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ABSTRACT 

The paper aims to define the natural distribution of Olea europaea L. var. sylvestris (Miller) 

Lehr. in the North Mediterranean basin during the Pleniglacial and the Early–Middle 

Holocene by means of the identification of its wood-charcoal and/or wood at prehistoric sites. 

For this purpose we have reviewed the previously available information and we have 

combined it with new wood-charcoal analyses data. We have taken under consideration the 

presence and frequency of Olea europaea L. in the available wood-charcoal sequences, the 

characteristics of the accompanying flora, the associated chrono-cultural contexts, the broader 

biogeographical context and the AMS dates provided by Olea wood-charcoal or endocarps. 

According to the available evidence, during the Middle and Late Pleniglacial (c. 59–11,5 ka 

cal. BP), Olea would have persisted in thermophilous refugia located in the southern areas of 

the North Mediterranean basin, the southern Levant and the north of Africa. The Last Glacial 

Maximum (c. 22–18 ka cal. BP) probably reduced the distribution area of Olea. During the 

Preboreal and the Boreal (c. 11 500–8800 cal. BP) the species started to expand in the 

thermomediterranean bioclimatic level. In the western Mediterranean, during the Atlantic 

period (c. 8800–5600 cal. BP), the species became very abundant or dominant in the 

thermophilous plant formations and expanded to favorable enclaves outside the limits of the 

thermomediterranean level. 
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1. Introduction 

Olea europaea L. var. sylvestris (Miller) Lehr. (the oleaster, the wild olive) is a 

prominent feature of present-day Mediterranean vegetation. The species is considered a 

sensitive thermal bioindicator for the definition of the thermomediterranean bioclimatic level 

and its natural distribution has been confined to the coastal areas of the Mediterranean basin 

below latitude 41
o
/39

o
 N as one moves from west to east (Fig. 1 and 5A) (Ozenda, 1975; 

Rivas-Martinez, 1987). 

The origins and the natural distribution of wild olive populations have been a focus of 

multidisciplinary research largely on aspects of its domestication and cultivation (Liphschitz 

et al., 1991; Terral, 1996; Zohary and Hopf, 2000; Contento et al., 2002; Besnard et al., 2002; 

Terral et al., 2004, 2005; Breton et al., 2006). The cultivation of the olive tree since late 

prehistory, in the Bronze Age, has turned it into an emblematic and genuine plant of the 

Mediterranean cultures that has both domestic and symbolic uses. Cultivation has caused the 

species to surpass its natural bioclimatic limits and to be grown at higher altitudes and 

latitudes, with the result that the distribution of the olive tree scarcely reflects that of the wild 

variety. Nevertheless, macroremains of Olea that have been recovered at archaeological sites 

from periods far predating its cultivation, i.e. the Palaeolithic to the Neolithic, may contribute 

to a reconstruction of the history and the distribution of the wild olive from the Pleniglacial to 

the Early and Middle Holocene. 

One such category of archaeobotanical macroremains is wood-charcoal. In the last 30 

years, wood-charcoal analyses that have been carried out at archaeological sites across the 

Mediterranean basin have provided abundant evidence on the plant taxa used by human 

groups for fuel (Vernet, 1992; Thiébault, 2002; Dufraisse, 2006; Fiorentino and Magri, 2008). 

Olea wood-charcoal macroremains constitute the most adequate category of archaeobotanical 

remains for assessing both the presence of the species in Pleniglacial vegetation and the 

genesis of the Holocene plant formations in which the species played a key role. Based on the 

idea that wood-charcoal remains at an archaeological site reflect the local flora that has been 

collected for firewood (Chabal, 1988), Olea wood-charcoals may be considered relatively safe 

indicators of the species’ local growth, particularly in comparison to endocarps, whose 

presence may be due to human transport of the fruit over wide areas, and also in comparison 

to pollen grains found in natural deposits, which may have been carried by natural agents over 

variable distances. In addition, through wood-charcoal analysis, the species becomes an 

integral part of the charcoal assemblages that reflect the palaeoecological conditions of the 

area under study, in particular the local flora and the characteristics of the local vegetation, 



which respond to the specific climatic parameters of temperature and precipitation (Chabal et 

al., 1999). Finally, because wood-charcoal Olea remains can be directly AMS dated, they can 

aid in documenting the first appearance and expansion of the species in a region and in 

detecting taphonomic problems. 

In this paper we present evidence of the presence of Olea that derives from wood-

charcoal analyses carried out at prehistoric sites of the North Mediterranean basin that date 

from the Palaeolithic to the Neolithic. The chronological framework in this paper extends 

from the Middle Pleniglacial to the end of the Atlantic period (for the chronological 

boundaries of each period, see Fig. 2). The earlier chronological limit is set by the occasional 

finds of early wood-charcoal while the later roughly coincides with the end of the Neolithic, 

when the cultivation of the olive started and new parameters affecting its distribution were 

introduced. Our aims are a) to evaluate the presence of the species and the location of refugia 

during the Middle and Late Pleniglacial on the evidence of the new data, b) to trace the 

formation of thermophilous vegetation and the presence of Olea since early postglacial times 

and c) to define the role of Olea in the plant formations of the Atlantic optimum and its 

relationship to human activity. 

The role of local oleaster populations in the domestication of the olive and in 

agricultural practices has been broadly discussed in numerous papers (e.g., Besnard et al., 

2002; Contento et al., 2002; Breton et al., 2006). Although the data presented here may help 

to define those populations, discussion concerning the origin(s) of olive domestication and its 

cultivation during the Bronze Age in the eastern Mediterranean, and during the Iron Age in 

the western Mediterranean, is beyond the scope of this paper given that such processes are 

related to complex cultural phenomena. 

 

2. Setting 

The olive in the Mediterranean basin, in the present day, constitutes a complex of wild 

type, cultivated varieties and secondary feral forms. Olea europaea L. var. sylvestris, the 

oleaster, tends to take a shrubby form, whereas Olea europaea L. var. europaea is treelike. 

Both are evergreen with discrete hermaphrodite flowers that cluster in the axils of leaves. The 

olive fruit is fleshy and globe-shaped, with a single stone, and is green when unripe and black 

upon maturity. The oleaster occupies the warmest areas of the Mediterranean, coinciding 

approximately with the thermomediterranean bioclimatic level or with the lower 

mesomediterranean (Fig. 1 and 5A) (Ozenda, 1975; Rivas-Martínez, 1987). In the western 

Mediterranean, it forms part of the Oleo-Ceratonion plant association (Braun-Blanquet et al., 



1951), which extends over low warm lands with a mean annual temperature of between 17 

and 19º C. A limiting factor for its development is the mean temperature of the coldest month, 

which should not be below 6º C (Rubio et al., 2002, fig. 1). In terms of altitude, the upper 

limit for Olea in the Iberian Peninsula is around 500 m. In the eastern Mediterranean, the 

oleaster forms part of the Ceratonion-Pistacion lentisci association (Zohary and Orshan, 

1959; Browics, 1983). In the plant associations of both the western and the eastern 

Mediterranean, thermophilous elements including Pistacia lentiscus L., Quercus sp. 

evergreen, Nerium oleander L., Myrtus communis L., Rhamnus lycioides L. and Rosmarinus 

officinalis L. accompany Olea. In areas that have been subjected to little human activity, these 

species may form well-structured woodlands with trees up to 15 m in height, as is the case at 

Serra d’Arrabida in Portugal (Costa et al., 2001). 

The olive has been grown for its oil-rich fruit since late prehistoric times. The cultivated 

variety, Olea europaea L. var. europaea, has become more adaptable to a wider range of 

climatic and environmental conditions and it extends beyond the previously described area 

(Fig. 1). It penetrates toward higher, colder and more continental lands, growing mainly on 

calcareous soils, terra rossa and sandy marls. 

 

3. Materials and methods 

Olea wood-charcoal macroremains that have been recovered at prehistoric sites across 

the North Mediterranean basin are used in the present study to trace the natural distribution of 

Olea during the Pleniglacial and the Holocene. On the basis of new wood-charcoal analyses 

and previously available data, we report where Olea has been identified (Table 1). Not all 

regions and chronological periods are represented by sufficient and comparable data, a 

circumstance that has to be taken into consideration in interpreting the evidence. The longer 

tradition of wood-charcoal studies in the western and central Mediterranean probably 

accounts for the more extensive documentation from sites in those regions than in the eastern 

Mediterranean. The relative scarcity of Olea data for the Pleniglacial in comparison with the 

Early–Middle Holocene is probably related to the continuous climatic oscillations during the 

former and the optimal environmental conditions that characterized the latter. 

