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Gracias a él surgió todo esto. En segundo lugar, me gustarı́a agradecer el
apoyo del Dr. Vı́ctor J. Sánchez-Morcillo, del Dr. Hermelando Estellés y
del Dr. Francisco Belmar. Han demostrado ser unos gradı́simos profesio-
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Los sonidos domesticados decı́an
mucho más de lo que decı́an

(originaban cı́rculos concéntricos
-como la piedra arrojada al agua-

que se multiplicaban, se expandı́an,
se atenuaban hasta regresar a la lisura y el sosiego):

y todos percibı́an su esencia misteriosa
que no sabı́an descifrar.

José Hierro.
Cuaderno de Nueva York

The sounds, once familiar, meant
much more than they had meant

(they started concentric circles
-like a stone thrown into the water-

that multiplied, expanded,
grew weak until returning to smoothness and serenity):

and everyone sensed their mysterious essence
that they couldn’t decipher.

José Hierro.
New York Notebook





RESUM DE LA TESI DOCTORAL

Control de la propagació d’ones acústiques
en cristalls de so: tècniques analı́tiques,

numèriques i d’optimització
per

D. Vicent Romero Garcı́a
Departament de Fı́sica Aplicada

Universitat Politècnica de València, Novembre 2010

El control de les propietats acústiques dels cristalls de so (CS) necessita de
l’estudi de la distribució dels dispersors en la pròpia estructura i de les propie-
tats acústiques intrı́nseques dels dispersors. En aquest treball es presenta un
estudi exhaustiu de les propietats de CS amb diferents distribucions, aixı́ com
l’estudi de la millora de les propietats acústiques de CS constituı̈ts per diver-
sos dispersors amb propietats absorbents i/o ressonant. Aquestos dos procedi-
ments, tant independentment com conjuntament, introduéixen possibilitats re-
als per al control de la propagació d’ones acústiques a través dels CS.

Des del punt de vista teòric, les propietats de la propagació d’ones acústiques
a través de estructures periòdiques i quasiperiòdiques s’han analitzat amb els
mètodes de la dispersió múltiple, de l’expansió d’ones planes i dels elements
finits. En aquest treball es presenta una novedosa extensió del mètode de
l’expansió d’ones planes amb la qual es poden obtenir les relacions complexes
de dispersió per als CS. Aquesta tècnica complementa la informació obtin-
guda amb els mètodes clàssics i permet conéixer el comportament evanescent
dels modes a l’interior de les bandes de propagació prohibida del CS aixı́ com
dels modes localitzats al voltant de possibles defectes puntuals en CS.

La necessitat de mesures acurades de les propietats acústiques dels CS ha
provocat el desenvolupament d’un novedós sistema tridimensional que sin-
cronitza el moviment del receptor i l’adquisició de senyals temporals. Els
resultats experimentals obtinguts mostren una gran similitud amb els resultats



teòrics.

L’actuació conjunta de distribucions de dispersors optimitzades i de les propie-
tats intrı́nseques d’aquestos, s’aplica per a la generació d’un dispositiu que
presenta un rang ample de freqüències atenuades. Aquestos sistemes es pre-
senten com una alternativa a barreres acústiques tradicionals on es pot contro-
lar el pas d’ones al seu través.

Els resultats mostrats ajuden a entendre correctament el funcionament del CS
per a la localització de so i per al guiat i per al filtratge d’ones acústiques.
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Control de la propagación de ondas
acústicas en cristales de sonido: técnicas
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El control de las propiedades acústicas de los cristales de sonido (CS) nece-
sita del estudio de la distribución de dispersores en la propia estructura y de
las propiedades acústicas intrı́nsecas de dichos dispersores. En este trabajo
se presenta un estudio exhaustivo de diferentes distribuciones, ası́ como el
estudio de la mejora de las propiedades acústicas de CS constituidos por dis-
persores con propiedades absorbentes y/o resonantes. Estos dos procedimien-
tos, tanto independientemente como conjuntamente, introducen posibilidades
reales para el control de la propagación de ondas acústicas a través de los CS.

Desde el punto de vista teórico, la propagación de ondas a través de estruc-
turas periódicas y quasiperiódicas se ha analizado mediante los métodos de
la dispersión múltiple, de la expansión en ondas planas y de los elementos
finitos. En este trabajo se presenta una novedosa extensión del método de
la expansión en ondas planas que permite obtener las relaciones complejas
de dispersión para los CS. Esta técnica complementa la información obtenida
por los métodos clásicos y permite conocer el comportamiento evanescente
de los modos en el interior de las bandas de propagación prohibida del CS,
ası́ como de los modos localizados alrededor de posibles defectos puntuales
en CS.

La necesidad de medidas precisas de las propiedades acústicas de los CS ha
provocado el desarrollo de un novedoso sistema tridimensional que sincroniza
el movimiento del receptor y la adquisición de señales temporales. Los resul-



tados experimentales obtenidos en este trabajo muestran una gran similitud
con los resultados teóricos.

La actuación conjunta de distribuciones de dispersores optimizadas y de las
propiedades intrı́nsecas de éstos, se aplica para la generación de dispositivos
que presentan un rango amplio de frecuencias atenuadas. Estos sistemas se
presentan como una alternativa a las barreras acústicas tradicionales donde se
puede controlar el paso de ondas a su través.

Los resultados ayudan a entender correctamente el funcionamiento de los CS
para la localización de sonido, y para el guiado y filtrado de ondas acústicas.
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On the control of propagating acoustic
waves in sonic crystals: analytical,

numerical and optimization techniques
by
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Applied Physics Department
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The control of the acoustical properties of the sonic crystals (SC) needs the
study of both the distribution of the scatterers in the structure and the intrin-
sic acoustical properties of the scatterers. In this work an exhaustive analysis
of the distribution of the scatterers as well as the improvement of the acous-
tical properties of the SC made of scatterers with absorbent and/or resonant
properties is presented. Both procedures, working together or independently,
provide real possibilities to control the propagation of acoustic waves through
SC.

From the theoretical point of view, the wave propagation through periodic
and quasiperiodic structures has been analysed by means of the multiple scat-
tering theory, the plane wave expansion and the finite elements method. A
novel extension of the plane wave expansion allowing the complex relation
dispersion for SC is presented in this work. This technique complements the
provided information using the classical methods and it allows us to analyse
the evanescent behaviour of the modes inside of the band gaps as well as the
evanescent behaviour of localized modes around the point defects in SC.

The necessity of accurate measurements of the acoustical properties of the
SC has motivated the development of a novel three-dimensional acquisition
system that synchronises the motion of the receiver and acquisition of the
temporal signals. A good agreement between the theoretical and experimental
data is shown in this work.



The joint work between the optimized structures of scatterers and the intrin-
sic properties of the scatterers themselves is applied to generate devices that
present wide ranges of attenuated frequencies. These systems are presented
as an alternative to the classic acoustic barrier where the propagation of waves
through SC can be controlled.

The results help to correctly understand the behaviour of SC for the localiza-
tion of sound and for the design of both wave guides and acoustic filters.
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1
Sculptures as acoustic filters

In the late 80’s Yablonovitch [Yablonovitch87] and John [John87] simultane-
ously triggered the primary emphasis in periodic systems due to the interest-
ing propagation properties of the electromagnetic waves inside of them. Their
proposal consisted of using a periodic distribution of dielectric scatterers em-
bedded in a host medium with different dielectric properties. These periodic
systems exhibit ranges of frequencies related to the periodicity of the structure
where there is no wave propagation. By analogy with the electronic band gap
in semiconductor crystals, these ranges of frequency were called band gaps
(BG) and these periodic structures were called photonic crystals. For a brief
review of photonic band structures see reference [Yablonovitch88].

Yablonovitch [Yablonovitch87] showed that the spontaneous emissions by
atoms is not necessarily a fixed and immutable property of the coupling be-
tween the matter and space, and it could be controlled by modifying the prop-
erties of the radiation field using photonic crystals. Several works have de-
veloped new methodologies to observe the inhibition of this radiative decay
[Martorell90, Yablonovitch93, Boroditsky99, Englund05]. On the other hand,
John pointed out [John87] that carefully prepared three-dimensional dielectric
superlattices with moderate disorder could provide the key to the predictable
and systematic observation of strong localization of photons in non dissipa-
tive materials with an everywhere real positive dielectric constant. Subse-
quent works have been developed to analyse localization in photonic crystals
[Genack91, Ling92, John88, John91, Yablonovitch91, Meade91, Wiersma97,

1



CHAPTER 1. SCULPTURES AS ACOUSTIC FILTERS

Schwartz07].

From a fundamental point of view, both effects appear due to the existence
of the BG and this fact was exploited in the subsequent years to explore
the prominent phenomena emerging from the physics of photonic crystals.
The ability to manipulate the propagation properties of electromagnetic ra-
diation have produced a number of practical applications such as modifying
the spontaneous emission rate of emitters [Englund05, Boroditsky99], slow-
ing down the group velocity of light [Altug05a, Vlasov05], designing highly
efficient nanoscale lasers [Altug05b], enhancing surface mounted microwave
antennas [Brown93], sharp bend radius waveguides [Meade94], efficient ra-
diation sources [Altug06], sensors [Elkady06], and optical computer chips
[Chutinan03].

Figure 1.1: Kinematic sculpture by Eusebio Sempere placed at the Juan March Foun-
dation in Madrid.

A few years after, at the beginning of the 90’s, an increasing interest in the
comparable process of acoustic wave propagation in periodic arrays appeared.
Motivated by the results of the photonic crystals, several theoretical works
started the analysis of periodic arrays made of isotropic solids embedded in an
elastic background which was also isotropic [Ruffa92, Sigalas92, Sigalas93,
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Kushwaha93, Kushwaha94, Sigalas94]. By analogy with the photonic case,
these periodic arrangements present BG, defined here as: frequency ranges
where vibrations, sound and phonons were forbidden. Analogously they were
called phononic crystals (PC).

Depending on the distribution of the periodic solid elastic composites one
can obtain one-dimensional (1D), two-dimensional (2D) or three-dimensional
(3D) PC. In each of these PC one can observe different combinations of
transversal, longitudinal or mixed waves. However a drastic simplification
arises in the case of fluids, which permits only longitudinal waves. It is said
that if one of the elastic materials in the PC is a fluid medium, then PC are
called sonic crystals (SC). Several studies discuss the similarities and differ-
ences between these periodic systems [Sigalas94, Economou93].

The measurements of the sound attenuation by a sculpture, by Eusebio Sem-
pere, exhibited at the Juan March Foundation in Madrid (see Figure 1.1),
constituted the first experimental evidence of the presence of BG in a SC
[Martinez95]. The work of Martı́nez-Sala et al. [Martinez95] experimentally
showed that the repetition of cylinder rods with a strong modulation (2D),
inhibited the sound transmission for certain frequency ranges related to this
modulation, just as photonic crystals do with light. Immediate theoretical pre-
dictions [Kushwaha97, Sanchez98] and experimental results [Robertson98]
were motivated by these experimental results in order to explain the propaga-
tion properties of this sculpture that could filter noise.

Since these acoustical properties were measured in that minimalist sculpture,
a great research interest, both experimental and theoretical, have been em-
phasized on the existence of complete elastic/acoustic BG, opening possibil-
ities to interesting applications such as elastic/acoustic filters, noise control,
improvements in the design of transducers, as well as for the study of pure
physics phenomena such as localization of waves. In the next Section, a re-
view of the art state of the control of sound by periodic structures is presented,
showing the most relevant bibliography used in the this work.
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CHAPTER 1. SCULPTURES AS ACOUSTIC FILTERS

1.1 Control of sound propagation in sonic crys-
tals

The study of acoustic wave propagation in periodic binary composites shows
that BG can exist under specific conditions concerned mainly in the density
and velocity contrast of the components of the composite, the volume frac-
tion of one of the two components, the lattice structure and the topology
[Kushwaha94, Sanchez98]. The presence of BG in SC is due to the well-
known Bragg’s scattering which represents a complex interplay between the
wave velocity and density ratios of the composite materials, and their spatial
arrangement. The emphasis in the acoustical properties of SC for frequencies
high enough to distinguish the inner structure of the array marks the initial
steps in the research on SC. A great research interest in the existence of spec-
tral gaps in PC made of several materials, shapes and distribution of scatterers
were witnessed in the 90’s [Kushwaha96, Kushwaha97, Sigalas96, Vasseur97,
Wang90].

Robertson et al. showed that photonic crystals present allowed states de-
pending on the symmetry with respect to the incidence wave. In the acoustic
counterpart, Sánchez-Pérez et al. [Sanchez98] showed that the excited modes
inside the SC not only depends on the scatterers and the volume occupied
by them, but also on the relationship between the incident wave and the field
pattern of the mode to be excited. If the incident wave presents the proper
symmetry to excite the mode, a propagating mode is excited. Otherwise the
mode cannot propagate and the propagating band is called deaf band.

In the electromagnetic counterpart, it was observed that by locally breaking
the periodicity of photonic crystals [Bayindir00] or creating impurities in a
semiconductor [Yablonovitch91] it is possible to highly localize and guide
modes within the BG. Motivated by these results an intense analysis of the
localized modes in PC began with the work of Sigalas in 1997 [Sigalas97,
Sigalas98]. These properties make the system a potential candidate for the
design of elastic or acoustic waveguides or filters. Nowadays the analysis of
the SC with point defect is still a hot topic in the relevant literature of this
field [Tanaka07, Vasseur08, Zhao09, Wu09a, Wu09b, Romero10a].
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1.1. CONTROL OF SOUND PROPAGATION IN SONIC CRYSTALS

In 1961 Suzuki discovered that some alkali halide can be doped with diva-
lent cations to produce a new ionic compound with periodically distributed
vacancies and lattice parameter roughly twice the original one [Suzuki61].
The compound was called the Suzuki phase and it retained properties of the
initial compound and new properties arose as a consequence of the transla-
tional symmetry imposed by the vacancies. Years later, Anderson and Giapis
[Anderson98] observed larger BG in PC by adding elements with different
sizes inside the unit cell of square and honeycomb lattices and, as such, in-
troducing a periodical distribution of vacancies in the PC. Motivated by these
works, the same symmetry reductions were used to increase the BG in SC
[Caballero99, Caballero01]: SC consisting of a rectangular lattice of vacan-
cies embedded in a triangular array of sound scatterers in air present BG for
sound transmission at frequencies related to the symmetry imposed by the va-
cancies and, at the same time, attenuation bands of the underlying triangular
lattice still remain in the attenuation spectra at higher frequencies.

In 2002 the interest in the study of SC at wavelengths below the first BG
started, i.e., in the frequencies where the wavelength is very large in compari-
son with the lattice constant. In this case the wave sees the media as if it were
homogeneous [Cervera02]. The fact that a periodic distribution of cylindrical
solid scatterers in air constitutes a system in which the sound travels at sub-
sonic velocity was used by Cervera et al. to construct two refractive devices:
a Fabry-Perot interferometer and a convergent lens. From this work, a contro-
versy arose about the minimum size of the sample in which the refractive ef-
fects dominate over the diffractive ones [Garcia03, Hakansson05, Garcia05].
Moreover, additional theoretical works predicted the focusing effect of refrac-
tive devices [Kuo04, Hu05], showing that SC lenses must present low acous-
tic impedance contrast between the SC and the medium; otherwise acoustic
waves will be mostly reflected. Then, the converging lens can be either con-
vex or concave depending on whether the sound speed in the SC is smaller or
greater than that in the medium.

The properties of the SC in the range of frequencies above the first BG, where
the wavelengths are much lesser than the lattice constant in SC, were used by
Yang et al. [Yang04] to introduce the negative refractive index in the field of
the PC. The authors claim that the relationship between the phase velocity and
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CHAPTER 1. SCULPTURES AS ACOUSTIC FILTERS

the wave vector in the second band suggests that both novel focusing and large
negative refraction phenomena may occur. The work showed both theoreti-
cally and experimentally how a dramatic variation in wave propagation with
both frequency and propagation direction led to novel focusing phenomena
associated with large negative refraction.

On the other hand, several developments to obtain focalization with a slab of
SC for frequencies below the first BG were made. The phenomenon of the
negative refraction in SC was also observed in the range of frequencies below
the first BG, having a strong dependence on the frequency and on the incident
angles [Feng05]. However, as Hakansson et al. [Hakansson04] showed, it is
possible to design acoustical devices to focus the sound at a predetermined
focal distance without negative refraction. The presented methodology was
an approach to the problem based on a stochastic search algorithm, especially
a Genetic Algorithm in conjunction with the multiple scattering theory. Both
acoustical [Hakansson05b] and optical [Hakansson05c] devices, as well as
acoustic [Hakansson06] or optical [Hakanson05a] wavelength demultiplexers
have been applications obtained using this optimization technique.

Propagation of waves through periodic system are mainly characterized by
dispersion, but there is a fascinating effect, originally named self-collimation
in which a beam propagates in the periodic system without apparent diffrac-
tion keeping its original size. This phenomenon has been experimentally
demonstrated to date for different frequency ranges of electromagnetic waves,
in particular in the optical [Rakich06] and microwave [Lu06] regimes. In the
acoustic counterpart recent works have observed the subdiffractive propaga-
tion of sonic waves in phononic (or sonic) crystals [Perez07, Espinosa07]. It
has come out that the spatial periodicity can affect not only temporal disper-
sion, but also the spatial one. Such subdiffractive sonic beams are supported
by crystals with perfect symmetry, and do not require the presence of defects.
The phenomenon is independent of the spatial scale and consequently it must
be observable in other (e.g. audible) regimes, as well as in the 3D case.

The theoretical results of Veselago in 1968, in which the simultaneously neg-
ative permittivity and permeability were predicted to give a negative refrac-
tive index to the inhomogeneous medium, became a reality once Pendry et al.
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1.1. CONTROL OF SOUND PROPAGATION IN SONIC CRYSTALS

[Pendry96, Pendry99] proposed materials which would have effectively nega-
tive permittivity and permeability. In the acoustic counterpart, simultaneously
to the development of the refractive devices, the pioneering work of Liu et al.
[Liu00a] provided the first numerical evidence of localized resonant structures
for elastic waves in 3D arrays of coated spheres, and introduced the acoustic
analogue of the electromagnetic metamaterials. Subsequently, several works
proposed different kinds of scatterers to achieve locally resonant acoustic
materials with negative properties: cylinders with split ring cross-section as
building blocks [Movchan04], Helmholtz resonators [Hu05, Fang06] or C-
shaped resonators [Guenneau07]. Similar double negative material was pro-
posed by Li and Chan [Li05].

Electromagnetic metamaterials are structured at subwavelength lengthscales,
typically one tenth of the wavelength, and it is possible to regard them as
homogeneous and describe their response with dispersing effective medium
parameters. The homogenization theories applied to determine the effective
parameters of PC have become a topic of increasing interest in the last four
years since Torrent et al. [Torrent06a] homogenized a SC using a methodol-
ogy based on multiple scattering theory. This technique was used to design a
broadband gradient index 2D sonic lens producing sound focusing with high
intensity [Torrent07]. This technique could be used to achieve an acoustic
metamaterial for cloaking acoustic waves.

Several theoretical methods were used for the analysis of the wave propa-
gation through periodic media in all the aforementioned works. The initial
works of the theoretical analysis of sound wave propagation in SC used plane
wave expansion (PWE) [Sigalas93, Kushwaha93, Kushwaha94]. Making use
of the periodicity of the system, one can expand the physical properties of
the inhomogeneous media in Fourier series and, using the Bloch theorem, the
wave Equation is transformed in a set of linear, homogeneous equations that
constitutes an eigenvalue problem. Then, propagation properties of SC can
be obtained. On the other hand, variational methods have also been used to
calculate the acoustic dispersion relation in SC [Sanchez98, Rubio99].

The multiple scattering theory (tansfer matrix methods), developed in the be-
ginning of the 20th century by Závis̃ka [Zaviska13] as a method of describing
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CHAPTER 1. SCULPTURES AS ACOUSTIC FILTERS

the scattering of waves in finite arrays in 2D acoustic fields was applied to
analyse the scattering of sound in finite arrays of scatterers by Sigalas and
Economou in 1996 [Sigalas96]. A few years later the method was extended
and improved by Chen and Ye [Chen01] and several modifications were used
in the relevant literature of SC [Hakansson04, Umnova06].

Previous analytical methods work properly when the geometries of the scat-
terers are defined well and their radiation pattern can be characterized by well-
known functions. Moreover, there is a variety of PC, specially for a compos-
ite of elastic media with large acoustic mismatch, for which the conventional
PWE cannot be applied. Thus more efficient methods are necessary to char-
acterize the propagation properties of PC. The first alternative was proposed
by Garcı́a-Pablos et al. [Garcia00], for using the finite-difference time do-
main (FDTD) method. The FDTD method is a popular numerical scheme for
the solution of many problems in electromagnetics. Moreover FDTD method
enables study of finite systems and to simulate the experiments in the same
way as they are carried out.

From the experimental point of view the BG of SC were observed by means of
several methods. The pioneering work of Martı́nez-Sala et al. [Martinez95]
shows the measurement of the sound attenuation spectra observing the corre-
sponding attenuation peaks in the proper frequencies depending on the inci-
dent direction of the wave. In other works, BG were characterized measuring
the phase delay [Rubio99]. It was observed that the phase delay presents a
linear dependence on frequency with a positive slope when the sound is trans-
mitted inside the structure through a propagation mode, but it presents both
a negative slope and an erratic behaviour for frequencies inside the BG. On
the other hand, BG have also been analysed by studying the reflectance prop-
erties of SC observing full standing wave for the frequencies inside the BG
[Sanchis01].
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1.2 Object and motivation of the work

One of the main practical applications of SC is the design of attenuation de-
vices, like for example, acoustic barriers made of periodic arrays of scatter-
ers. The seminal work of Sánchez-Pérez et al. [Sanchez02] showed that these
structures produce fairly good sound attenuation values, able to acoustically
compete with conventional acoustic barriers, presenting some important ad-
vantages: they are very light and easy to built, and they allow the control of
sound propagation properties by changing the characteristics of the lattice or
the scatterers. However, further investigations are needed in order to improve
the attenuation properties.

Recent works of Umnova et al. [Umnova06], Martı́nez-Sala et al. [Martinez06]
and Romero et al. [Romero06] started the improvement of the attenuation
properties of the array of scatterers, and the application of SC as the acoustic
barrier has received increasing interest in the recent years.

The main object of this work deals with longitudinal waves propagating in
2D distribution of infinitely long scatterers of different cross sections and
showing different acoustical properties. Using the possibility for control of
the wave propagation by both the distribution of the scatterers and the intrin-
sic acoustical properties of the scatterers, several structures and scatterers are
presented in this work in order to improve the acoustical properties of the
whole structure. In this work almost all the structures have been analysed
both experimentally and theoretically. This work was motivated by the results
previously obtained bye several authors in recent years.

In the following Sections we show the goals of this work as well as their rela-
tion to the references which are the main motivations of this work.

Studying the evanescent modes and point defects in sonic crystals

The abstract concept of SC involves infinite periodic replications of a base in
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CHAPTER 1. SCULPTURES AS ACOUSTIC FILTERS

the space, producing an infinite system. The BG produced by these systems
are understood as ranges of frequencies where any vibrational mode inside the
crystal can be excited [Kushwaha94]. However in finite systems the situation
is different. Joannopoulos et al. [joannopoulos08] introduced for the first
time an interpretation of the behaviour of waves inside the BG in terms of
evanescent modes. These modes cannot be excited in infinite systems because
they do not satisfy the translational symmetry.

On the other hand, the only way to observe this evanescent behaviour in infi-
nite systems is by means of the locally breaking of the translational symmetry
of the SC. Point defects, as for example removing one scatterer, locally break
the periodicity of the system and introduce localized modes within the BG
inside the point defect. These modes are localized because the defect is sur-
rounded by complete crystal and they have evanescent behaviour inside the
periodic system. The generation of Np vacancies (Np being much lower than
the total number of scatterers of the structure Ncyl) in periodic systems intro-
duces a rich amount of physics phenomena: from the localized modes in point
defects [Sigalas97] to the splitting of localized frequencies in multi-point de-
fects [Li05] or to the application for the generation of waveguides [Sigalas98]
or high precision acoustic filters [Khelif03, Khelif04, Vasseur08].

To the best of our knowledge, the physical consequences of point defects in
SC have always been explained theoretically in terms of infinite periodic sys-
tems. However, in real situations, one can only work with finite systems and
the theoretical physical properties of the system can only be approximated in
some cases using the finite systems: the bigger the system the more approxi-
mated the properties predicted by the theoretical methods of infinite systems
are. Thus the evanescent behaviour of modes in the BG or of the localized
modes has hardly been taken into account.

The aforementioned arguments motivated an extension of the plane wave ex-
pansion [Kushwaha94] in order to analyse the evanescent behaviour of both
modes in the BG in complete systems and localized modes in point defects.
In this work we extend the plane wave expansion to analyse both complete
systems and systems with N-point defects. The several physical effects ap-
pearing in the transition from one point defect to N-point defects in SC are
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analysed in this work in terms of their evanescent behaviour. The descrip-
tion and the theoretical model have been richly complemented by very recent
works devoted to the complex dispersion relation of SC [Sainidou05, Hsue05,
Sainidou06, Laude09]

Optimizing the scattering process in sonic crystals

One of the main motivations of this work comes from the works of Caballero
et al. [Caballero99, Caballero01] in which the Suzuki phase is used to intro-
duce new attenuation bands in periodic systems. It is interesting that lattices
of vacancies embedded in a SC can be used as a mechanism of sound control
in these materials. On the other hand, another important motivation is the
methodology presented by Hakansson et al. [Hakansson04] based on genetic
algorithms to improve the scattering process inside the array of rigid scatterers
in order to focalize sound in a predetermined point. Basically, Hakanson et al.
looked for a distribution of vacancies that optimizes the scattering problem to
accomplish some objectives.

In contrast with SC with point defects where Np << Ncyl , for the cases of the
Suzuki phase and optimized devices using genetic algorithms, Np ∼ Ncyl . In
this last case, if the Np defects present a periodicity (Suzuki phase) one can
predict the physical effects of this array of vacancies using their periodicity,
however if the Np vacancies are produced without periodicity only the solu-
tion of the scattering problem can provide information about the response of
the structure. One also can use statistical parameters based on the distribution
of the vacancies to explain the physical behaviour of the structure.

Thus the immediate question is: Is the Suzuki phase the best distribution of
vacancies to add new attenuation bands? In this work this question is analysed
using an improved optimization algorithm based also on genetic algorithms,
considering a multi-objective problem and as such several properties can be
simultaneously improved by creating vacancies. We analyse the dependence
of the improvement of the acoustical properties on the symmetry of generation
of vacancies, therefore several symmetries for the distribution of vacancies in
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the SC have been analysed, obtaining some general rules for the optimization
of the attenuation properties by removing scatterers of the structure.

Designing scatterers with additional acoustical properties for their use as
building blocks of sonic crystals

The pioneering work of Liu et al. [Liu00] not only paves the way towards
the analogous acoustic metamaterial, but it proposes a new way to introduce
additional stop bands in the propagation properties of the periodic systems
making use of the resonant properties of the scatterers. The additional stop
bands are determined by the intrinsic structure of the scatterers, and the depth
of the sound attenuation bands increases proportionally with the number and
density of local resonators. Moreover the resonant frequencies can be tuned
by varying their size and geometry. Interesting works in the range of the audi-
ble frequencies were presented by Hirsekorn [Hirsekorn04a, Hirsekorn04b].

In recent years not only scatterers with resonant properties have been designed
for their use in SC, but scatterers with absorbent materials have also been anal-
ysed by Umnova et al. [Umnova06]. The authors observed that the absorbent
covering reduces the variation of transmission loss with frequency due to the
stop/pass band structure observed with an array of rigid cylinders with simi-
lar overall radius and improves the overall attenuation in the higher frequency
range.

Motivated by the previous works, the possibility of designing simple models
of locally resonant absorbent materials made of ordinary, conventional ma-
terial and, in some cases recyclable materials, is analysed in this work. The
periodic systems made of these materials could efficiently be used to build at-
tenuation devices. Using the absorbent properties of the scatterers it should be
possible introduce a high overall attenuation, meaning that, a threshold of at-
tenuation. On the other hand, the resonant properties of the scatterers could be
used to introduce attenuation peaks in regions of frequency where the atten-
uation produced by the distribution of absorbent scatterers is deficient. Thus,
scatterers with absorbent and/or resonant properties could introduce a new
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design possibilities.

Combining scattering, resonances and absorption in sonic crystals

As it can be seen, one can improve the acoustical properties of SC using two
different mechanisms. One is the generation of a distribution of vacancies
and the other one is the inclusion of scatterers with additional properties. But,
can we use both methodologies together, in such a way the inclusion of the
scatterers with acoustical additional properties in the distribution of vacancies
can act simultaneously without interfering between the properties of the indi-
vidual scatterers? If the answer is affirmative, this mechanism could be used
to combine several effects in the same periodic system. The question is also
analysed in this work.

1.3 Overview of the work

A concise description of the organization of the contents in this work is shown
in this Section. The document has been split in 10 Chapters and 4 Appendixes.

Chapter 2 is devoted to the fundamentals of periodic systems showing their
main properties. The nomenclature and some important parameters used
through the work are briefly shown.

Chapter 3 introduces the theoretical methods used in this work for the anal-
ysis of the wave propagation through SC: multiple scattering theory (MST),
plane wave expansion (PWE), extended plane wave expansion (EPWE) and
finite element methods (FEM). MST, especially the 2D scattering by circular
cylinders, is shown. The explicit matrix formulation, useful to programme
codes like, for example, MATLAB, is described considering both plane and
cylindrical incident waves. We have described the main characteristics of
PWE for the calculation of the dispersion relation ω(�k) of SC. The extensions
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to consider the inverse complex problem k(ω) and the supercell approxima-
tion for studying arrays with defects constitutes a fundamental point in this
Chapter. Finally in this Chapter, we show the description of FEM to calculate
the dispersion relation and the scattering problem of SC made of scatterers
with irregular cross-sections or with different materials in this Chapter. Note
that through Chapter 3 we present several comparisons between the results
obtained using each theoretical method.

The optimization algorithm used in this work is shown in Chapter 4. It shows
the fundamentals of genetic algorithms (GA) and how the genetic operators
produce the distribution of vacancies in the SC. The Chapter describes both
the simple Genetic Algorithm (only one objective function is optimized) and
the multi-objective problem (several objective functions are simultaneously
optimized). Finally a procedure to reduce the computational time of the opti-
mization process is shown explaining a methodology of parallelization.

The experimental measurements are fundamental in this work. The most of
the theoretical results of this works have been experimentally tested. The ex-
perimental setup is shown in Chapter 5. During the development of this work
two different experimental setup were used. Both are described and a detailed
description of the sound sources, the microphones and the accelerometers is
also given. All the scatterers and the SC experimentally used are detailed in
the last part of the Chapter.

In Chapters 6 and 7 we analyse the creation of vacancies in SC. We distinguish
between two different situations: (i) low number of vacancies with respect to
the total number of cylinders (Np << Ncyl), where one can use periodicity
of the crystal and the locally breaking periodicity to explain the behaviour
of the system (localization, symmetry of the vibrational patters, splitting in
frequencies,...). And (ii) High number of vacancies and, as such, the number
of vacancies in the same order as the number of cylinders in the structure
(Np ∼ Ncyl).

In Chapter 6 we show the transition from a single point defect to N-point
defects in the SC. Using MST, PWE, FEM and particularly EPWE we show
a complete picture of the physical phenomenon of both the evanescent be-
haviour of modes inside the BG in complete SC and the localization of sound
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in N-point defects, showing the localization of the evanescent behaviour of
the localized modes and the splitting in frequencies for multi-point defects.
These properties of SC with point defects have been complemented with novel
theoretical and very accurate experimental description of their evanescent be-
haviour.

On the other hand, random defect creation is shown in Chapter 7. Here, we
present the results of the optimization of SC by removing scatterers for both
attenuation and focalization devices, generating the Quasi-Ordered Structures
(QOS). We define some parameters based on the optimization process and on
the geometry of the QOS that can help to characterize of these devices. We
also describe the dependence of the optimization process on the symmetry of
the generation of vacancies. From the results of the optimization, we show a
list of general rules to create vacancies in SC in order to improve their atten-
uation properties. These rules were experimentally tested in good agreement
with the predictions.

The use of scatterers with acoustical properties added as building blocks of
SC is shown in Chapter 8. Several proposals of scatterers with elastic or
cavity resonance properties are presented in order to improve the attenuation
properties of the SC below the first BG. A brief discussion, motivated by the
homogenization theories in the electromagnetic field, on the effective param-
eters of a SC made of a kind of elastic-acoustic resonance is also presented.

Chapter 9 analyses several engineering aspects of SC. In this Chapter one
can find the answer to the previous question: can we include scatterers with
acoustical additional properties in the distribution of vacancies of the opti-
mized structures without destroying both effects? Finally a proposal of SC
combining absorption, resonances and multiple scattering is shown as a good
alternative to the classical acoustic barriers.

Finally Chapter 10 summarizes the work, showing the most important con-
clusions and introducing the possibilities for a future work.
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1.3.1 Bibliographic notes

The references of this work are mainly research articles or books. In order to
differentiate them we have used the following nomenclature: articles are ref-
erenced writing the name of the first author in capitals; books are referenced
typing the name of the first author in lowercases.
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2
Fundamentals of periodic systems

Propagation of waves inside periodic structures has received increasing atten-
tion in the last years [Martinez95, Yablonovitch89, John87, Economou93].
Since extraordinary phenomena were observed in a periodic sculpture in 1995
[Martinez95], the enthusiasm for these systems appears due to their appli-
cations in several branches of science and technology [Yang04, Sanchez02,
Soukoulis06a].

In a medium with many several scatterers, waves will be scattered by each
scatterer, and then the scattered waves can be scattered again by other scat-
terers. This process is repeated to establish an infinite iterative pattern form-
ing a multiple scattering process. If the scatterers are placed periodically in
the space, the multiple scattering process leads to some interesting physical
properties, leading to several applications: Waveguides [Kafesaki00], lenses
[Kuo04], filters [Sanchez98], multiplexors [Hakansson06], . . . among others
applications in optics, electromagnetism and acoustics.

The fundamentals of wave propagation in periodic systems are presented in
this Chapter. We pay special attention to the two-dimensional periodic sys-
tems, because they are the subject of this work. The Chapter is based on the
references [kittel04, joannopoulos08, kosevich05, soukoulis93, soukoulis01,
brillouin46].
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CHAPTER 2. FUNDAMENTALS OF PERIODIC SYSTEMS

2.1 Periodic systems

2.1.1 Geometric properties

The infinite periodic distribution of a base constitutes a periodic system. The
sites where the base are placed are called lattice. A particular lattice �R in Rn is
defined in such a way the periodic system is equally observed from any point
of the lattice, this means that, the system is invariant under translations and,
sometimes, under rotations. Using group theory it has been proved that there
is a unique one-dimensional (1D) periodic system, five two-dimensional (2D)
and fourteen three-dimensional (3D) different lattices.

The concept of periodic system is a mathematical abstraction that implies the
existence of an infinite structure or an infinite medium. However, in nature
one cannot find infinite systems, but some examples may mimic the periodic
systems. For instance, crystalline structures can be studied as periodic media
using periodic boundary conditions if the crystal accomplishes some approx-
imations. For example the size of the crystalline structure should be much
smaller than the wavelength of the wave used to explore the crystal. In Fig-
ure 2.1 one can see some examples of real systems that can be considered
periodic. 1D periodic systems present the periodicity only in one direction;
in 2D, the periodicity appears in two directions being homogeneous in the
third dimension; finally, a 3D periodic system presents its periodicity in the
three dimensions of the space. In Figure 2.1 examples of the three types of
periodicity are shown.

Considering that�ai are the vectors defining the lattice �R in Rn with i= 1, . . . ,n,
thus �R could be defined as:

�R =

�
n

∑
i=1

νi�ai

�
, (2.1)

where νi ∈ Z. The parallelepiped defined by the vectors �ai forms the well
known primitive cell, which is a particular kind of unit cell. The translation
of the unit cell following the vectors �ai in the space produces the lattice of the
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Figure 2.1: Examples of periodic systems: (A) 1D, (B) 2D and (C) 3D. The Figures
correspond to Photonic crystals.

periodic system. As the periodic replication is done in the direct space, the
lattice �R is called the lattice of the direct space, or direct lattice.

Associated with the direct lattice, the reciprocal lattice is defined and it may
be used for better understanding of the physical properties of these systems.
The vectors of the primitive cell in the reciprocal lattice are defined from the
vectors of the direct lattice via the following expression

�bi = 2π
εi jk�a j ×�ak

�a1 · (�a2 ×�a3)
, (2.2)

where εi jk is the completely anti-symmetric Levi Civita symbol. Both the
vectors of the direct and the reciprocal arrays satisfy a relationship of orthog-
onality: �ai ·�b j = 2πδi j. Any linear combination�k =

�
∑n

i=1 µi�bi

�
with µi ∈ Z,

reaches a point of the reciprocal lattice.

The five periodic lattices that can be constructed in the case of 2D (n = 2)1

have been shown in Figure 2.2A: Oblique, square, triangular, rectangular and
centered. Among all of these arrays, both the square and the triangular arrays
are the most important for this work.

The lattices are usually characterized by the well known lattice constant, a,
1more information about these kind of lattice and the usual nomenclature can be found in

the reference [kittel04]
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that, in the case of both triangular and square lattices, corresponds with one
of the vectors of the base �R, a = |�ai|. The lattice constant is crucial in such
periodic systems because it defines the relationship between the geometrical
properties of the lattice and one of the most important physical property re-
lated to the propagation features of such systems, the Band Gaps, defined in
the Section 2.1.2.

Figure 2.2: 2D periodic systems. (A) 2D lattices. (B) Square lattice. (C) Triangular
lattice (also called hexagonal lattice).

Once the lattice constant and the size of the scatterers are known, one can
define the filling fraction ( f f ) as a geometrical parameter that, in the same
way as the lattice constant, presents a direct relationship with the physical
properties of the system. The f f is defined as the ratio between the volume
occupied by the scatterers and the total volume occupied by the unit cell.
If cylindrical scatterers with radius r0 are considered, the f f ’s for both the
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square and triangular lattices are respectively,

f fsquare =
πr2

0
a2 , (2.3)

f ftriangular =
2πr2

0√
3a2

. (2.4)

2.1.2 Wave propagation

The Schrödinger equation in quantum mechanics, the Maxwell equations in
electromagnetism, the vectorial equation of Navier for elasticity and the wave
equation in acoustics present the same type of solution when they are solved
for periodic system. Bloch’s theorem2 affirms that the solutions of the equa-
tions in such periodic systems present the same periodicity as the structure
except in phase [kittel04]. This means that, the discrete periodicity of the
lattice produces a solution of the problem which is a function presenting the
same periodicity as the lattice, ψ�k(�r), multiplied by a plane wave, eı�k�r, where
�k is the so-called the Bloch vector. Thus, the solution, Θ�k(�r), provided by the
Bloch theorem for scalar waves in periodic media is3

Θ�k(�r) = eı�k�rψ�k(�r). (2.5)

It is possible to make an explanation of this solution with a simple image: a
plane wave, as it would appear in the free space, but modulated by a function
with the same periodicity as the lattice. It is said that ψ�k is a Bloch state and
�k represents the Bloch vector.

