (C) Cell death assay, 

based on resazurin oxidation/reduction, for SV40-fibroblasts from a healthy control (C) 

and P1 treated with various doses of LTα1β2, with or without IFN-γ (80 IU/ml) for 72 

h. (D) IL-8 production, assessed by ELISA, in SV40-fibroblasts from control (C), P1, 

P1 cells transfected with human WT TRAF3 (P1-WT) or mock vector (P1-mock), after 

activation with LTα1β2 at the concentration indicated. (E) WB analysis of the p52 

subunit in EBV-B cells not stimulated (NS) or stimulated with BAFF at a concentration 

of 100 ng/ml (BAFF). C is the positive control, P1 is patient 1 and BAFFR -/- is EBV-B 

cells from a BAFFR-deficient patient. “Fold induction” indicates densitometry results 

normalized with respect to GADPH levels, expressed as a fold induction over non 

stimulated control cells. GADPH was used as an internal control for WB. The panel 

illustrates results from a single experiment, representative of three. (F) IL-10 

production, assessed by ELISA, in EBV-B cells, after BAFF activation (100 ng/ml). C 

is the positive control; P1 is patient 1 and BAFFR -/- is a BAFFR-deficient patient. Mean 

values + SD were calculated from three independent experiments. 
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Supplemental data 

SOM Text note 1 

Figs. S1 to S6 
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