Despite these limitations, the wide array of information now available affords a 

reconstruction of the history of Olea in the North Mediterranean basin. In pursuit of that goal, 

we assess the presence and frequency of Olea wood-charcoal remains in each site, the 

characteristics of the accompanying flora, the associated chrono-cultural sequence, the 



broader biogeographical context and the AMS dates provided by Olea wood-charcoal and 

endocarps. 

 The prehistoric sites of the North Mediterranean basin that preserve Olea wood-charcoal 

remains are shown in Table 1. Available Olea frequency data are cited and discussed in the 

text. In relation to frequencies, we believe that it is important to distinguish, in the present 

paper, between the simple presence of Olea at certain sites, represented by isolated fragments, 

and its abundance at others (e.g., where it constitutes 10% or more of the wood-charcoal); the 

latter allows us to document the expansion or dominance of the species. The frequency values 

of taxa identified in statistically meaningful wood-charcoal assemblages are measured as a 

percentage of fragment counts (for an example, see Fig. 4). On the hypothesis that during 

firewood collection all species were gathered in direct proportion to their occurrence in the 

vegetation that surrounded the habitat, the frequency of individual taxa in any given 

assemblage can be considered an accurate reflection of their proportion in the vegetation at 

the time of human presence in the area (Chabal, 1988; Chabal et al., 1999; Asouti and Austin, 

2005). 

Concerning the flora that accompanied Olea, we consider as thermophilous formations 

the association of species that usually accompanies the oleaster nowadays, which includes 

Pistacia lentiscus, Rosmarinus officinalis, Rhamnus, Phillyrea, Pinus halepensis, Pinus pinea, 

P. pinaster, and Quercus sp. evergreen. 

All reference to vegetation zonation follows the system of vegetation levels of Ozenda 

(1975) and Rivas-Martinez (1987). Their classification distinguishes a five-level schematic 

bioclimatic arrangement of species and vegetation types in the Mediterranean region, 

essentially corresponding to thermal criteria that vary in relation to altitude and latitude (for 

an example of the above, see Fig. 5A). We consider this classification method the most 

suitable for describing migration of the species in the Mediterranean area in terms of altitude 

and latitude. 

All dates mentioned in this paper are in calendar years BP. Dates published in other 

formats in the cited references have been calibrated to 2 sigma using the CalPal-2007 program 

(Weninger et al., 2009) and the CalPal-2007-Hulu calibration data set (Weninger and Jöris, 

2008), and are reported in Table 2-B. Figure 2 presents a chronological correlation of the 

marine record with the Pleniglacial and the Holocene chrono-zones as well as with the 

cultural periods mentioned in the text. 

Three maps show the distribution of the oleaster —at the present time (Fig. 1) and 

during the Middle–Late Pleniglacial (Fig. 3A) and the Early–Middle Holocene (Fig. 3B) — in 



order to delimit its biogeographical affinities now and in the past. The sites mentioned in the 

text are accompanied by a number which allows locating them in both Table 1 and Figure 3. 

The information presented on the maps and Table 1, the evaluation of the flora accompanying 

Olea in the wood-charcoal sequences and the AMS dates of Olea macroremains (Table 2-A) 

provide our bases for reassessing the location of thermophilous tree refugia and the 

postglacial distribution and expansion of oleaster populations in the sclerophyllous vegetation 

of the North Mediterranean basin. Evidence from the pollen record and from archaeobotanical 

seed macroremains is cited where relevant. 

 

4. Results 

 

4.1. The Pleniglacial 

The presence of the olive in the Mediterranean basin during the Pleniglacial is 

documented at a few Middle and Upper Palaeolithic sites, ascribed to the Marine Isotope 

Stage (MIS) 3 (58–23 ka BP) and MIS 2 (23–11,5 ka BP) (Table 1, Fig. 3A). 

During the MIS 3, the earliest Olea wood-charcoal finds in the eastern Mediterranean 

come from the Palaeolithic sites of Klissoura Cave 1 (2) and Boker (53). At the former, an 

AMS Olea wood-charcoal date (using ABOX pre-treatment)
1
 places the earliest presence of 

the species to 61 440–55 320 cal. BP (Table 2-B). At Boker (53) two charcoal samples 

(Liphschitz et al., 1991) originate from transitional Middle/Upper Palaeolithic levels that have 

been dated to c. 49 ka cal. BP (for the date see Mellars, 2006). Olea wood-charcoal was also 

recovered on the island of Thera (Santorini) (5) in the Aegean, in palaeosols dating to c. 47 

and c. 41 ka cal. BP (Friedrich, 1978). Of later date, but still within the MIS 3, Olea wood-

charcoal has again been identified at Klissoura Cave 1 (2), in levels dating to between c. 37 ka 

and 32 ka cal. BP (Ntinou, unpublished) and at Boker (53) in Upper Palaeolithic strata dating 

to between c. 32 ka and 27 ka cal. BP (Liphschitz et al., 1991). The taxon at Klissoura Cave 1 

(2) is associated to open woodland formations with Prunus t. P. amygdalus/P. webii and other 

thermophilous and mesophilous taxa such as evergreen and deciduous Quercus, Acer sp. and 

Ulmus sp. (Ntinou, unpublished). 

Further evidence for the presence of Olea during the MIS 3 comes from Palaeolithic 

sites in the Iberian Peninsula (Table 1, Fig. 3A). The earliest dated find is an olive nutshell 

                                                 
1
 ABOX (acid-base-oxidation) is a chemical pre-treatment method that involves wet oxidation and step-heating 

of samples to be dated by AMS. The ABOX method eliminates a substantially larger percentage of recent 

contaminants and it can be used to produce reliable 14C dates on charcoal up to at least 50 ka (Bird et al., 1999: 

127). 



recovered at the Higueral de Valleja Cave (4). The age of the specimen is placed at 42 630–41 

390 cal. BP (Jennings et al., 2009, table 4), indicating the local presence of the taxon during 

the Middle Pleniglacial. At Gorham‟s Cave (1), the presence of Olea in Middle Palaeolithic 

layers coincides with the dominant presence of Pinus pinea-pinaster whereas Pinus nigra-

sylvestris is very rare (Carrión et al., 2008). At Abric Romaní (41), the presence of the olive is 

rare in a wider floristic/vegetation context with cold characteristics in which Pinus nigra-

sylvestris dominates and thermophilous taxa are absent (Allué, 2002). At the Portuguese site 

of Buraca Grande (42), Olea reaches frequencies of 9% in the Upper Palaeolithic layer 9B 

dated to 29 730–27 970 cal. BP (Table 2-B) (Figueiral and Terral, 2002). Although the 

dominance of Pinus type sylvestris and Buxus sempervirens indicates mountain-type habitats 

with cool and dry climatic conditions, the presence of Olea, deciduous Quercus and Arbutus 

suggests that the limestone hills of the Portuguese Estremadura constituted a refuge for 

thermophilous and mesophilous taxa (Figueiral and Terral, 2002). However, Buraca Grande 

(42) presents certain problems: the AMS date of an Olea wood-charcoal fragment recovered 

from level 9B gave an age of 7970–7770 cal. BP (Table 2-A). The aberrant date and the fact 

that the species is very abundant (60–80%) in the overlying Holocene levels (Figueiral and 

Terral, 2002) suggest the intrusive character of Olea in these Pleniglacial contexts. 

During the MIS 2, Olea wood-charcoal remains are scarce (Table 1, Fig. 3A) despite the 

fact that many Palaeolithic sites of relevant dates have been excavated across the 

Mediterranean. Furthermore, at a number of sites, the AMS dates of Olea specimens provided 

irrelevant Holocene ages (Table 2-A). 

In the eastern Mediterranean, in the Levantine area, there are no reports for Olea wood-

charcoals in Late Pleniglacial contexts. However, the presence of Olea may be deduced from 

the finding of olive stones at the Upper Palaeolithic site of Ohalo II (23 500–22 500 cal. BP) 

(Kislev et al., 1992; for the date see Nadel et al., 2006) and at Late Natufian (12 500–12 000 

cal. BP) contexts at Nahal Oren (Noy et al., 1973). Further to the north, at Öküzini Cave (9), 

two possible (cf.) Olea wood-charcoal fragments were identified in Upper Palaeolithic levels 

dated to 20 170–19 170 and 15 370–14 570 cal. BP and characterized by ―steppe forest‖ 

vegetation with P. amygdalus, Pistacia and Juniperus, as well as mesophilous (deciduous 

oak, Acer), thermophilous (Phillyrea) and riverine (tamarisk, ash, willow/poplar) taxa 

(Emery-Barbier and Thiébault, 2005). Also at Öküzini Cave (9), Olea pollen is recorded in 

spectra probably corresponding to the levels where olive wood-charcoals have been found 

(Emery-Barbier and Thiébault, 2005). Finally, at Klissoura Cave 1 (2), Olea wood-charcoal is 

included in Upper Palaeolithic assemblages dated to 17 780–17 140 cal. BP (Table 2-B) 



(Koumouzelis et al., 2001) and characterized by open parkland vegetation with Prunus 

amygdalus. However, the presence of Olea in those contexts is questionable since the AMS 

date of an Olea wood-charcoal fragment provided a Holocene age (4660–4220 cal. BP; Table 

2-A). 