The state of Bloch, for all the vectors of the direct lattice �R, accomplishes

ψ�k(�r) = ψ�k(�r+�R). (2.6)

2In solid-state it is known as Bloch theorem, but in Mechanics it is known as Floquet
theorem. For this reason, in some references it is called Floquet-Bloch theorem. Here it is
called Bloch theorem.

3In this thesis we are interested in the propagation of acoustic waves through periodic
systems, where the medium only supports scalar waves (longitudinal). From here on we
adopt the notation for scalar waves
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Thus, the field in each unit cell of the direct space presents the same distri-
bution. This property has an important consequence on the solution of the
problem: By applying the proper boundary condition we can solve the prob-
lem only in a unique unit cell in the direct space.

On the other hand, vectors�k that have to be considered to solve the problem
are also constrained. It should be noted that the state of Bloch for a vector�k is
the same as the vector�k+ �G if �G is a vector of the reciprocal lattice [kittel04].
If we take into account that the vector�k gives the phase shift between the unit
cells, then if�k is incremented in a vector of the reciprocal lattice �G, the phase
shift is incremented in �R ·�G= 2mπ, m being an integer. Thus, there is no phase
shift and there are redundant values of vector�k. In the same way as solutions
are constrained in a unit cell in the direct lattice, in the reciprocal lattice it
is said that the calculation is constrained to the first Brillouin zone. The first
Brillouin zone is a uniquely defined primitive cell in reciprocal space. The
boundaries of this cell are given by planes related to points in the reciprocal
lattice [kittel04].

To interpret the solution of the scalar wave equation in a periodic medium, the
wave equation in an acoustic medium with harmonic temporal dependence of
type eıωt is considered:

∇2 p(x,y,z)+
ω2

c2 p(x,y,z) = 0, (2.7)

where, p(x,y,z) is the acoustic pressure, c is the sound velocity and ω is the
angular frequency of the wave. The solution of this equation in the free field,
considered as isotropic and homogeneous medium is the type of ei�k�x, where
|�k|= ω/c is the absolute value of the wave vector of the wave in free field and
depends on the frequency with a linear relationship.

In the case of solving the equation in a periodic medium, the Bloch theo-
rem indicates the solution. The governing equation of the process is the
wave Equation 2.7 solved considering the periodic Bloch boundary condi-
tions, which means that

∇2 pk(�r)+

�
ω(�k)

c

�2

pk(�r) = 0, (2.8)
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with the Bloch boundary condition,

pk(�r+�R) = pk(�r)eı�k�R. (2.9)

where the vector�k takes values in the first Brillouin zone. The Equation 2.8
is solved in the space occupied by a unit cell. In this case, the vector�k can
be interpreted as an indicator of the propagating mode (band). Actually,�k is
the wave vector inside the periodic media. Then the dispersion relation ω(�k)
could be different than in the free field.

The solution of the eigenvalue problem, defined by equations 2.8 and 2.9,
gives an infinite discrete number of eigenvalues ω(�k) for each value of�k, and
they represent the frequencies of the possible modes supported by the unit
cell. These frequencies are discretely separated, and we can mark them with
the band index n; then, each band is a continuous function ωn(�k). The repre-
sentation of ω versus k for a given n, is a continuous function that represents
the dispersion relation of the band n. Thus, band structures can be seen as a
group of continuous functions discretely separated, that represents the disper-
sion relation of the medium.

In Figure 2.3 one can see the band structures for a square lattice of rigid cylin-
ders with radius r = 0.07 m and lattice constant a = 0.15 m, which represents
a filling fraction f f � 68.4%. We represent the frequency versus the Bloch
vector scanning the borders of the first irreducible Brillouin zone shown in the
inset. Each colored line represents a band of allowed states, that can be ex-
cited with a wave with the corresponding frequency represented in the vertical
axis.

The calculation of the band structures of a periodic system is extensively anal-
ysed in the bibliography [Meade92, joannopoulos08]. In Chapter 3 of this
work, we briefly present some of the most used methods plane wave expan-
sion (PWE) [Kushwaha94] and finite element methods (FEM) [ihlenburg98].
There are other methods, like for example the finite difference time domain
(FDTD) [Sigalas00], for the calculation of the band structures.

Due to the periodicity of the considered system, the band structures show
several interesting properties. One of them is the presence of the Band Gaps
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Figure 2.3: Band Structure of a square lattice of rigid cylinders with radius r = 0.07
m and lattice constant a = 0.15 m. f f � 68.4%

(BG), ranges of frequencies where sound propagation through the periodic
system is not allowed. The BG are necessary for some important applications
of these structures such as filters for trapping or guiding waves. On the other
hand, as we will see later, the generation of point defects in crystals breaks the
symmetry of the lattice and produces localized states, defined as modes that
are localized around the point defect and presenting an evanescent behaviour
inside the system. These properties open the door for applications as high
precision filters or wave guides.

Apart from these properties, other interesting effects can appear in periodic
systems. For example surface waves or negative refraction (left handed mate-
rials), that can be used to focalize the wave in a point behind the structure.

In the next Section the concepts of the BG and the localized states will be
briefly explained. The Chapter is based on [joannopoulos08, soukoulis93,
soukoulis01].
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2.1.2.1 Band gaps

In order to understand how the periodic system influences the propagation
of waves, several periodic structures with different configurations are consid-
ered. First, the weak interaction between the wave and the periodic lattice
considering infinitesimal scatterers is analysed. After increasing the size of
the scatterers, one can observe the effect of the periodicity over the propa-
gation properties of the wave. Also the dispersion relation of waves by 2D
periodic structures is presented. Similar analysis is done in [joannopoulos08]
for 1D periodic systems.

We consider a square lattice of infinitesimal scatterers. The behaviour of
waves, propagating in such periodic system should be very close to a wave
propagating in a free field, which dispersion relation is ω = c|�k|. Then, the
band structures will consist in linear relations between ω and k. To show this,
the band structure of rigid scatterers with very small radius (r = 0.0001 m)
placed in square array has been calculated. The periodicity used in all of the
calculations of this Section is a = 0.15 m.4 Figure 2.4A represents the band
structures calculated using plane wave expansion (introduced in Chapter 3).
One can observe in Figure 2.4A the lineal behaviour of the band structure for
this periodic system. Each band represents a propagating mode, and it can be
observed that, in this case, all of them are connected, therefore all frequencies
are propagated through the structure. Moreover the linear behaviour of the
bands shows that the medium can be considered as quasi free space propaga-
tion.

An increase in the radius of the scatterers, for instance, to r = 0.03 m, has now
been considered. The band structure corresponding to this new configuration
is shown in Figure 2.4B. The results are similar to the ones obtained for the
lattice with small scatterers but now some discontinuities appear in points X
and M. These discontinuities are called pseudogaps. For the filling fraction
analysed in this case only the pseudogap at ΓX direction can be observed in
the band structures. Regarding the ΓM direction, theory predicts the existence

4We could perform the calculations with non dimensional parameters based only on the
filling fraction, but we use dimensional parameters for the easy understanding of the results.
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of two bands in the range of frequencies near point M (second and third bands
in Figure 2.4B) that would produce the transmission of waves. However,
the existence of the deaf bands [Sanchez98] could produce a pseudogap at
ΓM direction. Transmission bands can become deaf bands depending on the
kind of incidence of the waves. The pressure field pattern of the eigenmodes
at point M for the second (blue line) and third band (green line) presents
determined symmetries that can be excited by the correct incident wave with
the appropriate symmetry [Sanchez98]. For example, the mode of the second
band presents the proper symmetry to be excited by an incident plane wave
travelling along the ΓM directions, however the pressure field of the mode of
the third band in point M has the planes of equal phase along the perpendicular
direction and consequently cannot be excited by such a wave. Then, in this
case, the third band (green line) can be called deaf band and a pseudogap
appears in the ΓM direction.

Thus, in each main direction of symmetry5 of the periodic structure, ΓX and
ΓM, one could observe a pseudogap. The upper and lower bounds of the pseu-
dogaps in each direction of symmetry are marked with black arrows in Figure
2.4B. Between these boundaries of the pseudogap, there is no frequency that
excites a propagating mode inside the structure in the ΓX direction.

The pseudogaps for the square lattice appear at points �kΓX = (π/a,0) and
�kΓM = (π/a,π/a), which define the limits of the irreducible Brillouin zone.
From these points and with the relation |�k|= 2πν

chost
, one can obtain approximate

values for the frequencies of the pseudogaps:

νΓX =
chost

2a
(2.10)

νΓM =
chost√

2a
(2.11)

where chost is the sound velocity in the host medium 6.

We consider now scatterers with bigger radius than in the previous periodic
5borders of the irreducible first Brillouin zone [kittel04].
6In the case of triangular lattice, the points where the discontinuities appear are: �kΓX =

(π/a,0) y�kΓJ = (π/a, π
(
√

(3)a)
). Thus, the Bragg’s frequencies are νΓX = chost

2a and νΓJ =
chost√

3a
.
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structures, r = 0.07 m. The transmission bands obtained are represented in
Figure 2.4C. One can observe that the pseudogaps in each main direction of
symmetry present some intervals of frequencies in common, meaning that,
the pseudogaps are coupled forming the so-called BG (or full BG). The green
area in Figure 2.4C shows the BG of an square latttice with a = 0.15 m and
f f = 0.68. Inside the BG no propagating modes are excited in the crystal. By
increasing the radius of the scatterers, the filling fraction also increases and
the pseudogaps become wider. Then the coupling between the pseudogaps in
each main direction can create a BG.

Figure 2.4: Band Structure of rigid cylinders. (A) Square lattice with infinitesimal
radius and lattice constant a = 0.15 m in air. (B) Square lattice with r = 0.03 m and
lattice constant a = 0.15 m. (C) Square lattice with r = 0.07 m and lattice constant
a = 0.15 m.

We note that the transmission bands are curved for frequencies close to the
BG, this means that, these frequencies present a stronger dispersion. There is
a useful representation for analysing such effect, the isofrequency contours.
They represent the lines of equal frequencies of one transmission band of the
dispersion relation, ω(kz,knorm), with knorm = (kx,ky), inside the first Brillouin
zone. The diffraction in SC is ruled by the dispersion relation and is due to the
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dephasing of the waves during propagation. The group velocity of the wave
is determined by the gradient of the frequency in k-space, vg = ∇kω(k). As
a consequence, for a given time and space frequency component, the power
propagates along the perpendicular direction of the spatial dispersion curves
or isofrequency surfaces kz = f (ω(knorm)). During a finite propagation dis-
tance l, the phase accumulated is φ = kz(knorm)l. In geometrical terms, the
spatial dispersion curve is characterized by its curvature at each point, re-
sulting in a corresponding diffracting broadening of the beam. References
[Perez07, Espinosa07] explain the relationship between the way of dispersion
and the curvature of the isofrequency curves.

In Figure 2.5, the equifrequency contours of the first band of each periodic
system represented in the Figure 2.4 are shown. Here, one can see how the
curvature of the band changes in the region close to the borders of the first
Brillouin zone as the filling fraction increases. Circular equispaced contours
represent linear dispersion relationship.

Figure 2.5: Isofrequency surfaces of the first transmission band for the square lattice
with lattice constant a = 0.15 m and (A) infinitesimal radius, (B) r = 0.03 m and (C)
r = 0.07 m

Up to now, the creation of the BG in periodic media has been analysed, but
what happens when a wave with a frequency ω impinges the periodic system?
We consider that the frequency ω is outside the BG (or pseudogap in a deter-
mined direction of symmetry), then this frequency can excite a propagating
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mode, characterized by k, related to ω by the band structures corresponding
with the transmission band. In this case, the wave can travel through the crys-
tal. However, if the frequency ω is inside the BG, the situation is absolutely
different and there is no excited k that allows the propagation of the wave
through the periodic system. Then the existence of BG is indicated by the
absence of bands in determined ranges of frequencies. In the next lines, we
describe briefly this last case.

As we have seen the BG is ranged between the first (n = 1) and the second
(n = 2) bands. By expansion of the second band in powers of k around the
edge k = π/a, Joannopoulos et al. [joannopoulos08] explain the BG as ranges
of frequencies where modes are characterized by complex wave vectors. Ex-
panding the second band of the Figure 2.4C (blue line):

∆ω = ω(k)−ω(π
a
)� α(k− π

a
)2 = α(∆k)2 (2.12)

For frequencies above the upper bound of the BG, ∆k is purely real because
∆ω > 0, then the wave is in the second band and a propagating mode exists.
However, for frequencies below the upper bound of the BG, which are fre-
quencies in the BG, ∆ω < 0, and then, ∆k is purely imaginary. Then, the
modes inside the BG are characterized by complex Bloch vectors, k + ıκ.
Moreover, the imaginary part of the wave number for frequencies inside the
BG grows for values of frequency closer to the center of the BG and dis-
appears at the edges of the BG. From Equation 2.5 we can observe that a
complex value of the Bloch vector,�k, introduces a negative exponent because
of the imaginary part of�k and the modes present evanescent behaviour. This
indicates that the rate of decay is bigger for frequencies closer to the center of
the BG. In such situation, the modes inside the BG exponentially decay when
they penetrate a crystal.

Some recent techniques, like the extended plane wave expansion (EPWE)
[Hsue05, Laude09, Romero10b], presented in Chapter 3, allow the analysis of
the imaginary part of the band structures. Using EPWE method the relation
k(ω) is obtained with k being probably complex and without any restriction
of periodicity. In Figure 2.6 we represent the real and the imaginary band
structures for a periodic system with square lattice a = 0.15 m and cylindrical
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Figure 2.6: Complex band structures for a SC with square lattice with lattice constant
a = 0.15 m and cylindrical scatterers with radius r = 0.06 m

scatterers with radius r = 0.06 m. In this Figure, one can see that modes
inside the BG present complex wave vectors. In Figure 2.6 one can observe
in ΓX and in ΓM directions that the imaginary part of the wave number for
frequencies inside the BG grows with values of frequency closer to the center
of the BG, and disappears at the edges of the BG, i. e., the rate of decay is
bigger for frequencies closer to the center of the BG, as it was predicted by
Joannopoulos et al. [joannopoulos08]. Also it can be observed that imaginary
part of the wave vector connects propagating bands, conserving the overall
number of modes.

This evanescent behaviour of the modes inside the BG has also been recently
measured in [Romero10a]. In Figure 2.7 we have presented novel experimen-
tal measurements of the absolute value of the pressure inside SC for propa-
gating and evanescent modes. The inset of the Figure 2.7 shows the measured
points in steps of 1 cm placed between two rows of cylinders inside the SC
made of rigid cylinders with square periodicity, a = 0.22 m. Connected blue
squares represent the absolute value of the pressure for a frequency outside
the BG, 442 Hz. This frequency represents a propagating mode inside the
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Figure 2.7: Absolute value of the pressure inside SC in the positions between two
rows. Blue squares represent these values for a frequency outside of the BG, 442
Hz. Red circles represent these values for a frequency in the BG, 920 Hz. The green
line represents a decay exponential fit to the evanescent mode inside the BG. The
black continuous line represents the absolute values of the pressure obtained using
the Finite Element Methods.

SC. Connected red circles represent the absolute value of the pressure for a
frequency inside the BG, 920 Hz. In this case last case, the pressure decays
all along inside the SC because the mode is inside the BG and it presents
evanescent behaviour.

In contrast with the propagating mode (connected blue squares), the evanes-
cent mode (connected red squares) is practically killed at the end of the crys-
tal, but there is still a small value of the pressure coming out. This character-
istic of the evanescent behaviour in finite SC has been measured recently by
Wu et al. [Wu09a, Wu09b] in a SC with a point defect.

The evanescent modes cannot be excited in perfect (infinite) crystals because
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these modes do not satisfy the translational symmetry. However it is possible
to use them to explain intuitively the physics of the modes inside the BG. On
the other hand, in the real world there are no infinite crystals, thus the modes
inside the BG present evanescent behaviour.

2.1.2.2 Defects, localization and waveguides

Defects
Any distortion or violation of the regularity in a periodic system can be con-
sidered as a defect. Defects in periodic systems directly affect their physical
properties, in such a way that the distortion of this physical property depends
on the dimension of the defect.

A point defect is defined as a distortion of the system in a volume similar to
the volume occupied by a unit cell. The most common point defects are:

• Intersticial Scatterers: Scatterers occupying a place between the equi-
librium sites in the lattice.

• Vacancies: Sites of the lattice where no scatterer exists.

• Intersticial Defects: Scatterers with different material placed at intersti-
cial sites of the lattice.

• Substitutional Defects: Scatterers with different material placed at the
sites of the lattice.

In Figure 2.8, one can see the 2D representation of the previous point defects.

In this Section the physical properties of periodic systems with point defects
are briefly introduced. The defects are created by removing cylinders, this
means that, they are vacancies in the crystal. In the proximity of a vacancy,
the periodicity of the array is completely broken, and also new physical prop-
erties appear when point defects are created, for instance localized modes.
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Figure 2.8: Point defects in 2D periodic systems. (A) Scatterer in an intersticial posi-
tion. (B) Vacancy by removing a scatterer. (C) Scatterer of different material placed
in an intersticial position. (D) Scatterer of different material placed in a position of
the periodic system.

Localization

One important property of periodic structures is the emergence of localized
modes within the BG when a point defect is introduced [Sigalas97, Li05].
The creation of a vacancy in a periodic system generates a cavity surrounded
by a periodic medium. Thus, waves with frequency in the BG corresponding
to this periodicity, could be localized in the cavity because its borders act
as perfect mirrors for these frequencies. This is the reason that these modes
are called localized modes. When a wave goes into the cavity, a part of the
wave is transmitted to the periodic medium and the other one is reflected back
by the borders of the cavity. The transmitted wave presents an exponential
decay caused by their evanescent behaviour, however the back reflected wave
contributes to the localized mode.

On the other hand the finite size of the cavity is a constraint of the problem
that introduces a quantization of the allowed modes. The allowed frequencies
for the localized modes correspond to the intersection between the eigenfre-
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quencies of the cavity and the frequencies of the BG.

Figure 2.9 shows the acoustic field inside a vacancy created in a square lat-
tice with the same properties as the ones analysed in Figure 2.3. The incident
wave, from the left side of the structure, presents a frequency inside the BG,
1340Hz. One can observe that the wave does not propagate through the crys-
tal, but it is localized in the cavity. We can also show the variation of the
pressure sound level inside the cavity, showing a maximum at the localized
frequency. The results have been obtained using the Finite Element Methods
(FEM).

Figure 2.9: Localization for a localization frequency of 1340 Hz. Left panel: Pres-
sure field inside the vacancy in a square lattice with a = 0.15m and r = 0.075m.
Right panel: Sound pressure spectrum calculated in the center of the cavity. Results
obtained using the Finite Element Method.

A technique widely used in the literature to obtain the effect of the creation
of point defects in crystals is the supercell approximation in PWE [Sigalas98,
Wu01, Zhao09]. This approximation only gives information about the propa-
gation of the localized modes in point defects. In these cases when periodicity
is broken or when SC have finite size, evanescent modes inside the periodic
system may appear. Localized modes or modes inside the BG are character-
ized by their evanescent behaviour [joannopoulos08, Engelen09, Romero10a,
Romero10b]. Then, a more accurate analysis is needed to characterize the
properties of the modes inside the periodic system. An extended analysis of
the properties of point defects in acoustic periodic systems will be presented
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in Chapter 6.

Waveguides

The location and width of acoustic BG result from a large contrast in the
value of the acoustic constants in SC. Therefore, there is a great deal of inter-
est in developing periodic systems-based waveguides where one can confine
and efficiently guide waves around sharp corners, which is not feasible with
classical waveguides. Guiding waves without losses in straight waveguides
using two-dimensional crystals was studied theoretically by several groups
[Kafesaki00, Khelif03, Khelif02].

One can design a waveguide creating extended linear defects in a periodic
system, for instance, by removing a row of scatterers in the original system.
Grafting other defects (for example, a side branch or stub) along an extended
waveguide permits some frequency selectivity in the form of zero transmis-
sion in the primary transmission spectrum of the perfect guide.

In a waveguide, one generates a corridor dividing the original periodic system
into two identical periodic systems, in such a way, the waves with frequency
inside the BG of both periodic media can propagate through this wave guide.
In Figure 2.10 an example of waveguide is shown. In the periodic medium
with square lattice with a = 0.15 m, we have generated a line of defects or
waveguide where the wave with frequency inside the BG, ν = 1260 Hz, can
propagate in the corridor and cross the crystal with two different paths.

An example of waveguide can be observed in Figure 2.10. A corridor gener-
ated by a line of defects is decoupled into two corridors generating two differ-
ent paths for the outgoing wave. By means of this procedure, we can divide
an incident beam into two different beams with the same frequency. More-
over, the outgoing waves present very low dispersion in frequency. Several
applications based on waveguides in periodic system have been developed in
the literature [Hakansson06].
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Figure 2.10: Waveguides. Guided wave with frequency ν = 1260 Hz, inside a lattice
square with lattice constant a = 0.15 m and r = 0.05 m.

2.1.3 Sonic crystals, the acoustic periodic system

Up to now, an overview on the propagation of scalar waves in periodic hetero-
geneous materials has been presented. This Section introduces the concept of
Sonic Crystals as the periodic media for the propagation of acoustic waves.

Artificial materials made with different dielectric properties were analysed
in the 80’s. The pioneering works of Yablonovitch et al. and John et al.
[Yablonovitch87, John87] observed the existence of prohibited frequencies
related to the periodicity of the medium. Because of the similarity of the prop-
erties of the crystalline structure and these periodic media, they were called
Photonic Crystals. After that, in the early 90’s, the Phononic Crystals (PC)
appeared, which are periodic compositions of several materials with different
elastic properties. These systems presented analogue properties to the Pho-
tonic Crystals but for elastic waves. Especially, when one of the composites is
a fluid, the system is usually called Sonic Crystal (SC), which are the systems
studied in this work.

The propagation of the elastic waves in an elastic material is determined by
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the vectorial equation of Navier,

ρ∂2ui

∂t2 =
∂

∂xi

�
λ∂ul

∂xl

�
+

∂
∂xl

�
µ
�

∂ui

∂xl
+

∂ul

∂xi

��
(2.13)

where i, l = x,y,z, ui is the i-th component of the displacement vector and λ
and µ are the Lamé coefficients; ρ is the density of the material. The Lamé co-
efficients can be related to the propagating velocities of the wave in the elastic
media as, λ = ρc2

l − 2ρc2
t and µ = ρc2

t , where cl and ct are the longitudinal
and transversal sound velocities respectively. With that in mind, the equation
of Navier (2.13) can be rewritten in the following form,
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In the particular case of a fluid, where the transversal modes are not allowed,
it is accomplished that µ = ρct = 0, thus the Equation 2.14, follows the fol-
lowing expression

ρ∂2ui
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∂xi

��
ρc2

l
��∇�u

�
. (2.15)

Taking into account that the acoustic pressure can be related to the displace-
ment of the particles �u as p =−ρcl�∇�u, the Equation 2.15 has the form of the
acoustic wave equation shown in 2.7 considering harmonic temporal depen-
dence. We note that, indeed, the governing equations of the propagation of
waves in a SC are a particular case of the corresponding case of PC7.

2.2 Parameters and symbols

The interest of the SC has been focused in last years on increasing their
acoustical focalization [Hakansson05b] and attenuation properties [Liu00a,

7We notice that when a longitudinal wave impinges a SC, the transversal modes are local-
ized only in the elastic medium [Einspruch60]

37



CHAPTER 2. FUNDAMENTALS OF PERIODIC SYSTEMS

Umnova06]. Throughout this work several parameters to quantitatively mea-
sure the improvement of the properties of SC have been used. In this Section
are some of these parameters like the insertion loss, the attenuation area, the
fraction of vacancies and the asymmetry. These parameters will help us to
characterize the acoustical properties of the SC.

As we have previously mentioned, in this work we study the optimization
of the acoustical properties of SC by creating vacancies in the system. The
goal is to produce systems with improved attenuation and focalization capa-
bilities with respect to the complete SC. Thus, some parameters based on the
optimization process are also necessary to classify the optimized structures.
However these parameters need the explanation of some properties of the op-
timization technique, therefore they will be presented in Chapter 4.

The physical and structural parameters used in this work are as follows:

Insertion loss (IL) This parameter is defined as the difference between the
sound level recorded at the same point with and without the sample. The
effectiveness of a road traffic noise barrier is measured by the insertion
loss.

IL(dB) = 20log(
pdirect

pinter f erred
) (2.16)

Area of spectrum (AS) This parameter is obtained from the frequency re-
sponse produced by the distribution of scatterers. It is defined as the
area enclosed between the positive spectrum and the 0dB threshold in
the selected frequency range. If the AS is measured from the attenua-
tion spectra, the parameter is called Attenuation Area, AA, and if it is
obtained from the Pressure level Spectra, it is called Focusing Area, FA.

An increasing in the value of these parameters implies an improvement
in the attenuation or focalization properties of the system. AA parame-
ter has been used in several works [Romero06, Herrero09, Romero09]
in order to measure the attenuation capability of a distribution of scat-
terers and FA has been also used [Romero09] for characterize the focal-
ization capability. In Figure 2.11 one can observe an example of the AA
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in the range of frequencies from 2100 Hz to 4800 Hz in an IL spectrum.

Figure 2.11: Attenuation Area (AA). The attenuation area is plotted in blue between
the frequencies 2100 and 4800 Hz.

Fraction of vacancies (Fv) This structural parameter gives information on
the number of vacancies in a structure. We define the Fv as the frac-
tion between the number of vacancies and the total number of cylinders
in the structure:

Fv =
Np

N
(2.17)

where Np is the number of vacancies and N is the total number of scat-
terers in the complete structure. Fv is ranged in the interval [0,1].

Asymmetry (A) This parameter gives information on the distribution of the
vacancies in the structure, taking into account the asymmetry of each
vacancy with respect to the symmetry axis of the structure. We define
this parameter as,

A =
Ax +Ay

2
(2.18)
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where Ai with (i = x,y) represents the Asymmetry with respect to the
axis i, which is defined as

A =
∑ j=1 NγA(b j −b�j)

2Np
. (2.19)

b j and b�j can have the values 1 or 0 depending on the existence or not of
the scatterer in position j, or in the symmetric position j�, with respect
to the symmetry axis of the structure. Nv again represents the number of
vacancies. The parameters b and b� are binary vectors with a dimension
equal to the total number of scatterers N. Then, we have defined the
distribution of symmetry γA as

γA(x) =
�

1 if x �= 0
0 if x = 0 (2.20)

With the previous definitions, A belongs to the interval [0,1].
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3
Theoretical models and numerical

techniques

Interaction of waves with obstacles is a hot topic in many branches of sci-
ence. Wave propagation inside periodic media has especially been analysed in
many branches of science and technology as, for example, solid-state physics
[korringa47, kohn54, ashcroft76], water waves [Linton90] , electromagnetic
waves [Twersky51, Wang93], acoustics [Zaviska13, Twersky51, Sigalas00,
Chen01, martin06], elastic media [Kafesaki99, Liu00, Psarobas00, Mei03]
and seismology [Tregoures02, Wu88, Shang88]. A wide range of mathe-
matical techniques are now available for the solution of problems involving
the interaction of waves with scatterers inside these crystals. This Chapter
draws together the methods used in this work: multiple scattering theory
(MST); plane wave expansion (PWE) and extended plane wave expansion
(EPWE) are also presented using the supercell approximation; and finite ele-
ment method (FEM). The cylindrical symmetry of the scatterers is the anal-
ysed in this Chapter as it allows an easy analytical nomenclature and due to
the interest in the 2D SC analysis.
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3.1 Multiple scattering theory

MST has a long history. In 1913, Závis̃ka [Zaviska13] described the method
for the scattering of finite arrays in 2D acoustic fields, which Ignatowsky ap-
plied in 1914 to the case of normal incidence on an infinite row of cylinders
[Ignatowsky14]. After that, extensions of the work to the oblique incidence
were studied [Twersky62, Guenneau04].

Multiple scattering can be understood as an interaction of wave fields with two
or more obstacles. The classical multiple scattering problem of sound waves
by rigid cylinders is presented briefly in this Section. MST solves the problem
taking into account that the field scattered from one obstacle induces further
scattered fields from all the other obstacles, which induces further scattered
fields from all the other obstacles, and so on. This characterizes MST as a
self-consistent method, being applicable to randomly or periodically-spaced
cylinders.

We consider N disjoint obstacles. Given an incident wave on them, the prob-
lem is to calculate the scattered waves. The total field can be expressed as

p = pinc +
N

∑
j=1

p j
sc, (3.1)

where pinc is the given incident field and p j
sc is the field scattered by the j-th

scatterer. Then the incident field over the n-th cylinder in the presence of the
other N −1 is

pn = pinc +
N

∑
j=1, j �=n

p j
sc. (3.2)

Considering that the problem is linear, it should be possible to write,

p j
inc = Tj p j (3.3)

where Tj is an operator relating to the field incident on the j-th cylinder, p j,
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and the field scattered by the j-th scatterer, p j
sc. Then,

pn = pinc +
N

∑
j=1, j �=n

Tj p j, (3.4)

or, equivalently,

pn = Tn

�
pinc +

N

∑
j=1, j �=n

p j
sc

�
. (3.5)

Solving Equation (3.4) for pn or (3.5) for p j
sc, n = 1,2, . . . ,N the total field

then would be given by

p = pinc +
N

∑
j=1

Tj p j, (3.6)

The simplicity of previous equations is misleading because the operator Tj
is not clearly defined and it is not specified where previous equations are
required to hold in space. In the next section we show the method of sepa-
ration of variables together with an appropriate addition theorem to study the
acoustic scattering produced by two or more cylindrical obstacles. Plane and
cylindrical incident waves will be considered. The exact method was used by
Zaviška in 1913 [Zaviska13], and it leads to an infinite system of simultane-
ous algebraic equations.

3.1.1 Two-dimensional scattering by circular cylinders

We consider N straight cylinders located at �ri = (ri,θi) of radius ai with
i = 1,2, . . . ,N to form either a regular lattice or a random array perpendic-
ular to the x− y plane. The cylinders are parallel to the z−axis, then since
the boundary conditions and the geometry do not change with z, the problem
can be reduced to two uncoupled problems for the scalar Helmholtz equation.
The final wave reaches a receiver located at �rr and, as we have seen in a pre-
vious Section, it is formed by the sum of the direct wave from the source and
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the scattered waves from all the cylinders (see Equation 3.4). The problem is
to solve the previous self-consistent method, satisfying some boundary condi-
tions on the surfaces of the cylinders and a radiation condition at infinity. Such
a scattering problem can be exactly formulated in cylindrical coordinates.

Solutions for the scattering of waves by cylindrical objects can be expressed
in terms of two important functions: Hn(kr)einθ and Jn(kr)einθ, Hankel and
Bessel function of n-order and first kind respectively. Both are solutions of
the Helmholtz equation for the planar problem. The first one satisfies the
radiation condition at infinity and is singular at the origin of coordinates. The
second one is regular in the origin of coordinates. Thus the first one could be
used to represent outgoing cylindrical waves whereas the second one could
express regular cylindrical waves.

The incident wave over 2D system of scatterers can be considered either plane
wave from the infinity or cylindrical wave (spherical wave in 3D) from a line
source. Both cases are considered in the next Sections. Assumption of time
harmonic dependence has been considered in the subsequent calculations.

3.1.1.1 Incidence of a plane wave

A plane wave incoming from the negative values of x can be expressed with
respect to the origin of the cartesian coordinates by an exponential eı�k�x, where
�k and �r =�x are the wave vector (k = 2π/λ; λ wavelength of the wave) and
the position respectively. As mentioned earlier , the scattering problem of N
cylindrical obstacles is solved by means of cylindrical coordinates for sim-
plicity. It is possible to express the plane wave as an expansion of Bessel
functions of the first kind centered at the origin of coordinates,

pinc =
q=+∞

∑
q=−∞

AqJq(kr)eıqθ (3.7)

where Aq are the coefficients that determine the incident wave. For plane
waves, one can show that Aq = ıq [Sanchis01].

The scattered field from the j-th scatterer can be expressed with respect to the
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origin of coordinates of the j-th cylinder using n−th order Hankel functions
of first kind as

p j
sc =

q=+∞

∑
q=−∞

A jqHq(kr j)eıqθ j (3.8)

where

r j =
�
(x− x j)2 +(y− y j)2 (3.9)

θ j = arcsin [
(y− y j)

r j
]. (3.10)

Figure 3.1 shows the schematic view of the coordinate systems centered in
each cylinder.

The total incident wave over the j-th cylinder can be computed with Equation
3.2. However all the terms of this equation must be expressed in the same ori-
gin of coordinates. To do so, the addition theorems of the Bessel and Hankel
functions are necessary. In the Appendix A some important addition theorems
for the case of cylindrical coordinates are shown.

Using Graf’s additional theorem for Jq(kr)eıqθ, the incident wave can be ex-
pressed in the coordinates of the l-th cylinder as follows,

pinc =
s=+∞

∑
s=−∞

SlsJs(krl)eısθl (3.11)

where

Sls =
q=+∞

∑
q=−∞

Aqeı(s−q)θl Jq−s(krl). (3.12)

Analogously, we can express the scattered wave by the j-th cylinder in the
coordinates centered at l-th cylinder, using Graf’s theorem for H(1)

m (kr)eımθ.
Thus,

pl j
sc =

s=∞

∑
s=−∞

Cl jsJs(krl)eısθl , (3.13)
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Figure 3.1: Notation used for the addition theorems.

where,

Cl js =
q=∞

∑
q=−∞

A jqeı(q−s)θl jHs−q(krl j). (3.14)

On the other hand, the total incident pressure over the l-th cylinder can be
expressed in terms of a expansion of Bessel functions:

pl =
s=+∞

∑
s=−∞

BlsJs(krl)eısθl . (3.15)

Thus, introducing Equations (3.11), (3.13) and (3.15) in Equation (3.2), we
obtain

Bls = Sls +
N

∑
j=1

q=∞

∑
q=−∞

A jqαl jsq (3.16)
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where

αl jsq = (1−δl j)e(ı(q−s)θl j)Hs−q(krl j). (3.17)

In Equation (3.16) the coefficients Sls are known (see Equation 3.12) and they
are determined by the incident wave1. However A jq and Bls are unknown and
they are related by the boundary conditions of the problem. The matrix that
relates these two unknown parameters is the so-called scattering matrix, or
T-matrix.

The boundary conditions consider that both the pressure and the normal veloc-
ity are continuous across the interface between the scatterer and the surround-
ing medium. Thus, for the case of the j-th cylinder, the boundary conditions
are written,

pext |∂Ω j = pint |∂Ω j (3.18)
1
ρ

∂pext

∂n
|∂Ω j =

1
ρ j

∂pint

∂n
|∂Ω j (3.19)

where ∂Ω j is the boundary of the j-th scatterer, ρ is the density of the sur-
rounding medium and ρ j is the density of the j-th scatterer. In the case of
rigid scatterers embedded in air, the periodic system presents a large acoustic
mismatch (ρcyl >> ρair), and it is possible to consider Neumann boundary
condition in the walls of the j-th cylinder,

∂pext

∂n
|∂Ω j =

∂(pl + pl
sc)

∂n
|∂Ω j = 0 (3.20)

where pl
sc is the scattered wave by the l-th cylinder,

pl
sc =

q=+∞

∑
q=−∞

AlqHq(krl)eıqθl . (3.21)

Finally, substituting Equations (3.15) and (3.21) in (3.20),

Als = tlsBls, (3.22)
1We note that for an incident plane wave, Aq = iq, so that, Equation 3.12 is absolutely

defined for a determined structure of scatterers
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with2

tls =
Js+1(kal)− Js−1(kal)

Hs−1(kal)−Hs+1(kal)
. (3.23)

Then, multiplying both terms of Equation 3.16 by the coefficients tls,

Als −
N

∑
j=1

q=∞

∑
q=−∞

t jsA jqαl jsq = tlsSls, (3.24)

which is an infinite system of linear equations that can be solved by truncation.
The subindexes q and s take values from −M to M, the system is reduced to
2M + 1 equations and Equation 3.24 can be expressed in terms of products
of matrices. This formulation will be presented in the next Section (3.1.1.2)
as the formalism for the incident cylindrical wave is analogous to the case
presented here. Thus, the pressure in a point (x,y) can be expressed by

p(x,y) = pinc +
N

∑
l=1

s=∞

∑
s=−∞

AlsHls(krl)e(ısθl), (3.25)

where the solution of the problem is the coefficients Als

The previous equation is valid for any configuration of the cylinders. This
means that, it works for situations in which the cylinders can be placed either
randomly or periodically.

By representing the Equation (3.22) in products of matrices, then,

Al = TlBl (3.26)

where the T-matrix of the problem is

Tlss� =
Js+1(kal)− Js−1(kal)

Hs−1(kal)−Hs+1(kal)
δss� , (3.27)

where δss� is the Kronecker’s delta. We note that the T-matrix of the problem
of rigid cylinders is square and diagonal.

2using dK( f (z))
dz = 1

2
d f
dz (Ks−1( f (z))−Ks+1( f (z))) where K can represent the Bessel

(J( f (z)) or Hankel (H( f (z)) functions.
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Figure 3.2: Maps and spectra of absolute values of pressure calculated using MST for
a plane wave impinging on the crystal. (A) Acoustic field produced by the scattering
of waves in a SC with square lattice in the ΓX direction for the frequency inside the
pseudogap at ka = π. (B) Acoustic field produced by the scattering and the incidence
waves in a SC with square lattice in the ΓM direction for the frequency inside the
pseudogap at ka = 4. (C) Spectra for the ΓX (blue line) and ΓM (red line) direction,
calculated at the point (x/a,y/a) = (11,5).

An example of the results obtained using this methodology for calculating
pressure field is shown in Figure 3.2 . This Figure represents two maps for
the absolute values of pressure due to the incidence of a plane wave over a
5a× 5a square array of rigid cylinders. In the left panel, one can observe
the 0◦ incidence of the plane wave over the array, whereas the right panel
represents the 45◦ incidence. Two different frequencies inside the BG have
been used for the simulation, ka = π (0◦) and ka = 4 (45◦). One can observe
the low pressure values behind the array.
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3.1.1.2 Incidence of a cylindrical wave

In this case, an acoustic source transmitting monochromatic waves is placed at
point �rs, some distance from the system of scatterers. For simplicity without
compromising generality, the acoustic source can be approximated as a line
source located at origin, i. e., �rs =�0. The acoustic wave equation with such a
source follows the following expression:

�
�∇2 + k2

�
p(�r) =−4πδ2(�r), (3.28)

where k = ω/c and δ2 is the 2-dimensional delta-function. In cylindrical co-
ordinates, the solution is

p(�r) = ıπH0(kr), (3.29)

where H0 is the zero−th order Hankel function of the first kind. The solution
represents a line source located at origin.