The Iberian Peninsula offers additional data concerning the presence of Olea during the 

MIS 2. At the Portuguese site of Buraca Grande (42) (Figueiral and Terral, 2002), Olea 

reaches frequencies of 22% in the Upper Palaeolithic layer 9A dated to 21 840–20 920 cal. 

BP (Figueiral and Terral, 2002). However, the aberrant AMS dates of Olea from earlier 

Upper Palaeolithic levels (see above) raise reasonable doubts as to the taxon‟s presence in any 

pre-Holocene context. At Cova de les Cendres (10), Olea wood-charcoal has been identified 

in an Upper Palaeolithic level, coexisting with mountain taxa (Pinus nigra-P. sylvestris) 

(Badal and Carrión, 2001). The AMS date of an Olea specimen (7620–7460 cal. BP, Table 2-

A) at Cova de les Cendres (10) raises questions similar to those in the case of Buraca Grande 

(42) and Klissoura Cave 1 (2). At La Ratlla del Bubo (8), Olea charcoal and that of other 

thermophilous taxa that have been identified at levels dated to 21 310–20 390 cal. BP (Table 

2-B), associated with plant formations dominated by Juniperus and including some Pinus 

nigra and Ephedra. The presence of thermophilous taxa has been interpreted by Badal (1995) 

to be a result of charcoal infiltration from the overlying Holocene contexts. 

To the south, at Gorham‟s Cave (1), the presence of Olea in Upper Palaeolithic levels 

(earlier than 12 500 cal. BP) is coherent with that of other thermophilous taxa, such as 

Pistacia lentiscus and Rhamnus alaternus-Phillyrea, identifying Gibraltar as a reservoir of 

temperate and thermophilous phytodiversity during the cold stages of the Late Glacial 

(Carrión et al., 2008, p. 2125). At Cueva de Nerja (6), a continuous Olea curve is documented 

from the end of the Late Glacial (13 100–12 580 cal. BP –Table 2-B) and onward, parallel to 

the expansion of thermophilous Mediterranean vegetation dominated by Leguminosae, Pinus 

pinea, Pinus halepensis, Pistacia lentiscus and Rosmarinus officinalis (Badal, 1998). 

On this evidence of the Olea wood-charcoal from Middle and Upper Palaeolithic sites 

in the northern Mediterranean basin, the species is seen to have survived the Pleniglacial 

climatic deterioration in refugia located in coastal areas or in hinterland locations with 

favorable microclimates. Corroborative evidence is provided by various palynological 

analyses in the eastern and western Mediterranean. Olea pollen has been present in the Ghab, 

northwestern Syria, for at least the last 50 000 years (Niklewski and van Zeist, 1970, cited in 

Bottema and Sarpaki, 2003) and occurs in the Hula, northern Israel, throughout the whole 

core of the last 17 000 years (Baruch and Bottema, 1999, cited in Bottema and Sarpaki, 2003). 



Pollen analyses at the Natufian sites of Salibiya XII and I and Fazael IV, located in the lower 

Jordan valley, document abundance of Olea in the local vegetation already during the Late 

Glacial (Darmon, 1987). The Megali Limni cores, Lesvos Island, Greece (Margari et al., 

2009), show that Olea was important in the Aegean during the early part of MIS 3 (c. 53–51 

ka cal. BP) and its expansions with evergreen Quercus suggest warm conditions especially 

during winter and increased seasonality of precipitation. Moreover, the presence of Olea and 

other thermophilous taxa is documented in the I-284 pollen core, Ioannina lake basin, Greece, 

during the interstadial prior to 24 380 cal. BP (Galanidou et al., 2000; Tzedakis et al., 2002). 

In the southern Iberian Peninsula, early Olea curves are present at Bajondillo, dated to 39 218 

± 1643 cal. BP (Cortés-Sánchez et al., 2008), at Siles Lake from c. 20 276 cal. BP onward 

(Carrión et al., 2003), at the Middle Palaeolithic levels of Carihuela Cave and Cueva Negra 

(Carrión et al., 2003), at the Middle and Upper Palaeolithic levels of Gorham‟s Cave (1) 

(Carrión et al., 2008) and at the Upper Palaeolithic levels of Algarrobo Cave (Carrión et al., 

1999). At Cueva Perneras, Olea pollen has been sporadically identified during the Pleniglacial 

and the Late Glacial in spectra where pine and steppic plants (Artemisia and Chenopodiaceae) 

dominate (Carrión et al., 1995). According to the pollen evidence, short episodes of Olea 

expansion, which would have left hardly any trace in the charcoal record, might have 

occurred during the warm intervals of the last glaciation. Wild olive populations would have 

been constrained in refugial lowland areas and it is probably for this reason that Olea is not 

detected in Late Pleniglacial pollen sequences from locations at higher altitudes, such as the 

Padul peat bog (Pons and Reille, 1988). 

 

4.2. The Holocene 

The location of the Pleniglacial thermophilous plant refugia would have played an 

important role in the distribution, expansion and abundance of the oleaster in different areas 

of the Mediterranean during the earlier part of the Holocene and until the Atlantic. It is after 

the latter period that human activities became the principal agent in the transformation of the 

landscape and vegetation. 

 

4.2.1. The eastern Mediterranean 

The earliest Olea finds in the eastern Mediterranean come from sites located in the 

thermomediterranean level (Table 1, Fig. 3B). At the Pleistocene/Holocene transition, the 

presence of Olea wood-charcoal is attested in the southern Levantine area at the Pre-pottery 

Neolithic (PPN) A levels (11 700–10 500 cal. BP) of Jericho (56) (Western, 1971) and Abu 



Salem (54), Negev (Liphschitz et al., 1991). During the PPNB and C (10 500–8250 cal. BP), 

the species was present at the sites of Horvat Galil (19) (Liphschitz, 1997) and Nahal Divshon 

(55) (Liphschitz et al., 1991) and also at the now submerged settlement of Atlit Yam (18) 

(Galili et al., 1993). The distribution of Olea (wood and charcoal) findings indicates that the 

species was present in a variety of habitats ranging from the coastal areas to the western 

Upper Galilee [Atlit Yam (18), Horvat Galil (19)] and the Negev [Nahal Divshon (55)], 

coinciding approximately with the area of the Pleniglacial presence of the species [Nahal 

Oren, Ohalo and Boker (53)]. The oleaster would have formed part of the Mediterranean 

vegetation in the Levantine coastal areas, and it would have probably also grown in regions 

that are presently characterized by irano-turanian and saharo-arabian formations. Its wood and 

fruit would have been collected for fuel and consumption by the PPN and PN communities as 

indicated by the early presence of olive stones at Tell Ras Shamra (Syria) at levels dating to 

between the early 10th and 9th mill. cal. BP (Colledge, 2001) and at various submerged sites 

off the northern Carmel Coast (Kfar Samir, Kfar Galim, Tel Hreiz, Megadim) dating to the 

8th mill. cal. BP (Galili et al., 1988, 1989). An exceptional find highlighting the human factor 

as an agent for the dispersal of Olea are two olive-stone fragments from the transitional 

PPNA/PPNB levels of Dja‟de and the PPNB levels of Halula (Table 2-B), both located at the 

Euphrates valley and outside the area of the natural oleaster distribution (Willcox, 1996). 

The presence of Olea in Cyprus is well documented as early as the mid-11th mill. cal. 

BP at Shillourokambos (12), where during the 10th mill. cal. BP (Table 2-B) the taxon 

became the dominant feature in the local vegetation (50%) together with Pistacia sp. 

(Thiébault, 2003). Olea was also present during the 9th and 8th mill. cal. BP at Khirokitia 

(16) (Table 2-B), participating in formations dominated by Pistacia, and later by Pinus brutia 

(Thiébault, 2003). The wood-charcoal results are supported by the finding of a few olive 

stones in PPN and Late Neolithic contexts at Khirokitia (16) (Hansen, 1991, 1994), Cape 

Andreas-Kastros (van Zeist, 1981, cited in Hansen, 1991) and Ayios Epiktitos-Vrysi (Kyllo, 

1982, cited in Hansen, 1991). This evidence from Cyprus indicates a continuous and locally 

abundant presence of Olea in the vegetation from the Preboreal and until the Atlantic period. 

In the Aegean area and Greece the history of the olive during the Holocene is quite 

obscure due to the scarcity of data. The low presence of the species in the wood-charcoal 

record is probably related to the fact that most of the available results come from northern 

sites (Ntinou, 2002) that lay outside the area of the natural oleaster distribution, which is 

confined to the south of latitude 39º N (Ozenda, 1975). However, even in the few southern or 

Aegean sites where the olive could be expected to have grown, it has rarely been identified in 



Early-Middle Holocene wood-charcoal sequences. The earliest Olea wood-charcoal finds in 

the Aegean area have been identified at the Cave of the Cyclops (52), Youra, Northern 

Sporades, Greece (Ntinou, in press). The Mesolithic/Neolithic sequence of the cave shows 

that Olea was conspicuously absent from the Early Holocene evergreen Mediterranean plant 

formations (c. early 11th and 10th mill. cal. BP –Table 2-B) and appeared, in low percentages, 

only after 8640–8480 cal. BP (Table 2-B), mainly coinciding with the Neolithic period (Fig. 

4C). 

In Crete, the absence or late appearance of the olive during the Holocene contrasts with 

the Cypriot and the Levantine data. At the site of Knossos, wood-charcoal analysis (Badal and 

Ntinou, unpublished) failed to detect the presence of the olive in any of the Neolithic layers 

despite the fact that typically thermomediterranean formations with evergreen oaks and other 

sclerophyllous taxa would have grown in the area. The only wood-charcoal evidence of Olea 

being present in Crete before the Bronze Age derives from Final Neolithic contexts (6th mill. 

cal. BP) at the Kephala-Petras (39) settlement in Eastern Crete (Ntinou, unpublished). The 

absence of the olive during the first half of the Holocene is also attested by other lines of 

evidence. The oldest olive archaeobotanical remains on Crete date to the Subboreal, 

particularly the Early Bronze Age (Bottema and Sarpaki, 2003), while the taxon is absent 

from the lower spectra of all the pollen sequences of the island (Bottema, 1980; Moody et al., 

1996; Bottema and Sarpaki, 2003). It appears for the first time in the Delphinos core (Bottema 

and Sarpaki, 2003) at c. 7230–6990 cal. BP and shows a continuous closed curve only after 

6530–6450 cal. BP (Table 2-B). According to Bottema and Sarpaki (2003), the olive was a 

late introduction to the island through overseas contacts, sometime after the Middle Neolithic. 

However, Moody et al. (1996) suggest that the olive was a natural element of the Pleistocene 

vegetation of Crete that survived in refugia somewhere on the island, from where it spread at 

a slow rate with the onset of the Holocene. 

To the west of mainland Greece, Olea wood-charcoal has been found in the Late 

Neolithic levels (early 8th mill. cal. BP) of Drakaina Cave (40), Kefalonia (Ntinou, 

unpublished). The presence of the species in mixed evergreen and deciduous formations in the 

gorge environment of the cave may be seen in agreement with the hypothesis put forward by 

Moody et al. (1996) for Crete (see above). It is thus possible that the species grew in small 

numbers in special microenvironments, such as gorges, and became a prominent feature of the 

vegetation only much later through cultivation. 

In mainland Greece, Olea remains are either absent or very sporadic until the end of the 

Atlantic period or later. Isolated olive stones are reported from Neolithic contexts in central 



and northern Greece (Renfrew, 1966; Margariti, 2004), but their interpretation is far from 

clear. In the pollen record from central and southern Greece, Olea is quite sporadic before the 

Subboreal, when the taxon starts to display continuous curves attributed to the cultivation of 

the tree (Wright, 1972; Turner and Greig, 1975; Bottema, 1990, 1994; Jahns, 1993). 

 

4.2.2. The central Mediterranean 

In the central Mediterranean, the presence of Olea wood-charcoal has been documented 

at sites that concentrate in Sicily, in the southernmost areas of the Italian Peninsula and in the 

Liguro-Provençal region, all of them confined to the thermomediterranean bioclimatic level 

(Table 1, Fig. 3B). 

The earliest Olea wood-charcoal finds in the central Mediterranean are reported from 

the Mesolithic levels at Grotta dell‟ Uzzo (11) in Sicily, dating between 12 060–11 220 and 

9560–9080 cal. BP (Table 2-B) (Costantini, 1989). The presence of Quercus cf. ilex and 

Phillyrea sp. in the same levels has led Costantini (1989) to the conclusion that the vegetation 

of the area was a xerophyll maquis. At the same site, the first appearance of wild olive stones 

dates back to the Mesolithic/Neolithic transition. 

The early presence of the oleaster in Sicily is confirmed by various pollen sequences. At 

Gorgo Basso, southwestern Sicily (Tinner et al., 2009), and at Lago di Pergusa, central Sicily 

(Sadori and Narcisi, 2001), Olea trees or shrubs expanded between 8500 and 8000 cal. BP. 

Despite an abrupt decline observed at Gorgo Basso at 8200 cal. BP, the species reexpanded at 

c. 7300–7000 cal. BP, being also documented in the pollen sequence from Biviere di Gela, 

southern Sicily (Noti et al., 2009). After 7000 cal. BP, Olea europaea and Quercus ilex would 

have formed rather dense evergreen forests on the coastal areas of the island (Noti et al., 

2009; Tinner et al., 2009). 

In the Italian Peninsula, Early Holocene Olea wood-charcoal finds are rather rare. To 

the south, at Piana di Curinga (38), Olea is documented as early as 7910–7630 cal. BP (Table 

2-B) with percentages of around 5% (Badal, 2002) (Fig. 4B). Evergreen Quercus dominates 

throughout the whole sequence, while other thermophilous taxa, such as Pistacia lentiscus 

and Daphne gnidium, as well as species of cooler environments, namely Ostrya carpinifolia, 

are also present (Badal, 2002). Wood-charcoal analyses conducted at Grotta Latronico 3, did 

not reveal the presence of Olea remains (Castelletti, 1978). We may postulate that the rapid 

transition between successive bioclimatic levels throughout the Italian Peninsula, along with 

the restricted thermomediterranean belt, might have been a limiting factor for the Early 

Holocene expansion of Olea. In line with such a suggestion is the pollen evidence from the 



Italian Peninsula that mainly points to an Olea expansion during the Atlantic period. On the 

western side of central Italy, the pollen sequences from Lagaccione (Magri, 1999) and Lago 

di Vico (Magri and Sadori, 1999) in Lazio and from Lago dell’Accesa (Drescher et al., 2007) 

in Tuscany document an early (c. 9000 cal. BP at Lagaccione) though rare and discontinuous 

presence of Olea in a deciduous oak-dominated landscape. It was after 6500 cal. BP that a 

mixed forest was established, including deciduous elements together with evergreen oaks and 

Olea (Magri, 1999); however, Olea would not have been an important component of the 

sclerophyllous woodland (Drescher et al., 2007). Unfortunately, the pollen sequences from 

eastern central Italy, i.e. from Lago di Battaglia (Caroli and Caldara, 2007) and Lago Alimini 

Piccoli (Di Rita and Magri, 2009) in Apulia, do not record the earliest part of the Holocene. 

However, they confirm that Olea was present and quite abundant from 5950 cal. BP at the 

former and from c. 5600–5200 cal. BP at the latter, forming part of a dense Mediterranean 

evergreen vegetation with Quercus ilex, Phillyrea and Pistacia (Caroli and Caldara, 2007; Di 

Rita and Magri, 2009). 

Further to the north, in the Liguro-Provençal region, Olea wood-charcoals are reported 

at Caucade (35), Giribaldi (36) (Thiébault, 2001) and Arene Candide (37) (Nisbet, 1997) in 

levels corresponding to the Atlantic period and later (Table 1). The taxon reaches high 

frequencies and is accompanied by other thermophilous species, such as the lentisc and the 

Aleppo pine. The available wood-charcoal data indicate the existence of a restricted warm 

coastal area corresponding to the present-day thermomediterranean niches found in the 

Liguro-Provençal region (Thiébault, 2001). 

In Corsica, wild olive stones dating back to the Middle Neolithic (Magdeleine and 

Ottaviani, 1984) were found at Scaffa Piana, but there are no reports of Olea wood-charcoal 

finds on the island. The pollen record of Corsica gives evidence for the sporadic Early 

Holocene presence of Olea both at high-altitude and lowland areas of the western coast while 

it is absent from the eastern plain (Reille, 1992). High-altitude sites show the rare presence of 

Olea, from the Boreal onward at Lac de Greno and only after the Atlantic period at Bastani 1 

and 2. During the Atlantic period on the western coast of Corsica (at Saleccia and Le Fango), 

among the trees that characterize the thermophilous zone today, Olea was only irregularly 

recorded while Pistacia and Phillyrea were more frequent (Reille, 1992). 

 

4.2.3. The western Mediterranean 

The Holocene marks the beginning of a massive Olea expansion that is attested in most 

of the wood-charcoal sequences from the warmest western Mediterranean areas. The large 



number of wood-charcoal analyses that have been carried out in this region has enabled a 

mapping of the wild olive distribution in this setting (Table 1, Fig. 3B). 