Considering the presence of the N cylinders placed at ��ri, the scattered wave
from the j-th cylinder can be expressed as

p j
sc =

∞

∑
n=−∞

ıπA jnHn(kr j)eınθ j (3.30)

where Hn is the n-th order Hankel function of the first kind, A jn are the coeffi-
cients to be determined, and θ j is the azimuthal angle of the vector r j relative
to the positive x axis (see Figure 3.1).

In order to separate the governing equations into modes, we can express the
total incident wave as:

pi
inc =

∞

∑
n=−∞

BinJn(kri)eınθi . (3.31)

For determining the matrix relation (T-matrix) between Bin and A jn, it is nec-
essary to express p j

sc and pinc, for each j �= i, respect to the origin centered at
the i-th scatterer. Following the same procedure than in the previous section,
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we use the Graf’s additional theorem for Hm(kr)eımθ (see Appendix A), for
representing the p j

sc in the form

P j
sc =

∞

∑
n=−∞

CjinJn(kri)eınθi , (3.32)

where

Cjin =
∞

∑
l=−∞

ıπA jlHl− j(kri j)eı(l−n)θi j . (3.33)

On the other hand, using again the Graf’s theorem, the incident pressure can
be expressed as,

Pinc =
∞

∑
l=−∞

SilJl(kri)eılθi , (3.34)

where

Sil = ıπH−l(kri)e−ilθi . (3.35)

At this stage, the Sil is known, but both Bin and A jl are unknown. Bound-
ary conditions will provide another equation relating them together. In the
previous Section we used the Neumann’s boundary conditions as we were in-
terested in rigid scatterers. Now, in this Section we will consider the general
boundary condition, this means that to say, the continuity of both the pressure
and the normal velocity across the interface between a scatterer and the sur-
rounding medium. After that, considering the big contrast between both the
densities and sound velocities, it will be possible to reproduce the results of
rigid scatterers. In this Section we use constant values of densities and veloc-
ities, however it is possible to introduce, for instance, frequency dependent
density or velocity. Tournat et al. [Tournat04] introduced scatterers with a
mesoscopic scale much larger than the microscopic scale in a porous medium
as host material, in such a way that the propagation can be described by a the
multiple scattering by the scatterers (at the mesoscale) taking place in a ho-
mogenized porous absorbing medium described by the an homogenized the-
ory of porous materials. Few years later, Umnova et al. [Umnova06] analysed

51



CHAPTER 3. THEORETICAL MODELS AND NUMERICAL TECHNIQUES

the multiple scattering of sound wave by combined scatterers of rigid cores
and an absorbent covering in air. Appendix C shows the applications of the
methodology shown in this Section but with absorbent boundary conditions.

The boundary conditions in the j-th rigid cylinder follows the following equa-
tions,

pext |∂Ω j = pint |∂Ω j (3.36)
1
ρ

∂pext

∂n
|∂Ω j =

1
ρ j

∂pint

∂n
|∂Ω j (3.37)

where ∂Ω j is the boundary of the j-th scatterer, ρ is the density of the sur-
rounding medium and ρ j is the density of the j-th scatterer.

In order to apply the previous boundary conditions, we consider that the pres-
sure field inside the i-th cylinder can be represented by

Pi
int =

∞

∑
n=−∞

DinJn(k1iri)eınθi , (3.38)

where k1i is the wave number inside the i-th cylinder.

Using the boundary conditions and the expressions of the incident, scattered
and interior wave we can obtain the following relation,

Bin = ıπΓinAin, (3.39)

where

Γin =
Hn(kai)J�n(kai/hi)−gihiH �

n(kai)Jn(kai/h)
gihiJ�n(kai)Jn(kai/hi)− Jn(kai)J�n(kai/hi)

. (3.40)

Here ai is the radius of the i-th cylinder (in this work the radius of the scatter-
ers take the same value for all the cylinders, ai = a), gi = ρi

1/ρ is the density
ratio, and hi = k/ki

1 = ci
1/c is the sound speed ratio for the i-th cylinder. Then

with the previous expression, it is possible to relate the coefficients Bin to the
A jn. To do this, it s necessary to define the following values:

Tin = Sin/ıπ, (3.41)

Gi jln = Hl−n(kri j)e
ı(l−n)θri j i �= j. (3.42)
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Then,

ΓinAin −
N

∑
j=1, j �=i

∞

∑
l=−∞

Gi jlnA jl = Tin (3.43)

is a infinite system of equations that can be used to determine Ani if it is
properly truncated. The equations are completely analogous to the Equation
3.24. Then, if the subindexes q and s take values from −M to M, both systems
are reduced to 2M +1 equations that can be expressed in matrix formulation
as follows:

(Γ−G)A = T, (3.44)

then the vector of coefficients A can be obtained as

A = (Γ−G)−1T, (3.45)

where the subindex −1 indicates the inverse of the matrix. The matrices Γ, G
and the vectors A and T are represented by:

Γ =





Γ1 0 . . . 0
0 Γ2 . . . 0
...

... . . . ...
0 . . . . . . ΓN




, (3.46)

where N is the number of cylinders of the structure and

Γi =





Γi,−M 0 . . . 0
0 Γi,−M+1 . . . 0
...

... . . . ...
0 . . . . . . Γi,M




; (3.47)
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G =





0 . . . 0 G1,2
−M,−M . . . G1,2

M,−M . . . . . . G1,N
−M,−M . . . G1,N

M,−M
...

. . . . . .
...

. . .
... . . . . . . G1,N

−M,−M
. . . G1,N

M,−M
0 . . . 0 G1,2

−M,M . . . G1,2
M,M . . . . . . G1,N

−M,M . . . G1,N
M,M

G2,1
−M,−M . . . G2,1

M,−M 0 . . . 0 . . . . . . G2,N
−M,−M . . . G2,N

M,−M
...

. . .
...

...
. . . . . . . . . . . . G2,N

−M,−M
. . . G2,N

M,−M
G2,1
−M,M . . . G2,1

M,M 0 . . . 0 . . . . . . G2,N
−M,M . . . G2,N

M,M
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
GN,1
−M,−M . . . GN,1

M,−M . . . . . . . . . . . . . . . 0 . . . 0
...

. . .
... . . . . . . . . . . . . . . .

...
. . .

...
GN,1
−M,M . . . GN,1

M,M . . . . . . . . . . . . . . . 0 . . . 0





; (3.48)

and

A =





A1,−M
...

A1,M
A2,−M

...
A2,M

...

...
AN,−M

...
AN,M





,T =





T1,−M
...

T1,M
T2,−M

...
T2,M

...

...
TN,−M

...
TN,M





, (3.49)

where the values of the components of the previous matrices are given by
Equations 3.40, 3.41 and 3.42. We note that the size of the matrices Γ and G
is N(2M + 1)×N(2M + 1) while the vectors T and A present a length equal
to N(2M+1).

Once the infinite system of equations to obtain the coefficients Ain is solved,
the total wave at any point is

p(�r) = ıπH0(kr)+
N

∑
i=1

∞

∑
n=−∞

ıπAinHn(kri)eınθi . (3.50)
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We note that an inclusion of the lowest order in multiple scattering may be
sufficient for certain situations and that the above derivation is valid for any
configuration of the cylinders.

Figure 3.3: Maps and spectra calculated using MST for a cylindrical wave impinging
a 5a× 5a square array of rigid cylinders with a filling fraction f f = 50%. (A) map
for a frequency ka = π inside the pseudogap at ΓX direction. (B) map for a frequency
ka = 4 inside the pseudogap at ΓM direction. (C) Blue line (Red line) represents the
spectrum for the ΓX (ΓM) direction measured at the point (x/a,y/a) = (11,0) from
the source location.

Figures 3.3A and 3.3B show the maps produced by the acoustic scattering of
a square array of cylinders for the two main directions of symmetry (0 and 45
degrees), with size 5a×5a and filling fraction f f = 50%. Compared with the
maps shown in Figure 3.2 it can be concluded that the differences between
a cylindrical source and a plane wave are not significant. Figure 3.3C also
represents the acoustic spectra for the two main directions of symmetry mea-
sured at point (x,y) = (11a,0a) from the source location. We can observe
the ranges of inhibition in both directions (pseudogaps). The transmission
outside these ranges can vary significantly as the number of scatterers or the
shape of the array changes. The oscillatory behaviour for frequencies below
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ka = 3 is caused by external shape of the crystal. They may appear or not, de-
pending on the arrangement of the array. But the inhibition behaviour remains
quantitatively the same for both directions. Such a stable inhibition range is a
clear indicator for the stop band. This will be further confirmed by the band
structure calculation given below.

3.2 Plane wave expansion

By analogy to electron waves in a crystal, waves transmission inside periodic
systems should be described using the bands theory. This idea was first in-
troduced in 1987 [Yablonovitch87, John87] . Then, the concepts of Bloch
waves, dispersion relations, Brillouin zones, ... can be applied to the case of
all kind of periodic systems: photonic, phononic and sonic crystals.

Plane wave expansion (PWE) uses the periodicity of the system and the Bloch
theorem to solve the wave equation, obtaining a simple eigenvalue problem
relating to the wave vector and the frequency of the incident wave. Such
kind of models have been used in the literature to analyse periodic systems,
from photonic to sonic crystals [Yablonovitch89, Meade92, Economou93,
Kushwaha94]. Depending on the eigenequation obtained, the problem can
be solved for both the real or the imaginary part of the wave vector,�k. Real
part is related to the propagation of the mode inside the system, and imaginary
part is related to the decaying of the mode through the crystal. Traditionally,
it has been only solved for the real part, and the terminology PWE refers to
the solution of the ω(�k) problem. The extension to solve the imaginary band
structures, appears when one solve the inverse problem k(ω). This method-
ology is known as extended plane wave expansion (EPWE). In this Section
both methodologies are shown, as well as the extension to the supercell ap-
proximation, which is used mainly for the analysis of the periodic systems
with defects.
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3.2.1 ω(k) method

Propagation of sound is described by the equation

1
ρc2

∂2 p
∂t2 = ∇

�
1
ρ

∇p
�

(3.51)

where c is the sound velocity, ρ is the density of the medium and p is the
pressure.

In this Section a system composed of an array of straight, infinite cylinders
made of an isotropic solid A, embedded in an acoustic isotropic background
B has been considered. There is translational invariance in the direction z
parallel to the cylinders and the system has 2D periodicity in the transverse
plane. By using this periodicity, it is possible to expand the properties of the
medium in Fourier series,

σ =
1

ρ(�r)
= ∑

�G

σ�k(�G)eı�G�r, (3.52)

η =
1

B(�r)
= ∑

�G

η�k(�G)eı�G�r, (3.53)

where �G is the 2D reciprocal-lattice vector and B(�r) = ρ(�r)c(�r)2 is the bulk
modulus. For the pressure p can be obtained by applying the Bloch theorem
and harmonic temporal dependence,

p(�r, t) = eı(�k�r−ωt)∑
�G

pk(�G)eı�G�r. (3.54)

It is easy to show that [Kushwaha94]

α(−→G ) =

�
βA f f +βB(1− f f ) if

−→
G =

−→
0

(βA −βB)F(
−→
G ) if

−→
G �=−→

0
(3.55)

where β = (σ,η), and F(
−→
G ) is the structure factor. For circular cross section

of radius r, the structure factor is

F(
−→
G ) =

1
Auc

�

Acyl

e−ı
−→
G−→r −→dr =

2 f f
Gr

J1(Gr). (3.56)
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Auc is the area of the unit cell, Acyl is the area of the considered cylinder and
J1 is the Bessel function of the first kind of order 1. f f is the filling fraction
defined in the previous Chapter.

Using Equations (3.52), (3.53), (3.54) and (8.6) we obtain [Kushwaha94]

∑
�G�

�
(�k+ �G)σk(�G− �G�)(�k+ �G�)−ω2η�k(�G− �G�)

�
p�k(�G

�) = 0. (3.57)

For �G taking all the possible values, Equation (3.57) constitutes a set of linear,
homogeneous equations for the eigenvectors p�k(�G) and the eigenfrequencies

ω(�k).

Equation (3.57) can be expressed by the following matrix formulation

3

∑
i=1

ΓiΣΓiP = ω2ΩP, (3.58)

where i=1,2,3. The matrices Γi, Σ and Ω are defined as

(Γi)mn = δmn(ki +Gm
i ). (3.59)

The explicit matrix formulation is shown as follow:

Γi =





ki +Gi 0 . . . 0
0 ki +Gi . . . 0
...

... . . . ...
0 . . . . . . ki +Gi




, (3.60)

Σ =




σ(�G1 − �G1) . . . σ(�G1 − �GN×N)

... . . . ...
σ(�GN×N − �G1) . . . σ(�GN×N − �GN×N)



 , (3.61)
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Ω =




η(�G1 − �G1) . . . η(�G1 − �GN×N)

... . . . ...
η(�GN×N − �G1) . . . η(�GN×N − �GN×N)



 , (3.62)

P =




P(�G1)

...
P(�GN×N)



 , (3.63)

where �G = (G1,G2,G3) = (2πm/a1,2πn/a2,0). If m = n = (−M, . . . ,M), the
size of the previous matrices is N ×N = (2M+1)× (2M+1).

Figure 3.4: Band Structure for a SC made of rigid cylinders in square array with
lattice constant a and filling fraction f f = 50%. Central panel: Band structures
calculated using PWE. Left panel: Spectrum for the ΓX direction of a finite array
of size 5a× 5a with f f = 50%. Right panel: Spectrum for the ΓM direction of a
finite array of size 5a× 5a with f f = 50%. Spectra measured at a point situated a
distance 0.6a from the end of the crystal and in the symmetry axis.

By solving the system given in Equation (3.58) for each Bloch vectors in the
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irreducible area of the first Brillouin zone, N×N eigenvalues, ω2, are obtained
and they can be used to represent the band structures, ω(�k).

In the central panel in Figure 3.4 one can observe the band structures of a
SC made of rigid cylinders in square array with lattice constant a and filling
fraction f f = 50%. The frequencies are represented in terms of ka versus
the Bloch vector in the first Brillouin zone related to the incident direction of
the wave. Grey area represents the full BG of the structure. Red dash dotted
lines represent the pseudogaps in both ΓX and ΓM directions. In the left and
right panels we represent the spectra calculated by MST for a finite array of
size 5a×5a with f f = 50% in the ΓX and ΓM directions respectively. In the
calculated spectra the absolute value of the pressure in a point placed at 0.6a
in the symmetry axis behind the periodic structure can be observed. We note
the good agreement between both MST and PWE calculations for the case of
the pseudogaps.

3.2.2 k(ω) method: extended plane wave expansion

Propagating waves inside a periodic media are a set of solutions of the wave
equations satisfying the translational symmetry, and they are characterized by
the transmission bands in PWE method. However, finite periodic media or pe-
riodic media with point defects, where the translational symmetry is broken,
can support the well known evanescent modes characterized by a complex
wave number, k.

In the ω(�k) formulation, the existence of BG is indicated by the absence of
bands in determined ranges of frequencies. BG could be understood by the
evanescent behaviour of the modes inside it. This explanation was predicted
by some authors [joannopoulos08] approximating the second band near the
BG by expanding ω(k) in powers of k around the edge k = π/a. The au-
thors claim that, as the BG is traversed the exponential decay grows as the
frequency reaches the center of the BG.

At a given frequency ω inside the BG, the evanescent wave is characterized
by a complex valued Bloch vectors�k(ω) that represent the decay of the mode
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inside the periodic structure. The complex band structures for phononic crys-
tal were recently presented by Laude et al. [Laude09] based on the work of
Hsue et al. [Hsue05]. In a similar way, the problem for the case of Sonic
Crystal is extended in this Section, also showing the supercell approximation.

From Equation (3.58) we define the following vector,

Φi = ΣΓiP. (3.64)

With this definition it is possible to reformulate the eigenvalue problem (3.58)
as the equation system

Φi = ΣΓiP

ω2ΩP =
3

∑
i=1

ΓiΦi. (3.65)

In order to obtain an eigenvalue problem for�k(ω), we write�k = k�α, where�α
is a unit vector. Then (3.60) can be written as

Γi = Γ0
i + kαiI, (3.66)

where I is the identity matrix, and

Γ0
i =





Gi 0 . . . 0
0 Gi . . . 0
...

... . . . ...
0 . . . . . . Gi




, (3.67)

αi =





αi 0 . . . 0
0 αi . . . 0
...

... . . . ...
0 . . . . . . αi




. (3.68)

Then, equation (3.58) can be written as
�

ω2Ω−∑3
i=1 Γ0

i ΣΓ0
i 0

−∑3
i=1 ΣΓ0

i I

��
P
Φ�

�
= k

�
∑3

i=1 Γ0
i Σαi I

∑3
i=1 Σαi 0

��
P
Φ�

�
(3.69)
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where Φ� = ∑3
i=1 αiΦi.

Equation (3.69) represents a generalized eigenvalue problem with 2N eigen-
values k, possibly complex numbers, for each frequency. Complex band struc-
tures on the incidence direction �α can be obtained by solving the eigenvalue
equation for a discrete number of frequencies and then sorting them by conti-
nuity of k. In contrast with the ω(�k) method, in this formulation the periodic-
ity is not relevant and k(ω) does not follow the first Brillouin zone.

Figure 3.5: Band Structure for a SC made of rigid cylinders in square array with
lattice constant a and filling fraction f f = 50%. (A) Left panel: Band structures
calculated using PWE. Right panel: Complex band structures for the ΓX direction
calculated using EPWE. (B) Left panel: Complex band structures for the ΓM direc-
tion calculated using EPWE. Right panel: Band structures calculated using PWE.

Because of the periodicity of the system, Bloch waves can be expanded in se-
ries of harmonics where each harmonic corresponds with a value of k. Then
if k is a complex number, the evanescent behaviour of a wave with a prede-
termined frequency would be multiexponential [Engelen09]. The Complex
Band Structures show the values of all of these complex values of k which
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contribute to the multiexponential decay of the mode in the BG. As it will be
seen later, for the case of SC analysed in this work, the evanescent behaviour
of the modes inside the BG is characterized considering the first term of the
harmonic expansion in terms of k.

Figure 3.5 shows the results obtained using EPWE for the two main directions
of symmetry. One can observe the real part of the band structures which
coincides with the bands calculated using PWE. Moreover, one can observe
the imaginary part of the band structures, observing the complex value of the
Bloch vector in the region inside the BG.

One of the properties of the complex band structures is that they connect
the real bands at the symmetry points (Γ, X or M) where holding bands is
expected due to periodicity. Through this mechanism, the overall number of
bands at any frequency is globally preserved which is a direct evidence of
conserving the overall number of modes.

It can be noted that even at very low frequencies (subdiffractive regime), there
exist complex bands simultaneously with the propagating bands in the real
part. They could be understood as higher-order diffracted waves within the
crystal that are frustrated. Consider periodic array with square periodicity a
in the horizontal plane (xy plane) and a wave impinging on the crystal on the
x direction. The wave number on the crystal is�k = (kx,ky,kz), in such a way
the wave can be composed of a superposition of plane waves,

u(x,y,z) = ∑
n

aneı(kxx+kyy+kzz), (3.70)

where harmonic temporal dependence has been considered.

The modulus of the wave vector is (ω/c). Then, the component z of the �k
is kz =

�
(ω/c)2 − (ky)2 − (kx)2, where ky = 2πn/a and kx = 2πm/a can be

any Bloch vector in the reciprocal space. For low frequencies (subdiffractive
regime), there is only one transmission wave (Im(kz) = 0, Re(kz) �= 0) cor-
responding to the order n,m = 0. However for n,m > 0, kz is complex and
the amplitude of the wave decays exponentially (see previous Equation 3.70).
Thus, the high order of diffraction, which is a composition of two vibrational
patterns, one due to kx and other one due to ky, are frustrated because of the
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complex value of the kz, thus this modes present evanescent behaviour for
this high-orders, and both waves are exponentially killed. Similar explanation
based on the diffraction gratings can be found in the reference [Laude09].

One can observe also that as the frequency increases, these bands become a
real band. Following the evolution of such bands with increasing frequency,
it can be noticed that after some onset frequency these initially evanescent
waves can become propagative.

3.2.3 Supercell approximation

Breaking the periodicity of the structure locally can generate defect modes
within the BG. These defect modes are strongly localized around the point
defect: once the wave is inside the defect, it is trapped as the borders of the
defect act as perfect mirrors for waves with frequencies in the BG. Localiza-
tion depends on several parameters as for example the size of the point defect
but, in finite periodic structures, the strength of sound localization also de-
pends on the size of the structure around the defect [Wu09a, Wu09b] due to
the exponential decay of the outgoing wave.

To analyse the propagation of waves inside periodic structures with defects,
authors have traditionally used PWE with supercell approximation. The su-
percell method requires as low an interaction as possible between defects.
This results in a periodic arrangement of supercells that contain the point de-
fect. With this method it is possible to obtain the relation ω(�k) for crystal
with local defects and for instance one can explain the physics of wave guides
[Khelif04, Vasseur08] or filters [Khelif03].

In this Section, we apply the approximation of supercell to the EPWE. This
methodology allows us to obtain the relation k(ω) for defect modes. It would
be interesting to know how the imaginary part of the wave vector inside the
BG changes with the creation of the defect.

We consider a SC with primitive lattice vectors �ai (i = 1,2,3). The supercell
is a cluster of n1 × n2 × n3 scatterers periodically placed in the space. Then,
the primitive lattice vectors in the supercell approximation are �a�i = ni�ai, and
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the complete set of lattices in the supercell approximation is {R�|R� = li�a�i},
where ni and li are integers. The primitive reciprocal vectors are then

�b�i = 2π
εi jk�a� j ×�a�k

�a�1 · (�a�2 ×�a�3)
(3.71)

where εi jk is the three-dimensional Levi-Civita completely anti-symmetric
symbol. The complete set of reciprocal lattice vectors in the supercell is
{�G|�Gi = Ni�b�i} where Ni are integers.

Figure 3.6: Examples of both square and triangular supercells.

3.2.3.1 Complete arrays

With the previous definition of supercell, the expression similar to Equation
(3.55) for the case of the supercell approximation is obtained. The filling frac-
tion of a cylinder in a supercell is f f = πr2/A, where A is the area occupied
by the supercell. If we consider a supercell with N cylinders organized in an
array of size n1 ×n2 then

β(−→G ) =

�
βAN f f +βB(1−N f f ) if

−→
G =

−→
0

(βA −βB)F(
−→
G ) if

−→
G �=−→

0
(3.72)
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where F(
−→
G ) is the structure factor of the supercell.

In this approximation, the structure factor of the supercell has to be computed
taking into account its size. If we consider a 2D SC with cylindrical scatterers
with radius r and size of the supercell n1×n2, the structure factor is expressed
by

F(�G) =
(n1−1)/2

∑
i=−(n1−1)/2

(n2−1)/2

∑
j=−(n2−1)/2

eı(ia|�G1|+ ja|�G2|)P(�G) (3.73)

where

P(�G) =
2 f f
Gr

J1(Gr). (3.74)

where a is the lattice constant inside the supercell and G = |�G|.

3.2.3.2 Arrays with defects

If the supercell presents Np point defects at the sites labelled by (ls,ms) in the
periodic system, with s = 1, ...,Np, then the Fourier coefficients of the expan-
sion of the physical parameters involved in the problem follow the following
equation

β(−→G ) =

�
βA(N −Np) f f +βB(1− (N −Np) f f ) if

−→
G =

−→
0

(βA −βB)F(
−→
G ) if

−→
G �=−→

0
(3.75)

The structure factor of such a supercell with Np point defects is

F(�G) =

�
(n1−1)/2

∑
i=−(n1−1)/2

(n2−1)/2

∑
j=−(n2−1)/2

eı(ia|�G1|+ ja|�G2|)−
Np

∑
s=1

eı(lsa|�G1|+msa|�G2|)

�
P(�G). (3.76)

The interaction among the defect points in the supercell approximation must
be as low as possible between the neighboring supercells in order to decrease
the overlap in between, thus the size of the supercell should be big enough to
place the point defects separated in consecutive supercells.

By introducing the previous expressions in the matrices of PWE (3.58) or in
the case of EPWE (3.69) the band structure of a periodic structure with and
without a point defect using the supercell approximation are calculated.
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3.3 Finite elements method

Sometimes the geometrical shape of the scatterers or the concurrence of sev-
eral effects are difficult to solve by means of an analytical method. Numerical
methods show a good alternative to find, in these cases, solutions to a prob-
lem. For the problem we are dealing with, SC, we can use FEM to solve
both the scattering and the eigenvalue problems considering periodic bound-
ary conditions.

FEM have been conceptually developed for the numerical discretization of
problems with bounded domains and they are specially applicable for solv-
ing Helmholtz problems. In the case of periodic systems, the determination
of the band structures by means of the solution of the eigenvalue problem
represents the bounded problem. The application of FEM to unbounded do-
mains, as for example the case of the scattering problems, involves a domain
decomposition by introducing an artificial boundary around the obstacle. At
the artificial boundary, the discretization can be coupled in various ways to
some discrete representation of the analytical solution. In this work, only the
radiation condition and the Perfectly Matched Layers are developed.

The commercial software COMSOL Multiphysics 3.5 is used as it has a sim-
ulation environment with a friendly user interface in all the steps of the mod-
elling process: definition of geometry, specification of physics, meshing, solv-
ing and post-processing of results. Moreover COMSOL Multiphysics has the
ability to define and couple any number of arbitrary, nonlinear partial differen-
tial equations which is very indicated for the cases where, for instance, we are
interested in the coupling between acoustic and elastic properties of different
media.

3.3.1 Bounded problem: eigenvalue problem

The acoustic wave Equation 8.6 considering temporal harmonic dependence
of the type eiωt becomes the Helmholtz equation:
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(∇2 +ω2)p = 0. (3.77)

In problems involving 2D periodic systems, separation of variables are used
to solve the problem splitting the equation in two independent equations, one
in the plane where the periodicity is and another one in the homogeneous di-
rection where there is free field. Then, considering p(r,θ,z) = p�(r,θ)p⊥(z),

1
r

∂
∂r

(r
∂p�
∂r

)+
1
r2

∂2 p�
∂θ2 +ω2 p� = β2 p�, (3.78)

∂2 p⊥
∂z2 =−β2 p⊥. (3.79)

The solution of the Equation 3.79 follows the following expression:

p⊥ = eiβz (3.80)

where β indicates the direction of the incidence of the wave with the z-axis.
This solution is a plane wave propagating in the z-axis. However if one con-
siders that the direction of the waves is perpendicular to the symmetry axis
of the cylinder (z-axis), meaning normal incidence, then β = 0 and there is
no propagation in the z direction. Although some authors have considered
oblique incidence [Guenneau04], here we consider only normal incidence on
2D periodic system.

The general planar equation is

1
r

∂
∂r

(r
∂p�
∂r

)+
1
r2

∂2 p�
∂θ2 +(ω2 −β2)p� = 0. (3.81)

And considering normal incidence, the previous equation presents the follow-
ing form,

1
r

∂
∂r

(r
∂p�
∂r

)+
1
r2

∂2 p�
∂θ2 +(ω2)p� = 0. (3.82)

68



3.3. FINITE ELEMENTS METHOD

Figure 3.7: Unit cells for both square and triangular lattices. The periodic bound-
ary conditions applied at the borders of each unit cell are shown. The cylinders are
considered rigids then Neumann boundary condition are considered in their surface.

For the case of cylindrical symmetry of the problem, considering the Laplace
operator in cylindrical coordinates:

(∇2 +ω2)p� = 0 (3.83)

which is the Helmholtz equation.

For solving the problem using FEM, it is necessary to define the symmetry,
discretize the domain and consider the boundary conditions. In the bound-
ary of each cylinder both the continuity of the pressure and the velocity are
considered as in Equations 3.36 and 3.37 respectively. However, for the case
of rigid cylinders one can approximate the problem by considering Neumann
boundary condition which expression is shown in Equation 3.20.

As it has been shown in Section 2.1, due to the translational symmetry, Bloch
theorem is applied to solve the problem. The properties of the Bloch states
constrains the solution to a unit cell with Bloch vectors in the first Brillouin
zone. These features transform the unit cell in a bounded domain to solve the
problem with the next boundary condition at the borders of the unit cell,

p(�r+�R) = p(�r)eı�k�R (3.84)
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Table 3.1: Directions of incidence, ranges of k, and ranges of phase changes, k ·R1
and k ·R2, for each of the segments required to traverse the boundary of the irreducible
first Brillouin zone for both square and triangular lattices.

Square lattice
Direction �k �k · �R1 k · �R2

ΓX [(0,0)(0,π/a)] [0,π/a] [0,0]
XM [(π/a,0)(π/a,π/a)] [π/a,π/a] [0,π/a]
MΓ [(π/a,π/a)(0,0)] [π/a,0] [π/a,0]

Triangular lattice
Direction �k �k · �R1 �k · �R2

ΓX [(0,0),(π/a,−π/(
√

3a))] [0,π/a] [0,0]
XJ [(π/a,−π/(

√
3a)),(4π/(3a),0)] [π/a,4π/(3a)] [0,2π/(3a)]

JΓ [(4π/(3a),0),(0,0)] [4π/(3a),0] [2π/(3a),0]

where k is the Bloch vector and it scans the first irreducible Brillouin zone.
Figure 3.7 shows both the square and triangular unit cells with the correspond-
ing periodic boundary conditions. With the previous boundary conditions it
is said that the domain is bounded and we will be able to solve the problem
by FEM.

In order to determine eigenfrequencies of the SC with FEM solver, the peri-
odicity must be established. Table 3.1 shows the values of k for calculate the
band structures.

Unfortunately, it is not possible to calculate a band structure with the aid of the
COMSOL software’s user interface; to do so a parametric eigenvalue solver
that varies the Bloch vector and obtains all eigenvalues would be required. A
workaround is offered by COMSOL Script or MATLAB (we use the MAT-
LAB interface). The results of a band structure calculation for both square
and triangular lattices of rigid cylinders with r = 0.4a are shown in Figure
3.8. One can compare FEM results with the ones obtained using PWE. The
agreement between both techniques is very good.
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Figure 3.8: Band structure for both square and triangular lattices. The radius of
the scatterer is r = 0.4a in both cases. Blue continuous lines represent band struc-
tures calculated using FEM and open red circles show the same ones calculated using
PWE.

3.3.2 Unbounded problem: scattering problem

Considering the wave propagation in free space (unbounded acoustic domain)
the assumption that no waves are reflected from infinity is taken. This is
known as the Sommerfeld condition. The mathematical expression for this
far-field condition is obtained from Helmholtz integral equation in several
references [ihlenburg98]. Let p(�r) be a solution of the Helmholtz equation
∇2 p+k2 p= 0 in an unbounded domain. The Sommerfeld condition indicates
that waves are absorbed at infinity if

p = O(R−1), (3.85)

ıkp− d p
dR

= o(R−1), (3.86)

R −→ ∞. (3.87)
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Where the notation f (x)= o(g(x)), x−→∞, means that f (x)/g(x) approaches
zero as x −→ ∞, while f (x) = O(g(x)) means that this ratio is bounded for all
x.

The solutions of exterior Helmholtz problems that satisfy the Sommerfeld
conditions are called radiating solutions. Using FEM, it is only possible to
obtain some approximation of the radiating solutions in unbounded domains
by applying some artificial boundaries in the numerical domain. Several tech-
niques can be used for this purpose [ihlenburg98] and among them in the next
Sections the radiation boundary condition and the perfectly matched layers
will be presented.

3.3.2.1 Radiation boundary conditions

One of the possibilities to obtain an approximation of radiating solutions using
FEM is considered in the surrounding boundaries of the modelling domain,
a condition that allows an outgoing wave to leave the domain with minimal
reflections. This kind of conditions are called radiation boundary conditions.
In the case of the 2D domains this condition is

−�n
�
−1

ρ
∇p

�
p
ρ
=
�

ı|�k|+κ(r)− ı(�k ·�n)
� p0

ρ
e−ı(�k·�r), (3.88)

where�k is the wave number and κ(r) is a function whose form depends on the
wave type: Plane wave: κ(r) = 0 and Cylindrical wave: κ(r) = 1/(2r), with
r being the shortest distance from the point�r = (x,y,z) in the boundary to the
source. The right-hand side of the equation represents an optional incoming
plane pressure wave with amplitude p0 and wave vector�k = k�nk, where �nk
denotes the unit vector in the direction of propagation.

As an example, the scattering by a square array of size 5a× 5a ( f f = 50%)
was analysed using the COMSOL interface. The cylindrical source is lo-
cated at point (x,y) = (0,5a) and Neumann conditions at the boundary of the
cylinders as well as radiation boundary conditions in the sides of the domain
have been considered. Figure 3.9 shows the corresponding maps and spectra
of such a structure. One can compare these results with the ones calculated
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Figure 3.9: FEM calculations considering radiation boundary condition. A cylindri-
cal source is considered at point (x/a,y/a) = (0,5). (A) Acoustic field produced by
the scattering of waves for a SC with square lattice in the ΓX direction for the fre-
quency inside the pseudogap at ka = π. (B) Acoustic field produced by the scattering
and the incidence waves in a SC with square lattice in the ΓM direction for the fre-
quency inside the pseudogap at ka = 4. (C) Spectra for the ΓX and ΓM direction,
calculated at point (x/a,y/a) = (11,5).

using MST for ka = π (ΓX direction) and for ka = 4 (ΓM direction) observ-
ing Figure 3.3. Although the maps and spectra seem to be the same, there
are some small differences produced by the minimal reflections in the bound-
aries of the domain. Boundary radiation condition should be used in problems
where the boundary is far away from the scattering medium, then the reflected
waves can be considered to be negligible.

In order to reduce these spurious reflections coming back into the computa-
tional domain from the artificial boundaries, one can use the so called ab-
sorbing boundary conditions (ABC) [ihlenburg98], which are employed to
prevent artificial boundary reflections. Several kinds of ABC have been pro-
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posed in the last decades as, for example, the Dirichlet-to-Newmann Operator
(DtN Operator) or the Atkinson-Wilcox expansion. Recently, the perfectly
matched layer (PML) [Berenguer94] method received attention from scien-
tists. The PML technique, that uses a perfectly matched layer with a damping
mechanism to absorb the artificial boundary reflections, is presented in the
next Section as an alternative to the boundary radiation condition.

3.3.2.2 Perfectly matched layers

An alternative approach to deal with truncation of unbounded domains is the
so called perfectly matched layer (PML) method which was introduced by
Berenger [Berenguer94]. PML are an efficient alternative for emulating the
Sommerfeld radiation condition in the numerical solution of wave radiation
and scattering problems. The idea, originating from electromagnetic compu-
tations, is based on simulating an absorbing layer of damping material sur-
rounding the domain of interest, like a thin sponge which absorbs the scat-
tered field radiated on the exterior of this domain. The method was immedi-
ately applied to different problems based on the scalar Helmholtz equation
[Harari00] acoustics [Abarbanel99, Qi98], elasticity [Basu03], poroelastic
media [Zeng01], shallow water waves [Navon04], other hyperbolic problems
[Lions02], etc. Here, the interest is focused on the wave propagation time-
harmonic scattering problems in linear acoustics, i.e., on the scalar Helmholtz
equation. In this method, the interface between the physical domain and the
absorbing layer does not produce spurious reflections inside the domain of
interest, this is the reason because it is called PML.

PML consists of a coordinate transformation [Liu99, Collino98]. The trans-
formation is a scaling to complex coordinates so that the new medium be-
comes selectively dissipative in the direction perpendicular to the interface
between the PML and the physical domain. In this work, the PML domain
absorbs waves in the coordinate direction d following the following coordi-
nate transformation inside the PML:

d� = sign(d −d0)|d −d0|n
L

δDn (1− ı) (3.89)
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Figure 3.10: FEM calculations considering the PML regions. A cylindrical source is
considered at point (x/a,y/a) = (0,5). (A) Acoustic field produced by the scattering
of waves for a SC with square lattice in the ΓX direction for the frequency inside the
pseudogap at ka = π. (B) Acoustic field produced by the scattering and the incidence
waves in a SC with square lattice in the ΓM direction for the frequency inside the
pseudogap at ka = 4. (C) Spectra for the ΓX and ΓM direction, calculated at point
(x/a,y/a) = (11,5).

where L is the scaled PML width, d0 is the coordinate of the inner PML
boundary, the width of the PML is D and n is the scaling exponent.

For acoustic waves, the appropriate value of L is one wavelength that, for
acoustic waves propagating along the absorbing coordinate direction d, is
enough to absorb it. On the other hand the appropriate value of the scal-
ing exponent for acoustic waves is 1. For scattering problems where different
wavelengths are considered, n takes values between 1 and 2. Increasing the
value of the exponent allows us to use fewer mesh elements to resolve wave-
lengths much smaller than the scaled PML width.
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In practice, since the PML has to be truncated at a finite distance of the do-
main of interest, its external boundary produces artificial reflections. Theoret-
ically, these reflections have minor importance due to the exponential decay
of the acoustic waves inside the PML. In fact, for Helmholtz-type scattering
problems, it was proven that the approximate solution obtained using the PML
method exponentially converges to the exact solution in the computational do-
main as the thickness of the layer goes to infinity [Lassas98]. This result was
generalized using techniques based on the pole condition [Hohage03]. Sim-
ilarly, an analogous result for the convected Helmholtz equation was proven
[Becache04].

Figure 3.10 shows the results of the calculations done to obtain Figure 3.9 but
considering PML. The maps calculated using PML are very close to the ones
calculated using MST (see Figures 3.3a and 3.3b) but, with this approach,
the reflections in the boundaries of the numerical domain in these Figures
disappear (Figures 3.10A and 3.10B).

76



4
Optimization: genetic algorithms

SC as acoustic finite devices present wave propagation properties depend-
ing on several parameters such as the external shape and the arrangement of
the lattice, the range of frequencies or the filling fraction [Sigalas05]. Thus,
changing these parameters, one can achieve tunable devices to control the
wave propagation through them.

One possibility is the creation of defects in the crystalline structure. Some
authors have demonstrated the possibility of increasing the attenuation capa-
bility of these materials by creating a periodic distribution of vacancies in the
array [Caballero01]. A periodic distribution of vacancies in a host medium
introduces additional sound transmission properties. The resulting SC, called
the Suzuki phase, holds the attenuation bands of the host structure and it also
presents additional ones associated to the periodicity of the missing cylin-
ders. Following this idea, recent works have used the creation of vacancies in
conjunction with optimization algorithms, such as the genetic algorithm, as a
method of increasing the attenuation properties or of creating lenses based on
SC [Hakansson04, Hakansson05b, Hakansson06, Romero06]. The basic idea
is to find an optimum distribution of vacancies from a starting and complete
SC so that the acoustical properties are optimized in some sense.

This Chapter is devoted to present the fundamentals of genetic algorithms
(GA) which constitute an optimization algorithm based on the principle of the
natural selection, showing how we have adapted it to the optimization of SC.
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In this work GA and MST have been used jointly to improve the acoustical
properties of the SC by means of the creation of defects in the crystal.

4.1 Optimizing sonic crystals

In the last decade SC have been developed in order to create efficient acous-
tic filters [Martinez95, Sanchez98, Kushwaha97, Shen01, Cervera02] to use
them as, for example, an alternative to classic acoustic barriers. Using the
physical properties of the SC, specifically the BG, some authors [Sanchez02]
have proven the possibility of using 2D SC made of isolated cylindrical scat-
terers made of rigid materials to construct acoustic barriers (see Figure 4.1).

(A) (B)

Figure 4.1: (A) SC used as acoustic barrier; (B) Classical acoustic barrier.

There are some technical advantages in the use of SC as acoustic attenuation
devices. One of them being the easy way to build this systems. This is be-
cause their structure allow air to pass through them, hence reducing the air
pressure on the SC barrier. On the other hand, the design of efficient acoustic
focalization systems can provide promising application in the range of ultra-
sounds [Fang06, Guenneau07]. Nevertheless, their technological use should
be developed in order to solve some acoustical disadvantages that they present
compared to classic barriers.

Several parameters are involved in the design of acoustical devices based on
SC. Especially both the number and size of scatterers and the lattice constant
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of the arrays should be taken into account. Thus, the attenuation or focal-
ization peaks change with an increase of both the number and the diameter
of the cylinders. Moreover, the position in the frequency spectrum of these
peaks depends on the distance between cylinders. Obtaining an optimum ar-
rangement of cylinders to ensure the best acoustic attenuation or focalization
is not an easy problem in general.

The optimization of the acoustical properties of SC by creating vacancies in
order to design both attenuation and focalization devices could be based on
the optimization of the values of the acoustic pressure. As it has been seen in
Chapter 3, MST is a self-consistent method that can be used to calculate the
pressure field produced by a SC. So, a good possibility is the use of MST in
conjunction with some optimization techniques. But, from the mathematical
point of view, the coefficients of the series expansions in MST (see Section
3.1), Als, which are determined numerically from the equations obtained by
means of the application of the boundary conditions, depend on the parame-
ters defining the crystal as well as on the frequency. As a consequence, the
acoustic pressure given in Equation (3.25), simultaneously depends on dis-
crete and continuous variables being in general difficult to optimize.

Generally, the methods of optimization search the best solution in the decision
space (also known as search space), this means the space occupied by all the
possible solutions of our problem. Any distribution of vacancies in a starting
SC made of N scatterers constitutes a possible solution of our problem. Then,
in the decision space we have to find the best solution among a very great
number of solutions (2N). This number indicates the dimension of the deci-
sion space in optimization methods, and it is an important parameter to take
into account. The larger the size of the decision space, the more difficult the
resulting optimization problem. In the optimization procedure presented here,
the dimension of the decision space is large due to the size of the starting SC.

Finally, the computational time to calculate Alq increases approximately with
the third power of the number of cylinders, N3, therefore large numbers of
cylinders imply a high computational time (see Appendix B). The use of SC as
either attenuation or focusing devices means structures with many scatterers
and this again indicates the complexity of the problem.
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All of these arguments, together with the complexity of the mathematical
functions involved in the calculus, indicate that SC are suitable to use opti-
mization algorithms in order to improve their acoustical capability by means
of the creation of vacancies.

4.2 Evolutionary algorithms: genetic algorithms

The problem presented in the previous Section is complex and has a high
computational cost requiring new optimization algorithms to solve it. One
interesting alternative to solve this problem is based on the use of evolutionary
algorithms (EA). This is made possible thanks to the nature of EA based on
populations of individuals. The good results obtained with EA, together with
their capacity to handle a wide variety of problems with different degrees
of complexity, explain why they are used more frequently. Indeed, they are
currently one of the branches in which the most progress is being made within
the field of EA [fonseca95, zitzler99, coello02, alander02, coello05b].

Here the genetic algorithms (GA), one of the most popular algorithms among
the EA, have been used. GA, initiated by Holland [holland75], is an stochas-
tic search technique based on the mechanics of natural selection and natu-
ral genetics. Although GA were not well-known at the beginning, after the
publication of Goldberg’s book [goldberg89], GA received a great deal of at-
tention regarding their potential as optimization techniques to solve discrete
optimization problems or other difficult optimization problems.

4.2.1 Fundamentals

GA work with sets of potential solutions of the problem to optimize. GA
start with an initial population of potential solutions randomly generated. We
can consider a set of N potential solutions, each one being called individ-
ual. These individuals evolve through successive iterations called genera-
tions. During each generation, the individuals are evaluated with some mea-
sure of the function to optimize, called cost function. Then the individuals
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are mixed by means of the genetic operators: Selection, Crossover and Mu-
tation. Then the new population is created through genetic operators. The
procedure continues until the termination condition is satisfied. The general
framework of GA is described as follows, where P(t) denotes the population
at generation t:

procedure:Genetic Algorithms
begin

t := 0
initialize P(t);
evaluate P(t);
while (not termination condition) do
begin
t := t +1
select P(t) from P(t −1)
alter P(t);
evaluate P(t);
end

end

A schematic view of the flowchart of fundamental procedures of GA can be
seen in Figure 4.2.

Several programming languages can be used to implement a GA to optimize
problems. In this work we have used the functions of GA toolbox of MAT-
LAB [gaMatlab] that will be briefly described in the next subsections.

4.2.2 Coding

GA use a code in order to interpret the information of each individual in the
optimization process. In this Section we show the code use in our optimiza-
tion algorithm.

The individuals of a population are based on a complete finite SC with N
cylinders. Each individual of the first generation consists of a SC with a dis-

81



CHAPTER 4. OPTIMIZATION: GENETIC ALGORITHMS

Start

Initial population P(t)

Evaluation

Reproduction
(Selection)
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no
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Figure 4.2: Flowchart of fundamental procedures of genetic algorithms

tribution of vacancies in the starting SC. Then, an individual is characterized
by a vector of length N, called chromosome, whose coordinates, genes, rep-
resent the existence or not, of a scatterer in a specific position of the starting
SC. Each gene is related to the coordinates of a scatterer of the starting SC.
Every possible position of the cylinders in the SC is localized with a matrix
of positions (Xcyl,Ycyl) (the first column represents x position and the second
column represents y position). Therefore the i-th gene is related to the i-th row
in matrix (Xcyl,Ycyl). Each individual is represented by a value of the decision
variable θ in the decision space. The value in each gene of the design variable
θ can vary in the [0,1] range. A gene with a value in ]0.5,1] represents the
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existence of a cylinder in the position associated with it, and a value in [0,0.5]
means the existence of a vacancy at this position.

We can consider the next chromosome for the i-th individual:

θi = θi1θi2θi3 . . .θiN . (4.1)

It is said that the values of the chromosome θi configure the so-called geno-
type of the i-th individual, so that by applying some uniquely mapping from
the chromosome representation into the decision space one can obtain the
so-called phenotype. In our problem the phenotype of the i-th individual is
constituted by the coordinates whose values in the chromosome are 1, and as
such, the coordinates where there is a scatterer. It is usually assumed to es-
tablish a one-to-one correspondence between genotypes and phenotypes. The
mapping from phenotypes to genotypes is called a coding and the mapping
from the genotypes to phenotypes is called a decoding. The set of all the pos-
sible chromosomes constitutes the decision space where the GA looks for the
best solution to the problem.

In Figure 4.3A, one can observe a possible starting SC. The starting SC con-
sists in a finite SC (without any vacancy), therefore the chromosome is a vec-
tor of 1s with length equal to the number of cylinders of the starting SC, N.
From this starting SC, we generate new structures using the creation of va-
cancies. In Section 7.1 we will explain in detail this devices. An example of
them is shown in Figure 4.3B.

One of the goals of using GA in the optimization of acoustical properties of
SC is to find the best strategy to create vacancies. Then, following symmetry
restrictions in the creation of vacancies, one can generate these defects in the
starting SC in order to obtain new structures with enhanced acoustical proper-
ties and with some symmetry properties. For example taking into account the
symmetry axis of the starting SC, one could generate vacancies with the next
constrains: (i) with symmetry along the X axis (symX); (ii) with symmetry
along the Y axis (symY); (iii) with symmetry along both the X and the Y
axes (symXY); and (iv) random (nosym). Figure 4.4 shows some examples
of several devices generated following the previous conditions.
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Figure 4.3: Examples of a starting SC (A) and a QOS (B). The chromosomes are also
shown at the bottom of the Figure. From the phenotype, we plot the distribution of
the cylinders (see text).

4.2.3 Cost functions

The mapping of decision space using the so called cost function represents
the values that the algorithm have to optimize. Simple optimization problems
consist of the optimization of a unique cost function, however certain situa-
tions are suitable to be optimized by simultaneously considering several cost
functions. The former problems are called as simple optimization problems,
whereas the last ones are called as multi-objective problems. Obviously, the
use of some cost functions provides a refined solution.

In the following Sections we define a cost function to optimize the attenuation
properties of the SC by means of a simple GA. From these definitions we can
define a couple of cost functions to optimize both the attenuation and the
focalization properties of the SC by means of a multi-objective problem.
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Figure 4.4: Creation of vacancies in a SC; (a) X-symmetric; (b) Y-symmetric; (c)
XY-symmetric; (d) non symmetric.

4.2.3.1 Simple genetic algorithm

When decisions about optimal design involve searching for compromises be-
tween a unique objective, it is said that a simple optimization process is
needed to find the optimal solution to the problem. The decision space and the
cost function related to the objective have to be well-defined in order to start
the optimization process that can be solved using a simple GA as previously
described.

By means of this technique, we introduce the optimization of the attenuation
properties of a SC defining a cost function related to the attenuation produced
by a SC. Acoustic attenuation at a point (x,y), due to an incident plane wave
of frequency f travelling through a SC formed with an array of scatterers of
radius rl placed at (Xcyl,Ycyl) coordinates, is defined as

Attenuation(dB) = 20log
�

1
|p(x,y,Xcyl,Ycyl, f ,rl)|

�
(4.2)

where p is the value of the acoustic pressure and is obtained by means of MST.
Attenuation is normalized for an incident acoustic pressure equal to unity.
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It is necessary to define a cost function based on the Equation (4.2). The goal
is to obtain an arrangement of scatterers that produces an attenuation band as
flat as possible and as high as possible. To do this we will try to optimize
the sum of the mean pressure in the ranges of frequencies of the band and the
mean deviation in these ranges:

Jν�s(
−→x ) = p+

�
∑i(|pi(

−→x )− p|)2

N2
f

(4.3)

where

p =
∑Nf

1=1 |pi(
−→x )|

Nf
(4.4)

4.2.3.2 Multi-objective problems

Attenuation.
This Section defines the objective functions chosen to optimize the acoustic
attenuation of a device generated from a starting SC. We would like to maxi-
mize the attenuation in a predetermined point of measurement, for a range of
frequencies and in the ΓX direction as a multi-objective problem (MOP). Both
the acoustic attenuation level and its uniformity in the optimization range of
frequencies are the cost functions to maximize. In other words, we want to
obtain an IL spectrum with a high attenuation level in a predetermined range
of frequencies and with as low as possible fluctuations in the level of attenua-
tion inside this range.

From Equation (4.2), it is easy to conclude that maximizing sound attenuation
means minimizing acoustic pressure. Taking this fact into account, we define
two objective functions, J1 and J2, representing the mean pressure and the
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mean deviation, respectively, in the range of considered frequencies.

J1(
−→x ) = p =

∑Nf
1=1 |pi(

−→x )|
Nf

, (4.5)

J2(
−→x ) =

�
∑i(|pi(

−→x )− p|)2

N2
f

, (4.6)

where Nf represents the number of frequencies considered in the range un-
der study and −→x = (Xcyl,Ycyl) represents the variable under study, meaning
the position of the existing cylinders sited in the sample. Minimizing these
functions implies obtaining a maximum for the acoustic attenuation with a
similar level of attenuation for all the considered frequencies. J1 is related to
the attenuation level in Equation (4.5), and J2 represents the uniformity of the
value of the attenuation level in the range of frequencies considered in Equa-
tion (4.6). The attenuation level is considered as the truly important function
in this study - stability being a refinement of the obtained results, as shown in
Chapter 7.

Focalization.
In this Section, we define the cost function used to optimize the focusing
properties of a starting SC in a predetermined point of measurement, for a
range of frequencies and in the ΓX direction. Usually, the focalization range
of frequencies is just below the first band gap, this means inside the first trans-
mission band. As in the case of the optimization of the attenuation properties,
here two objective functions have also been defined, taking into account that
the aim is to maximize the acoustic pressure at a predetermined point. The
acoustic focusing level is defined as

Focalization(dB) = 20log
�
|p(x,y,Xcyl,Ycyl, f ,rl)|

�
(4.7)

where p again means acoustic pressure calculated by MST. As in the case
of the acoustic attenuation, the objective is to obtain a high pressure level
with a small fluctuation of the pressure values in a predetermined range of
frequencies. Thus, the objective functions J3 and J2 to minimize are defined
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as

J3(
−→x ) =

1
p
=

Nf

∑Nf
1=1 |pi(

−→x )|
(4.8)

J2(
−→x ) =

�
∑i(|pi(

−→x )− p|)2

N2
f

, (4.9)

where −→x = (Xcyl,Ycyl) and Nf are defined as in the attenuation case. We note
that J2 is the same objective function used in the optimization case explained
above, and this means the uniformity of the values of pressure level is in the
range of the considered frequencies. The minimization of J3 implies a high
level pressure (focusing effect). Again, the pressure level has been considered
as the main parameter in this study, pushing stability in a second plane of the
obtained results.

4.2.4 Operators

After the evaluation of each individual in each generation by means of the
fitness function, the genetic operators create individuals of the next genera-
tion. The members of the population are altered by the action of three main
operators: Crossover, Selection and Mutation.

To explain how these operators work in our algorithm, we present an example
with a couple of random individuals. We consider that the starting SC is
made of 10 cylinders arranged in triangular array by 5 rows and 2 columns.
The lattice constant is a and the radius of the scatterer is r = 0.4a.

The first step consists of the selection of the progenitors for the next gen-
eration, which is done by the reproduction or selection operator. There are
several ways to select the parents individuals of a generation [michalewicz92,
Back94]. Among all of them, two are basically used: the roulette wheel selec-
tion, originally proposed by Holland [holland75, gaMatlab] and the stochastic
universal sampling [gaMatlab]. By means of the reproduction (or selection)
operator GA select the highly fitted (the best values of the fitness function)
individuals to create the offspring for the next generations.
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After the application of the selection operator, we consider that two of the
progenitors of a population are represented, for example, by the next chromo-
somes

Parent1 = (0000101100), Parent2 = (1111111101).

In Figures 4.5A and 4.5B, one can observe the plot of the phenotypes corre-
sponding to the chromosomes of parents 1 and 2 respectively.

Now, the Crossover operator is applied over the progenitors to create the off-
spring of the next population, this means that, the genetic information of two
individuals of the current generation is exchanged for a probability equal to
the crossover rate, pc [gaMatlab], to create the offspring of the next genera-
tion.

The main characteristic of GA with respect to classic optimization method-
ologies is the use of crossover. Crossover is also known as recombination.

Figure 4.5: Application of the genetic operators from two Parents. (A) Parent 1 and
(B) Parent 2. The application of the crossover operator using the multi-point proce-
dure generates Offspring as shown in (C) and (D). The application of the mutation
operator over the Offspring produces the final individuals as shown in (E) and (F).

A common implementation of crossover uses the C-point crossover process,
in which C crossing sites are randomly chosen along a chromosome and all
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genes of a crossing site are exchanged between the two parent chromosomes
to create two offspring. We consider that, in the example C = 2, the crossing
points are 2 and 5. Then the chromosome of the parents is divided into three
parts, such that we exchange the genetic information in each chromosome to
create the next offspring:

O f f spring1 = (0111101100), O f f spring2 = (1000111101).

Figures 4.5C and 4.5D show the plot of the phenotypes corresponding to the
chromosomes of the offspring 1 and 2 respectively.

Finally, the mutation operator is applied to the offspring. Mutation is a stochas-
tic process used to change some genes of the chromosome of the offsprings by
others, in such a way that the final offsprings are generated. The probability
of mutation should be low, but different than zero. This operator ensures the
exploration of new possible zones in the decision space, and as such, mutation
is additionally aimed to maintain the diversity in the population.

Mutation creates a new possible solution in the neighbourhood of a current
solution by introducing in some aspect a small change on it. In practice, for
example, a single gene in a chromosome is altered with a small probability.
For example the mutation of two previous offsprings could be:

Mutation1 = (0111101100), Mutation2 = (0101111101).

Figures 4.5E and 4.5F show the plot of the phenotypes corresponding to the
chromosomes of the mutation of offsprings 1 and 2 respectively. We note
that, due to the low probability of mutation, the application of the mutation
operator can produce the same chromosome for the resulting individual (see
Figures 4.5C and 4.5E) or individuals with small differences compared with
the initial ones (see Figures 4.5D and 4.5F).

4.2.5 Termination test

The termination test of a GA is not trivial because the algorithms is a stochas-
tic search process and the convergence criterion has to be defined. Common
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terminating conditions are: a solution that satisfies minimum criterion; fixed
number of generations is reached; an allocated budget is reached; the highest
ranking solution fitness is reaching or has reached a plateau in such a way
that successive iterations no longer produce better results; manual inspection;
combinations of the above . . . In this work, GA stop when a fixed number of
generations is reached. Then, the approximation to the solution of the prob-
lem is represented by the best fitted individual of the last generation.

4.3 Multi-objective optimization

Decisions on optimal design in many scientific or engineering areas involve
searching for compromises between different objectives. It is natural to look
for the best solution for each objective. However, if some objectives are in
conflict, an improvement in one, or more, objectives means a worsening in
one, or more, of the other ones. The difficulty is the absence of a single
optimal solution. As it has previously been shown, problems where several
conflicting objectives have to be simultaneously optimized are known in the
literature as multi-objective optimization problems (MOP).

4.3.1 Pareto front

For the MOP, the optimal solution is a set called the Pareto set Θp. The main
characteristic of the members of this set is that any of the solutions are better
than the other solutions for some of the objectives - meaning that all solutions
are optimal in some sense. Basic concepts for these kinds of problems are
illustrated in Figure 4.6 for a minimization problem with two objectives (J1
and J2) and two decision variables (θ1 and θ2). The problem is set as:

minJ(θ) = min [J1(θ),J2(θ)] subject to: θ = [θ1,θ2] ε S (4.10)

One of the important definitions in this tool is the concept of dominance: a
point θx = [θx

1,θx
2] is dominated by another point θy = [θy

1,θ
y
2] if at least one
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Figure 4.6: Example of a multi-objective optimization problem with two-dimensional
decision and objective space.

of the objectives of θx (J1(θx) or J2(θx)) is worse than the corresponding θy

objective (J1(θy) or J2(θy)). This is true providing the rest of the objectives
are equal.

Figure 4.6 shows, as an example, a situation where θa dominates θc, but not
θb. The gray area represents all the points (in the objective space) dominated
by θa.

We can define the Pareto set (and its corresponding Pareto front) as the set of
non-dominated points. The Pareto set in Figure 4.6 is referred to as Θp and
the Pareto front as J(Θp).

Solving a multi-objective optimization problem by obtaining the Pareto opti-
mal solution (Pareto set and Pareto front) is not in general a trivial problem.
For instance, some problems present an infinite number of points, and these
problems should be solved by means of classical multi-objective optimization
algorithms [miettinen98]. In essence, the aim of these algorithms is to obtain
a discrete approximation of the Pareto set Θ∗

p and Pareto front J(Θ∗
p) in a dis-

tribution near J(Θp), while ensuring that solutions are not too near each other
(since they would then be more or less the same) and attempting to character-
ize all of the Pareto front (see Figure 4.6). However, classical algorithms are
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sometimes not the best option in problems where the shape of the Pareto front
is complicated and shows problems of discontinuity.

An interesting alternative to solve multi-objective optimization problems is
based on the use of evolutionary algorithms, which enables the simultane-
ous generation of several elements of the Pareto optimal set in parallel and
in a single run. Evolutionary algorithms (or evolutionary computations) are
inspired by biological evolution: crossover, mutation, recombination and se-
lection [back96]. An initial population (a set of possible solutions) evolves by
applying genetic operators that combine the characteristics of some of the in-
dividuals of the population. At each iteration of the algorithm, the population
changes and tries to converge towards the optimal solution Θp, J(Θp).

A number of authors have developed different operators or strategies to con-
vert the original single objective evolutionary algorithms into multi-objective
optimization evolutionary algorithms that converge towards the Pareto opti-
mal set able to characterize it [coello02]. The good results obtained with this
type of algorithm explain their increasing use in many situations [coello04].

The algorithm used in this work is one of the most recent developments in
multi-objective genetic algorithms (MOGA). A brief introduction of the algo-
rithm is presented in the next Section.

4.3.2 Epsilon-variable multi-objective genetic algorithms

The epsilon variable multi-objective genetic algorithm (evMOGA) is an eli-
tist multi-objective evolutionary algorithm based on the concept of epsilon-
dominance [laumanns02]. A complete and detailed version of the evMOGA
algorithm is described in the references [Herrero07]. The evMOGA algo-
rithm obtains a discrete approximation of the Pareto set, Θ∗

p that converges
towards the Pareto optimal set Θp in a smart way (in this type of distribution,
the more sloped a zone of the Pareto front is, then the more points are used to
characterize the zone) and using limited memory resources.

With regard to MOP, a complete and detailed version of the ev-MOGA algo-
rithm is developed in [herrero06] where the algorithm is compared with the
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epsilon multi-objective evolutionary algorithms (ε−MOEA) [Mishra05] by
means of a set of five classical benchmarks for MOP (MOP1 to MOP5 ex-
tract from [coello02]). ε−MOEA algorithm is also based on the concept of
ε−dominance. In [Mishra05], a comparison between the ε−MOEA and other
well known algorithms such as (Non-dominated Sorting Genetic Algorithm)
NSGA-II, (Pareto Envelope based Selection Algorithm) PESA, (Strength Pareto
Evolutionary Algorithm) SPEA2, etc. shows the superiority of the ε−MOEA.
As stated in [Deb07], ε−MOEA is computationally faster and achieves better
distributed solutions than NSGA-II or SPEA2.

PS GD HR SP BR
MOP1

ev-MOGA 25 0.00292 0.929 0.00767 0.5145
ε−MOEA 25 0.00296 0.929 0.00765 0.5143

MOP2
ev-MOGA 42 0.00101 0.981 9.625e-7 0.9223
ε−MOEA 42 0.00107 0.9798 4.676e-6 0.883

MOP3
ev-MOGA 39.8 0.0158 0.9605 0.0632 0.8379
ε−MOEA 38.8 0.0222 0.9603 0.0658 0.8374

MOP4
ev-MOGA 53 0.00299 0.9803 0.0118 0.938
ε−MOEA 49.7 0.00309 0.975 0.0168 0.9323

MOP5
ev-MOGA 53.6 0.00364 0.0182 0.6057
ε−MOEA 30.6 0.00531 0.02818 0.6412

Table 4.1: Comparative values of the Pareto solutions (PS), generational distance
(GD), hyperarea ratio (HR), spacing (SP) and box ratio (BR) metrics for the MOP1 to
MOP5 problems between ev-MOGA and ε−MOEA algorithm. Bold numbers show
the best values obtained for each metric and problem.

Generally, the ev-MOGA algorithm presents better values for classical MO
metrics (Pareto solutions (PS), generational distance (GD), hyperarea ratio
(HR), spacing (SP) and box ratio (BR1) as shown in Table 4.1. The algorithms
optimize each problem ten times with a different initial population (randomly
created) and the average values for each metric are shown in this table.

1For more details on these metrics see [coello02].
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ev-MOGA obtains an ε−Pareto set, Θ̂∗
P, that converges towards the Pareto

optimal set ΘP in a distributed way and utilizes limited memory resources.
Another difference with ε−MOEA is that ev-MOGA is able to dynamically
fit the limits of the Pareto front and prevent the loss of solutions belonging to
the extremes of the front.

4.3.2.1 ε-dominance

The objective function space is split into a fixed number of boxes forming a
grid. For each dimension, n boxi cells of εi width calculated as

εi = (Jmax
i − Jmin

i )/n boxi (4.11)

This grid preserves the diversity of J(Θ̂∗
P) since one box can be occupied

by only one solution. This fact prevents the convergence of the algorithm
towards just one point or area inside the function space (Figure 4.7).

Figure 4.7: The concept of ε−dominance. ε−Pareto Front J(Θ̂∗
P) in a two-

dimensional problem. Jmin
1 , Jmin

2 , Jmax
1 , Jmax

2 , limits space; ε1, ε2 box widths; and
n box1, n box2, number of boxes for each dimension.

The concept of ε−dominance is defined as follows. For a variable in the
decision space θ, boxi(θ) is defined by
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boxi(θ) =
�

Ji(θ)− Jmin
i

Jmax
i − Jmin

i
·n boxi

�
∀i ∈ [1 . . .s] (4.12)

Let box(θ) = {box1(θ), . . . ,boxs(θ)}. A solution vector θ1 with function
value J(θ1) ε−dominates the vector θ2 with function value J(θ2), denoted
by:

J(θ1)≺ε J(θ2), (4.13)

if and only if:

�
box(θ1)≺ box(θ2)

�
∨
��
box(θ1) = box(θ2)

�
∧
�
J(θ1)≺ J(θ2)

��
.(4.14)

Hence, a set Θ̂∗
P is ε−Pareto if and only if ∀θ1,θ2 ∈ Θ̂∗

P, θ1 �= θ2

Θ̂∗
P ⊆ΘP ∧ (box(θ1) �= box(θ2)) (4.15)

4.3.2.2 ε-Pareto front

Next, we describe the procedure to obtain an ε−Pareto front J(Θ̂∗
P), which is

a well-distributed approximation sample of the Pareto front J(ΘP). The algo-
rithm, which dynamically fits the width εi, is composed of three populations
(see Figure 4.8).

1. Main population P(t) explores the searching space D during the algo-
rithm iterations (t). Population size is NindP.
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Figure 4.8: ev-MOGA algorithm structure. P(t), the main population; A(t), the
archive; G(t) the auxiliary population.

2. Archive A(t) stores the solution Θ̂∗
P. Its size NindA can be variable and

will never be greater than

Nind max A =
∏s

i=1(n boxi +1)
n boxmax +1

(4.16)

where n boxmax = maxi n boxi.

3. Auxiliary population G(t). Its size is NindG, which should be an even
number.

The pseudocode of the ev-MOGA algorithm is given by

1. t:=0
2. A(t):= /0
3. P(t):=ini random(D)
4. eval(P(t))
5. A(t):=storeini(P(t),A(t))
6. while t<t max do

97



CHAPTER 4. OPTIMIZATION: GENETIC ALGORITHMS

7. G(t):=create(P(t),A(t))
8. eval(G(t))
9. A(t+1):=store(G(t),A(t))
10. P(t+1):=update(G(t),P(t))
11. t:=t+1
12. end while

The main steps of the algorithm are briefly detailed as follows2:

Step three. P(0) is randomly initialized with NindP individuals (design vec-
tors θ).

Step four and eight. Function eval calculates function values (cost functions
values) for each individual in P(t) (step four) and G(t) (step eight).

Step five. Function storeini checks individuals of P(t) that might be included
in the archive A(t) as follows:

1. Non-dominated P(t) individuals are detected, ΘND.

2. Function space limits are calculated from J(ΘND).

3. Individuals in ΘND that are not ε−dominated will be included in
A(t).

Step seven. Function create creates G(t) by means of crossover (extended
linear recombination technique) and mutation (using random mutation
with Gaussian distribution) operators.

Step nine. Function store checks which individuals in G(t) should be in-
cluded in A(t) on the basis of their location in the function space (see
Figure 4.9). Thus ∀θG ∈ G(t)

1. If θG lies in area Z1 and is not ε−dominated by any individual
from A(t), it will be included in A(t). Individuals from A(t) which
are ε−dominated by θG will be eliminated.

2A more detailed description can be obtained in [Herrero07].
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2. If θG lies in area Z2 then it is not included in the archive, since it
is dominated by all individuals in A(t).

3. If θG lies in area Z3, the same procedure is applied as was used
with function storeini but now applied over the population P�(t) =
A(t)

�
θG. In this procedure, new function limits and εi widths

could be recalculated.

4. If θG lies in area Z4, all individuals from A(t) are deleted since
they are all ε−dominated by θG. θG is included and function space
limits are J(θG).

Figure 4.9: Objective function space areas (Z) and limits (J ). Showing (a) two-
dimensional case (b) three-dimensional case.

Step 10. Function update updates P(t) with individuals from G(t). Every
individual θG from G(t) replaces an individual θP meaning that they
are randomly selected from among the individuals in P(t) that are dom-
inated by θG. θP will not be included in P(t) if there is no individual in
P(t) dominated by θG.

Finally, individuals from A(t) compound the solution Θ̂∗
P of the multi-objective

optimization problem.
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4.3.3 Parallelization

One of the limitations of multi-objective optimization evolutionary algorithms
is their high computational cost. For each individual of the chosen population,
the objective functions have to be computed and in most cases, this represents
the costly part of the algorithm.

The high computational cost of the optimization of the SC attenuation capa-
bility produces huge execution times, meaning that the average execution time
for a population P(t) of 120 individuals, population G(t) of 8, and tmax =6500
generations is around 417035 seconds3 (4 days, 19 hours, 50 minutes and 35
seconds). Improvements of execution time were obtained with a parallel im-
plementation of the ev-MOGA described. Several alternatives for paralleliza-
tion are possible [cantupaz95]. In this work, the Master-Slave configuration
has been used. For this architecture, there is one processor working as Master,
executing tasks of the ev-MOGA, and the rest evaluate the fitness function of
a subpopulation (see Figure 4.10).

The Master has to send a subpopulation to each Slave, who makes a fitness
evaluation and returns results to the Master. The Master works in a syn-
chronous way, waiting for all fitness values from all the Slaves. After re-
ceiving all the fitness values, the Master performs the evolution to produce
the next iteration and sends the Slaves the new population for fitness evalu-
ation. This type of implementation is the simplest and does not change the
operators of the ev-MOGA nor their behaviour. The time reduction is signifi-
cant since the overall time is theoretically divided by the number of Slaves - if
the evolution procedure and Master-Slave communication tasks have no com-
putational cost. With the proposed implementation, the computational cost is
important and the theoretical reduction is not achieved. Even then, the saving
in time is quite large, for the proposed problem, with eight Slaves, the total
execution is reduced to 104204 seconds (1 day, 4 hours, 56 minutes and 44
seconds). The distributed platform is built with eight computers as described:

• All computers are Intel� Pentium� D 3.4GHz.

3Execution is performed with one of the computers on the distributed platform described
later.
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Figure 4.10: Master/Slave architecture for ev-MOGA.

• The master computer has 2 GB RAM and the operating system is Win-
dows Server 2003. This computer works as master and has a slave.

• Slave computers have 1GB RAM and Windows XP.

• Local network with Gigabit Ethernet.

All developments (ev-MOGA and SC models) have been made in Matlab, par-
allelization has been performed with Matlab Distributed Computing Toolbox
and Matlab Distributed Computing Engine.
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5
Experimental setup

The experimental validation of the theoretical predictions is one of the most
important steps in the scientific process. In this Chapter, we give a brief de-
scription of the experimental setup used for the experimental measurements
done in this work.

The first experimental evidence of the sound propagation properties of the
sonic crystals was performed in 1995 by Martı́nez-Sala et al. [Martinez95].
The authors measured in free field conditions the transmission properties of
a finite periodic minimalist sculpture by Eusebio Sempere, observing similar
behaviour to the electron propagation in solid crystalline structures. Since
these experimental results were done, a great number of works have been
motivated to explain the correct behaviour of these systems. Thus, better and
improved experimental conditions have been needed to check the theoretical
results.

All the experimental results shown in this work have been measured un-
der controlled conditions in an anechoic chamber located at the Universidad
Politécnica de Valencia. The characterization of the anechoic chamber can be
found in reference [Rubio97] and it will be summarized in Section 5.1. In
Section 5.1, we will also show the system to place the SC in the anechoic
chamber and the frames used to introduce the periodicity in the experimental
samples.

Two different acquisition systems have been used throughout this work. The
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recent development of a robotized acquisition system (3DReAMS) capable
of sweeping the microphone through a three dimensional grid of measuring
points located at any trajectory inside the echo-free chamber, synchronizing
the motion and the acquisition of the signal, has represented a big improve-
ment in the experimental measurements done in this work. At the beginning,
the motion and the positioning of the microphone were done manually and
B&K PULSE Multi-analyser system, type 3560C, was used for the acquisi-
tion. After that, the most recent experiments shown in this work have been
measured using the three-dimensional robotized e-acoustic measurement sys-
tem (3DReAMS). Both experimental setups are briefly explained in Sections
5.2.1 and 5.2.2.

Finally, a list of the scatterers analysed in this work, showing the geometrical
shapes and characteristics are shown in Section 5.4. A detailed table of the
SC analysed in this work is also shown in this Section.

5.1 Anechoic chamber

From the acoustic counterpart, anechoic chambers are rooms designed to stop
reflections of sound waves. They are also insulated from exterior sources of
noise. The combination of both aspects means they simulate a quiet open-
space of infinite dimension, which is useful when exterior influences would
otherwise give false results. The size of the chambers depends on the size
of the objects to be tested and on the frequency range of the signals used, al-
though scale models can sometimes be used for testing at shorter wavelengths.

The calibration of the anechoic chamber used and its main properties can
be found in reference [Rubio97]. Results on the dependences of the sound
pressure level and the phase are tested: for a point source placed elsewhere,
the sound pressure level decreases 6 dB when the distance between source
and microphone is doubled and the phase also increases linearly with this
distance.The dimensions of this anechoic chamber are 8× 6× 3. Figure 5.1
shows the distribution of the source, sample, microphone, fast Fourier trans-
form (FFT) analyser and PC in the laboratory.
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Figure 5.1: Schematic view of the distribution of the source, frame, microphone, FFT
analyser and PC in the laboratory.

Figure 5.2: Pictures of the distribution of the source, microphone and frame in the
anechoic chamber. The hanging system can also be seen.

The main use of this anechoic chamber is the experimental analysis of SC.
The samples were designed to be similar to Eusebio Sempere’s sculpture.
Two different frames with square and triangular periodicities were used to
construct different SC with different periodicities and lattice constants. These
frames enables the hanging the scatterers in such a way that the SC can present
different filling fractions.

These frames have a surface of 2×2 m2 with a thickness of 5 cm and they are
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hung from a ball-and-socket joint making the rotation of the frame possible.
The structure can support a weight of approximately 1000 kg. Figure 5.2
shows a picture of the mechanism of the frame and the hanging system. This
system enables the rotation of the SC with respect to its center, thus it is
possible to analyse the dependence of the sound propagation through the SC
on the angle of incidence of the wave.

Figure 5.3: Schematic view of both triangular and square frames. Detailed picture of
the SC once the scatterers are hung.

The minimum lattice constant achieved with the frame with square array is
5.5 cm, whereas in the case of a triangular periodicity the minimum lattice
constant is 6.35 cm. Thus, it is possible to construct SC with lattice constants
with a multiple of these values. Figure 5.3 shows the transversal views of both
square and triangular frames, as well as a detailed picture of the cylinders
placed in the frame.
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5.2 Acquisition system

The setup used in this work is as follows: The sample to be analysed is placed
between the source and the microphone. Then the microphone is connected to
a fast Fourier transform (FFT) analyser where the temporal data are processed
using the FFT. The FFT analyser is connected to a computer where the data
is represented in the usual form of the sound pressure levels in dB.

In the first stages of this work, a setup was used in which the acquisition
and the motion of the microphone and the sample were not synchronized. In
this system the microphone, the sample and the source were placed in the
desired distribution and then the acquisitions systems were turned on. We
recently developed a novel three dimensional positioning system (3DReAMS)
for the anechoic chamber in order to control the motion of the microphone,
the source, the sample and all of them synchronized with data acquisition.

These two acquisition setups are briefly explained in the next Section.

5.2.1 Non robotized system

At the beginning of this work, the sound pressure measurements were taken
by means of a B&K PULSE Multichannel data acquisition unit Type 2827
with a B&K LAN Interface Module Type 7533 and 4/2 ch. Input/Output
Module Type 3109.

PULSE, a Multichannel data acquisition unit Type 2827, is a task-oriented
analysis system. It provides the platform for a range of PC-based measure-
ment solutions from B&K. A PULSE system with LAN interface consists of
a PC, PULSE software, an operative system, the interface, portable data ac-
quisition front-end hardware and analysis motor. System configurations with
4 input channels and 2 generator output channels are possible. Type 2827
can either be powered by two internal Nickel-Metal Hydride batteries, from a
10-32 V DC power supply or from an AC/DC supply.

The maximum sampling rate of the PULSE Type 2827 is 65 kS/s and the
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analog inputs present 16-bit resolution ADCs. Then, the range of frequencies
that can be analysed with this system is ranged between 0 Hz and 25.2 kHz.
With this hardware, the acquired signals were processed by the B&K software
for a PULSE system, Noise and Vibration Analysis Type 7700.

5.2.1.1 Sound source

In this setup, a speaker placed in the focus of a parabolic reflector was used
as a sound source. The reflector is employed to collimate the beam. Never-
theless, the distance between the source and the sample was not enough to
produce a full plane wave front when the sound reached the sample; however
this ideal situation could be considered from a theoretical point of view.

5.2.2 3DReAMS

The need for accurate spacial measurements for a better understanding of the
experimental behaviour of the SC motivated the development of 3DReAMS.
This system was developed in collaboration with the CPOH research group of
the UPV and Talleres Ferriols (Valencia). The acoustical part was designed by
us, CPOH developed the control of the motion of the robot and Talleres Fer-
riols designed the structure of the robotized system. The robot was financed
by Generalitat Valenciana through the FEDER founds.

In the next Sections, we describe the main characteristics of the control of
motion and the acquisition system.

5.2.2.1 Robotized system and control of motion

3DReAMS is a Cartesian robot with three axes (X, Y, Z) installed in the ceil-
ing of the anechoic chamber previously described. The robot was designed to
sweep the microphone through a 3D grid of measuring points located at any
trajectory inside the echo-free chamber (see Figure 5.4). The robot has a ro-
tatory column (also installed on the ceiling of the anechoich chamber) where
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the periodic frames are placed (see Figure 5.2).

Figure 5.4: Detail of the robotized system

Each one of the three axes has a stepper motor that allows the robot to move
with high precision in each axis. The main characteristic of these motors is
that one can move 1 step by a tension pulse in the desired direction, thus
making it possible to choose both the velocity and the rotatory direction. The
motors used in this work need 200 pulses to rotate 360◦, meaning that in each
pulse, the stepper motor is capable of moving 1.8◦. This rotatory movement is
transformed in a lineal displacement of each axis. To do this, we use a xx:yy
gearbox, in such a way that a tension pulse produces a lineal displacement of
xx cm in the X axis, yy cm in the Y axis and zz cm in the Z axis. The rotatory
column does not contain gearbox, therefore, each applied pulse produces a
rotation of the column of 1.8◦.