 

4.2.3.1. Olea in the thermomediterranean level 

The earliest Holocene Olea finds in the western Mediterranean are reported from 

prehistoric sites located in the thermomediterranean level. During the Preboreal, the presence 

of the taxon is still scarce and this may be partly related to the hiatuses reported in some 

sequences coinciding with this period. However, at Cueva de Nerja (6), a continuous Olea 

wood-charcoal curve is detected as early as the end of the Pleistocene and throughout the 

Holocene sequence (Badal, 1998). The presence of Olea wood-charcoal has also been 

documented during the Pleistocene/Holocene transition at Cova de Santa Maira (13) (Aura et 

al., 2006) and during the Early Holocene at Boquete de Zafarraya (3) (Terral et al., 2005) 

(Table 2-B). At the former, other thermophilous taxa, such as Pistacia, also appear quite 

sporadically. At the Neolithic levels of this cave, Olea becomes co-dominant with Pinus 

halepensis, thus attesting a change in vegetation composition during the Atlantic, when 

thermophilous species become dominant (Badal, 1999). 

In the southernmost areas of the Iberian Peninsula, Olea pollen is seen to trace a 

continuous curve from the beginning of the Late Glacial and onward (Pantaleón-Cano et al., 

2003; Cortés-Sánchez et al., 2008). In the lower Guadiana valley, the CM5 core shows a 

continuous pollen curve for Olea from c. 9200 cal. BP, but a sporadic presence of the species 

is already documented from c. 13 600 cal. BP, a sign of the early development of the 

―thermomediterranean forest fringe‖ (Fletcher et al., 2007). An “echo” of these lowland 

populations of Olea, given the ease with which its pollen disperses, would have reached the 

mesomediterranean level, as reported in the pollen record of Padul peat bog (Pons and Reille, 

1988). 

The Atlantic period saw the expansion of Olea in the western Mediterranean basin. 

There are numerous wood-charcoal sequences on both the Mediterranean and Atlantic façade 

of Iberia where Olea is continuously present and abundant. The largest collection of Olea 

findings for the Atlantic period is recorded to the south of parallel 40º N. Along the eastern 

coastline, at Cova de les Cendres (10), Cova Bolumini (25), Cova Ampla del Montgó (26), 

Cova de la Recambra (28) and Cova del Llop (27), Olea is present from the beginning of the 

Neolithic sequence (c. 7500 cal. BP) along with other thermophilous taxa (Vernet et al., 1983; 

Badal et al., 1994), a situation also seen in the rest of the thermomediterranean level. This is 

the case of Los Murciélagos de Albuñol (23) and Río Palmones (17), located in the mouth of 



the Guadalquivir River, Vale Pincel I (20) at Alentejo (Carrión, 2005), Abrigo da Pena 

d’Água (14) in the Tajo valley (Figueiral, 1998) and Castelejo (15) in the Portuguese Algarve. 

New wood-charcoal data from Castelejo (15) are exceptional in that Olea is the prevailing 

taxon from a very early stage (the Mesolithic level, 9070–8590 cal. BP –Table 2-A) and 

throughout the whole sequence at percentages of between 40-60% (Fig. 4A). On the Atlantic 

façade, Olea is usually accompanied by Pinus pinea, P. pinaster and Quercus suber (Carrión, 

2005). 

Notably, Olea wood-charcoals have been recovered at very few sites located near or 

above parallel 41º N. In Catalonia, the wild olive has been documented only at the sites of 

Can Sadurní (32) and Can Tintorer (33) (Ros, 1985), despite the numerous anthracological 

analyses carried out in this region. One of the most northerly pieces of evidence for the 

abundant presence of Olea was found at Cova de l‟Espérit (34) in the east Pyrenees. Here, the 

presence of wild olive is documented from the end of the Mesolithic period, reaching values 

of around 30% after 7620–7380 cal. BP (Table 2-B), when it is accompanied by other 

thermophilous indicators such as lentisc and Rhamnus-Phillyrea (Solari and Vernet, 1992). 

The presence of Olea in such northern areas is an indication that, as in the Liguro-Provençal 

region (see above), warm enclaves beyond the continuous thermomediterranean belt 

(coinciding with their present-day configuration) might have existed earlier than the Middle 

Holocene. This hypothesis is corroborated by pollen data, specifically the continuous curve of 

Olea in Catalonia dated from 9500 cal. BP onward (Pantaleón-Cano et al., 2003) and in the 

Gulf of Lions from 7346 cal. BP (Jalut et al., 2009). 

 

4.2.3.2. Olea in the mesomediterranean level 

Wood-charcoal sequences in the Iberian Peninsula document the presence of Olea also 

in the mesomediterranean level, particularly in its lower part. In this level, the distribution of 

the species, its dynamics and the accompanying taxa differ significantly from those reported 

for the thermomediterranean level. 

In the lower mesomediterranean level, the presence of Olea seems to be strongly linked 

to favorable orographic conditions, having been reported primarily in areas such as sunny 

slopes and valley bottoms that are warm and protected from continentality. Such is the case at 

Cova de l‟Or (47), located on a south-facing slope, where Olea is present with values of 

around 10 to 15% (Badal et al., 1994). In more interior enclaves, such as at La Falguera (48), 

its presence is more sporadic (Carrión, 2002; García and Aura, 2006). The presence of Olea in 

the Guadalquivir valley, where it has been documented at Cueva del Toro (44), Murciélagos 



de Zuheros (45) and Polideportivo de Martos (46), is probably to be explained as inland 

penetration of warm conditions and thermophilous vegetation along river courses (Rodríguez-

Ariza and Montes, 2005). 

Buraca Grande (42) and Montou (51) (Fig. 3B) document the northernmost presence of 

Olea in the mesomediterranean level. At the former, the species is present from 9290–8890 

cal. BP (Table 2-B) and throughout the Holocene sequence (Figueiral and Terral, 2002), while 

at Montou (51) it appears at a single level dating to 6180–5780 cal. BP (Table 2-B) (Heinz et 

al., 2004). 

The poor frequency of Olea in the mesomediterranean sites, generally well below 10% 

of the remains, is comparable to that of other thermophilous taxa. The dominant taxon is 

Quercus, both evergreen and deciduous. The higher the latitude, the scarcer thermophilous 

taxa become. The exception to this pattern is, once again, Buraca Grande (42), where Olea 

frequency is around 80% (Figueiral and Terral, 2002, p. 551). 

In the absence of evidence that Olea was present in the mesomediterranean bioclimatic 

level during the Preboreal and the Boreal, the appearance of the taxon in this level should be 

linked to its expansion during the Atlantic period. In continental pollen sequences, Olea is 

sporadic even during the expansion of Mediterranean-type species around 5000 cal. BP 

(Carrión et al., 2001). The wood-charcoal remains indicate that its presence was restricted to 

favorable enclaves in the lower mesomediterranean belt. 

 

5. Discussion 

The distribution of Olea in Pleniglacial and Holocene contexts in the North 

Mediterranean basin can be more fully documented on the evidence of the available Olea 

AMS dates, the accompanying flora, the continuity of the species‟ presence in wood-charcoal 

and in certain pollen sequences and the biogeographical situation of the sites with Olea 

remains. 

 

5.1. The Olea dates 

The available AMS Olea wood-charcoal dates (Table 2-A) provide a framework for 

discussing the distribution of the species during the Pleniglacial and the Holocene. 

In general terms, the Middle Palaeolithic, the Mesolithic and the Neolithic contexts 

closely correlate with the corresponding AMS dates (Table 2-A). The correlated dates appear 

to substantiate the presence of Olea in certain areas under the favorable environmental 

conditions of the MIS 3 interstadials and the Holocene. Some of the Olea AMS dates, 



however, particularly those from Upper Palaeolithic sequences, are not coherent with the 

associated chrono-cultural context and have provided Holocene ages. Infiltration or mixing of 

Pleistocene/Holocene contact levels seems to be responsible for the presence of Olea in 

Pleniglacial contexts at Buraca Grande (42), Cova de les Cendres (10) and Klissoura Cave 1 

(2). At other sites where Pleistocene/Holocene contact levels are present, and where Olea 

usually acquires low percentages in Pleistocene contexts and higher frequency in Holocene 

levels, similar explanations may be considered. Discrepancies between Olea dates and 

chrono-cultural contexts indicate the existence of taphonomic problems at some sites and may 

cast doubt on the identifications of some Olea refugia during the Pleniglacial. 