The control of the robot is shown in Figure 5.5. Each motor contains an
associated driver that controls the flux of current inside of the coil of the
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motors in order to move it in the proper way. These drivers are controlled
by three signals: enable, that enables the driver to introduce current into the
motor; direction, that indicates the direction of the rotation of the motor, and
pulse, which is a square signal that, when changing from the logical value 0
to 1, makes the driver control the flux of current to rotate the stepper motor
(1.8◦) in the direction indicated by direction.

Figure 5.5: Schematic view of the control of the robot.

The drivers are plugged to a board to control the motion. It is a hardware of
National Instruments capable of controlling a robot with up to 4 axes (NI-PCI
7334).

After configuring the NI-PCI 7334, it must:

1. Move each one of the axes independently and/or simultaneously.

2. Control the trajectory of the robot, starting from a current position to a
desired position which is saved in the driver. By doing so, the accelera-
tion and the velocity are controlled.

3. Detect the ends of the anechoic chamber, stopping the robot when an
end is found.
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4. Place the robot in a reference position (zero position), with a high pre-
cision approximation, based on the home sensors.

Thus, the control process of the robot could be as follows:

1. When the system in turned on, the robot should be at the zero position.

2. Once the robot is at the zero position, the driver records this position as
the absolute zero of the anechoic chamber.

3. At this point, only the new position of the robot must be indicated to
the driver. Then the driver chooses the direction of movement, the
amount of pulses and the frequency in order to do the movement in
complete agreement with the acceleration and the velocities previously
programmed.

4. Of course, the robot can be turned off at any time.

5.2.2.2 Acquisition hardware

The National Instruments (NI) cards PCI-4474 were used for data acquisition.
This hardware presents four dynamic signal acquisition channels to perform
high-accuracy audiofrequency measurements. The analogical inputs present
24-bit resolution ADCs that are simultaneously sampled in a software pro-
grammable rate. The high resolution provides the necessary accuracy to make
the NI PCI-4474 card adequately suited for the applications in audio and vi-
bration signal analysis and it achieves low noise and low distortion.

The analogical inputs have both analogical and real-time digital filters im-
plemented in the hardware to prevent aliasing. Input signals are first passed
through fixed analogical filters to remove any signals with frequency compo-
nents beyond the range of the ADCs; then digital antialiasing filters automat-
ically fit their cutoff frequency in order to remove any frequency components
above half the programmed sampling rate. The maximum sampling rate of
the NI PCI-4744 is 102.4 kS/s, in our experimental setup 52 kS/s was used,
which is sufficient for the range of audible frequencies.
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These applications were used together with the Sound and Vibration Toolkit
and the Order Analysis Toolkit for LabVIEW. Using these toolkits in con-
junction with NI PCI-4474 cards, an acquisition system synchronized with
the motion of the robot controlled by the NI PCI-7334 was developed. This
software controls the motion of the robot and places the microphone at the
desired point and then the motors that move the axes of the robot are turned
off in order to prevent distorsions and coupling in the acoustic measurement.
Once the robotized system is turned off and the acoustic source and the mi-
crophone are turned on, the microphone acquires the temporal signal. From
this temporal signal, one can obtain the power spectra, the frequency response
or the sound-level measurement.

5.2.2.3 Sound source

The GENELEC 8040A is a way active monitoring loudspeakers designed to
produce high sound pressure level output, low colouration and broad band-
width in a small enclosure size.

The free-field frequency response of the system (error of 2.0 dB)is from 48 Hz
to 20 kHz. Figure 5.6 shows the horizontal directivity characteristics of the
8040A measured at 1 m. The lower curve shows the system’s power response.

The source has a weight of 8.6 kg and its dimensions are 350 mm of height,
237 mm of width and 223 mm of depth.

5.3 Microphones and accelerometers

5.3.1 Microphone

All the acoustic measurements were obtained by a prepolarized free-field mi-
crophone 1/2” Type 4189 B&K.

The Type 4189 presents a sensitivity of 49,5 mV/Pa, and due to this great

112



5.3. MICROPHONES AND ACCELEROMETERS

Figure 5.6: The upper line group shows the horizontal directivity characteristics of
the source provided by the manufacturer measured at 1 m. The lower curve shows
the system’s power response.

sensitivity, wide range of frequencies can be analysed and it is adequately
suited to general sound measurements requiring frequency analysis. This mi-
crophone offers significant advantages when used with portable, low-power
instruments not designed to produce a polarization voltage. Another advan-
tage is the greater reliability of the associated preamplifier under humid and
polluted conditions. These factors make these prepolarized condenser mi-
crophones particularly suitable for field measurements, both outdoors and in
industrial environments.

Some important characteristic to take into account when measuring pressure
field inside the SC is the dimensions of the microphone. The diameter of the
microphone is 1.32cm and its length is 1.76 cm.

The microphone is connected to a Deltatron microphone preamplifier Type
2671, that converts several protocols of intensity, such as DeltaTron or ICP
constant current line drive (CCLD) (which must be between 2 and 20 mA
(nominal 4mA)), into a constant 12 V DC level. This point is fundamental to
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couple the B&K microphones with the NI PCI-7334. The output signal from
the microphone swings around this DC level. Since no polarization voltage
is available, only prepolarized condenser microphones such as the Type 4189
can be used. The frequency response is calibrated between 20Hz and 50 kHz.

5.3.2 Accelerometer

The analysis of wall vibrations was done measuring with the miniature ac-
celerometer B&K Type 4393. The sensitivity of the accelerometer is 0.317
pC/ms2. This accelerometer is made of Titanium with a weight of 2.2 g. Type
4393 of B&K are suitable for measurements on lightweight structures and it
was used to analyse the wall vibration of the U-profile scatterers (see Section
5.4) which accomplishes the conditions to be measured with the miniature
accelerometer Type 4393. The typical frequency response of the Type 4393
is a flat response from 200 Hz to 18 kHz.

5.4 Scatterers

In this work, we have carried out measurements on SC made of both rigid and
resonant scatters. In Figure 5.7 we can see all of the scatterers analysed in this
work. SC made of rigid scatterers have been built with two different filling
fractions, changing both the diameter of the cylinder and the lattice constant.
Figure 5.7B shows the aluminium cylinder of 4 cm diameter and Figure 5.7C
shows the PVC cylinders of 20 cm diameter. Both cylinders has been used to
build SC with rigid scatterers.

Balloons, split ring resonators and U-profiles have been used as resonant scat-
terers. Figure 5.7A shows the picture of the balloons. They are made of low
density polyethylene (LDPE), whose density is 921 kg/m3, and the thickness
of the wall is 500 gauge. The split ring resonators have been performed mak-
ing slits in a PVC rigid hollow cylinder. An example of the sample can be
observed in Figure 5.7D. The aperture of the resonator is 2 cm of length. Fi-
nally, the U-profile scatterer, made of low density Polyethylene foam can be
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Figure 5.7: Pictures of scatterers analysed in this work. A) Ballon. B) Rigid Scatterer
(Aluminium). C) Rigid Scatterer (PVC). D) Split Ring Resonator (SRR) (PVC). E)
U-profiles, front and back of the scatterer.

seen in Figure 5.7E. We show a detail of the back and the front of the scatterer.

Figure 5.8: Transversal view of the U-profile scatterer. Dimensions of different parts
of the profile are indicated in the picture.

Figure 5.8 shows the transversal view of the different parts U-profile scatterer
where the dimensions are indicated. Table 5.1 shows the elastic properties of
low density Polyethylene foam [mills07].

Several SC can be built with the different scatterers shown in Figure 5.7. A
summary of the SCs experimentally analysed in this work is presented in the
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Table 5.1: Elastic properties of Low Density Polyethylene Foam.
LDPE Foam

Density
(kg/m3) 100

Young’s modulus
(109 Pa) 0.35

Poisson’s ratio 0.4

Table 5.2. We have included the scatterers used to build each SC as well as
the type of lattice and the lattice constant considered in the corresponding
experiments. Table 5.2 is horizontally divided in two parts. The upper part
shows the scatterers used to construct SC made of rigid elements and the lower
part shows the scatterers used to construct SC made of resonant elements.

Table 5.2: Experimental SC analysed in the work.
Scatterer Lattice Constant a (cm) Lattice

Aluminium 6.35 Triangular
22 Square

PVC 33 Square
Balloons 12.7 Triangular
U-profiles 12.7 Triangular

SRR 33 Square

116



6
Low number of vacancies: point

defects in sonic crystals

Sonic crystals containing defects in their structure show additional sound
transmission properties [Sigalas97, Caballero01, Hakansson04]. In the case
of the low number of defects with respect to the total number of scatterers in
the structure, the periodicity is locally broken and an increasing interest in this
situation has arisen in the last years: high precision wave filters [Sigalas98]
or waveguides [Khelif03, Khelif04] can be designed by the creation of point
defects in periodic systems [Pennec04, Tanaka07, Vasseur08].

The effect of single point defects in SC showing the localization of sound
waves in the vacancy as well as the evanescent behaviour of the localized
mode outside the vacancy have been analysed in this Chapter. We note that
the behaviour of the wave inside the vacancy can be assimilated with the be-
haviour of the same wave impinging over a complete SC because, in both
cases, the wave observes the same periodic structure. Therefore a compari-
son between the two cases has been done in order to obtain the evanescent
behaviour of both modes located inside the BG. Moreover novel data demon-
strating the localized modes are reported here.

In this Chapter we also show novel results on the imaginary part of the Bloch
vector for the localized modes inside the SC with multi-point defects. The
localization of waves inside these defects is mainly characterized by three
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properties. Firstly, the modes are separated in the frequency domain, mean-
ing that, there is a splitting of the localization frequency if the point defects
are close enough. Secondly, the modes present symmetries in the vibrational
pattern depending on the number of vacancies in the crystal. Thirdly, the
localized modes are evanescent and they decay outside the defect but inside
the SC. We show results of a double point defect in very good agreement
with the measurements of the symmetric and antisymmetric vibrational pat-
tern of the localized modes. Evidently, the oscillation modes of Np-point
defects with Np > 2 will present more complicated vibrational patterns than
the ones appearing in the double point defect, then they cannot be classified
into such simple modes as symmetric and antisymmetric ones. The PWE
and the EPWE (see Chapter 3) have been used to characterize the evanescent
and propagating properties of localized modes in point defects. Experimental
results are in very good agreement with the analytical ones.

6.1 Point defects in sonic crystal

One particularly interesting aspect of SC is the possibility of creating point
defects to confine acoustic waves in localized modes [Sigalas98, Zhao09].
Due to the locally breaking of the periodicity of the structure and the pres-
ence of the BG, defect modes can be created within this inhibition range of
frequencies. Consider a wave with frequency inside the BG impinging over a
periodic system with a vacancy. Once the wave is inside the cavity created by
the defect, it is trapped because the borders of the defect act as perfect mir-
rors for waves with frequencies in the BG [joannopoulos08]. Thus, the wave
is strongly localized in the point defect creating the localized mode or defect
mode. Localization depends on several parameters as for example the size of
the point defect [Sigalas98, Zhang04].

In Chapter 2, the evanescent behaviour of the modes inside the BG was men-
tioned. Localized modes have their frequencies inside the BG, therefore they
should present an evanescent behaviour. Recent experimental results [Wu09a]
show the measurements of the sound pressure level recorded inside of a point
defect and behind the SC. The authors observed that this level is larger inside
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the cavity than behind the crystal. This fact clearly shows both the localization
of sound in the cavity and the evanescent behaviour of the localized mode. In
the electromagnetic regime some authors measured the evanescent modes in
photonic crystals [Engelen09] showing a multi-exponential decay.

Making use of the EPWE, presented in Chapter 3, a deeper explanation of the
localized mode has been introduced in this Section. Using the k(ω) method
for defect modes, we observe that k can have real and imaginary parts, giving
rise to complex band structures; the real part of the complex band structures
gives information about the frequency of the localized mode in the vacancy,
whereas the imaginary part is related to the decay of the localized mode out-
side the vacancy. Particularly, although it has been shown that the localized
modes present multiexponential decay [Engelen09], we observe that only the
first harmonic of the imaginary part of the band structures substantially con-
tributes to the decay rate of the mode in a SC made of rigid cylinders.

This Section presents results of a 2D SC consisting of PVC cylinders of radius
r = 0.1 m embedded in air arranged in square lattice with lattice constant
a = 0.22 m. The material parameters employed in the calculations are ρair =
1.23kg/m3, ρPVC = 1400 kg/m3, cair = 340 m/s and cPVC = 2380 m/s. We
consider a filling fraction f f = πr2/a2 � 0.65.

6.1.1 Localized modes

One of the characteristics of SC with point defects is the localization of waves
in the vacancy. The EPWE with the supercell approximation has been used
to calculate the complex band structures of the considered SC with a point
defect. Figure 6.1 shows the complex and real band structures for such peri-
odic system. 1225 plane waves have been used for the calculations using the
EPWE.

The black area in Figure 6.1B shows the BG of the complete structure and
one can observe that the BG appears between 627 Hz and 1111 Hz.

The generation of one vacancy is analysed using the supercell of size 5a×5a
shown in the inset of Figure 6.1A (left panel). The imaginary and real band
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Figure 6.1: Band Structures versus experimental results for a complete SC and for
a SC with a defect point. (A) Left panel: Complex Band Structure calculated using
the EPWE with the supercell approximation. Central panel: Real Band Structure.
Dashed line represents the localized mode. Right panel: Experimental Insertion Loss
in the Band Gap of both the complete SC (dashed line) and the SC with a point defect
(continuous line). The inset shows the supercell used in the calculations. Red Square
marks the value of the imaginary part of the wave vector Im(k) = −5.6 m−1. (B)
Band structures for a complete SC.

structures of a SC with a point defect are shown in the left and central panels
in Figure 6.1A respectively. In the real part of the band structures one clearly
observes the passing mode generated inside the BG due to the point defect
(green dashed line). Related to this mode, it is possible to obtain the frequency
of the localized mode, 920 Hz.

These results are compared with measurements of the Insertion Loss (IL) be-
hind the SC with and without the point defect. The finite 2D SC used in this
experiment forms a square array with lattice constant a = 22 cm. The size
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of the SC is 5a×5a and the radius of the cylinders is r = 10 cm (the same as
the supercell). We use the prepolarized free-field 1/2” microphone Type 4189
B&K (see Chapter 5) that has a diameter 1.32 cm, which represents approx-
imately 0.06a. We expect a low perturbation of the acoustic field due to the
microphone.

In Figure 6.1A (right panel), we can observe that the experimental IL for the
localized mode at frequency 920 Hz (blue continuous line) is lower than in
the case of the complete SC (red dashed line), meaning that, the localized
mode can travel through the crystal. Then, it can be concluded that there is
a passing mode. This occurs as the localized mode is not completely extin-
guished by the SC around the point defect (see also [Wu09a]). In fact, this
result shows that the localized mode has an evanescent behaviour and that,
as we will see later, in this case there are not enough rows around the point
defect to extinguished it.

Both the PWE and the EPWE predict a localized mode with a determined
frequency but, due to the finite size of the SC, the localized mode is centered
in a narrow range of frequencies [Wu09a]. It seems interesting to analyse how
the localization is created in a finite SC. Figure 6.2 represents the measured
3D spectra for a SC with a point defect. The spectrum at point x0 is plotted
in the YZ-plane, so that the frequency is in the y-axis and the absolute value
of the pressure is in the z-axis. The 3D spectra is constructed by plotting the
spectra for all the points inside the SC between two rows. Because the range
of frequencies of interest is inside the BG, only the frequencies in the range
[750, 1000] Hz were plotted. Figure 6.2 shows the experimental evidence
showing that the localization is not produced for a unique frequency, but for a
narrow range of frequencies.

In the literature related to this field there is a great number of works analysing
the localization of sound in point defects [Sigalas98, Wu01, Khelif03] how-
ever a few works present experimental results of the localization modes. Fig-
ure 6.3A presents the numerical results of the acoustic field inside a point de-
fect in a SC. The absolute value of the sound pressure inside the point defect
of the SC has also been experimentally analysed by moving the microphone
using the 3DReAMS (see Chapter 5). Figure 6.3B represents the experimen-
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Figure 6.2: 3D spectra for the SC with a point defect. Measured 3D spectra for all
the points inside the inner path in the SC with a point defect.

tal results obtained for the first time inside a point defect. One can see the
agreement between numerical and experimental results although it is possible
to observe a perturbation of the acoustic field produced by the microphone in
the zones where the microphone is near the walls of the cylinders surrounding
the point defect.

6.1.2 Evanescent behaviour

As we have just seen in the previous Section, the generation of point defects
produces a passing mode which is localized in the point defects. Due to the
periodicity surrounding the point defect, the wave sees a complete SC in ev-
ery directions from inside the point defect. Thus, the localized mode should
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Figure 6.3: Acoustic field inside the point defect calculated using FEM (A) and
experimentally measured (B).

appear inside the BG of the periodicity, therefore the mode presents evanes-
cent behaviour outside the cavity. The decay rate of the mode is analogous to
a wave with the same frequency impinging over a complete SC from outside.
Both cases should be represented by the same Im(k), and as such, by the same
evanescent behaviour.

To understand this phenomenon, it seems necessary to analyse firstly the
evanescent behaviour of a mode with the same frequency as the localized
mode, 920 Hz, but propagating through a complete SC. This mode is effec-
tively inside the BG, and it should present an evanescent behaviour. The value
of the imaginary part of the first harmonic of the wave vector is marked in the
complex band structure with a red square in Figure 6.4. One can see that
Im(k) =−5.6 m−1 for frequency 920 Hz in a complete SC.

In order to observe the exponential decay of the acoustic field, the absolute
value of the pressure in the points between two rows of the SC has been nu-
merically calculated, using FEM with radiation boundary conditions in the
walls of the cylinders and considering an incident plane wave of 920 Hz. The
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Figure 6.4: Acoustic pressure inside a 5×5 SC with square array with lattice constant
a= 22 cm, for a frequency in the BG of 920 Hz. Black continuous line (connected red
open circles) represents the absolute values of the numerical (experimental) pressure
inside the SC. Red dashed line represents the fitting of the exponential decay of the
measured acoustic field inside the SC. The inset represents the measurement points
inside the SC and both the complex and real band structures.

results are plotted in black continuous line in Figure 6.4. It is possible to
observe the decay of the mode with the distance all along the SC. Experi-
mentally, the absolute value of the sound pressure is measured between the
two rows of the SC moving the microphone by means of 3DReAMS in steps
of 1 cm as in the trajectory shown in the inset of Figure 6.4. The connected
open red circles represent the experimental results in good agreement with
the numerical data (black continuous line). With these experimental results,
the decay of the evanescent mode inside the BG can be fitted. In order to fit
an exponential decay aebx the points with maximum values have been cho-
sen. The values of the parameters in the fit are a = 0.05597± 0.0103 Pa,
and b = Im(k) = −5.60± 1.45 m−1, and the result is plotted in Figure 6.4
(red dashed line). Numerical, analytical and experimental results show the
evanescent behaviour of waves with frequencies in the BG.
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Figure 6.5: 3D spectra for a complete SC. 3D experimental spectra for all the points
inside the inner path in the SC.

Figure 6.5 shows the evanescent behaviour for all the modes in the range
of frequencies [750, 1100] Hz inside the BG. The represented experimental
3D spectra shows the evidence of the evanescent behaviour for all the modes
inside the BG for a complete SC. The situation is similar to the one shown in
the previous section in Figure 6.2 in the case of the SC with a point defect,
where there is a change in the propagation properties due to the presence of the
point defect. The evanescent behaviour for all modes outside the frequencies
of the localization range can also be observed in Figure 6.2.

The previous results can be compared with those obtained by analysing the
imaginary part of the band structures of a SC with a point defect (shown in
Figure 6.1). There are several values of the imaginary part of the wave vector
at the localized frequency in the Complex Band structures. This fact shows
the multiexponential behaviour of the localized mode [Engelen09]. We note
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that in the complex band structures (left panel) the value of the k number for
the modes inside the BG can be obtained using the EPWE and it becomes a
purely real value for the localized mode. That value coincides exactly with
the value obtained using the plane wave expansion (PWE) with supercell ap-
proximation.

In order to study the behaviour of this mode the acoustic field inside the SC
is numerically analysed. In Figures 6.6A and 6.6B we can observe the maps
obtained using FEM for the complete SC and for the SC with a point defect
respectively. Figure 6.6C represents both numerical and experimental abso-
lute values of the pressure for the complete SC and for the SC with a point
defect corresponding to the cross sections marked with a red line in Figures
6.6A and 6.6B. Experimental results are also plotted in Figure 6.6C.

Figure 6.6: Absolute values of the acoustic field inside the SC with and without point
defect. Numerical maps calculated by FEM inside the complete SC (A) and inside
the SC with a point defect (B). (C) Numerical and experimental results for the interior
path marked in (A) and (B) with a continuous line. The dashed line (open circles)
represents the numerical (experimental) results for the complete SC. The continuous
line (open squares) represents the numerical (experimental) results for the SC with a
point defect.
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In blue line in Figure 6.6C one can observe the effect of the point defect
in the acoustic field inside the SC. In the region of the point defect there is
an increasing value of the acoustic pressure due to the localized mode. It
can also be observed that the absolute value of the pressure for the localized
mode is higher than at the end of the complete SC, proving the passing mode
shown in Figure 6.1. To enhance the localization of the sound inside the
SC a higher number of rows around the point defect is necessary as shown
elsewhere [Wu09a].

The border of the cavity is located at approximately x = 0.6 m as it can be
observed in Figure 6.6B. From this point to the end of the SC, the acoustic
field is drastically reduced, but with this evidence, it is not possible to confirm
the evanescent behaviour of the localized mode outside the cavity. To do this,
the sound inside a bigger SC with a point defect (see inset of Figure 6.7A)
has been analysed. Figure 6.7A presents both numerical (blue line) and ex-
perimental (blue open circles) values of the acoustic field from the end of the
cavity to the end of a SC, showing the evanescent behaviour of the localized
mode outside the cavity. Analogously to the case of the complete SC, maxi-
mum values (see black open circles in Figure 6.7A) have been chosen in order
to fit an exponential decay aebx. The values of the parameters in the fit are
a = 3.84±9.92 Pa and b = Im(k) =−5.81±4.06 m−1, and the curve is also
plotted in Figure 6.7 (red dashed line). From an experimental point of view,
the size of the SC constitutes a constraint, and as a consequence a few points
for the exponential fit can be used. This results in a big error in the parameters
of the fit. Even so, the value obtained for the Im(k) is very close to the one
obtained both analytically (EPWE) and experimentally for the complete SC.
The difference is less than 4% in both cases.

6.2 N-point defects in sonic crystals

Since Sigalas et al. [Sigalas97] studied the defect mode produced by a point
defect in periodic structures, several kinds of defects have been analysed in
recent years, showing in all cases the localization of sound for frequencies in-
side the BG [Li05, Wu03, Zhong05]. Experimental and numerical analysis of
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Figure 6.7: Absolute values of pressure inside a 6×5 SC with a point defect: Nu-
merical results (continuous line), experimental results (open squares). The dashed
line represents the fitted exponential-like decay of the localized mode using the open
circles.

the localization in a point defect considered as a cavity inside the SC were re-
ported in the previous Section. The dependence of the localization on the size
of the crystal and on the filling fraction (the bigger the size and filling frac-
tion the bigger the localization in the cavity) was recently studied by Wu et
al. [Wu09a, Wu09b] and by Zhao et al. [Zhao09, Zhao09b]. Moreover, when
multi-point defects are considered, the interaction between localized modes
in each defect-point shows interesting properties [Khelif03]. In the case of
multi-point defects, the interaction depends on the distance between the cav-
ities: the bigger the distance between cavities, the lower coupling between
defect points.

The interaction of the defect modes inside a periodic system is explained by
their evanescent behaviour. Properties analogous to the case of a system with
masses and springs, or to the Zeeman effect appear in periodic systems pre-
senting multi-point defects [Li05]. In a system of masses and springs, an
odd number, n, of coupled springs present n/2 characteristic modes with fre-
quency bigger than ω0 (frequency of a single spring) and n/2 characteristics
modes with frequency lower than ω0. If n is an even number one mode has
the frequency ω0 and the rest n−1 modes are distributed symmetrically above
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and below this mode. The familiarized reader with the Zeeman effect in the
atomic spectra will be able to appreciate the analogy with these results. In
each case a symmetric splitting of the modes is produced by an interaction
(in the case of the Zeeman effect by the application of a magnetic field, in
the case of the springs by the coupling of masses by spring, and in the case of
point defects by the interaction between the localized modes by its evanescent
behaviour) [Li05, marion00]. Figure 6.8 shows the mentioned dependence of
the splitting in several modes due to the breaking periodicity by several point
defects forming a bigger cavity known as multipoint defect. In Figure 6.8 the
splitting in both a double and a triple point defect is shown in comparison
with the localized mode in a single defect.

Figure 6.8: Dependence of the localized modes in multipoint defects on the number
of single defects. Left panel: single defect, central panel: double point defect and
right panel: triple point defect.

The three main characteristics of the modes produced by N-defects in SC
are: splitting, localized mode with special symmetry vibrational patterns and
evanescent decay of the modes. All of these effects only appear if the N-
defects are close enough to interact by means of their evanescent behaviour
[Li05]. If the N-defects do not interact, each one acts as a point defect inde-
pendently of the others.
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The splitting of the frequencies of the modes may be qualitatively understood
by considering that the cavities produced by the N-defects are coupled form-
ing a large cavity with two resonant frequencies.In this Chapter the physical
phenomena appearing in SC with a double point defect are widely analysed.
This simple case allows us to have an insight into the effects of the case of
N-point defects and it also enables the novel experimental results proving the
theoretical conclusions obtained using the EPWE and MST (Chapter 3 ).

First the splitting produced by the generation of a double point defect is anal-
ysed, showing the effects in both the real and imaginary band structures. From
the imaginary complex band structure we can see that the localized modes
present different values for the imaginary part of k; this means that each mode
has a different decay rate inside the crystal. This property has been experi-
mentally observed by fitting the exponential decay for each localized mode
inside the crystal. The symmetry of the vibrational patterns in double point
defect have also been analysed in this Section by means of MST predictions
and experiments. Novel experimental evidence shows the symmetric and an-
tisymmetric vibrational patterns in SC with double point defects. Finally,
using the different decay rate of both vibrational modes, a new methodology
to determine different vibrational modes in periodic media is presented.

6.2.1 Double point defect

In addition to the study of the complex and real band structures, MST has
been used to observe the vibrational patterns of the localized modes in a dou-
ble point defect in finite SC. In the double point defect, when the distance
between both defects is short enough, a symmetric and antisymmetric vibra-
tional modes appear [Li05]. The splitting has been attributed to the coupling
between the single-cavity modes confined to each single cavity. In this case,
the original lower single cavity level is splitted in two with the completely
breaking of degeneracy.

In the case of double point defect, the splitting of the localized modes is anal-
ogous to the degenerate atomic levels in diatomic molecules. This splitting
is analogous to that of the electron states in diatomic molecules such as H2,
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where the interaction of two atoms causes a splitting of the degenerate atomic
levels into bonding and antibonding orbitals. In electronic molecules, the
bonding strength is given by the Coulomb forces between the nuclei and the
electrons, and the exchange interaction between electrons. In contrast, the
interaction of the acoustic modes in cavity molecules is determined by the
geometry of the molecules and thus can be varied by the structure design
through, for example, varying the length or the width of the interconnecting
channel. Generally speaking, splitting decreases with the increasing in dis-
tance along molecule axis and the decreasing in the width normal to molecule
axis.

(A) (B) (C) (D)

Figure 6.9: Dependence of the localized modes on the distance between the single
point defects in a double point defect. (A) single defect, (B) double point defect with
d = 2a, (C) double point defect with d = 3a and (D) double point defect with d = 4a.

The width between the frequencies of the two defect modes decreases as the
distance between the single points that configures the double defect increases
[Khelif03]. Figure 6.9 shows the calculation for a single point defect (A),
for a double point defect with d = 2a (B), for a double point defect with
d = 3a (C) and for a double point defect with d = 4a (D). One can observe
the dependence on the distance. The coupling is related to the overlapping
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of the evanescent wave from the localized phonons and it is proportional to
κ = (ω2 −ω1)/ω0), where ω2 and ω1 are the high and low defect mode fre-
quencies of the system. The result shows that the coupling coefficient κ de-
creases as d increases. Thus the increase in the splitting of the defect mode
frequency with the decrease in d is evidently due to the increase in the cou-
pling of the evanescent wave from the localized phonons as d decreases.

Novel experimental results that are in good agreement with the theory are pre-
sented in this Section, showing the symmetry of the vibrational patterns of the
localized modes in such a double point defect. Moreover, the decay of the lo-
calized modes outside the double point defect is observed in good agreement
with the results obtained using EPWE with supercell approximation.

In this Section, the case of a double point defect in a square array at sites
(1,0) and (−1,0) in a supercell of 11a×11a is analysed (see Equations 3.75
and 3.76 in Section 3.2.3.2). In this situation the distance between defects is
equal to 2a, and the distance between two double point defects in different
supercells is equal to 20a. The interaction of the point defects in the supercell
approximation must be as low as possible between the neighboring supercells
in order to decrease the overlap between defects, thus the size of the super-
cell should be big enough to place the point defects separately in consecutive
supercells.

6.2.1.1 Localization

In order to analyse the splitting of the localized modes, we have calculated the
Real and the Complex Band Structures of a SC with a double point defect by
using the EPWE with the supercell approximation. We have analysed a 2D SC
consisting of PVC cylinders of radius r in air background arranged in square
lattice with lattice constant a, with the same properties as the SC analysed in
the previous Section. In this case, N = (2 ·15+1)2 = 961 plane waves have
been considered for the calculations. Several calculations have been carried
out in order to obtain a good convergence of the solution. This number of
plane waves is higher than the one used in previous works [Laude09] and it
provides a good convergence of the solution of the eigenvalue problem.
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In contrast with the modes in the BG, localized modes can travel up to the
point defect where the wave is localized. The right panel of Figure 6.10A
represents the real band structures calculated using PWE with supercell ap-
proximation for a SC with a double point defect (right panel). In the previous
Section we observed that the localized mode generated by a point defect in the
SC appears at frequency ν0 = 932 Hz whereas the frequencies of the localized
modes of a double point defect were split (right panel of the Figure 6.10). The
frequencies of the two localized modes is due to the double point defect split
around the localized mode of a single defect: One with a lower frequency,
ν1 = 910 Hz, than the corresponding frequency of the localized mode in a
single defect, and another one, ν2 = 958 Hz, with a higher frequency than the
single defect. This phenomenon is analogous to the splitting of the degenerate
atomic levels in diatomic molecules.

The splitting in two peaks may be qualitatively understood if we consider
that the double cavity in the double point defect are coupled forming a large
cavity with two resonant frequencies. Because of the surrounding periodicity,
the walls of the cavity act as a perfect mirrors producing the localization of
the wave inside the cavity. This results in a coupling inside the double point
defect producing two localized modes depending on the distance between the
point defects [Li05, Khelif03, Zhao09].

As the splitting depends on the distance and on the shape of the multi-point
defect, one can study the vibrational patterns that appear inside the multi-point
defect, analysing the differences in frequency of the localized modes. Factor
(ν1 −ν2)/ν0 indicates how the splitting will be produced. For big values of
this factor, one can expect separated modes in frequencies (as many as the
number of single point defects constitute the multi-point defect), whereas a
small factor represents a weak overlapping between the point defects in the
multi-point defect, which produces narrow splitting.

The complex band structures give additional information about the properties
of the localized modes. Figure 6.10B represents the complex (left panel) and
the real (right panel) band structures for a SC with a double point defect. For
each localized mode, a determined imaginary k becomes a pure real value,
in good agreement with the results of the PWE with supercell approxima-
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Figure 6.10: Real and Complex band structures for a SC with and without point
defects. (a): Complex band structure of a complete SC calculated using EPWE with
supercell approximation (left). Band structures calculated using PWE with supercell
approximation of a SC with a point defect, the continuous red line represents the
defect mode (center). Band Structures for a SC with a double point defect, the dashed
green line represents the defect modes of a double point defect (right). The insets
show the supercell used in the calculations. (b): Complex and real band structure of
a double point defect.

tion. This real part is related to the wave vector for the localization frequency
whereas the imaginary part of the localized mode is related to the rate of decay
outside the defect but inside the SC. As we have seen, the localized modes in
the double point defect are distributed around the localized mode of a single
point defect. However, the localized mode of the single point defect appears
a little above the midgap frequency (926 Hz). Thus, it is expected that the
imaginary part of the localized modes of double point defects presents differ-
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ent values for each mode and, as a consequence, each mode presents different
evanescent behaviour outside the defect. This prediction of the EPWE will be
used to experimentally distinguish the symmetric with respect to the antisym-
metric modes.

6.2.1.2 Symmetry of vibrational patterns

The previous discussion about the splitting of the modes in multi-point de-
fects does not provide information about the localization of the modes or the
acoustic field pattern inside the double cavity. This will be discussed now.

The results obtained using the PWE or EPWE for the localized modes could
be used to plot the modal shapes for the defect modes using the eigenvectors.
However, these modal shapes do not take into account the effect of the finite
size of the crystal. Thus, to compare it with the experimental results corre-
sponding to a SC of finite size, in this Section, we have calculated the modal
shapes inside the double point defect using MST. MST predictions provide
complementary information with respect to that one provided by the EPWE
in the case of the infinite structures.

MST [linton01, Chen01] has been used to analyse the pressure field inside a
SC with point defects. A SC of 7a×5a size with a= 0.22 m of rigid cylinders
with radius r = 0.1 m is considered in this Section. A double point defect with
individual defect points separated by a distance of d = 2a has been considered
due to the experimental constraints, and to look for a compromise between the
experiment and the theory in order to be able to compare both predictions and
data.

For the crystal considered in this Section the frequencies of the localization
modes differ somewhat with respect to the ones calculated using the PWE and
the EPWE with supercell approximation. This difference can be explained
taking into account that a finite SC is considered for the study, and as it has
been shown in the literature related to this field, the localization frequencies
depend on the size of the crystal as well as the filling fraction, and the amount
of rows around the defect. In this case, the localization frequency for the
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antisymmetric mode is ν1 = 940 Hz and for the symmetric mode it is ν2 =
895 Hz. At these frequencies they present the maxima values of the acoustic
spectra inside the point defects. We note the small difference with respect to
the ones obtained using the PWE and the EPWE (ν1 = 910 Hz and ν2 = 958
Hz ).

The pressure fields calculated using MST inside the SC with a double point
defects for the localization frequencies are shown in Figure 6.11. One can see
in the Figure that the pressure field for the mode with high frequency has an
antisymmetric pattern (Figure 6.11A), whereas the pressure field for the mode
with low frequency has a symmetric pattern (Figure 6.11B).

In Figure 6.11, one can also observe the values of |p| for the space between
two rows of the SC containing the double point defect. The vibrational pat-
terns of the defect modes in double point defect are characterized with re-
spect to a symmetry plane (see the dashed line in Figure 6.11) situated just in
the midpoint between the two defects in the double point cavity. There is a
symmetric mode and an antisymmetric mode with respect to this plane. The
symmetric vibrational mode is characterized by a vibration in phase of the
pressure field in each point defect, whereas the antisymmetric mode is char-
acterized by a vibration of the pressure field in opposition of phase. Due to
these properties, the point just in the symmetry plane (see the arrows in the
Figure 6.11) presents different values of |p| for each localized mode. For the
antisymmetric mode, one can observe a minimum value of |p| at this point
(Figure 6.11A), whereas one can find a maximum value for the symmetric
mode (Figure 6.11B).

Figure 6.12 shows the values of |p| obtained using MST versus the data ex-
perimentally measured using 3DReAMS. The experimental results are in very
good agreement with those obtained using MST. We note the different values
of |p| in the midpoint. As MST predicts, a maximum is observed for the sym-
metric mode at ν = 895 Hz (Figure 6.12B), and a minimum is observed for
the antisymmetric mode at ν = 940 Hz (Figure 6.12A). The good agreement
between theoretical (MST) and experimental results is remarkable. These
measurements constitute the first experimental evidence of the symmetric and
antisymmetric vibrational modes inside the SC with a double point defect.
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Figure 6.11: Pressure maps of a double point defect separated by a distance of
d = 2a. The |p| values between two rows of the SC containing the point defects is also
plotted. The pressure maps of the antisymmetric (A) and symmetric (B) coupling of
the localized modes inside the double point defect. The arrows represent the values
of |p| in the midpoint between the two rows of cylinders containing the double point
defect.

6.2.1.3 Evanescent decay

As the mode of a single point defect is a little above the midgap, one can
observe in Figure 6.10B that the localized modes in a double point defect
present different imaginary part of k: The values of the imaginary part of
k for the antisymmetric mode are lower than the corresponding values for
the symmetric mode, meaning that, the rate of decay outside the cavity of
the symmetric mode must be higher than that of the antisymmetric case. In
Figure 6.12 one can observe the decay of the localized modes outside the
double point cavity. The border of the double point defect are marked with
dotted lines.

In order to analyse the decay of the modes outside the cavity, the behaviour of
the maximum analytical values of |p| outside the cavity (see the open squares
in Figure 6.12) has been analysed and calculated using MST in a SC of rigid
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Figure 6.12: Numerical (continuous line) and experimental (open circles) profile of
the |p| values between the two rows containing the double point defect (see Figure
6.11). (A) Antisymmetric mode (ν = 940 Hz) and (B) symmetric mode (ν = 895
Hz). The dashed line represents the exponential-like decay of the localized modes
outside the double point defect fitted from the maximum values of the analytical data
represented by open square points.

cylinders with size 11a× 5a. Although the decay of the modes outside the
cavity is multiexponential [Engelen09], it is possible to fit these values to an
exponential-like aebx for analysing the differences in the rate of decay due to
the differences in the imaginary part of the k for each localized modes.

Both fitted exponential-like decays are represented in Figure 6.12 (dashed
lines). The decay rate for the antisymmetric mode is b = −6.229± 0.237
m−1, while the decay rate for the symmetric mode is b = −6.633± 0.178
m−1. Thus, as it was discussed in the results obtained in the previous Section,
due to the symmetric distribution of the frequencies of the localized modes
in double point defect with respect to the localized mode in a single cavity,
the decay rate of the antisymmetric mode in a double point defect should be
lower than that of the symmetric mode close to the center of the BG. On the
other hand, one can observe that the values of the decay rate of the symmetric
and of the antisymmetric modes are similar and the difference between them
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Figure 6.13: Spectra for a SC made of PVC cylinders arranged in 9a× 5a with
lattice constant a = 0.22 m in square array with a double point defect. (a) Spectrum
measured inside one of the point-defect in the double point defect. (b) Spectrum
measured outside the crystal at a distance of 10a from the start of the SC.

is small. The splitting of the frequencies of the localized modes in a double
point defect around the frequency of the single cavity implies that the rate of
decay in double point defect has to be different, but also one of them should
be smaller than the other as its distance to the center of the gap is greater, in
agreement with the theoretical results.

In finite crystals, where the localized modes can travel outside the periodic
structure, the previous results indicate that the symmetric mode will be extin-
guished more easily than the antisymmetric mode. Thus, the design of filters
based on the SC with point defect should take into account this kind of result.
In Figure 6.13A, the spectrum inside a point defect in a SC with a double
point defect is shown. In this case, the value of pressure of the peak of the
symmetric mode (lower frequency) is higher than the peak of the antisymmet-
ric mode. In Figure 6.13B one can see the spectrum for the same SC with a
double point defect but measured outside the SC at a distance of 10a from the
beginning of the SC. Here, the values of pressure for the symmetric mode are
lower than the values of the antisymmetric mode, thus the symmetric mode
was damped more by the crystal outside the double point defect than in the an-
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tisymmetric mode. Similar results can be observed in Figure 6.11, where the
acoustic field behind the crystal for the antisymmetric mode is greater than
the corresponding one for the symmetric mode. These results are in com-
plete agreement with the differences in the imaginary part of k. Moreover, the
difference in the value of imaginary part of complex wave vector is a direct
evidence of the existence of different vibrational modes in multi-point defects
and reveals the existence of a coupling between them.

6.3 Discussion

In this Chapter, we have shown the extraordinary transmission properties of
periodic systems presenting vacancies in their structure, being the number of
vacancies lower than the number of the scatterers in the structure.

The propagation of waves inside periodic structures consists of propagating
and evanescent modes. In this Chapter, we have shown how the EPWE can
be used to analyse the evanescent behaviour of waves inside periodic systems
with a low number of defects, predicting the evanescent nature of the modes
inside the BG of a SC with and without defects. This particular behaviour
has been experimentally observed in good agreement with the numerical and
analytical predictions. The exponential-like decay of the acoustic field inside
a SC has been observed from both the analytical and experimental points of
view. The EPWE predicts a value for the imaginary part of the first harmonic
of the wave number that has been exponentially fitted. As a conclusion, only
the first harmonic contributes to the exponential-like decay of the evanescent
mode for modes inside the BG of the SC. We have also shown that the imag-
inary part of the wave vector connects propagation bands and conserves the
overall number of modes.

By analysing the localized mode in the vacancy, it has been observed both
analytically and experimentally that the localized modes present evanescent
behaviour outside the cavity with the same exponential-like decay as a wave
with the same frequency in the BG impinging over a complete SC. Due to the
local breaking of the periodicity, the physical situation is very different for
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both the complete SC and the SC with point defects. Even so it is possible to
conclude that the space observed by the localized wave from the inner part of
the cavity is topologically equivalent to the one observed by the same wave
from the outside of a complete SC.

The EPWE with the supercell approximation can be used to study the evanes-
cent behaviour of the modes inside the SC with multi-point defects. The lo-
calized modes in the SC with several point defects are mainly characterized
by three properties: splitting of frequencies, symmetry of the vibrational pat-
terns and evanescent behaviour inside the crystal. The whole properties of
the localized modes in a SC with a double point defect has been used in this
Chapter to analyse both theoretically and experimentally the behaviour of the
SC with multi-point defects. Firstly, the splitting produced by the generation
of a double point defect was analysed, showing the effects in both the real
and imaginary band structures. From the imaginary complex band structure
we can deduce that the localized modes present different values for the imag-
inary part of k, this means that each mode has a different decay rate inside the
crystal. This property was experimentally observed by fitting an exponential
decay for each localized mode inside the crystal. The symmetry of the vibra-
tional patterns in double point defect have also been analysed in this Section
by means of MST calculations and experimental results. Novel experimen-
tal evidence has been presented showing the symmetric and antisymmetric
vibrational patterns in the SC with double point defects. Finally, using the
different decay rate of both vibrational modes, the obtained conclusions have
been confirmed giving a new methodology to determine different vibrational
modes in periodic media.

Analytical, numerical and experimental results reproduce a very good agree-
ment with the complex values of the wave vector inside the BG, meaning that
these methodologies obtain good values for the exponential-like decay of the
evanescent modes in a SC. These results are the basis for the correct under-
standing of the design of narrow filters and wave guides based on phononic
or sonic crystals with point defects.
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7
High number of vacancies.

Optimization

As Caballero et al. [Caballero01] have shown, N-point periodic defects in
a complete SC introduces an attenuation band in the transmission properties
of these periodic systems below the BG and its position in the range of fre-
quencies corresponds to the periodicity of the distribution of vacancies. On
the other hand, the creation of vacancies using optimization techniques, such
as GA, has been used to create efficient focalization or attenuation devices
[Hakansson04, Romero06, Romero08, Herrero09]. In this Chapter we show
an optimization procedure to obtain a specific distributions of vacancies in a
complete array of scatterers in order to produce certain transmission proper-
ties through the resulting device. We call the resulting structure of the com-
plete array and the distribution of vacancies Quasi-ordered structures (QOS).

The combination of GA and MST (see Chapter 4) offers a good way to find
a distribution of vacancies in the SC optimized to improve both the atten-
uation and the focusing properties in predetermined ranges of frequencies
[Hakansson04]. In this Chapter, we show the resulting structures obtained
using the ev-MOGA (see Chapter 4) with MST. The resulting QOS are de-
signed to optimize both the attenuation and the focalization of sound waves
in a predetermined range of frequencies, and present a number of vacancies
Np in the same order as the total number of scatterers in the structure Ncyl .
Several procedures to create point-defect in complete SC are analysed in this
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Chapter.

Basically, given a starting SC, the GA generates QOS offspring that are clas-
sified in terms of a fitness function based on the pressure values at a specific
point. The simulation of the sound scattered by every structure analysed by
the GA is performed by the two-dimensional MST. After a predetermined
number of generations, the algorithm stops selecting the best-fitted QOS. In
our case, we try to optimize some features of the acoustic spectrum in a pre-
determined range of frequencies, in the ΓX direction (0◦) at a point placed 1
m behind the crystal in the symmetry axis. Obviously these conditions con-
straints the resulting device to structures that do not present any improvement
with respect to the angle dependence or in a finite region behind the crystal.
If these dependences had taken into account, more complicated techniques
would have considered to chose the best distribution of vacancies. Moreover,
more parameters would be involved in the optimization problem and the inter-
pretation of the results would be more complicated and difficult to do. In this
case we would note that a high number of objective functions should be con-
sidered and, as a consequence, the difficulty of the problem would increase
with the dimensionality of the Pareto fronts. The goal of the Chapter is to
show how GA+MST can be used in the design of acoustic filters in a simple
case. More intensive research have to be done to obtain the full optimization
of such a systems.

The use of these optimization algorithm introduce some possibilities, for ex-
ample, to design sophisticated filters. However, it would be interesting to
know some general rules to improve the attenuation capabilities of a com-
plete SC by means of vacancies. This Chapter will answer the immediate
questions: How and how many vacancies one should produce in a starting SC
to improve its attenuation? To do this, the parameters related to the asym-
metry and to the fraction of vacancies will be analysed both theoretically and
experimentally.
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7.1 Quasi ordered structures (QOS)

The notion of quasi periodic order has been considered by authors working
in different fields. From a theoretical point of view, the necessity to achieve
a good understanding of the transport properties of disordered systems has
led to a number of researchers addressing the issue of quasi periodicity as
somewhat intermediate between periodic order and purely random disorder.
From this perspective, the notion of quasi periodic order assumes a subsidiary
role as a merely way to describe the conceptual transition from periodic order
to randomness.

From a practical point of view, physicist have progressively realized that de-
vices with this particular kind of structure offer interesting possibilities for
technological applications. For example, quasicrystals are structural forms
that are both ordered and nonperiodic. They form patterns that fill the whole
space but lack translational symmetry. The classical theory on crystals allows
only 2, 3, 4, and 6-fold rotational symmetries, but quasicrystals display sym-
metry of other orders (folds). Just like crystals, quasicrystals produce mod-
ified Bragg diffraction, but where crystals have a simple repeating structure,
quasicrystals are more complex.

The structures obtained generating Np point defects in a complete SC are
called by us quasi-ordered structures: SC with a nonperiodic and random dis-
tribution of vacancies which produce a nonperiodic and random distribution
of cylinders. However, due to the periodicity of the SC in which the vacancies
are created, there are some parts of the system that present this periodicity. As
we will see later, these systems present some interesting propagation proper-
ties, for waves related to the distances between the scatterers. For this reason,
we have called these systems quasi-ordered structures (QOS).

Since this QOS are partly periodic they do not have a lattice constant, and
thus, the effect of the Np point defects on the acoustic response of the system
is the creation of an acoustic band with some properties due to the multiple
scattering in the optimized range of frequencies. In the case of the optimiza-
tion of the attenuation properties this band will be called attenuation band,
whereas for the case of the focalization properties it will be called focaliza-
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tion band. We would like to note that the attenuation band presents different
nature than the Bandgaps in periodic media which comes from the periodicity
of the structure. Attenuation or focalization band is a more general denomi-
nation and in this work they make reference to the attenuation or focalization
bands produced by an acoustic filter.

7.2 Simple genetic algorithm optimization

This Section aims at answering the following question: Can we obtain new
attenuation bands different than the BG of the SC only by removing cylinders?
The first approximation to the answer can be obtained by applying a simple
GA in order to optimize a unique cost function that tries to find a QOS whose
spectrum presents a flat and high attenuation band in a predetermined range
of frequencies. In the following, the results obtained by optimizing the cost
function Jν�s (see Equation 4.3 in Section 7.2) by means of a simple GA are
shown.

We consider a SC made of rigid cylinders placed in triangular array with lat-
tice constant a = 6.35 cm as starting sample (Figure 7.1). This starting SC
has been designed following the following constraints: A large number of
scatterers involves long computational times, and the SC topology should be
simple to allow its implementation in the anechoic chamber for experimental
testing purposes. We note that the first BG of this SC appears around 3090
Hz (Bragg’s frequency).

In this simple GA, the starting structure is improved to obtain attenuation
bands 600 Hz wide and centred at 1100, 1400, 1700 and 2000 Hz respectively.
In the general procedure of GA, the best-fitted QOS not only are compared
with the starting SC, but also with all the individuals of every generation.
Here, we compare the resulting QOS with the starting SC to observe the im-
provement with respect to starting situation. We note that, in all cases, the
considered frequency band lies under the first Bragg’s frequency (3090 Hz).
The insets in Figures 7.2A and 7.2B show examples of the optimized QOS for
the ranges centred at 1700 and 2000 Hz. One can also observe in the insets of
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Figure 7.1: Starting SC consisting of hollow cylindrical aluminium rods, 1 m long
mounted in a triangular pattern with lattice constant a =6.35 cm. The diameter of the
cylinders is d =4 cm. The sample under study consists of an array of 6 rows with 10
cylinders per row, and rectangular external shape.

Figure 7.2 that the total number of cylinders in the optimized crystals varies
between 40% and 46% with respect to the number of cylinders in the starting
SC.

In Figure 7.2, one can see the theoretical spectrum of the QOS calculated us-
ing MST (red line), the experimental spectrum of the QOS (blue open circles)
and finally the experimental spectrum of the starting SC (green dashed line).
One can observe that in the QOS an attenuation peak appears at the predeter-
mined selected frequency range, this means that it is absent in the spectrum
of the starting SC and, moreover, the corresponding Bragg’s peak vanishes at
3090 Hz. We notice that for the starting SC a sound reinforcement exists in
this frequency range selected for the optimization process.

In order to quantitatively compare the obtained attenuation for the different
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Figure 7.2: Spectra produced by the QOS resulting in the optimization of the Cost
function Jν�s in the ranges (A) 1400-2000 Hz and (B) 1700-2300 Hz. The insets in
the Figure represent the QOS obtained in the optimization process for each range of
frequencies. The red line represents the theoretical spectrum calculated using MST,
the blue open circles represents the experimental spectrum of the QOS and the green
dashed line is the experimental spectrum of the complete SC (Starting SC).

QOS, the Attenuation Area (AA) parameter (area enclosed between the pos-
itive spectrum and the 0 dB threshold in the selected frequency range, (see
Section 2.2)) is calculated for the several QOS optimized in different ranges
of frequencies. Table 7.1 shows the AA and the average attenuation values for
the four QOS designed in the four different ranges of frequencies mentioned
above. We notice that the AA for the starting SC is approximately equal to
zero.

The analysis of the AA for the several ranges of frequencies optimized indi-
cates that the improvement in the attenuation by means of the QOS is easier
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Table 7.1: AA (Attenuation Area) and average attenuation for the QOSs obtained by
means of a simple GA.

Optimization Central Attenuation Averaged
range Frequency Area (AA) Attenuation
(Hz) (Hz) (dB Hz) (dB)

(800-1400) 1100 731 1.21
(1100-1700) 1400 3411 5.61
(1400-2000) 1700 3420 5.7
(1700-2300) 2000 5088 8.48

when the range of frequencies is near the BG.

7.3 Multi-objective optimization

The preliminary results shown above indicate the possibility of achieving at-
tenuation bands below the first BG of the complete SC by creating vacancies
in the SC. In this Section, the results of a deeper analysis of the creation of
N-point defects following a multi-objective optimization are presented. The
optimization of both the focusing and the attenuation properties in SC by
means of the creation of vacancies and following several strategies in the gen-
eration of defects are studied. Finally, the dependence of the solution of the
multi-objective optimization on the path followed in the search space looking
for the best structure is also analysed.

The ev-MOGA (see Chapter 4) working together with the MST (see Chapter
3) is the methodology used in this Section. The ev-MOGA tries to simultane-
ously solve a problem with two cost functions. The cost functions used were
defined in Section 4.2.3.2: J1 relates to the mean attenuation obtained in the
range of frequencies to be optimized, J2 is the mean deviation in such a range
and J3 represents the focusing capability of the device. For the optimization
of the attenuation the ev-MOGA tries to simultaneously minimize J1 and J2.
For the focalization case the multi-objective problem is defined by J2 and J3.
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7.3.1 Starting conditions. Strategies in the creation of holes

The improvement of the acoustical properties of two dimensional SC formed
with isolated and rigid cylinders in air is searched for in this Section. The
starting SC containing 73 (4 cm diameter) cylinders, is positioned in seven
rows in a triangular pattern with a lattice constant a = 6.35 cm. The acoustic
pressure of the optimized samples is calculated by means of MST for a prede-
termined range of frequencies, at a point located 1 m from the middle of the
SC and in the ΓX direction (Figure 7.3).

Figure 7.3: Starting conditions of the analysis. Starting SC (Left panel) and examples
of each of the different strategies used in the creation of vacancies in the starting
SC (right panel): (a) symmetry X, (b) symmetry Y, (c) symmetry XY and (d) no
symmetry.

The optimized structures are obtained by means of the creation of vacancies,
which means removing the cylinders in the starting SC. To design these struc-
tures, four strategies in the creation of vacancies are used by taking into ac-
count the symmetry axis of the starting SC (Figure 7.3): (i) symmetry around
the X axis (symX); (ii) symmetry around the Y axis (symY); (iii) symmetry
around both the X and Y axes (symXY); and (iv) random (nosym).
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7.3.2 Characterization of the QOS

Due to the nature of multi-objective problems, the optimized solution is rep-
resented by a set of structures (Pareto set, see Chapter 4). It seems necessary
to define suitable tools to characterize these optimized structures. Moreover,
these tools will enable a comparison among the different optimized samples.
Next, both optimizing and structural tools are defined. The former help us to
classify the resulting samples as a function of their acoustic properties. These
tools are: Pareto front (PF), optimizing factor (O f ) and area of the spectrum
(AS). Structural tools help us to establish the best arrangement of vacancies
to enhance the acoustic properties of the resulting devices. These parameters
are: fraction of vacancies (Fv), and asymmetry (A). Some of these optimizing
or structural parameters were defined in the Section 2.2 devoted to parameters
defining SC. One can read there the definitions of the Fraction of vacancies
(Fv), the Asymmetry (A) and the Area of Spectrum (AS).

The rest of the parameters are defined as follows:

Pareto front (PF): As it was mentioned in Chapter 4, when approaching
the multi-objective optimization problems, the notion of optimized structures
changes as the solution is a good compromise among the objectives involved
in an optimization process. Thus, a single solution is not normally obtained
but a set of solutions constitute the so-called the Pareto optimal set, which is
mapped using the cost functions in the Pareto front (see Figure 4.6). All points
representing the PF correspond to optimum solutions. However, in the case
of two cost functions, one can see in Figure 4.6 that an optimal solution with
respect to one of the cost functions implies a low optimization with respect
to the other one. Therefore, it is necessary to define some decision criteria to
choose the most suitable solution. This solution is characterized by the defini-
tion of the

−→
Q -vector. If k cost functions are considered, the

−→
Q -vector whose

extreme is a point of the PF , is defined in such a way that its distance to the
origin is minimal in the objective space,

−→
Q/min
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k
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This point is a compromise among all the cost functions optimized, and offers
the best stability with respect to the optimization procedure.

Optimizing factor (O f ): This parameter help us to determine how much better
each optimization is with respect to previous optimizations, quantifying the
improvement of the optimization process. Given several Pareto fronts for the
same optimization problem, the optimization factor (O f ) can be defined as
the Euclidean distance between the

−→
Q points of any two different PF. Thus, if−→

Q 1 and
−→
Q 2 are considered as two PF

−→
Q -vectors, then

O f =

�
N

∑
i=1

(Q1i −Q2i)
2. (7.2)

An important parameter used to measure the improvement obtained using
the Pareto fronts is the so-called ideal point (IP) (see references [Ehrgott03,
miettinen98]). The ideal point is defined as the vector formed with the lowest
components among all points in the PF . This means that, the first components
of the ideal point are the minimum value of all first components of the points
in the PF ; the second component is obtained in the same way. Distances to
the ideal point, measured in the objective space, are one of the classical solu-
tion quality indexes in multi-objective optimization. However, the ideal point
is not easy to find in practice. The

−→
Q -vector that corresponds to a real struc-

ture is easy to find in practice, and it is near to the value of the ideal point
in the optimization problem studied in this work. In addition, the

−→
Q -vector

provides information about the goodness of the optimization results.

7.3.3 Improving the attenuation capabilities with QOS

In this section, the ev-MOGA is used to generate QOS with attenuation prop-
erties higher than the starting SC in a predetermined range of frequencies, for
the ΓX direction and in a point located at 1 m from the end of the system.
Making use of the objective functions J1 and J2 defined in Section 4.2.3.2
the QOS present maximum values of both the acoustic attenuation level and
the stability in the optimization range of frequencies (see Section 4.2.3.2). In
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other words, the QOS produce high attenuation level in a predetermined range
of frequencies, with the least possible fluctuation in the attenuation spectrum.

7.3.3.1 Initial test: Improvement of the preliminary QOS

In Section 7.2 we showed the preliminary results of QOS. They allow us to
affirm that by creating vacancies in a starting SC one can generate attenuation
bands in a predetermined range of frequencies. We have improved the simple
GA by using the evMOGA. In this Section we check this new algorithm ap-
plying it to the improvement some of the preliminary results shown in Section
7.2. In this Section, the ev-MOGA is used to generate a QOS for its use as
an attenuation device in the range of frequencies between 1400 and 2000 Hz.
The objective functions J1 and J2 defined in Section 4.2.3.2 are analysed in
intervals of ν=20 Hz. We have selected the random generation of vacancies
in the starting SC, as it was done in the preliminary results.

Figure 7.4: Insertion Loss spectra of the optimized QOS and of the starting SC. The
optimized range of frequency is marked in the the white area. The optimization is
obtained in a point situated 1 m behind the crystal. The inset shows the distribution
of cylinders of the QOS. Upper panel: Results predicted by the MST. Lower panel:
Experimental measurements
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Figure 7.5: Acoustic field of the starting SC and the QOS for 1700 Hz, calculated
using MST. (A) and (B) show the pressure maps of the starting SC and for the QOS
respectively. (C) and (D) show the insertion loss maps for starting SC and for the
QOS respectively.

Inset of Figure 7.4 shows the QOS obtained using evMOGA. The insertion
loss spectra calculated using MST for both the QOS (blue line) and the start-
ing SC (red line) are also shown in the upper panel of Figure 7.4. One can
observe that the spectrum corresponding to the QOS presents an attenuation
band at the optimized range of frequencies, and it is absent in the spectra of
the starting SC. Moreover, we can observe that the insertion loss inside the
optimized range of frequencies presents the desired results: flat and high at-
tenuation level. The experimental validation of the calculus of MST is shown
also in the lower panel of Figure 7.4.

The optimization has been done for a point behind the structure situated 1
m away from the end of the starting SC. Thus, it would be interesting to
analyse what is the attenuation zone behind the structure. Figure 7.5 shows
both the pressure ((A) and (B)) and the insertion loss ((C) and (D)) maps for
the starting and the QOS calculated for the central frequency of the optimized
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range, 1700 Hz. One can observe that, around the optimization point (x∼ 1.33
m) there is a focusing zone, i.e., reinforcement in its insertion loss spectra.
However, the QOS produces an attenuation zone centred at this point due
to the optimized multiple scattering in the QOS that produces an negative
interference around the optimized point and for the whole optimized range of
frequencies.

Figure 7.6: Acoustic field produced by the QOS for several frequencies inside the
optimized range of frequencies calculated using MST. Left panel: Pressure maps for
the frequencies 1500, 1700 and 1900 Hz. Rigth panel: Insertion loss maps for the
frequencies 1500, 1700 and 1900 Hz.

In Figure 7.5, one can observe the desired behaviour for the central frequency
of the optimized range, but, it would be interesting to analyse what is the
attenuation zone for several frequencies inside the optimized range of fre-
quencies. Figure 7.6 shows acoustic field produced by the QOS for several
frequencies inside the optimized range of frequencies calculated using MST.
One can observe that the QOS present similar attenuation region behind the
structure for all the frequencies inside the optimised range.
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7.3.3.2 Symmetries in the generation of vacancies

In this Section, the ev-MOGA is used to generate QOS for its use as atten-
uation devices in the range of frequencies between 2300 and 3700 Hz. The
objective functions J1 and J2 defined in Section 4.2.3.2 are analysed in inter-
vals of ν=50 Hz.

Figure 7.7A shows the Pareto fronts for the results obtained using the ev-
MOGA with the four strategies of generation of vacancies. Their position in
the plot implies the improvement in their attenuation capability. The closer the
Pareto fronts are to the origin of the coordinates, the better the optimization.
This is because a low J1 implies a high attenuation level following Equation
(4.5); and a low J2 represents lower mean deviation. We can sort the strategies
used as a function of the results shown: nosym>symY>symX>symXY. We
can see that the nosym strategy presents the highest optimization levels for
the cost functions used and symXY seems to be the worst.

Moreover, one can compare the acoustic attenuation level for both the opti-
mized samples and the starting SC. To do this, the optimizing factor parameter
has been used. Taking into account that the

−→
Q -vector for the PF correspond-

ing to the nosym strategy is (J1,J2) = (0.0575,0.0052) and the values for the
starting SC are J1 = 0.4633 and J2 = 0.056, the value of the optimizing fac-
tor, O f = 0.4090, can be obtained. It seems that the attenuation level (J1) is
the truly important function in our study. This is because, in both cases, the
difference between their values is similar to the O f value. So, it seems that
J2 plays a secondary role in the attenuation study, representing the stability of
the attenuation level. Finally, the value of O f indicates that, physically, the
creation of vacancies in a starting SC seems a suitable strategy to improve the
attenuation characteristics of SCs. Thus, the value of O f means that there is
a difference in the attenuation capability between the starting SC and the best
sample of the nosym strategy value of 18.5 dB.

After looking at Figure 7.7A, it seems possible to quantify the differences
among the acoustic attenuation obtained for the four considered strategies.
Regarding the

−→
Q -vectors of the best (nosym) and of the worst (symXY) strat-

egy, the value of the O f parameter is 0.0907. This value represents a differ-
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Figure 7.7: (A) Pareto fronts for the different symmetries of generation of vacancies
used for the attenuation effect; (B) Attenuation area for each analysed symmetry.

ence in attenuation of 8.2 dB between both optimized samples.

To quantify how much better each strategy of vacancy generation is when
compared to the others, the attenuation area (AA) parameter is analysed. This
parameter has been calculated for the spectra of all the optimized samples
shown in Figure 7.7A. The points in Figure 7.7B represent the value of the AA
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parameter for each resulting optimized structure in each one of the symmetries
of generation of vacancies used and the lines represent the average value of
the parameter in each case. The biggest AA corresponds to the nosym strategy
and this fact means that the resulting optimized samples obtained with this
strategy show the best improvement in their attenuation capabilities.

Figure 7.8: Spectra of the resulting optimized samples: (A) Q1; (B) Q2; (C) Q3; and
(D) Q4 shown in Figure 4(A) (continuous line); and of the starting SC (dotted line).
The range of frequencies optimized is delimited by two vertical dashed lines. The
attenuation average level in the optimized range of frequencies for each of the sym-
metries used is represented (horizontal dotted line). Configurations of the optimized
samples corresponding to each Q-vector are included as an inset.

Figure 7.8 can help to understand Figures 7.7A and 7.7B. Here, one can see
the attenuation spectra of the resulting samples marked in Figure 7.7A as Q1,
Q2, Q3, and Q4, corresponding to the

−→
Q -vectors of each strategy of generation

of vacancies, analysed together with the corresponding
−→
Q -vectors of to the

starting SC. The best average, as it has been mentioned above, corresponds to
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the nosym strategy.

We note that the values of the cost functions for the resulting samples shown in
Figure 7.7A are in very good agreement with MST spectra simulations shown
in Figure 7.8. Thus, it is possible to compare the improvement of both J1
(mean pressure) in Figure 7.7A and the average attenuation in Figure 7.8. In
Figure 7.7A, we can see that JQ4

1 > JQ2
1 > JQ3

1 > JQ1
1 and this is in good agree-

ment with the results obtained in Figure 7.8: nosym>symY>symX>symXY.
We can also observe that the improvement of J2 in the process is not as signif-
icant as the improvement of J1. In Figure 7.8, one can see the predominance
of the attenuation level criterion in the attenuation spectra of the resulting
samples.

In Table 7.2, one can observe the results of the optimization process for the
four independently considered strategies and the corresponding values for the
initial SC (complete structure). (J1min, J2min) represent the coordinates of the
IP of the Pareto set for each strategy, AAav means the average of the AA for
each Pareto set of the considered problem which, as it has been explained
above, does not have an unique solution. By examining the AA values, it
is possible to classify the strategies as follows: nosym > symY > symX >
symXY. This means that the strategy with the minimum IP (nearest to the
origin of the coordinates) presents the maximum AA, meaning that J1 and J2
are well defined in order to achieve the objective pursued. Moreover, it is
possible to quantitatively obtain the increase in the attenuation capability for
each analysed strategy with respect to the starting structure. This increase is
around 200% in the case of the nosym strategy (see Table 7.2).

Table 7.2: Optimization values obtained by independently analysing each of the con-
sidered symmetries.

J1min J2min AAav
symXY 0.1263 0.0076 22406
symX 0.0977 0.0052 23808
symY 0.0906 0.0054 25643
nosym 0.0530 0.0046 34464

Complete structure 0.5633 0.056 11965
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In short, taking into account the results obtained for the optimizing tools de-
fined in Section 7.3.2 (PF and O f ) together with AA and the Asymmetry, the
nosym strategy to create vacancies in a starting SC seems the most suitable
method to improve the acoustic attenuation capability of SC.

7.3.4 Improving focusing capabilities with QOS

This Section examines the optimization of the focusing properties of SC by
means of the creation of vacancies in a starting SC. Especially, the aim is to
increase the focusing properties of these materials, in a predetermined point
of measurement, for a range of frequencies from 1400 to 2000 Hz, analysed at
intervals of ν=50 Hz and in the ΓX direction. We note that the chosen range of
frequencies is just below the first band gap, and as such, inside the first trans-
mission band. As in the case of the attenuation optimization, we have defined
two objective functions, taking into account that the aim is to maximize the
acoustic pressure J3 and minimize its deviation, J2, at the predetermined point
(see Section (4.2.3.2)).

Figure 7.9A shows the PF with the optimization results using the four strate-
gies to create vacancies obtained using the evMOGA for focusing structures.
Here, as in the case of the attenuation analysis, the same order can be seen in
the strategies used as a function of the obtained optimization: nosym > symY
> symX > symXY. Figure 7.9A shows that the nosym strategy offers higher
optimization levels for the cost functions and symXY offers the worst strat-
egy. However, due to the small separation between the Pareto fronts, it can
be concluded that the vacancy creation strategy chosen to optimize focusing
properties of the SCs is unimportant.

Moreover, the creation of vacancies seems less efficient in the optimization of
the focusing than in the case of the attenuation. Again, we can evaluate the op-
timization process by comparing the values of the O f parameter between the
nosym strategy and the starting SC. The

−→
Q -vector for the nosym strategy is

(J3,J2) = (0.6196,0.0027) and the corresponding cost function for the start-
ing SC is J3 = 0.6428; J2 = 0.0437. The calculated value of the optimizing
factor is O f = 0.0471. This means an improvement in the focusing properties
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Figure 7.9: (A) Pareto fronts for the different vacancy generation symmetries used for
focusing effect; (B) focusing area for each analysed symmetry. The points represent
the value of the parameter for each of the optimized structures obtained and the line
represents their average value.

equal to 0.4280 dB. In this case, O f means a low optimization level compared
with that obtained in the attenuation case (O f = 0.4090 meaning 18.5 dBs) in
the focusing properties of the SC.

To support these results, the focusing area (FA) parameter has been measured.
This optimization parameter has been calculated in the same way as in the
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attenuation case. Figure 7.9B shows the FA for the analysed strategies and
the similarity between the average values for all the strategies used can also
be seen.

Figure 7.10 shows the increases in the acoustic level in the range of frequen-
cies under study, and for the predetermined point of measurement with coor-
dinates (1,0). We can clearly see that the differences in acoustic level between
the analysed symmetries is smaller when compared with the attenuation case
(see Figure 7.8).

Figure 7.10: Acoustic level in the focusing area. On the OX axis, the distance along
the direction of the incident wave is shown and the frequencies for the four strategies
analysed on the OY axis are also shown. The colour bar represents the acoustic level
in dBs. The corresponding samples are also included.
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7.4 Dependence on the searching path

The results presented in the previous Section show that each symmetry can
accomplish a limit of optimization, such that the best optimization is obtained
using the random generation of vacancies in the starting SC. Specifically, we
observed that the sort of the capability to improve the attenuation is nosym,
symY, simX and symXY in decreasing way. On the other hand we have shown
that the focusing capabilities are similarly improved with all the symmetries.

Then, the question is: could we improve the attenuation capabilities of a QOS
mixing symmetries in the optimization process, and as such, changing the
searching path of the optimization process? To answer this question, two
procedures are analysed in the next Sections.

7.4.1 Procedure 1

The first strategy for the creation of vacancies that we have proven consists of
mixing the four strategies defined earlier. In this search path, 12 runs of the
optimization process in four different steps have been executed, taking again
as an initial population in each run the best individuals obtained in the previ-
ous run and following the order of the strategies obtained in Table 7.2: (i) the
three starting run constraints for the solutions with symXY, (ii) the next three
run constraints with only symX, (iii) the next three with symY and (iv) the
final three executions imposing nosym restrictions. In Figure 7.11B, one can
see the PF corresponding to the solutions in each step of this mixed optimiza-
tion process, together with the PF corresponding to just the nosym strategy
analysed in the previous Section. One can see the superposition of both PF
(nosym and mixed nosym) and we can conclude that a similar solution is ob-
tained in both cases. This result indicates that the search for the minimum of
our problem is independent of the search path and therefore the stability of
the optimization process is ensured.

Another argument to select the objective functions is shown in Figure 7.12B.
The optimized structures obtained for the points of the PF that define the IP
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Figure 7.11: PF for the mixed method showing each of the steps in the optimization
process. The PF for the independent nosym strategy is also represented.

for the nosym case of the mixed strategy (IP2 in Figure 7.11B) are presented.
The left structure (optimized (1)) represents the point corresponding to the PF
with the minimum average acoustic pressure J1 (maximum attenuation level)
and maximum standard deviation (J2). The example on the right-hand side
(optimized (2)) represents the structure with maximum J1 and minimum J2.
The corresponding attenuation spectra can also be seen. Both structures show
the variation in the attenuation spectra due to the different extreme values of
both objective functions (J1, J2) in the considered PF.

In Figure 7.12B the best structure obtained with the optimization process and
the corresponding attenuation spectra can be seen. This structure corresponds
to the point of the nosym PF with the minimum distance to the origin of the
coordinates. This point means that an agreement between both objective func-
tions is the nearest to the IP. To confirm the validity of the theoretical results
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Figure 7.12: (A) Attenuation spectra for the nosym samples corresponding to the
points that define the IP of the PF. The corresponding structures are also represented
at the top. (B) Best nosym structure obtained in the optimization process; theoretical
and experimental attenuation spectra are represented. The spectrum of the initial
sample is also included.

obtained, the experimental spectra of this optimum structure is drawn with
a resolution of 8 Hz. The good agreement between the theoretical and the
experimental spectra can be seen by calculating the corresponding AA pa-
rameter (AAtheor = 31202 Hz dB and AAexpt = 30215 Hz dB). In any case,
the differences in the shape between both optimized attenuation spectra (the-
oretical and experimental) can be explained in terms of the real experimen-
tal conditions compared with the ideal conditions considered in MST model:
aluminum cylinders infinitely large, little changes in the length of the experi-
mental lattice constant, acoustic conditions of the anechoic chamber, etc.
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7.4.2 Procedure 2

Multiple execution of the algorithm has been performed to increase the re-
liability of the results. The executions started with the different constraints
and the initial populations. An increasing SC structure complexity policy is
selected (figure 4.4): the three first run constraints of the solutions with SC
symmetry in both axes, X symmetry plus Y symmetry; the next six run con-
straints only in one axis, three with X symmetry and three with Y symmetry.
The final three executions impose no symmetry restriction. The computa-
tional complexity is lower when symmetry constraints are imposed. Thus, no
symmetry restriction means more complex calculation.

To improve the results in each execution, the following procedure is followed:

• symxy: X plus Y symmetries and random initial population.

• symxy2: X plus Y symmetries and the solutions of symxy is included in
the initial population. The rest of the population is randomly generated.

• symxy3: X plus Y symmetries and the solutions of symxy and symxy2
are included in the initial population. The rest of the population is ran-
domly generated.

• symy: Y symmetry and random initial population.

• symy2: Y symmetry and the solutions of symy and symxy3 are in-
cluded in the initial population. The rest of the population is randomly
generated.

• symy3: Y symmetry and the solutions of symy2 is included in the initial
population. The rest of the population is randomly generated.

• symx: X symmetry and random initial population.

• symx2: X symmetry and the solutions of symx and symxy3 are in-
cluded in the initial population. The rest of the population is randomly
generated.

• symx3: X symmetry and the solutions of symx2 is included in the initial
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population. The rest of the population is randomly generated.

• nosym: Without symmetry constraint and random initial population.

• nosym2: Without symmetry constraint and the solutions of nosym,
symy3, symx3 and symxy3 are included in the initial population. The
rest of the population is randomly generated.

• nosym3: Without symmetry constraint and the solution of nosym2 so-
lution is included in the initial population. The rest of the population is
randomly generated.

The fact that each problem is executed several times with the best solutions
from the previous runs is a common technique to prevent early exhaustion
when the population diversity drops below a threshold. In the literature re-
lated to this field, it is known as ‘’restart and phase”. For instance, see CHC
algorithm [eshelman91]. The three runs of the algorithm can be understood
as a unique run with a mechanism of ’restart and phase’. When the algo-
rithm is exhausted, it is restarted with a new population that includes the best
individuals.

Figure 7.13 shows the best results for all symmetries and the relative position
compared with the ideal point. The ideal point is formed with the best atten-
uation and mean deviation obtained with the best values of points P1 (whose
minimise means pressure in a single objective sense) and P9 (whose min-
imise means deviation in a single objective sense) of nosym3 Pareto Front.
This point is not achievable, but it gives an order of magnitude of the best
performances attainable. As we can see, the execution without symmetry
constraints presents the best results because the structure has more flexibil-
ity. Y symmetry and X symmetry offer similar results. The worst results are
for XY symmetry - due to the limited degree of freedom in the creation of
vacancies.

Figures 7.14, 7.15, 7.16 and 7.17 show the acoustic attenuation spectra sup-
plied by some of the points of the Pareto front obtained in the optimization
phase. The points are labelled as P1, P2, etc. (see figure 7.13) in decreasing
order of mean attenuation. For the fronts of more than two points, such as
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Figure 7.13: Comparison of the best result for each symmetry constraint.

nosym3 and symxy3, for simplicity sake and without loss of generality, only
the extremes of the front and the nearest point to the ideal are considered for
the next analysis.

Figure 7.14 represents the results of points P1, P4 and P6 of the Pareto front
of symxy3. P1 has the best mean attenuation in the range of optimization
([2300, 3700] Hz) and P6 the best mean deviation in the same range; P4 is
an intermediate solution between P1 and P6, and is the nearest to the ideal
point. An interesting characteristic is that P1 has the worst mean deviation,
but when observing the frequency diagram of attenuation, this is seen not to
be a drawback because the larger variations in attenuation are in a positive
sense and this behaviour is favourable to the main objective. In essence, the
objective is to obtain a high attenuation bands and all variations in this sense
should be considered positive. Even with a higher variation in attenuation
with respect to P4 and P6, the attenuation for nearly every frequency in the
range of interest is normally above the values of P4 and P6. Then a good
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Figure 7.14: Attenuations spectra for points P1, P4, and P6 of the Pareto front in
the symxy3 case. Mean attenuations have been calculated in the selected ranges of
frequencies (from 2300 to 3700 Hz.

solution for a final choice with XY symmetry is point P1.

Figure 7.15 represents the results of points P1 and P2 in the symx3 case, in the
complete Pareto front obtained in the optimization process. P1 has the best
mean attenuation in the range of optimization ([2300, 3700] Hz) and P2 the
best mean deviation in the same range. In both cases, the mean attenuation
is quite similar. The deviation analysis in the optimization range reproduces
similar characteristics as in the symxy3 case. The higher deviation of P1 is
not a drawback because the main deviation is in a positive sense. Again, a
good choice for a final solution can be point P1.

For the results presented in Figure 7.16, the analysis is quite similar to the
previous one and the best choice for a final solution with Y symmetry is P1.

Figure 7.17 represents the results of points P1, P7, and P9 of the Pareto front
in the nosym3 case. P1 has the best mean attenuation in the range of optimiza-
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Figure 7.15: Attenuations for points P1 and P2 of the Pareto front in the symx3 case.
Mean attenuations have been calculated in ranges [2300, 3700] Hz.

tion ([2300, 3700] Hz), P9 the best mean deviation in the same range and P7
(the nearest to the ideal point) is an intermediate solution between P1 and P9.
The analysis of XY, X, and Y symmetries shows an important characteristic:
those responses with high deviations are not necessarily the worst as they are
mostly in a positive sense which is good for the higher attenuation. A good
choice for a final solution could be P1 point. Moreover, this solution can be
the best choice for all symmetries as it obtains the best mean attenuation.