As a further means of evaluating the presence of Olea during the Pleniglacial, we have 

reconsidered the plant taxa that accompany this species in wood-charcoal sequences, 

specifically by assessing the presence and abundance of the thermophilous taxa that usually 

accompany Olea, and also the cold-environment ones, whose presence in assemblages 

together with the wild olive is divergent in ecological terms (Fig. 5A). The resulting pattern 

observed at some sites with Pleistocene and Holocene levels, where Olea (and occasionally 

other thermophilous taxa) and Pinus nigra-sylvestris are associated (Fig. 5B), is instructive. In 

most of the Pleniglacial records that document the presence of Olea, the taxon appears in low 

percentages and in a floristic context otherwise dominated by cold-environment or pioneer 

taxa (Pinus nigra-P. sylvestris, Juniperus). Another apparently inconsistent association is 

seen in the persistence of Pinus nigra-sylvestris at Holocene levels, when thermophilous taxa 

are already dominant. In these two cases, the presence of thermophilous and cold-

environment taxa could be explicable as an intrusion from Holocene and Pleistocene levels, 

respectively (Fig. 5B). Such intrusion is demonstrated in the case of Cova de les Cendres (10), 

where AMS dates of an Olea fragment from Upper Palaeolithic levels gave a Holocene date 

and a Pinus nigra-P. sylvestris fragment from the Neolithic levels provided a Pleistocene date 

(Badal, 2006) (Table 2-A). 

Considering these findings, we suggest that taphonomic processes may account for the 

coexistence of Olea (in low relative abundance) and cold-environment taxa in Late 

Pleniglacial assemblages, as for example at Abric Romaní (41), la Ratlla del Bubo (8) and 

Santa Maira (13). It is recommended that the role of Pinus nigra-sylvestris in the 

mesomediterranean vegetation during the Holocene be clarified, particularly in light of the 

reported persistence of that taxon in Portuguese sites (Figueiral and Carcaillet, 2005). For the 

accomplishment of that goal, and in awareness of the ecological complexity of the 



Mediterranean area, possibly attenuated during glacial times, new AMS dates of the above-

mentioned species and contexts are essential. 

 

5.2. The Pleniglacial refugia and the distribution of Olea during the Early and Middle 

Holocene 

The hypothesis for the existence of thermophilous refugia in the Pleniglacial has been 

based on AMS Olea dates and the presence of the species together with other thermophilous 

taxa in various chrono-cultural contexts (Figueiral and Terral, 2002; Carrión et al., 2008; 

Tzedakis et al., 2002). 

The presence of Olea during the Middle Pleniglacial is confirmed by two direct AMS 

dates, from Klissoura Cave 1 (2) and from Higueral de la Valleja Cave (4) (Table 2-A). 

These, together with Olea wood-charcoal from the southern Levant, the Aegean area and the 

southern Iberian Peninsula, may indicate the permanence of the species in these regions 

during the milder periods of the MIS 3. Supporting evidence comes from pollen data in the 

same regions (Niklewski and van Zeist, 1970; Pantaleón-Cano et al., 2003; Carrión et al., 

2007; Margari et al., 2009). 

During the Late Pleniglacial, the presence of Olea wood-charcoal remains is sporadic 

despite the numerous sequences corresponding to the Upper Palaeolithic. On the evidence of 

the available wood-charcoal results, we suggest that the Late Pleniglacial Olea refugia would 

have been located in those areas where: a) Olea is accompanied by other thermophilous taxa 

that are dominant [as at Gorham‟s Cave (1) and Cueva de Nerja (6)], b)  continuous Olea 

curves are documented from the Late Glacial and continuing throughout the Holocene [as at 

Cueva de Nerja (6)] and c) the taxon is present in the Early Holocene (Preboreal) [as in the 

southern Levant close to the Mediterranean, on Cyprus, and at Grotta dell‟ Uzzo (11)]. On 

this hypothesis, thermophilous refugia with Olea would have existed in the southern Levant, 

the southern parts of the Iberian Peninsula and most probably in Cyprus and Sicily. North 

Africa would have constituted another such area, given the presence of Olea at Rhafas Cave 

at the start of the Last Glaciation (Wengler and Vernet, 1992) and at Grotte des Pigeons in the 

Late Glacial (Santa, 1958–1959, cited in Wengler and Vernet, 1992). The existence of refugia 

in southern Spain and the Levant is supported by pollen data: the beginning of continuous 

curves of Olea date to 20 298–19 799 cal. BP for southern Spain (Pantaleón-Cano et al., 

2003) and to 17 000 cal. BP for the Levant (Baruch and Bottema, 1999, cited in Bottema and 

Sarpaki, 2003). 



The survival of Olea and other thermophilous taxa in Pleniglacial refugia in the 

Mediterranean basin would have favored their early expansion in the Holocene. The Preboreal 

and the Boreal constitute a pioneer phase that implies the establishment of a biogeographical 

configuration similar to that of the present day (Fig. 1), as is documented by Olea wood-

charcoal (Table 1) and pollen finds from the Near East, Cyprus, Sicily and south Iberia 

(Sadori and Narcisi, 2001; Pantaleón-Cano et al., 2003; Fletcher et al., 2007; Noti et al., 2009; 

Tinner et al., 2009). 

The Atlantic period marks the expansion of Olea as well as differentiation in its 

distribution and dynamics between the western and eastern areas of the basin. The 

biogeographical patterns are better understood in the western Mediterranean, where there is a 

large number of wood-charcoal sequences. In the Iberian Peninsula, Olea appears during the 

Atlantic at virtually all sites presently situated in the thermomediterranean and lower 

mesomediterranean bioclimatic levels. The presence of Olea in the lower mesomediterranean 

should be linked to the maximum representation and expansion of the species in the 

thermomediterranean, as well as to the favorable orography of particular areas such as south-

facing slopes [as at Cova de l‟Or (47)] and valley bottoms [as at La Falguera (48)]. Outside 

this setting, the presence of Olea is much scarcer, and is restricted to sporadic enclaves such 

as Cova de l‟Espérit (34) in the eastern Pyrenees and the Liguro-Provençal sites [Caucade 

(35), Giribaldi (36) and Arene Candide (37)] (Solari and Vernet, 1992; Nisbet, 1997; 

Thiébault, 2001). 

In attempting to assess the causes of the rapid expansion of Olea during the Atlantic 

period, we may consider two possibly complementary factors, namely climatic change and 

anthropogenic activities: 

a) The wild olive and other thermophilous taxa were favored by the climatic optimum of the 

Atlantic period that enabled their spread in the thermomediterranean level. Major expansion 

of Olea occurred during the 7000–5500 cal. BP interval, which according to Jalut et al. 

(2009), corresponds to a transitional period of the Holocene between the previous mostly 

humid one (11500-7000 cal. BP) and the following phase (5500 cal. BP to the present) at 

various sites in the Mediterranean (southeast Spain, the Peloponnese, Central Italy, Sicily, the 

Gulf of Lions). On the evidence of the available Olea charcoal data and of the pollen 

sequences from south Iberia and Sicily (Carrión et al., 2003; Pantaleón-Cano et al., 2003; 

Fletcher et al., 2007; Noti et al., 2009; Tinner et al., 2009), it is probable that humid 

conditions in the southern areas of the North Mediterranean basin favored the expansion and 

density of sclerophyllous vegetation with Olea. By the end of the mentioned humid period, 



aridification processes would have caused the expansion of sclerophyllous vegetation in the 

lower mesomediterranean belt to the detriment of mesophilous forests (Pons and Quézel, 

1998; Jalut et al., 2000). 

b) The human factor, specifically farming activities and the early manipulation of the wild 

olive, played a fundamental role in the expansion process of Olea. Evidence in support of 

such a hypothesis comes from Olea macroremains across the Mediterranean that show 

intensive use of the species in thermomediterranean contexts (Terral, 1997; Badal, 1999; 

Terral el al., 2004; Galili et al., 1989). The cultivation of the olive in later periods resulted in 

that it became more resistant to continental conditions and even to those prevailing at the 

Atlantic façade of the Iberian Peninsula. 

 

5.3. Olea in the sclerophyllous woodland 

During the Atlantic period, Olea formed part of the typical sclerophyllous woodland in 

the Mediterranean basin. If we take into account its frequency and the accompanying taxa in 

the available wood-charcoal sequences, three distinct behaviors of the Olea populations can 

be described: 

A) Olea dominates: Olea charcoal represents more than 50% of the remains and 

Pistacia lentiscus, Quercus sp. evergreen, Phillyrea and/or Rhamnus play a key role in the 

plant formations as it can be seen at Castelejo (15) (Fig. 4A). This situation is observed in 

coastal sites to the south of latitude 40º N during the Boreal and the Atlantic. On the eastern 

coast of the Iberian Peninsula, Pinus halepensis is an important element of the vegetation, 

while P. pinaster and P. pinea are abundant on the western coast. 