7.5 General rules for creating vacancies in sonic
crystals

Results obtained in the previous Section reveal that the optimization of SC
by means of the creation of vacancies asymmetrically distributed in the struc-
ture, produces a good results for the creation of attenuation bands, better than
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Figure 7.16: Attenuations for points P1 and P2 of the Pareto front in the symy3 case.
Mean attenuations have been calculated in ranges [2300, 3700] Hz.

the ones obtained using the symmetric distribution of vacancies. We showed
that the best results of the optimization process appear when, in some steps
of the evolutionary algorithm, we introduce an asymmetric distribution of va-
cancies. In contrast, the results obtained for the optimization of the focusing
properties of the SC indicate that although the creation of vacancies provides
an improvement in the focusing properties of SCs, this increase is smaller than
that obtained in the attenuation case. In addition, there are not any geometry
of distribution of vacancies that produces better results than other.

From the results obtained in the optimization process considering symmetries
for the generation of vacancies, it would be possible to obtain some general
rules to build QOS that present better attenuation and focalization capabilities
than the starting SC in a predetermined point behind the structure and in a
previously fixed predetermined range of frequencies. This Section answers
the immediate question: How and how many vacancies one should produce
in a starting SC to improve the its attenuation? To do this, the parameters
related to the asymmetry and to the fraction of vacancies will be analysed
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Figure 7.17: Attenuations for points P1, P7 and P9 of the Pareto front in the nosym3
case. Mean attenuations have been calculated in ranges [2300, 3700] Hz.

both theoretically and experimentally.

In this Section, we are interested in obtaining general rules on the number
of vacancies and their distribution on the starting SC, as required to obtain
structures with optimized attenuation and focalization properties in the way
we have explained above. The parameters that we have defined to give us
information about the distribution and the number of vacancies were defined
in Section 7.3.2: The fraction of vacancies (Fv) and the asymmetry (A).

In the different optimization process considered, one for each of the sym-
metries of creation of vacancies, the behaviour of the Asymmetry parameter
has firstly been fanalysed. In Figure 7.18A, one can see the values of the
asymmetry parameter for each of the analysed symmetries in the creation of
vacancies. One can observe that, in the case of the nosym strategy, the op-
timized value of this structural parameter appears around 60%, whereas the
other symmetries present a values arround 20%. These results indicate that
the level of asymmetry of each generation of vacancies is an adequate param-
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eter to obtain devices with high attenuation level. We note that, in the case
of the nosym symmetry, the optimized QOS can be obtained using a distri-
bution of vacancies that presents the previous value of asymmetry. From the
definition of the assymetry parameter, it is easy to see that he corresponding
value of this parameter for the symXY generation of vacancies is AsymXY = 0.
This is the reason why it is not analysed in this Section. Moreover, taking into
account the Pareto fronts shown in Figure 7.7A, symXY becomes the worst
strategy to increase the attenuation properties of the SC and therefore, the
value of the A parameter is in good agreement with the results obtained using
the PF . Accordingly, only the three remaining symmetries will be analysed.

Figure 7.18: (A) asymmetry parameter and (B) fraction of vacancies for the analysed
symmetries in the Attenuation case. The points represent the value of the parameter
for each of the optimized structures obtained and the line represents their average
value.

It would be interesting to know which is the number of vacancies which is
necessary to create in a starting SC in order to obtain a predetermined attenu-
ation level. To do this the Fraction of vacancies parameter has been analysed.
Figure 7.18B shows the results of the study of the fraction of vacancies. This
parameter gives the optimum number of vacancies for each of the considered
strategies. We can see that, for the best strategy (nosym), the value of this
parameter is the lowest and it is around 43% of the total number of cylinders
in the starting SC.

We have shown in this Section, by means of the use of both optimization and
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structural parameters that: (i) the creation of vacancies is a suitable method
to increase the acoustic attenuation properties of the SC and (ii) the nosym
strategy seems the best method to create vacancies. Moreover, general rules
to create random (nosym) vacancies in a SC based on the defined structural
parameters are obtained. The optimal values of A and Fv to build an optimal
structure should be around 60% of the asymmetry and 40% of the vacancies.
These values correspond to the best devices in terms of improved acoustic
attenuation.

In the current Chapter we have also analysed the optimization of the SC in or-
der to produce the focusing of sound. Thus, it would be interesting to analyse
again the Asymmetry and the Fraction of vacancies in order to obtain general
rules for the focalizing sound. Figure 7.19A shows the variation of the asym-
metry parameter for each of the analysed strategies. As in the attenuation
case, the value for the nosym strategy is around 0.6 and for other symmetries
between 0.38 and 0.45. Figure 7.19B shows the results regarding the frac-
tion of vacancies necessary to optimize the focusing properties of SCs. In all
cases, this parameter is around 20% of the total number of cylinders in the
starting SC.

Figure 7.19: (A) Asymmetry parameter and (B) fraction of vacancies for the analysed
symmetries in the case of the focusing devices. The points represent the value of the
parameter for each of the optimized structures obtained and the line represents their
average value.
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Taking into account the results obtained using both optimization and structural
parameters, it can be concluded that the strategy of vacancy creation does not
seem a decisive factor in the optimization process for the focusing capabilities
with the cost functions used in the optimization algorithm. In the next Section,
experimental results proving the general rules obtained for the improvement
of the attenuation capabilities of the SC will be shown.

7.5.0.1 Experimental evidence

In this Section, we will try to confirm the applicability and the robustness
of the optimization rules obtained in the previous Sections in the case of the
attenuation devices. To achieve this, we have designed the following experi-

Figure 7.20: Experimental measurement set up. The starting SC consists of hollow
aluminium rods 1 m long and 4 cm in diameter arranged in a triangular pattern with
constant lattice a =6.35 cm. There are 397 cylinders.

ment. In order to observe the generality of the obtained rules, a starting SC
with an external shape and a number of cylinders that differ from the SC used
in the theoretical development has been built. In this SC, a specific number
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of vacancies has been randomly created removing each time a predetermined
number of cylinders. Then the sound attenuation spectrum (IL) in the ΓX
direction (0◦) was measured. We have also calculated the AA, Fv, and A pa-
rameters for each of the samples obtained. The experiments were performed
in an anechoic chamber. We have especially used a SC with a honeycomb
external shape, made of 397 cylinders of 4 cm diameter 1 m long of hollow
aluminium and placed in a triangular array with parameter a = 6.35 cm (Fig-
ure 7.20). Ten samples were created by removing randomly 40 cylinders each
time.

(A)

(B)

Figure 7.21: (A) Attenuation area versus number of cylinders for both analysed cases.
(B) Variation of the asymmetry of the nine structures obtained as a function of the
vacancies created. The vertical lines represent the optimum number of vacancies.
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In Figure 7.21A, one can see the value of the AA parameter as a function
of the number of cylinders and of the two ranges of frequencies analysed
(2300−3700 Hz and 2000−6500 Hz). In both cases, we can see that there is
a maximum of AA for a percentage of the existing vacancies of around 40% of
the total cylinders of the starting SC. This value agrees with the value obtained
in the optimization process.

The variation of the asymmetry A of the samples as a function of the number
of vacancies is plotted in Figure 7.21B. We can see that the asymmetry is near
60% for the optimum number of vacancies corresponding to the best samples
(around 40%) obtained in both analysed cases. Again, this value is in good
agreement with the theoretical result obtained in the optimization study.

Experimental attenuation spectra for both the best optimized sample (larger
AA) and the complete starting SC are plotted in Figure 7.22 corresponding to
the range of frequencies from 2300 Hz to 3700 Hz in Figure 7.22A and from
2000 Hz to 6500 Hz in Figure 7.22B. The best sample is also shown in each
inset. In both cases, the increase of the AA when compared to the starting SC
can be seen in those samples with vacancies.

In short, the validity of the general rules theoretically obtained has been ex-
perimentally checked. Moreover, the devices built by means of the creation
of vacancies in the starting SC, when taking into account the theoretical gen-
eral rules obtained, offer the best attenuation capability - in the predetermined
range of frequencies analysed; and also in a wider range.

7.6 Discussion

Motivated by the ideas of Caballero et al. [Caballero01] and Hakansson et
al. [Hakansson04], SC with several distribution of vacancies in their struc-
ture have been analysed in order to study the possibility of creating acoustic
devices with specific enhanced properties. Based on the numerical results ob-
tained by means of the evMOGA in conjunction with MST, the mechanism
for the creation of vacancies in a starting SC has been analysed in order to
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Figure 7.22: Comparison of attenuation spectra corresponding to the starting SC, and
the best sample obtained by means of the creation of vacancies: (A) (2300− 3700
Hz); (B) (2000− 6500 Hz). The best corresponding structure obtained is shown in
the inset.

develop a tool to increase the acoustic properties. The optimization of the
attenuation and focusing properties of these materials has specifically been
studied. Acoustic attenuation and focusing phenomena are not the same, from
the optimization point of view, for the considered objective functions. Due to
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the range of applicability of the wave crystal theory, the results obtained could
be used as a guide to construct devices with different wave fields.

Finally, different strategies in the creation of defects (vacancies) in an initial
SC have been analysed in order to determine which is optimal to achieve the
objective of increasing both the acoustic attenuation and the focusing proper-
ties in a predetermined range of frequencies. The creation of vacancies has
been shown as a good alternative to increase both the attenuation and the fo-
cusing properties. However, although in the case of the optimization of the
focusing properties, we showed that there is no preferable symmetry of gener-
ation of vacancies, in the case of the optimization of the attenuation properties,
the QOS with a distribution of vacancies without any symmetry (nosym) has
doubled the attenuation capability of the initial SC. Thus, the nosym strategy
has revealed a good alternative among the analysed strategies to increase the
attenuation properties.

In this Chapter, general rules to build attenuation devices based on the SC in
an optimal approach have been presented and the main conclusions are:

• the strategy used in the creation of vacancies seems an important factor
and we have proven that the random strategy is best among the other
ones considered in this work for the considered objective functions.

• the optimal number of created vacancies is around 40% of the total
number of cylinders in the starting SC and the optimal asymmetry,
meaning that the approach to distribute the vacancies is near 60%. More-
over, the validity of these theoretical rules has been experimentally
checked and we have shown that the results obtained are independent
of both the SC characteristics (external shape, number of cylinders) and
the acoustic parameters to optimize (range of frequencies).
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8
Improving the acoustic properties of

the scatterers

Sound attenuation has become a standard topic of science and technology over
the years. The traditional technique to reduce noise consists of increasing
the thickness or the mass per unit area of the sonic shield materials used.
However, one of the main disadvantages of this technique is the normally
large size of the devices necessary to obtain suitable results. Then, the use
of SC can be an alternative to the classical devices due to their capability to
include some others attenuation mechanism like the Multiple Scattering or
resonances. But, the use of SC as effective filters or even as acoustic barriers
requires an optimization.

In this Chapter, the attention is focused on the acoustical properties of the
scatterers as building blocks of the periodic systems. The properties of the
scatterers themselves could be used to optimize the acoustical behaviour of
the periodic systems. Scatterers can enhance the acoustical properties of a
SC in addition to the BG effect due to the periodicity. In this Chapter, the
improvement of the attenuation properties of the array is analysed from the
properties of each scatterer.

In Chapter 7, we showed the possibility of creating attenuation bands with SC
made of rigid scatterers, with a particular distribution of vacancies in air and
in a predetermined range of frequencies. The GA+MST method was previ-
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ously used in the design of acoustical devices based on SC [Hakansson04].
In this case, the mechanism used was the creation of vacancies in a starting
complete SC built with aluminum cylinders in air. Consequently the so-called
quasiordered structures (QOS) were obtained [Romero06, Romero09].

The angular dependence of the position and the width of the attenuation bands
of a SC can still be a serious problem to design acoustic devices based on SC
with air as host material. Moreover, the continuous dispersion relation allows
propagating modes for frequency lower than the BG frequency range. One
possibility to avoid these modes is to use scatterers with acoustical properties
in such a way that SC present stop bands in addition to the BG of the structure.

Specific research was recently done to obtain attenuation bands in the low
frequency range using resonators. The so-called locally resonant sonic ma-
terials [Liu00a] break the constant lattice dependence. It was shown that the
attenuation bands can be obtained in several ranges of frequencies which do
not depend on the periodicity of the crystal but on the resonance frequency of
the resonators. Thus, it is possible to create an acoustic attenuation bands for
specific and relatively low frequencies, breaking the mass law. On the other
hand, some authors have investigated the effect of absorbing material cover-
ing rigid scatterers in SC, observing that in this array the IL is more uniform
in frequency. Moreover, arrays with coated scatterers provide higher average
attenuation than similar arrays of rigid cylinders [Umnova06].

In this Chapter, different types of scatterers developed in the last years are
shown. They present several properties such as elastic or cavity resonances
and sound absorption that can be used to improve the behaviour of the SC.
In the following Sections, SC made of balloons are developed showing the
resonance effect of the individual scatterers. The design of scatterers based
on resonators that combine several effects as cavity resonances and/or elastic
resonances is presented. The scatterers shown here do not destroy the BG
of the array, adding their acoustic properties to those of the crystal structure.
MST and FEM have been used to model both the scatterers and the SC.

182



8.1. BALLOONS AS RESONANT SCATTERERS IN SONIC CRYSTALS

8.1 Balloons as resonant scatterers in sonic crys-
tals

Research on SC made of soft scatterers embedded in air was focused on the
use of balloons containing different gases as scatterers. Kushwaha and Halevi
[Kushwaha97b] theoretically studied the behaviour of three-dimensional (3D)
sonic crystals made with spherical balloons containing hydrogen gas and em-
bedded in air. In these systems, the authors analysed the band gap creation
for three different 3D configurations as a function of some parameters like the
filling fraction, the latex wall thickness and the pressure inside the balloons,
explaining their appearance in terms of the multiple scattering theory.

In this Section, some evidence on the resonant behaviour of an array of res-
onators (balloons containing a blend of air and helium) embedded in air are
presented. The experimental transmission results obtained suggest that there
is no possibility of explaining the attenuation peaks observed as a function of
Bragg’s law or using the multiple scattering theory. Moreover, the resonant
properties of balloons were used to design mixed structures formed with both
rigid cylinders and balloons in air. The results obtained show the creation of
full attenuation bands in predetermined ranges of frequencies.

The experiments was performed in an echo-free chamber (see Chapter 5). In
all cases, the sound attenuation spectrum, meaning that, the IL was measured.
Rigid (aluminum) cylinders or resonators were used (balloons) as scatterers
arranged in two triangular configurations with lattice constants a =6.35 and
12.7 cm, respectively. The aluminium cylinders used had a diameter of d=4
cm and a length of 1 m. The common balloons used in the experiments had
a cylindrical shape, with a 1 m length and diameters of between 3.5 and 4.5
cm. The variation of the diameter is due to their commercial origin which
consequently involves differences in shape and small deformations. The bal-
loons were inflated with a standard blend of air and helium with a density
of ρHe=0.9 kg/m3 and an average of inner pressure of pHe = 140.000 Pa.
Moreover, the latex wall thickness was considered negligible compared to the
diameter of the balloon. In order to keep the balloons in the vertical position,
we tied down a little weight at their free extreme. In particular, the measure-
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ments along the two high-symmetry directions on the Brillouin zone (ΓX-0◦
and ΓJ-30◦) of the sample were performed. The geometry that we used and
the analyzed direction of the measurements are represented in Figure 8.2A.

8.1.1 Results

Firstly, some measurements were taken in order to verify the acoustic be-
haviour of an array made only with balloons. Their acoustic response was
checked by varying the filling fraction, the direction of the incident wave and
the lattice constant. For this purpose, an array of balloons formed in five
rows of ten elements per row and with two lattice constants a =12.7 cm and
a =6.35 cm were measured. Throughout this process, the IL along both the
ΓX and ΓJ directions was measured. In Figure 8.1A, one can see the IL for the
array formed with lattice constant a =12.7 cm. An attenuation peak around
the same range of frequencies (from 2700 to 4700 Hz) could be seen for both
incident wave directions. These peaks do not correspond to the second atten-
uation peaks due to the Bragg’s law in the ΓX and ΓJ directions centred at
ν0◦=3090 Hz and ν30◦=3570 Hz, respectively. Moreover, the first attenuation
peaks related to the periodicity of the SC (first Bragg peaks at the ΓX and ΓJ
directions centred at ν0◦=1545 Hz and ν30◦=1756 Hz), do not appear in the
spectrum.

Figure 8.1B shows the results obtained for the lattice constant a =6.35 cm.
Again, there is no difference between the spectra in the ΓX and ΓJ directions.
Finally, the difference among the level of attenuation between both spectra
(figures 8.1A and 8.1B) can be explained in terms of the variation of the filling
fraction of the balloons in both samples. Also, we note that the range of the
attenuated frequencies is the same for both lattice constants.

Although the existence of the attenuation peaks shown cannot be explained
in terms of Bragg’s law, the results obtained are compatible with a resonant
phenomenon due to the non-dependence of the attenuation peaks on the angle
of the incident wave over the array and on the lattice constant. The resonant
frequency due to the length of the balloons (1 m) would be less than 2700 Hz,
and then, the most important contribution in the attenuation peak observed
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(A)

(B)

Figure 8.1: Attenuation spectra of an array formed with five rows of ten balloons in
triangular lattice and for two incident directions (0◦ (blue line) and 30◦ (red line)).
(A) Lattice constant a =12.7 cm and (B) lattice constant a =6.35 cm.

would correspond to the oscillation of the balloons in a transversal plane.
Thus, experimental evidence show that arrays formed with balloons filled with
gas with physical properties similar to that of the air act as arrays of resonators
against the theoretical results showed in reference [Kushwaha97b].
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(A)

(B)

Figure 8.2: Experimental acoustic attenuation spectra of both an array of six rows of
ten aluminium cylinders and a mixed structure of 12 rows formed with the previous
one plus six rows of ten cylindrical balloons. In both cases, the lattice constants are
a =12.7 cm, the incident direction is from left to right and the measurements were
taken along the ΓX direction. (A) Schematic of the analysed mixed structure. (B)
Acoustic attenuation obtained for the two structures (SC and mixed structure).

In Figure 8.2A a mixed structure formed with an array of cylinders made with
six rows of ten aluminum scatterers plus six rows of balloons is shown. The
lattice constant of the mixed structure is a =12.7 cm. In Figure 8.2B, one can
see both the attenuation spectra measured at 0◦ of the SC formed with rigid
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cylinders and the one corresponding to the mixed structure. We can see that
the spectrum of the mixed structure shows the acoustic attenuation due to the
SC with rigid cylinders plus the attenuation produced by the balloons due to
the resonance phenomena. This fact means that the mixed structure allows an
enhancement of the attenuation bands by a superposition of the resonance and
multiple scattering.

In this Section we have proven that it is possible to increase the attenuation
band of a SCs by including of some rows formed with resonant scatterers be-
hind it. The sum of both effects (resonance and multiple scattering) allows the
design of structures with enhanced acoustic attenuation. Moreover, one can
perform high technology with these systems combining the effects of the res-
onators with the QOSs. This combining effects are shown in the next Chapter,
in Section 9.1.

8.2 Split ring resonators in sonic crystals

The original concept of split ring resonators (SRR) was introduced by Pendry
et al. in 1999 [Pendry99] in the context of the electromagnetism. In the last
years the application of such scatterers in the design of left handed materials
has been intensively analysed by several research groups.

Analogously, SRR have been used to build up periodic structures in order
to manipulate and control the flow of classical waves. Authors have specif-
ically constructed a thin convergent lens with very good focusing effect us-
ing the SRR [Hu05]. Moreover, SRR introduce ranges of frequencies related
to the resonant frequency where waves cannot propagate through the system
[Movchan04]. Authors have usually considered the SRR as 2D Helmholtz
resonators, however this approximation needs some special geometrical ap-
proximations [mechel08]: The thickness of the walls or both the length and
the aperture of the neck of the resonator must follow some approximation to
consider the resonator as a Helmholtz resonator. Otherwise, one should solve
the scattering problem of the resonator in order to know the resonant fre-
quency of the SRR. Thus, once the resonant frequency of the SRR is known,
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several applications can be done. For example, SRR could be used to create
attenuation bands in the range of frequencies below the BG.

In this Section, a design of SRR is proposed solving the scattering problem
and comparing the theoretical results obtained with the experimental results.
The resonant frequency is designed to appear in the range of frequencies be-
low the BG produced by the periodic distribution of scatterers. After that, the
eigenvalue (band structures) and the scattering (attenuation spectrum) prob-
lems of a SC made of SRR will be analysed. The eigenvalue problem gives
information about the ranges of attenuated frequencies and their dependence
on the angle of incidenve. The scattering problem shows that the effect of the
resonances is proportional to the number of resonators. Both the eigenvalue
and the scattering problem have been solved using COMSOL 3.5a (FEM).

The theoretical data were tested using experimental measurements in both the
isolated SRR and the SC made of SRR cases. The results were obtained in the
anechoic chamber described in Chapter 5. SRR have been constructed from
split ring tubes of PVC (rigid) cylinders.

The objective is to design SRR and to construct SC that present an attenuation
band in the range of selected frequencies, eliminating some reinforcements of
the SC. This design will be used in Chapter 9 in order to design an acoustic
barrier based on the SC with SRR and absorbent materials.

8.2.1 Design of single resonators

The expressions to determined the resonant frequency of SRR shown in the
literature are based on the Equation of the resonances produced in a Helmholtz
resonator [Movchan04, Hu05]. This approximation is only valid for certain
geometries of the SRR where the resonator should present an aperture low
enough to consider the cavity as a Helmholtz resonator [Movchan04]. Then,
determining the exact values of such parameters could be complicated and
highly dependent on the geometry of the cavity.

The procedure followed in this Section to obtain the geometry of the SRR
is the next: first, the scattering problem of several SRR with different wall
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Figure 8.3: Resonance of a single SRR obtained using FEM. The blue line (Blue open
circles) represents the numerical (experimental) IL of the single SRR shown on the
inset. The inset represents the localized pressure field in the cavity for the resonant
frequency.

thickness and apertures is studied and second the most suitable SRR for our
purpose is selected. In this Section, a SRR with the resonant frequency in
the range of frequencies below the BG of a SC with periodicity a =0.33 m,
meaning νBragg < 515 Hz, is presented. For this purpose, a SRR of PVC with
the next values has been designed: external radius r = 0.1 m, inner radius
r = 0.095 m and aperture width L = 0.02 m.

A wave impinging the SRR from the left is considered and the SRR presents
its aperture in this side. In the inset of Figure 8.3, one can observe this ori-
entation of the SRR. Then the IL produced by the SRR can be numerically
obtained using FEM. Figure 8.3 shows the IL produced with the designed
SRR, presenting a clear resonance peak around 220 Hz. The open blue circles
represent the experimental measurements of the IL in the anechoic chamber.
On can observe a good agreement between both theoretical and experimental
results. The localization of the pressure inside the cavity for this resonance
frequency, can be observed in the inset of Figure 8.3.

We note that, if the usual formula of the 2D Helmholtz resonator1 is used for

1νHelmholtz =
c

2π

�
A
LS , where A is the aperture, L is the wall thickness and S is the surface
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the SRR presented in this Section, the first resonant mode could be obtained
at a frequency of 610 Hz, which is far away from the obtained by the analysis
of the scattering problem. This shows that the considered SRR does not be-
have as a 2D Helmholtz resonator. The resonant mode of the SRR designed,
presents the first resonant peak at 210 Hz and its position is independent of
the BG position corresponding to the periodic structure. In the analysis we
use a periodic structure made of rigid scatterers placed in a square lattice of
a = 0.33 m. We note that the resonance is below the BG of the structure (515
Hz). In the next Section, the effect of such resonators in the Band Structure
and in the Scattering problem of a periodic array of SRR is presented.

8.2.2 Eigenvalue problem: band structures of SC made of
SRR

Following the procedure based on FEM explained in Chapter 3, the band
structures of a square array of the SRR have been calculated using COM-
SOL 3.5.a. As we mentioned in the previous Section the objective of using
the SRR is to improve the attenuation behaviour of a complete SC made of
rigid cylinders in the range of frequencies below the BG. To compare the SC
made of rigid cylinders with the one made of SRR, the corresponding band
structures for the rigid scatterers have also been presented in this Section. The
rigid cylinders present the same radius as the SRR (external radius).

The red continuous lines in Figure 8.4 represent the band structures for the
SRR, whereas the black lines represent the band structures of the rigid scat-
terers. One can observe in this Figure, in the case of rigid cylinders, that there
is not a full BG, but a pseudogap appears in the ΓX direction. This design
was chosen as it will be used in the Chapter 9 for the design of an acoustic
barrier based on SC. For the purpose of this Section, it is not necessary for the
structure to present a full BG. The interest here is to observe the effect of the
SRR in the propagation properties.

If we focus the attention on the band structures of the SRR (red continuous

of the cavity
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Figure 8.4: Band structures of a square lattice of both SRR and Rigid Scatterers. The
red lines represent the band structures for the SC made of SRR, whereas the black
lines represent the band structures for the same lattice made of rigid scatterers.

line), we can observe a full attenuation band in the region of the resonance of
the SRR, meaning an attenuation band independent of the incident direction
of the wave. This attenuation band does not exist in the case of the band
structures of the SC made of rigid cylinders (black line), in this case there is a
transmission band. Thus, an additional stop band appears due to the resonance
of the single elements configuring the SC. The SRR as scatterers in a periodic
array, introduce an easy control of the position in the frequencies of the new
attenuation peak: changing the geometry of the SRR one can move it in the
range of the frequencies below the BG.

8.2.3 Scattering problem of finite SC made of SRR

The analysis of the band structures allows us to know both the propagating
and the attenuating ranges of frequencies of the periodic structure, but they do
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not provide any information about the height of the attenuation peaks nor the
dependence of the attenuation level with the number of scatterers. To do this,
one needs to analyse the scattering problem of finite structures. The scattering
problem was numerically solved using FEM, considering a cylindrical source
placed at the origin of the coordinates. The size of the finite structure is 4a×
4a and with a = 0.33 m. The SC is placed 1.5 m away from the source and
the IL was calculated at a point located 3 m from the origin of coordinates in
the x-direction.

Figure 8.5: IL of a finite SC made of SRR of size 4a×4a with a=0.33 m. Left panel:
Blue line (Red line) represents the numerical predicted IL in the ΓX (ΓM) direction.
Green dashed line represents the IL for the array of rigid cylinders in the ΓX direction.
Central panel: Band structures of the SC made of SRR. Right panel: Red open circles
(Blue open squares) represents the experimental measurements of the IL in the ΓX
(ΓM) direction. Green crosses represent the experimental measurements of the IL for
the rigid cylinders in the ΓX direction

Figure 8.5 shows the results of the sound scattering in terms of the IL of a
finite square periodic structure made of both rigid and SRR scatterers. The
Figure is divided in three parts. The left panel shows the IL obtained using
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FEM of both structures: The blue line (Red line) represents the numerically
predicted IL in the ΓX (ΓM) direction and the green dashed line represents the
IL for the array of rigid cylinders in the ΓX direction. The central panel shows
the band structures of the SC made of SRR. Finally, the right panel shows in
red open circles (Blue open squares) the experimental measurements of the IL
for a SC made of SRR in the ΓX (ΓM) direction. The green crosses represent
the experimental measurements of the IL for the rigid cylinders in the ΓX
direction.

First of all, one can observe the good agreement between the band structures
and the calculated IL. The scattering problem reproduces both the first pseu-
dogap at ΓX direction and the resonance of the SRR. We notice in the band
structures that at ΓM there is no pseudogap. One can observe that the res-
onance is independent of the incidence direction: both red (45◦) and blue
(0◦) lines show the same peak at low frequencies in accordance with the band
structures. However, the dependence of the Bragg scattering on the incidence
direction is also shown in the scattering problem: the pseudogap only appears
in the ΓX direction. The right panel in Figure 8.5 shows the experimental
measurements. One can observe the good agreement with both the scattering
and the eigenvalue problem numerically solved. In the experimental results,
one can observe that both blue open circles (0◦) and red open squares (45◦)
show the attenuation peak due to the resonance at the same frequency range,
thus the non dependence on the incidence direction is also experimentally
shown in good agreement with the numerical simulations. On the other hand
the experimental results also show the properties of the Bragg scattering.

One can also compare both the numerical and the experimental results of the
SC made of SRR with the ones of the SC made of rigid cylinders. In Figure
8.5, one can see that the structure made of SRR preserves the attenuation peak
related to the periodicity of the array (515 Hz). In ΓX direction both struc-
tures present the pseudogap (see the blue and green lines, or open blue circles
and green crosses). Moreover, the SC made of SRR improve the attenuation
properties of the same structure made of rigid cylinders due to the additional
attenuation peak in the low frequency range.

As we have previously seen, the attenuation band related to the resonances of
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the SRR is independent of the incident direction, but in addition the depth of
this sound attenuation bands (in dB) should proportionally increase with the
number of consecutive scatterers passing through the incoming acoustic wave.
In this Section, a numerical analysis of the dependence on the resonance depth
with the number of resonators is also given.

8.2.3.1 Dependence on the number of rows and on the incidence direc-
tion

A numerical study using COMSOL of the propagation properties in a finite
SC made of SRR is shown in this Section. It would be interesting to analyse
the dependence of both the resonant and Bragg scattering effect on the number
of scatterers in the finite structure. Obviously, both effects depend on the
number of scatterers, the Bragg scattering following the evanescent behaviour
of modes inside the structure and the resonant effect increasing the number of
building blocks of the crystal.

In order to observe these properties, the attenuation spectra for several struc-
tures with different number of rows and different angles of incidence have
been calculated. The spectra for four finite structures with 1, 2, 3 and 4 rows,
and for the two main directions of symmetry, 0◦ and 45◦ have been specifi-
cally studied. As in the previous Section, the sound source is placed at the
origin of coordinates and the IL for all the analysed cases was measured at a
point situated 3 m away from the source behind the SC.

The results are shown in Figure 8.6. The Figure is divided into three parts.
The upper panel shows the IL for the four structures purposed in the Γ X (0◦)
direction and the lower panel shows the IL in the Γ M (45◦) direction. Blue,
green, cyan and red lines represent the IL for finite SC made of SRR in one,
two, three and four rows respectively. In the central panel the band structures
are again shown to make the comparative easy between the eigenvalue and
the scattering problems.

First, one can observe in all cases that the IL in the range of frequencies
produced by the resonances of the SRR, increases the attenuation level with
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Figure 8.6: Dependence of the resonance on the number of resonators and on the
angle of incidence. Upper panel: IL of structures made from 1 to 4 rows of SRR. The
angle of incidence is 0◦ (ΓX) direction. Central panel: Band structures of a periodic
square array of SRR with a = 0.33 m. Lower panel: IL of structures made from 1 to
4 rows of SRR. The angle of incidence is 45◦ (ΓM) direction.

the number of resonators. Moreover, comparing the results of both the upper
and the lower panels, one can observe that the attenuation peak produced by
the resonance appears at the same frequency range independently of the angle
of incidence of the wave. One can also observe the dependence of the Bragg
scattering on the number of scatterers in the structure.

The SC consisting of SRR yield strong attenuation bands at selected frequen-
cies, with a far superior performance with respect to the usual SC (based on
Bragg’s scattering only). With regard to application and exploitation, they
can be used to predict the structural parameters needed to fabricate custom-
tailored SC.
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8.3 Elastic U-profile scatterers

In this Section, we investigate the propagation of acoustic waves in SC formed
of elastic scatterers whose geometrical shape presents a cavity. Due to the
shape of the scatterers, they can be referred as U-profiles. These scatterers add
new attenuation bands in a regime of frequencies below the BG (ka < π) due
to both the elastic properties of the material and the cavity resonances. The
material the scatterers are made of is a low density polyethylene closed-cell
foam (LDPE)2 whose conventional applications can be found in the packag-
ing industry and shock absorbing and vibration damping techniques. In this
Section, a phenomenological analysis of a SC made of these kind of scatterers
is presented and the numerical results based on FEM show good agreement
between the measured IL obtained for both the single scatterer and the pe-
riodic array of scatterers made of LDPE foam. Experimental results of the
sound propagation in a periodic array of triangular unit cell with lattice con-
stant a = 12.7 cm shows the potential improvement introduced in the SC by
these kind of scatterers.

As we have seen, SC can be analysed by several numerical methods, including
the plane wave expansion, MST, variational methods and the FDTD. How-
ever, since the acoustic wavelength of the attenuation band in the subwave-
length regime is much longer than the lattice constant of periodic system, one
can define a Locally Resonant Acoustic Metamaterial (LRAM) whose effec-
tive properties can provide an accurate and simple description of the wave
interaction with the associated LRAM. This methodology is applied to anal-
yse the acoustic behaviour of SC made of LDPE foam scatterers.

8.3.1 Motivating results

In this Section, the interest is focused on the behaviour of the SC made of
U-profiles, in the subwavelength regime, meaning that ka << π, where a is

2Low Density Polyeithylene foam properties are reported in reference [mills07]: density,
ρ = 100 kg/m3, Young’s modulus, E = 0.35 GPa and Poisson’s ratio, ν = 0.4.
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the periodicity of the array and k is the wavenumber. Hereinafter, this range
of frequencies will be called low frequency range.

Figure 8.7A shows the acoustic response of a commercial scatterer made of
the recycled material: LDPE closed-cell foam (see inset). The red dashed line
in the upper graph illustrates the IL of a U-profile. One can see the existence
of two attenuation peaks appearing in the low frequency range, around 700
Hz and 1000 Hz. These peaks will be called first and second attenuation
peaks, respectively. The nature of both can be understood by analysing the
eigenvalue and scattering problems for the basic geometrical shapes such as
rectangular elastic beam and rectangular cavity, as it will be seen later.

On the other hand, this resonant behaviour could be used to improve the
acoustic behaviour of the SC introducing attenuation peaks in the range of
low frequencies, independent of the incidence direction of the wave as in the
case seen in the previous Section. The attenuation bands shown in Figure 8.7
are obtained with SC made of U-profiles placed in triangular array with lattice
constant a = 12.7cm. For this lattice constant it is possible to consider that
the upper bound of the low frequency range corresponds to the first Bragg’s
frequency of that SC with value 1545 Hz.

8.3.2 Phenomenological analysis

The nature of both attenuation peaks can be understood by analysing the
acoustical properties of basic geometrical shapes like rectangular elastic beams
and rectangular resonance cavities. In the next two subsections the resonances
of both the elastic beam (elastic resonances) and the rectangular cavity (cavity
resonance) are analysed.

8.3.2.1 Elastic resonances

Consider a 2D elastic beam (EB) made of LDPE foam with L length and
t width (see the schematic view in Figure 8.8A); the density of material ρ.
Considering that the EB has a free end and the other end is fixed, the vibra-
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Figure 8.7: Experimental data. (A) IL of one U-profile. (B) and (C) show the IL
of a SC made of different numbers of U-profiles in a triangular array, a =12.7 cm,
measured at 0◦ and 30◦ respectively. The inset shows the transversal view of a U-
profile.

tion modes can be analysed by means of the following Equation [voltera65,
gere97],

EI
∂4v(x, t)

∂x4 =−λm
∂2v(x, t)

∂t2 (8.1)

where λm = ρLt is the linear mass density of the EB, E is Young’s modulus
and I is the second moment of inertia. The EI product is known as flexural
rigidity. Appendix D shows a brief explanation of the Equations used in this
section.

The eigenfrequencies of the EB can be obtained from the following Equation,

cos(knL)cosh(knL)+1 = 0; (8.2)
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Figure 8.8: Eigenfrequencies of an elastic bar of LDPF, density ρ =100kg/m3,
Young’s modulus E =0.35GPa and Poisson’s ratio ν=0.4. (A) Schematic view of the
EB. (B) Graphical solution for Equation 8.2. The first four resonances of an elastic
bar can be obtained from the plot. (C) Displacement of first vibrational mode and (D)
Displacements of second mode. In (C) and (D) The continuous line represents the
maximum displacement and the dotted line represents intermediate displacements.

where kn =
4
�

ω2
nρLt/EI, ωn is the angular frequency of the mode n, related

to the frequency as ωn = 2πνn.

The graphical solution of Equation 8.2 is shown in Figure 8.8B. We can ob-
serve that the first and second modes appear at k1 = 28.41 m−1 and k2 = 71.12
m−1. Using Taylor’s series, it is possible to approximate the first mode as

k1 �
4√12
L

. (8.3)

This first low-frequency solution is particularly interesting for this work.
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From the values of kn and considering that the material of the EB is LDPF,
the resonance frequencies of the first and second mode are ν1 = 693.8 Hz
and ν2 = 4348 Hz respectively. Displacements of the elastic beams for each
resonance frequency can be calculated using the Equations briefly presented
in Appendix D. These displacements for the first and second resonances are
shown in Figures 8.8C and 8.8D for different times in order to reproduce the
complete movement of the EB. The maximum displacements in each direc-
tion are plotted with a continuous line whereas the dashed lines represent the
displacements in several intermediate instants.

Figure 8.9: Dependence of the first eigenfrequency on both the length and the width
of the EB made of LDPF.

The resonances of a EB made of a fixed material can be tuned by varying its
geometrical parameters. Figure 8.9 shows the dependence of eigenfrequency
of the first mode on both the length and the width of the EB made of LDPE
foam. The black point marks the position of the first resonant frequency for
the geometrical properties of the EB analysed in this Section (t = 0.01 m
and L = 0.066 m). One can observe that the bigger the length, the lower the
frequency of the first mode, and that the bigger the width, the higher the fre-
quency of the first mode. The intersection point of the black lines corresponds
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to the eigenfrequency for the EB with the geometrical parameters considered
in this work.

8.3.2.2 Cavity resonances

Another interesting property of the U-profiles is that they present, in addition
to the elastic properties of the material, a cavity where sound could be lo-
calized due to resonances. Several works in the literature have analysed the
effect of cavity resonators in periodic structures. In addition to the BG of the
periodicity, the systems made of resonators show low frequency attenuation
bands produced by the resonances of Helmholtz or split-ring resonators. Due
to both the control of the resonances of the EB and the resonance of the cavity,
periodic structures made of U-profiles elastic scatterers can be easily tunable
in the range of low frequencies.

Figure 8.10: U-profile elastic scatterers. calculated using FEM. (A) Geometrical
shape and parameters characterizing the size of the U-profile. (B) Acoustic field
inside the cavity for the resonant frequency.