B) Olea accompanies species with a similar ecology: In some cases, Olea reaches 

significant percentages, but it is not dominant in the wood-charcoal assemblages. The 

dominant taxa are evergreen Quercus sp., Pinus halepensis, P. pinaster and P. pinea. In these 

formations, Pistacia lentiscus, Rhamnus and/or Phillyrea, Arbutus unedo, Leguminosae, etc. 

are usually present. This situation is represented at Cova de l‟Or (47) and the Liguro-

Provençal sites (see Fig. 4B). 

C) Olea shows low frequency: The species represents less than 10% of the remains. The 

charcoal assemblages are dominated by evergreen Quercus sp., Phillyrea and deciduous taxa. 

Pistacia lentiscus is less represented in such contexts and together with the scant presence of 

Olea, indicates the ecological upper limits for the development of thermophilous 

Mediterranean woodland. Such conditions can be observed at La Falguera (48) and the Cave 

of the Cyclops (52) (see Fig. 4C), for example, both of which are located in the 



mesomediterranean level, probably at the limits of what would have been the optimal oleaster 

distribution area. 

The available data reveal the importance of Olea as part of the genuine sclerophyllous 

Mediterranean vegetation, and its particular relevance in the western part of the 

Mediterranean basin. We propose that the thermomediterranean Olea-dominated formations 

(case A) that were present before the intensive anthropization of the landscape should be 

recognized as distinct phytogeographical entities and that they should be differentiated from 

open plant formations with Olea that result from aridification coupled with intense human 

activity (Yll et al., 1997). 

The data presented here imply that the early presence of Olea in several parts of the 

Mediterranean should be taken into account in assessments of the domestication processes of 

this species and the origin of the cultivated varieties. Genetic research on the relationship 

between the wild and the cultivated olive populations has indicated a multiple origin for the 

cultivated varieties from wild, local populations, a process in which human manipulation has 

seemingly been fundamental (Contento et al., 2002; Besnard et al., 2002). The Olea refugia 

and the Early-Middle Holocene distribution of the species proposed in this paper overlap with 

some of the origin areas of the wild populations from which cultivars emerged (Breton et al., 

2006, p. 1925). 

 

6. Conclusions 

In this paper we have presented the wood-charcoal analyses data concerning the 

presence of Olea in North Mediterranean archaeological sequences dating to the Pleniglacial 

and the Early Holocene. A combined evaluation of the relevant available information on past 

vegetation of the Mediterranean basin, AMS Olea dates and the biogeographical context has 

led us to the following conclusions: 

a. During the Pleniglacial, Olea might have persisted in thermophilous refugia 

located in the southern areas of the North Mediterranean basin and the southern 

Levant while the north of Africa would have also played a fundamental role in the 

survival of the species. 

b. The presence of the species is scarce during the MIS 2. The Last Glacial 

Maximum probably caused the distribution area of Olea to shrink. Moreover, in some 

of the Late Pleniglacial contexts in which the taxon has been identified, there is no 

agreement between the Olea AMS dates (Holocene) and the chrono-cultural contexts 



to which these correspond (Upper Palaeolithic); therefore, the presence of Olea should 

be interpreted with caution. 

c. In light of the total lack of secure Olea remains dated to the MIS 2, we suggest 

the need to perform more AMS dates directly on the remains of this species recovered 

from Pleniglacial contexts in order to delimit its presence in this period and to provide 

more solid bases for discussing the existence of refugia. 

d. Olea appears early in the Holocene, already during the Preboreal and the 

Boreal, in southern Iberia, Sicily, Cyprus and the southern Levant. This early 

distribution pattern may be explained by the existence of Late Pleniglacial 

thermophilous refugia in these areas that favored the early expansion of the species. 

e. During the Early Holocene, Olea is more abundant in coastal areas of the 

Iberian Peninsula than in the other peninsulas of the Mediterranean basin. Setting 

aside the biases resulting from unequal numbers of data sets in the different regions, it 

is probable that the smoother geomorphology and orography of the Iberian Peninsula 

and the greater extension of the thermomediterranean belt along its coasts, when 

compared to the Italian or the Greek Peninsula, favored the early expansion of 

sclerophyllous formations with Olea. 

f. The emergence and development of the sclerophyllous formations, probably 

dominated by Olea, took place in the Atlantic period and within the thermal, 

altitudinal and latitudinal limits of the thermomediterranean level, coinciding 

approximately with their present-day distribution (Fig. 1). The climatic optimum of 

this period would have enabled this species to spread to lower mesomediterranean 

areas with a strong determining orographic thermicity. 

g. The formations in which the oleaster was an important element of the natural 

vegetation would have constituted the basis for the implantation of its cultivation. 
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Figure captions 

Figure 1. Present-day distribution area of the wild and cultivated olive (Olea europaea 

L.) in the Mediterranean basin. 

Figure 2. Chronological correspondence of the marine, climatic and cultural 

terminology for the sequences discussed in the paper (after Lowe and Walker, 1997; Kuijt et 

al., 2002; Ravazzi, 2003; Walker et al., 2009.). 

Figure 3. Distribution of sites with Olea europaea wood-charcoal finds in the North 

Mediterranean for A) the Pleniglacial, and B) the Early–Middle Holocene. A key to the site 

identities is given in Table 1. 

Figure 4. Frequency of Olea europaea and accompanying taxa in wood-charcoal 

sequences of A) Castelejo, Vila do Bispo, Portugal, B) Piana di Curinga, Calabria, Italy and 

C) Cave of the Cyclops, Youra, Northern Sporades, Greece. 

Figure 5. Olea europaea and Pinus nigra as bioclimatic and taphonomic markers: A) 

Current ecological divergence between Olea europaea and Pinus nigra (after Costa et al. 

2001 and Ozenda 1975). B) Coexistence of Olea europaea and Pinus nigra-sylvestris as a 

result of intrusion/infiltration in archaeological Pleistocene/Holocene contact levels 

(simplified theoretical model). 

Table 1. Sites with Olea wood-charcoal finds in the North Mediterranean. New data 

appearing in this paper are designated ―unpublished‖. Country codes are those of the 

International Organization of Standardization (ISO). (* Contexts with irrelevant AMS dates 

on Olea macroremains; see Table 2). 

Table 2. Radiocarbon dates of A) Olea and Pinus nigra-sylvestris archaeological 

macroremains; the dates considered ―irrelevant‖ present a chronological divergence between 

the AMS age and the cultural context, and B) archaeological contexts containing Olea 

macroremains. 



MIS3 MIS2 Prebor. Boreal Atlantic

1 Gorham's Cave ES Thermomed. X X Middle, Upper Palaeolithic Carrión et al., 2008

2 Klissoura Cave 1 GR Thermomed. X X* Middle, Upper Palaeolithic Ntinou, unpublished

3 Boquete de Zafarraya ES Thermomed. X X X Middle Palaeol., Mesol. Terral et al., 2005

4 Higueral de Valleja ES Thermomed. X Middle, Upper Palaeolithic Jennings et al., 2009

5 Thera (Santorini) GR Thermomed. X Palaeosol Friedrich, 1978

6 Cueva de Nerja ES Thermomed. X X X X Epipalaeol., Neol. Badal, 1990, 1996

7 Cabeço de Porto Marinho PT Thermomed. X Upper Palaeolithic Figueiral, 1993, 1995

8 Ratlla del Bubo ES Thermomed. X Upper Palaeolithic Badal and Carrión, 2001

9 Öküzini TR Thermomed. X Upper Palaeolithic Emery-Barbier and Thiébault, 2005

10 Cova de les Cendres ES Thermomed. X* X Upper Palaeol., Neol. Badal et al., 1994

11 Grotta dell'Uzzo IT Thermomed. X X X Mesolithic, Neolithic Costantini, 1989

12 Shillourokambos CY Thermomed. X X Neolithic Thiébault, 2003

13 Cova de Santa Maira ES Thermomed. X* X X Upper Palaeolithic, Mesol. Badal, 1999; Carrión, 2005

14 Abrigo da Pena d'Água PT Thermomed. X X Epipalaeol., Neol. Figueiral, 1998

15 Castelejo PT Thermomed. X X Epipal., Mesol., Neol. Badal, unpublish.

16 Khirokitia CY Thermomed. X X Neolithic Thiébault, 2003

17 Río Palmones ES Thermomed. X X Epipalaeolithic Rodríguez-Ariza, 2004

18 Atlit Yam IL Thermomed. X pre-Pottery Neolithic Galili et al., 1993

19 Horvat Galil IL Thermomed. X pre-Pottery Neolithic B Liphschitz, 1997

20 Vale Pincel I PT Thermomed. X Epipalaeol., Neol. Carrión, 2005

21 Rocha das Gaivotas PT Thermomed. X Mesolithic Figueiral and Carvalho, 2006

22 Vale Boi PT Thermomed. X Early Neolithic Figueiral and Carvalho, 2006

23 Murciélagos de Albuñol ES Thermomed. X Neolithic Rodríguez-Ariza and Montes, 2005

24 El Retamar ES Thermomed. X Neolithic Arnanz and Uzquiano, 2002

25 Cova Bolumini ES Thermomed. X Neolithic Badal, 1990

26 Cova Ampla del Montgó ES Thermomed. X Neolithic Vernet et al., 1983

27 Cova del Llop ES Thermomed. X Neolithic Vernet et al., 1983

28 Cova de la Recambra ES Thermomed. X Neolithic Vernet et al., 1983

29 Tossal de les Basses ES Thermomed. X Neolithic Carrión, unpublish.

30 La Vital ES Thermomed. X Neolithic Carrión, unpublish.

31 Costamar ES Thermomed. X Neolithic Carrión, unpublish.

32 Can Sadurní ES Thermomed. X Neolithic Ros, 1992

33 Can Tintorer ES Thermomed. X Neolithic Ros, 1992

34 Cova de l'Espérit FR Thermomed. X Mesolithic, Neolithic Solari and Vernet, 1992

35 Caucade FR Thermomed. X Neolithic Thiébault, 2001

36 Giribaldi FR Thermomed. X Neolithic Thiébault, 2001

37 Arene Candide IT Thermomed. X Neolithic Nisbet, 1997

38 Piana di Curinga IT Thermomed. X Neolithic Badal, 1988

39 Kephala-Petras GR Thermomed. X Neolithic Ntinou, unpublished

40 Drakaina Cave GR Thermomed. X Late Neolithic Ntinou, unpublished

41 Abric Romaní ES Mesomed. X Middle Palaeolithic Allué, 2002

42 Buraca Grande PT Mesomed. X* X X X Upper Palaeol. to Neolithic Figueiral and Terral, 2002

43 Gruta do Caldeirão PT Mesomed. X Upper Palaeolithic Figueiral, unpublished

44 Cueva del Toro ES Mesomed. X Neolithic Rodríguez-Ariza, 2004

45 Murciélagos de Zuheros ES Mesomed. X Neolithic Rodríguez-Ariza, 1996

46 Polideportivo de Martos ES Mesomed. X Neolithic Rodríguez-Ariza, 1996

47 Cova de l'Or ES Mesomed. X Neolithic Badal et al., 1994

48 La Falguera ES Mesomed. X Mesolithic, Neolithic Carrión, 2002; García and Aura, 2006

49 Barranc de l'Encantada ES Mesomed. X Epipalaeolithic Carrión, unpublish.

50 Cova de les Tàbegues ES Mesomed. X Late Neolithic Badal and Carrión, unpublished

51 Montou FR Mesomed. X Middle Neolithic Heinz et al., 2004.

52 Cave of the Cyclops GR Mesomed. X Neolithic Ntinou, in press

53 Boker IL Saharo-arabic X X Middle, Upper Palaeolithic Liphschitz et al. 1991

54 Abu Salem IL Saharo-arabic X pre-Pottery Neolithic A Liphschitz et al. 1991

55 Nahal Divshon IL Saharo-arabic X pre-Pottery Neolithic B Liphschitz et al. 1991

56 Jericho PS Irano-turanian X pre-Pottery Neolithic A Western 1971; Willcox, 1991, 1992

Site Cultural context References

Climatic period

Country Biocl. Level

Table 1



Species Cultural context Lab. ref. References AMS B.P. Cal. yr. BP

Klissoura Cave 1 Olea europaea Middle Palaeolithic AA 75630 Kuhn et al., n. d. 56 140 ± 1450 61 440 - 55 320

Higueral de Valleja Olea europaea Middle Palaeolithic ORAU-12272 Jennings et al., 2009 37 220 ± 290 42 630 - 41 390

Castelejo Olea europaea Mesolithic ICEN - 211 Soares, pers. comm. 7970 ± 60 9070 - 8590

La Falguera Olea europaea Mesolithic AA-2295 García and Aura, 2006 7410 ± 70 8400 - 8080

Cova de les Cendres Olea europaea Neolithic GifA-101354 Bernabeu and Fumanal, in press 5860 ± 80 4933 - 4536

Cova de les Cendres Olea europaea Neolithic GifA-101356 Bernabeu and Fumanal, in press 5930 ± 90 5035 - 4556

Vale Pincel I Olea europaea Early Neolithic Beta-165793 Badal and Carrión, unpubl. 6350 ± 50 7440 - 7160

Cova de les Tàbegues Olea europaea Late Neolithic Beta-187433 Fernández, 2006 4530 ± 40 5390 - 4990

Klissoura Cave 1 Olea europaea Upper Palaeolithic AA 75622 Stiner and Pigati, pers. comm. 3980 ± 70 4660 - 4220

Buraca Grande Olea europaea Upper Palaeolithic T18816A Figueiral, pers. comm. 7022 ± 41 7970 - 7770

Cova de Santa Maira Olea europaea Mesolithic Beta-158013 Aura et al., 2006 420 ± 40 590 - 310

Cova de les Cendres Olea europaea Upper Palaeolithic Beta-118025 Villaverde, 2001 6660 ± 50 7620 - 7460

Cova de les Cendres Pinus nigra-sylvestris Early Neolithic Beta-116625 Badal, 2006 20 430 ± 170 24 860 - 23 900

Cal. yr. BP date

49 530 - 45 610

42 300 - 41 220

20 170 - 19 170

15 370 - 14 570

17 780 - 17 140

11 390 - 10 470

10 380 - 9780

9860 - 9460

9590 - 8110

10760 - 10240 

10290 - 9530 

9840 - 9480 

9140 - 8460

8090 - 7570

7960 - 7600

7230 - 6990

6530 - 6450

10 580 - 10 260

8640 - 8480

5640 - 5440

12 060 - 11 220

9560 - 9080

7910 - 7630

29 730-27 970

21 840 - 20 920

9290 - 8890

11 260 - 11 140

10 720 - 10 480

21 310 - 20 390

13 100 - 12 580

10 240 - 9560

9470 - 9030

7620 - 7380

6180 - 5780

Thiébault, 20036930 ± 90 BPKhirokitia

A) AMS dates on Olea and Pinus nigra-sylvestris  macroremains
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Öküzini

Emery-Barbier and Thiébault, 2005

Emery-Barbier and Thiébault, 2005

Klissoura Cave 1

Shillourokambos

Site

Thera

Halula

Thera

Site

B) Dates of contexts with Olea  macroremains

Öküzini

Willcox, 1996

Delphinos

Cave of the Cyclops

Khirokitia

Khirokitia

Halula

Dja'de

Dja'de

Delphinos

Shillourokambos

Shillourokambos

Piana di Curinga

Buraca Grande

Buraca Grande

Cueva de Nerja

Cave of the Cyclops

Cave of the Cyclops

Grotta dell'Uzzo

Grotta dell'Uzzo

Montou

Buraca Grande

Santa Maira

Santa Maira

Ratlla del Bubo

Cova de l'Espérit

Boquete de Zafarraya

Boquete de Zafarraya

7930 ± 130 BP Thiébault, 2003

Koumouzelis et al., 2001

9310 ± 80 BP

8824 ± 100 BP

8665 ± 65 BP

Guilaine et al., 1996

Guilaine et al., 1996

Guilaine et al., 1996

7000 ± 150 BP Thiébault, 2003

Friedrich, 1978

Friedrich, 1978

Willcox, 1996

Willcox, 1996

Willcox, 1996

8655 ± 75 BP

7930 ± 310 BP

14 280 ± 90 BP

Costantini, 1989

Costantini, 1989

Badal, 2002

Badal, 1995

Bottema and Sarpaki, 2003

Bottema and Sarpaki, 2003

Sampson, 2008

Sampson, 2008

Sampson, 2008

Aura et al., 2002

Solari and Vernet, 1992

Figueiral and Terral, 2002

Figueiral and Terral, 2002

Figueiral and Terral, 2002

Aura et al., 2006

Terral et al., 2005

Terral et al., 2005

Heinz et al., 2004

ReferencesPublished C14 date

44 500 BP

36 700 BP

16 400 ± 160 BP

12 540 ± 110 BP

9610 ± 170 BP

8990 ± 100 BP

Aura et al., 2006

10 070 ± 90 BP

8330 ± 80 BP

6930 ± 60 BP

23 920 ± 300 BP

6200 BP

5700 BP

9252 ± 31 BP

4814 ± 25 BP

7779 ± 32 BP

17 850 ± 200 BP

8120 ± 70 BP

9760 ± 40 BP

5190 ± 70 BP

9370 ± 40 BP

17 360 ± 180 BP

10 860 ± 160 BP

6590±70 BP

8805 ± 60 BP

8255 ± 55 BP

Table 2
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