The eigenfrequencies of a rectangular cavity with several boundary conditions
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has been widely analysed in the literature. As one can see in Figure 8.10A,
the cavity of the U-profile has a length and a width equal to lx = 0.066 m
and L2 = 0.04 m respectively. To solve the problem, one can consider that
the walls of the U-profile are perfectly rigid. Thus, Neumann boundary con-
ditions should be considered at the boundaries, and Dirichlet conditions in
the boundary in the open side of the U-profile. The solution of the analytical
problem results in an eigenfrequency problem whose fundamental mode has
a eigenfrequency equal to νr = cair/(4lx). However, we have shown that the
air immediately outside the end of the cavity takes part in the acoustic oscil-
lation. This air makes the cavity appear to be acoustically somewhat longer
than its physical length. This effective length gives rise to a displacement of
the resonance frequencies, for this reason it is called in the literature, the end
correction of the cavity. In order to compute the correct resonance frequency,
this effective length and the corresponding frequency correction have to be
considered. A more rigorous analysis of the cavity would be required to find
the exact resonance frequencies, but it has been assumed that the end cor-
rection of the cavity of the U-profile is similar to the corresponding one of a
closed cylinder adapted to the 2D case.

νr =
cair

4(lx +0.4L2)
. (8.4)

Then, in the case of the cavity considered in this work, the frequency of the
first mode is νr =1040 Hz. In Figure 8.10B, one can observe the acoustic field
inside the cavity for this resonance frequency.

8.3.3 Acoustic-structure interaction

8.3.3.1 FEM model

We start this Section by analysing the propagation of acoustic waves inside
periodic structures made of solid scatterers, B, embedded in a fluid host, A us-
ing FEM. Due to the physical properties of the host material, the eigenmodes
of the whole system are pure longitudinal waves, while transverse modes can-
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not propagate. Then, the governing Equation in A is

− ω2

c2
A

p = ∇
�

1
ρA

∇p
�

(8.5)

where p is the pressure, ρA is the density and cA is the sound velocity in the
host material.

The propagation of elastic waves inside the scatterers, locally isotropic medium,
is governed by

−ρBω2ui =

�
∂σi j

∂x j

�
, (8.6)

where ρB is the density of the elastic material and ui is the ith component of
the displacement vector. The stress tensor is defined by

σi j = λBullδi j +µBui j

ui j =
1
2

�
∂ui

∂x j
+

∂u j

∂xi

�
, (8.7)

where λB and µB are the Lamé coefficients.

In this problem the acoustic wave is incident on the scatterer and then the pres-
sure acts as a load on the elastic medium. On the other hand, the elastic waves
in the scatterer act as an additional acceleration on the acoustic field. In or-
der to simultaneously solve 8.6 and 8.7 we introduce the following boundary
conditions,

∂p
∂n

|∂B = ρAω2�u�n (8.8)

σi jn j|∂B = −pni.

where ∂B is the boundary of the medium B and�n is the outward-pointing unit
normal vector seen from inside the scatterer medium.

To solve the stated problem COMSOL MULTIPHYSICS has been used, as
wll as a finite-element analysis and solving software package. FEM is a good
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technique when the geometries are complicated and several physical prob-
lems are coupled. In the numerical problem, the domain in which the solution
is obtained was surrounded by a PML region in order to emulate the Som-
merfeld radiation condition in the numerical solution (see Chapter 3). As an
example, Figure 8.11 shows the specific pressure field distribution obtained
for 1660 Hz. One can observe the absorption of the waves, produced by the
transformation to the complex plane in the PML region, eliminating all the
possible reflections in the boundaries and emulating a Sommerfeld condition.

Figure 8.11: Pressure field distribution produced by the scattering of a plane wave of
1660 Hz by an U-profile. The PML regions are marked with the PML.

8.3.4 Numerical results

8.3.4.1 Scattering problem

Single scatterer

First of all, the frequency response of the U-profile is analysed. The geometry
of the U-profiles was implemented using the CAD tools of COMSOL. In the
inset of Figure 8.12, one can see the considered model of the scatterer, this
geometry slightly differs from the real one. In the numerical model, a plane
wave impinging the scatterer from the left side has been considered and the
IL at a point behind the scatterer is calculated.

Figure 8.12 shows the numerical results obtained using COMSOL. One can
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observe similar frequency response to the one experimentally observed in Fig-
ure 8.7. Two attenuation peaks numerically calculated appear near 700 Hz
and 1200 Hz. A sensibility analysis varying the geometry of the U-profile
was done, and one can observed that the first peak is very sensitive to changes
in geometry. However the second one does not substantially change with the
variations of the geometry of the U-profile. These changes are in good agree-
ment with the predictions of the resonances of a rectangular elastic beam pro-
file with a resonant cavity.

Figure 8.12: Numerical results of single scatterer. IL produced by a U-profile. The
inset shows a image of the numerically modelled U-profile.

As we have previously explained, the first peak corresponds to the resonances
of the EB of the U-profile, therefore small changes in the geometry can pro-
duce high changes in the resonant frequencies (see Figure 8.9). This provides
a powerful design tool in the first of the low frequency attenuation peaks.

On the other hand, if we compare Figures 8.7 and 8.12 we can observe again a
difference between the numerical and experimental frequencies of the second
peak. As we previously mentioned in the analysis of the cavity resonances,
the air immediately outside the end of the cavity takes part in the acoustic
oscillation and the effective length of the cavity increases, therefore an end
correction is needed to obtain the resonances of the cavity. However one can-
not consider this end correction from the numerical problem, because changes
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in the length of the EB would produce a change in the resonance. Therefore
the numerical model is only used here to obtain the tendencies of the system.

Periodic array

Once the numerical results of the acoustical behaviour of an isolated U-profile
have been analysed, the next step is to analyse a periodic distribution of this
elastic scatterers following a triangular lattice with lattice constant a = 0.127
m. Here, a plane wave impinging from the left side is considered and the
numerical domain is again surrounded by a PML region. Thus the numerical
solution accomplishes an approximated Sommerfeld condition. Figure 8.13,
shows an schematic view of the numerical problem.

Figure 8.13: Schematic view of the numerical model to analyse the scattering prob-
lem of an array of U-profiles scatterers.

The blue continuous line in Figure 8.14A shows the numerically predicted IL
of a finite structure made of 6 rows of 10 U-profiles for an incident wave in
the direction of 0◦. By comparing the results of the scattering of an isolated
U-profiles (see Figure 8.7), one can observe that the resonances of the elastic
beams, as well as the cavity resonance, have been increased due to the increase
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in the number of resonators. Moreover, an attenuation peak around 1600 Hz
appears ant it can be related to the periodicity of the array, as we will shown
in the next Section.

In the Figure 8.14B, the measured IL for the same array as the numerically cal-
culated is also plotted. One can observe a clear correspondence between the
attenuation peaks numerically predicted with those experimentally obtained.
However, the experimental attenuation peak related to the elastic resonances
presents a higher attenuation level than the one numerically predicted. A pos-
sible explanation for this effect could be the existence of some absorption
effect of the material that it is not considered in the model.

(A) (B)

Figure 8.14: (A) Numerically predicted IL of an array of U-profile scatterers. (B)
Measured IL of an array of U-profile scatterers. A plane wave impinges the structure
from the left side to the right side.

Then, the resonance effect of the scatterers is not destroyed by the multiple
scattering inside the structure, therefore one can combine resonances with
multiple scattering in order to obtain several attenuation peaks. As we ex-
plained in the beginning of this Section, an interesting feature of these scat-
terers is that they show two resonances in the range of frequencies below the
first BG of the periodic structure.
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8.3.4.2 Eigenvalue problem

We analyse the propagating properties of a periodic arrangement of U-profiles
by means of the application of the Bloch periodic boundary conditions in a
unit cell. This methodology was described in Chapter 3. Figure 8.15 shows
the Band structures of a periodic arrangement of U-profiles arranged in tri-
angular lattice of a =12.7 cm. The black line represents the band structures
considering the perfectly rigid U-profiles, this means that we can consider
Newmann boundary conditions in the wall of the scatterer. One can observe
that this arrangement presents the pseudogaps related to the periodicity as
well as the stop band due to the resonance of the cavity.

If the elastic properties of the U-profiles are considered, then the band struc-
tures are represented by the blue continuous line. One can observe the BG
due to the periodicity (1600 Hz), the stop band of the resonance of the cavity
(1100 Hz) and the resonance of the elastic beams of the U-profile (700 Hz).
In the representation the non propagating ranges of frequencies is presented
by the black surfaces.

In order to compare the numerical results with those experimentally obtained
a new plot was added in the right panel, where the IL of a triangular periodic
distribution of U-proflies was measured in the main symmetry directions: 0◦
(blue line) and 30◦ (red line). One can observe the low dependence on the di-
rection of incidence of the resonance due to the vibration of the elastic beams
and the resonance of the cavity, but the directionality appears in the frequen-
cies of the BG due to the periodicity.

8.3.5 Experimental results

The acoustic attenuation capabilities of the single LDPE foam scatterers as
well as of the periodic structures of these scatterers have been measured in
terms of IL. The sample is excited by white noise.
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Figure 8.15: Band Structures for a periodic arrangement of U-profiles in triangular
lattice of a =12.7 cm. Left panel: Black dashed line represents the band structures
for a rigid U-profiles, whereas the blue line represents the bands for the elastic U-
profile. The black surfaces indicate the non propagating ranges of frequencies. Right
panel: Measured IL of a triangular lattice of elastic U-profiles measured in the two
main symmetry directions, 0◦ (blue line) and 30◦ (red dahsed line)

8.3.5.1 Single scatterer

The experimental analysis of the single LDPF scatterers has been divided into
two parts, acoustic and vibrational analysis.

The IL of the single scatterer is shown in Figure 8.16A in red dashed line. The
real shape of the scatterer was modelled using FEM. Using the acoustic-elastic
coupling previously presented, the IL was numerically obtained (see the blue
line in Figure 8.16A). One can observe that the numerical method previously
used is in good agreement with the experimental results. The observed dis-
crepancy between the numerical and experimental results in the second peak
can be explained by the lack of precision in the representation of the scatterer
profile in the numerical method.
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Figure 8.16: Experimental results of a single scatterer. (A) IL (dB) measured behind
the scatterer. Red dashed line represents the experimental results and Blue line rep-
resents the numerical simulation using FEM, (B) Experimental measurements of the
vibration of the EB of the LDPE foam scatterer. Blue line represents 0◦ of incidence
and red dashed line represents 30◦ of incidence. (C) Sound level map measured inside
the cavity for the resonant frequency for ν =1104 Hz. Step ∆x = ∆y =1 cm.

In Figure 8.16A one can see the presence of the cavity and the EB resonances.
To experimentally explain these resonances, on the one hand the vibration
of the EB with an accelerometer, and on the other hand, the acoustic field
inside the cavity of the LDPE foam for the resonant frequency of the cavity
were measured. In Figure 8.16B, one can observe the vibration of the EB
for two different incidence direction of the acoustic wave. Blue continuous
line represents the vibrations of the wall of the U-profile for the incident wave
in the ΓX direction. Red dashed line, represents the vibrations of the walls
for a wave impinging in the ΓJ direction. The vibration of the wall of the
elastic beam increases at the resonant frequencies. Figure 8.16B shows the
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increasing in the vibration of the wall in the resonance of the material and in
the cavity resonance independently of the incident direction of the acoustic
wave.

Figure 8.16C shows the acoustic field inside the cavity of the LDPE foam
obtained by moving the microphone with the 3DReAMS in 1 cm steps inside
the cavity. The field inside the cavity is similar to the one analytically obtained
in Figure 8.10D. The resonance of the cavity induces the vibration of the walls
observed in Figure 8.16B at frequencies around 1000 Hz.

8.3.5.2 Periodic array

Dependence on the number of resonators

(A) (B)

Figure 8.17: Experimental measurement of the IL for determining the dependence
of the attenuation peaks on the number of scatterers. Open colored circles represent
the IL for six structures made of different number of rows (from 1 to 6 rows of 10
cylinders per row). IL measured 1 m away from the end of the complete structure.
(A) Measurement in the ΓX direction. (B) Measurements in the ΓJ direction.

One can expect that both the resonant effect and the multiple scattering de-
pend on the number of scatterers in the array. To prove it, we built and mea-
sured six configurations with an increasing number of scatterers. The final
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structure presents 6 rows of 10 scatterers per row. We measured the IL at
the same point for the six structures that have from 1 to 6 rows respectively.
Figure 8.17 shows these experimental results. The coloured open circles rep-
resent the IL measured 1 m away from the end of the complete crystal. Blue
open circles show the IL of a structure made of 1 row of U-profiles for 0◦
incidence whereas the black open circles represent the IL of structure made
of 6 rows of U-profiles for 30◦ of incidence.

We can observe that both resonances due to the elastic material and the cavity,
depend on the number of cylinders in the structure. Also, in the case of only
1 row, where there is no periodicity in 2D, the resonance peaks are present
in the attenuation spectrum whereas Bragg’s peaks do not appear. The atten-
uation spectra of structures made of rigid scatterers always present ranges of
frequencies where there is sound reinforcement, meaning negative IL. How-
ever, it is interesting to note that these structures do not present ranges of
frequencies with sound reinforcement.

Dependence on the incidence direction

One of the main characteristic of the stop bands produced by periodic arrays
is their dependence on the incident direction. As we have observed in the
previous Chapters, in periodic systems the BG results from the intersection
of the frequencies of the pseudogaps in the main symmetry directions, the
upper and lower bands of each main direction being dependent on the incident
direction. However, it is known that the resonance effect must be independent
from the incidence direction.

Here, we measure this dependence of both the resonance and the multiple
scattering in a periodic array of U-profiles in the direction of incidence. We
have especially measured the IL of a complete structure for several incident
directions, between the two main symmetry directions (0◦ and 30◦). Figure
8.18 shows these experimental results measured in the anechoic chamber.

One can observe in Figure 8.18 the low dependence on incidence direction of
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Figure 8.18: Experimental measurement of the IL to determine the dependence of the
attenuation peaks on the direction of incidence of the wave. Open coloured circles
represent the IL for four different directions, 0◦, 10◦, 20◦ and 30◦. IL measured 1m
away from the end of the complete structure (6 rows of 10 cylinders per row).

the attenuation peaks produced by the resonances of the elastic walls and by
the cavity of the U-profile. However, one can see that the behaviour of the
attenuation peak produced by the multiple scattering in the periodic system is
highly dependent on the incidence direction.

8.3.6 Discussion: locally resonant acoustic metamaterial

Artificially designed subwavelength electromagnetic materials, denoted meta-
materials [Veselago67, Pendry96, GarciaVidal97, Pendry99], have motivated
a great effort to develop, both theoretically and experimentally, the acous-
tic analogue metamaterial [Liu00, Movchan04, Hu05, Fang06, Guenneau07].
Recent works have shown that SC can be employed as these acoustic meta-
materials [Torrent06, Torrent07]. In the diffraction regime theoretical predic-
tions and experimental results have shown the existence of BG. However, in
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the regime of large wavelengths, in comparison with the separation between
the scatterers, SC behave like effective homogeneous acoustic metamaterial
and this can be characterized by effective physical parameters.

The pioneering work of Liu et al. [Liu00] proposed a novel three-dimensional
(3D) arrays of coated spheres that exhibited attenuation bands, whose respec-
tive wavelength was about two orders of magnitude larger than the periodicity
of the structure. The origin of this phenomenon was explained in terms of the
localized resonances associated with each scattering unit [Sheng07]. Then,
sound attenuation within the stop bands increases with the number and den-
sity of the local resonators, whereas the resonance frequency can be tuned
by varying their size and geometry. These results open the way towards the
acoustic analogous of the electromagnetic metamaterial. Due to the prop-
erties of the system, these structures are known as locally resonant acoustic
metamaterial (LRAM).

In LRAM, the sound speed is proportional to
�

κe f f /ρe f f , where κe f f and
ρe f f are the effective modulus and the mass density, respectively. For natural
materials κ and ρ must be positive numbers to maintain the stability. De-
pending on the values of these parameters the metamaterial presents several
responses in frequency. It has previously been shown that SC made of rigid
scatterers with no resonant properties can be analysed as an acoustic metama-
terials showing real and positive effective properties [Torrent07]. However,
some interesting differences can appear due to the effective medium with low-
frequency resonances.

In order to have a propagating plane wave inside the medium, we should have
either both positive κe f f and ρe f f or both negative κe f f and ρe f f . Moreover,
with these values the Poynting vector for a propagating plane wave is defined
by

�S =
ı

2ωρ
p∇p∗= |�p|2�k

2ωρ
. (8.9)

If κe f f and ρe f f are positive, the Poynting vector, �S, presents the same di-
rection as �k and the Snell law is normally accomplished. However if κe f f

and ρe f f are negative, �S and�k present opposite directions, and the metamate-
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rial behaves as a left handed material, where the negative refraction appears.
Physically, the negativity of κe f f and ρe f f means that the medium displays an
anomalous response at some frequencies such that it expands upon compres-
sion (negative bulk modulus) and moves to the left when being pushed to the
right (negative density) at the same time. This materials present unique prop-
erties due to the double-negative medium, such as negative refractive index
and subwavelength focusing [Guenneau07].

However, if only one of both parameters κe f f and ρe f f are negative, the sound
velocity is complex, and the vector presents a complex value. Thus, when the
real component of the expression of the Poynting vector is negative and suf-
ficiently large, we can observe a narrow frequency range, corresponding to
the region of negative modulus, where Re(�k�S) < 0. A direct consequence of
such behaviour is the exponential wave attenuation in such frequencies. It
has previously been shown that low-frequency attenuation bands can be in-
duced by an effective bulk modulus that becomes negative near the resonance
frequencies, giving rise to exponential attenuation of [Fang06].

In the system studied here, the stop bands at low frequencies are indepen-
dent of the angle of incidence and of the lattice constant3. Moreover, there is
not transmission wave in the resonance frequencies, consequently we do not
observe any negative refraction or subwalength imaging near the resonance.
These properties would imply propagation is some frequency region. Thus,
we can conclude that, as in the case of reference [Fang06], the periodic struc-
ture made of U-profile presents only negative bulk modulus as attenuation
peaks show this behaviour. If the effective mass density were negative, some
propagating mode with negative refraction would appear and, consequently,
would produce some subwavelength imaging.

A rigorous parameter retrieval procedure on the line of those developed for
electromagnetic and acoustic cases will be required to be implemented on
this system to obtain the κe f f and ρe f f . But since the LRAM structure, in
our case, is not a far subwavelength in size of the operating frequency (λ ∼
a), such a homogenization of all properties via effective medium parameters
is difficult. However, one can follow the formalism of the electromagnetic

3We have also experimentally observed non dependence on the height of the U-profiles.
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material to phenomenologically analyse the behaviour of the system in the
subwavelength regime analogously as in reference [Fang06].

The acoustic properties of a 2D SC can be mapped into an electromagnetic
counterpart, where p,�v, ρ, k correspond to Hz, �E, ε, µ, respectively. Following
the formalism of the electromagnetic metamaterials, one can consider that the
systems behave as a metamaterial with an effective bulk modulus ke f f (ω) in
the form,

k−1
e f f (ω) =

Nres

∑
j=1

�
E

3(1−2ν)

�−1
�

1−
Fω2

0 j

ω2 −ω2
0 j + ıΓω

�
, (8.10)

where F is the filling fraction, ω0 j represents the resonant frequencies of the
LDPF scatterer, Γ is the dissipation loss in the resonating elements and Nres
is the number of resonances of the scatterers. The loss term Γ cannot be
determined a priori therefore it should be experimentally determined. In our
system Nres = 2 and the resonances are represented by:

ω01 =

√
12

L2

�
ρLt
EI

�−1/2
, (8.11)

ω02 =
2πcair

4(lx +0.4L2)
. (8.12)

In Figure 8.19A, one can observe the effective bulk modulus of the mate-
rial. The imaginary part of the effective bulk modulus presents this particular
frequency-dependent response which is essential to the range of frequencies
where a stop band is expected.

To obtain the transmission coefficient of a slab of the metamaterial with the
bulk modulus shown in Equation 8.10, it is necessary to determine the size of
the effective material. The filling fraction of the structure is,

f =
∑N

i=1 Acyl

Ae f f
(8.13)

where N is the number of scatterers, Acyl is the area of each scatterer and
Ae f f is the area occupied by the homogeneous scatterer. For a homogeneous
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(A) (B) (C) (D)

Figure 8.19: Effective parameters. (A) Effective bulk modulus. Imaginary part is
plotted in red line whereas real part is plotted in blue continuous line. (B) Dispersion
relation. (C) Transmission coefficient for a slab of metamaterial with Le f f =0.66 m.
(D) Measured IL of an array of U-profiles.

scatterer of N scatterers of area Acyl in a lattice whose unit cell has an area
Auc, the filling fraction gives the following Equation

Acyl

Auc
=

NAcyl

Ae f f
. (8.14)

For the homogenized system with square shape, the effective area will be
related to that of a square of side Le f f , then

Le f f =
√

Na (8.15)

where a is the lattice constant of the square array of the inner structure of the
homogeneous material. For the parameters considered in this work, Le f f =0.66
m.

Finally, the density of the effective medium is considered here as a lineal
combination of the densities of the scatterers and the host material, where
the coefficients of the lineal relation are related to the filling fraction of the
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structure. In such a way,

ρe f f = f ρs +(1− f )ρh, (8.16)

where, ρs is the density of the scatterer and ρh is the density of the host mate-
rial.

It would be interesting to know what dispersion relationship corresponds to
these media with negative elastic modulus. In the regime of low frequencies,
the real (x = Re(k)) and imaginary (y = −Im(k)) parts of the bulk modulus
can be related to the propagation constant of the media as [Fang06],

Re(k) =−ω
2

�
ρ

x2 + y2

��
x2 + y2 − x

�1/2
(8.17)

Im(k) =
ω
2

�
ρ

x2 + y2

��
x2 + y2 + x

�1/2
(8.18)

In Figure 8.19B, one can observe the dispersion relation obtained from the
effective elastic modulus in Equation 8.10. Two spectral bands of no propa-
gating modes are expected in the vicinity of the resonances of the local res-
onators.

From the Fresnel Equation of stratified media, it is possible to calculate the
transmission coefficient of a slab of 0.66 m of the acoustic metamaterial anal-
ysed here. In Figure 8.19C, we can observe the absolute value of the trans-
mission coefficient. One can observe a reduction of the transmission around
the resonant frequencies.

In Figure 8.19D, we show data from measurements of the IL of a periodic
array of U-profiles distributed in a triangular lattice. We observe that the at-
tenuation peaks predicted by using the effective medium approximation are
also experimentally seen. On the other hand, we would like to note that the
diffraction limit is near to the second peak, and in the experimental measure-
ments, one can observe Bragg’s peak due to the periodicity.

In summary, the resonances of a scatterer with complex geometry have been
studied from the analysis of the resonances of simpler geometries. The easy
way to design the resonances of the scatterers presented in this Section open
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several possibilities to create an arrangement of resonant scatterers that at-
tenuate a wide range of frequencies below the BG of the structure. The first
possibility is to analyse the acoustical behaviour of a periodic array made of
several scatterers with different length and cavities. Following the rules for
the design of the resonance frequency of both elastic beam and cavity reso-
nances, it is possible to design tunable stop bands in the propagating range of
a SC if it were made of rigid scatterers.

8.4 Towards superscatterers for attenuation devices
based on SC

The periodicity of the system and the acoustical properties of the scatterers
should work together in the same devices based on SC in order to produce
the best effect for a predetermined situation. The previous Sections have
shown how the attenuation properties of a periodic array of scatterers can
be improved by changing the properties of the scatterers, therefore how the
properties of the scatterers complement the acoustical properties of a periodic
system.

A very recent work [Yang08] developed the electromagnetic “superscatterer”.
In contrast to invisibility cloak, Yang et al. designed an EM transformation
media device to enlarge the scattering cross-section of a small object. In this
way, the object can be effectively magnified to a size larger than the object
plus the device so that it is much easier to detect the EM wave. The scatterers
shown in this work, could be considered as being the preliminary acoustic
superscatterer. In fact, the properties of the periodic systems in the ranges
of frequencies where the waves cannot see the inner structure of the periodic
structure, due to the fact that the wavelength is much smaller than the size of
scatterers (λ << r), can be modified for instance by stopping the passing of
the wave through the crystal due to the properties of the individual scatterers.
In such a way, the preliminary superscatterer for the acoustical counterpart
are presented here.

However additional optimization is needed to find the best acoustical super-
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scatterer. Even more so the design of the optimized scatterer with specific
acoustical properties requires a deep study on the properties of materials,
shapes, absorbing properties, etc. In this work, some possibilities of scatterers
to improve the acoustical properties of the SC in the range of the low frequen-
cies below the BG have been shown. The scatterers contribute absorbent,
scattering and resonant behaviors and these are combined with lattice effects
in several frequency ranges.

The ideal scatterer for its use in attenuation devices based on the SC, should
improve the attenuation in the ranges of frequencies where the lattice effects
do not work properly.
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9
Engineering and design of Sonic

Crystals

Up to now different tools to improve the acoustical behaviour of SC have been
presented: on the one hand the creation of defects in SC (Chapter 6) and, on
the other hand the possibility of improving the acoustical properties of the
scatterers that conform to the periodic acoustic medium (Chapter 8).

The creation of N-point defects statistically distributed in SC allow the de-
sign of attenuation bands in a predetermined range of frequencies. We have
observed that the best results for the attenuation devices in the optimization
process have been obtained by the structures with a random distribution of
vacancies. On the other hand, one can increase the attenuation properties of
SC, by introducing scatterers with added acoustical properties inside a QOS.
In this case it would be interesting to preserve the multiple scattering process
inside the QOS. It is well known that the attenuation band appearing in the
spectra of the QOS is mainly due to the multiple scattering phenomenon, thus
it would be interesting to combine rigid and other kind of scatterers to obtain
additional attenuation peaks without destroying the optimization previously
achieved in the spectra of the QOS. Here, we study the combination of a QOS
with balloons (resonant scatterers studied in Chapter 8) observing the sum of
both effects in the same SC.

One of the most important technological uses of the SC in the range of the
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audible frequencies is design and the construction of acoustic barriers based
on SC. As Sánchez-Pérez et al. mentioned in their work in 2002 [Sanchez02],
SC made of rigid scatterers are suitable structures to be used as acoustic barri-
ers, but they present several disadvantages. One of them is the wide thickness
of the SC necessary to obtain an attenuation similar to the predicted one by
Maekawa for rigid walls. One possible solution consists of combining several
effects, such as multiple scattering, resonances or absorption in the same SC.

Finally, we present a possibility of sonic crystal acoustic barrier (SCAB) de-
sign introducing scatterers that combine scattering, absorption and resonance
phenomena in order to produce a high and wide range of attenuated frequen-
cies. Both the absorption and resonance effects are proportional to number
of scatterers, but their optimization requires an optimization of the material
properties and the shapes of the scatterers that are outside the scope of this
work. A simple geometry of scatterers based on the works of Movchan and
Guenneau [Movchan04] and Umnova et al. [Umnova06] is shown. SRR cov-
ered with a layer of absorbent material are used for the design. Because of the
geometrical shape of the scatterers, FEM seems a suitable method to model
the scattering problem of this SCAB.

9.1 Targeted attenuation band creation using mixed
sonic crystals including resonant and rigid scat-
terers

In the previous Sections and Chapters, we have given some general rules to
create QOS so that they can present an attenuation band bigger than the origi-
nal BG of the structure. Other possibility is to run the evolutionary algorithm
to obtain a QOS optimized in a predetermined range of frequencies. In this
case, the GA (or ev-MOGA) selects the best structure fitted to the objective
functions to be minimized in such a way that the multiple scattering inside
the QOS produces attenuation bands in predetermined ranges of frequencies
in which the QOS is optimized. In all cases, the final structure is based on the
initial SC but presenting a distribution of vacancies with a 40% vacancies and
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60% asymmetry.

Then, could we introduce new scatterers in these vacancies without destroy-
ing the multiple scattering in order to add new attenuation bands to the final
spectrum of the complete structure?

Independently of the generation of QOS, we also was explained in Chapter 8
that one can improve the attenuation capabilities of SC by using of scatterers
with added properties: absorption or resonances. Then, in this Section the
following idea has been developed: to complete the QOS with scatterers with
acoustical added properties in such a way that the final structure combines
several effects to attenuate a wide range of frequencies.

In this sense, one can introduce in a QOS one of the resonant scatterers anal-
ysed in Chapter 8: balloons. A mixed structure is formed by one of the QOS
proposed in Section 7.2 optimized for a range of frequencies centred at 2000
Hz, plus a set of balloons placed in the vacancies of the QOS, which present
an attenuation band centred at 4000 Hz due to their resonances. The chosen
QOS is formed by rigid (aluminum) cylinders and was optimized to attenuate
a range of frequencies from 1700 to 2300 Hz. The starting SC has 6 rows
of 10 aluminium cylinders per row and a lattice constant a =6.35 cm, which
corresponds to a Bragg frequency of 3090 Hz. We have proven the existence
of a complete attenuation band at a frequency range from 1700 to 2300 Hz in
this QOS (see Chapter 6). Due to the locations of the balloons, the width of
the mixed structure and the total number of elements are the same as the start-
ing SC. Figure 9.1A shows the resulting mixed structure. In Figures 9.1B and
9.1C, we compare the acoustic attenuation spectra obtained in the two main
symmetry directions of the starting SC, 0◦ and 30◦, with those obtained only
with the QOS. In both cases, the attenuation level increases when the balloons
are located in the place of the vacancies. In Figure 9.1D, one can see a large
full band gap obtained in the predetermined range of chosen frequencies.

In this Section we show that it is possible to increase the attenuation band of
the SC made with rigid scatterers embedded in air, using mixed structures of
rigid scatterers and resonators filled with gas with physical properties simi-
lar to those of the air. The advantage of these mixed structures, compared
to those formed only by resonators, is that we can choose both the range of
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(A) (B)

(C) (D)

Figure 9.1: Mixed structure proposed. (A) Resulting mixed structure proposed, QOS
+ balloons. (B) Attenuation spectra obtained for both structures, QOS with and with-
out balloons, at 0◦, (C) for the previous structures measured at 30◦, and (D) for the
mixed structure measured at 0◦ and 30◦.

resonant frequencies (here by means of the diameter of the balloons) and the
range of multiple scattering frequencies creating vacancies using GA in a SC
made with rigid cylinders with a reasonable lattice constant. The sum of both
effects (resonance and multiple scattering) allows us to design structures with
enhanced acoustic attenuation, creating a full attenuation bands in a predeter-
mined range of frequencies. Intensive research needs to be done to develop
the necessary technology to use these structures like for example, acoustic
barriers.
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9.2 Design of a sonic crystal acoustic barrier

The properties of SC were used by Sánchez-Pérez et al. [Sanchez02] to intro-
duce for the first time the concept of Sonic Crystal Acoustic Barrier (SCAB),
showing that structures made of two-dimensional arrays of hollow rigid cylin-
ders in air with a low number of elements produce fairly good sound atten-
uation values, able to compete with conventional acoustic barriers. These
structures have some important advantages with respect to the classical ones.
On the one hand they are lighter and easier to build and, on the other hand,
they can be tuned by varying the properties of the crystal and the scatterers.
However, they also present some disadvantages. The dependence of the BG
on the incidence direction of the wave is problematic for attenuation of noise
from moving sources. In addition, the lower the frequency of sound to be
attenuated is, the higher the size of the is SCAB needed, which results in new
problems related to the restrictions of the available space in which to put the
screen.

As we saw in Chapter 8 and in the previous Section, the attenuation peaks pro-
duced by the resonant scatterers are independent of the incidence direction, so
one possibility to reduce this angle dependence could be the use of resonators.
However, the use of SCs as outdoor SCAB, requires scatterers made of robust
and long-lasting materials like PVC, wood, or aluminium. This requirement
cannot be easily met using soft materials, like for instance balloons. This is
the reason why it seems interesting to analyse the possibility of optimizing
the attenuation capability of SCs made with scatterers that combine rigid res-
onant scatterers with some resistible covering of absorbent material, in such a
way that different attenuation mechanism will be used in the design.

The methodology is the following. First of all, one can design a SC presenting
the BG in a range of frequencies of interest. Once the filling fraction and the
lattice constant of the SC are adequate for the design conditions, then one
can introduce the resonators to attenuate different ranges of frequencies . The
resonant scatterers should also be designed to present the resonant peak at the
desired frequency. Finally, the absorbent material should be introduced in the
periodic system to make the IL of the array more uniform in frequency and to
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increase the average attenuation.

In this Section, a hypothetical design of a SCAB made of SRR covered with
a thin layer of absorbent material is proposed. Following the design of the
SRR shown in Chapter 8, the attenuation properties of these resonant scat-
terers are improved by adding a layer of woollen felt covering the SRR. The
SCAB made of this scatterers present good attenuation properties in the range
of the audible frequencies, being suitable to acoustically compete with the
classical acoustic barriers. The possibility of combining several mechanism
involved in the attenuation process, such as multiple scattering, resonances
and absorption allows us to control the transmission properties of the SCAB.
The possibility of designing predetermined SCAB for specific ranges of fre-
quencies is an advantage of the SCAB with respect to the classical barriers.

9.2.1 Combining absorption, resonances and multiple scat-
tering

In this Section, we study the use of periodic distributions of absorbent and
resonant scatterers embedded in air to attenuate a wide range of frequencies.
The scatterers consist of a rigid SRR core with a radius of r = 0.1 m and
an aperture of L = 0.02 m resonant cavity, covered with a layer of absorbent
material of a thickness t = 0.04 m. The absorbent SRR scatterers distributed
in square array with lattice constant a = 0.33 cm are considered, arranged in
4 rows of 4 cylinders per row. This size was chosen due to the constraints of
our experimental setup. Figure 9.2 shows a transversal view of the resonant
absorbent scatterer used in this Section.

Rigid cores covered with absorbent material were analysed by Umnova et al.
[Umnova06], presenting a MST procedure to study the scattering problem of
scalar waves by periodic arrays of absorbent scatterers. The scatterer consist
of a rigid core covered with a layer of absorbent modelled using the Delany-
Bazley model. Motivated by the idea of Umnova et al. an analysis on the
behaviour of the SRR covered with a layer of absorbent material is presented.
An IL more uniform in frequency and with greater average attenuation results
are expected to be obtained. One of the goal of this Section is to determine
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Figure 9.2: Transversal view of the absorbent SRR. A rigid SRR core is covered by
a layer of porous material.

how the absorbent covering affects the multiple scattering and the resonant
phenomena in SC.

In this Section, a FEM model is used which introduces the Delany-Bazley
model as a type of damping in the model to characterize the absorbent layer.
Then, the absorbent covering was modelled using the Delany-Bazley model
with the following Equations,

Z(ν) = 1+0.0571
�ρ0ν

R

�0.754
− ı0.087

�ρ0ν
R

�−0.732
, (9.1)

k(ν) = k0

�
1+0.0928

�ρ0ν
R

�−0.7
− ı0.189

�ρ0ν
R

�−0.597
�
, (9.2)

where ρ0, c0 represent the density and the sound velocity of the air respec-
tively; k0 is the wave number of the wave propagating in air; R is the flow
resistivity; and ν is the frequency of sound. Here R = 23000 kPa s m−2

corresponds to the woollen felt covering. This model presents some ranges
of applicability dependent on both the resistivity of flow and the frequency.
For the range of values of these parameters, the Delany-Bazley model works
properly in the range of frequencies 186< ν <18700 Hz, which is basically
the range of frequencies in the audible range (20-22000 Hz).

In the model a point source is placed at the origin of the coordinates and the
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structure is placed 1.5 m away from the source. The IL is calculated at the
point (3,0), meaning that, 3 m behind the structure in the X axis. The numer-
ical domain is surrounded by a PML region in order to reduce the spurious
reflection in these boundaries in order to simulate free-field conditions.

The numerical model was developed using COMSOL 3.5a. The behaviour
of rigid SRR were numerically and experimentally analysed in Section 8.2.
The agreement between the numerical (both the eigenvalue and the scattering
problems) and the experimental results was very good. However, now a test
of the model using only rigid cores covered with absorbent material is needed.

Appendix C show an analytical model of the scattering of scalar waves by
rigid cores covered with a layer of absorbent material. The model is analo-
gous to one the presented by Umnova et al. in 2006 [Umnova06], but using
different matrix of coefficients. With this model it is possible to reproduce
some results from the Umnova work in order to test the analytical model.
Then, the analytical results are compared with the ones obtained using our
numerical model programmed in COMSOL 3.5a. In Appendix C, one can see
the good agreement between both the analytical and the numerical models.
The use of FEM as a design tool here can be considered a good choice.

9.2.1.1 Scattering of a SCAB made of absorbent SRR

The scattering of sound waves by a SCAB made of absorbent SRR is shown
in Figure 9.3 in terms of the IL. The upper panel of Figure 9.3 shows the re-
sults of the scattering by a finite array of absorbent SRR. Red and blue line
represent the IL produced by an array of 4×4 absorbent SRR in the ΓX and
ΓM directions respectively. In the graph the IL of an array of rigid scatterers
(green line) is also plotted in order to make the results easy to understanding.
Finally, due to the comparison between the acoustical behaviour of a SCAB
and a classical barrier, Maekawa’s prediction of a wall with the same dimen-
sions as the SCAB is also plotted in the upper panel of Figure 9.3 in a black
dotted line.

The lower panel of Figure 9.3 shows the band structures of a SCAB made
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of rigid SRR. Although the scattering problem was solved for the absorbent
materials, and the eigenvalue problem in the case of the rigid SRR, one can
compare both results (upper and lower panels of the Figure 9.3) to observe
whether or not the absorbent covering used in this Section destroys the scat-
tering and the resonance effect. In the lower panel of the Figure 9.3, the
blue dotted lines represent the band structures of the rigid SRR used in our
SCAB and the red lines represent the band structures of the rigid SRR with
the same dimensions as the total dimensions of the SRR plus the absorbent
layer (r = 0.14 m, being the inner radius r = 0.095 m).

Figure 9.3: Scattering and eigenvalue problem of a SCAB made of absorbent SRR
of 4a× 4a size. Upper panel: Red (Blue) line represents the IL in the ΓX (ΓM)
direction of the SCAB made of absorbent SRR. Black line represents the Maekawa’s
predictions for a rigid wall with the same dimensions. Green dashed line represents
the IL in the ΓX direction of a SC made of rigid cylinders. Lower panel: Band
structures of the rigid SRR. Blue dashed line represents the Band Structures for the
rigid SRR with external radius r = 0.1 m, inner radius r = 0.095 m and L = 0.02
m. Red line represents the band structures for the rigid SRR with external radius
r = 0.14, inner radius r = 0.095 m and L = 0.02 m.

First of all, comparing the results in the upper panel of Figure 9.3 of the SC
made of absorbent SRR (red line) with the results of the SC made of rigid

229



CHAPTER 9. ENGINEERING AND DESIGN OF SONIC CRYSTALS

cylinders (green dashed line), one can observe that the average IL produced
by the SCAB is increased by the absorbing covering of the SRR practically in
the whole range of frequencies. Moreover, one can observe that the IL of the
SCAB and the IL of a classical barrier (Maekawa’s prediction) reveals ranges
of frequencies in which the SCAB produces better attenuation and ranges in
which the SCAB works worse than the classical barriers. Thus, SCAB made
of absorbent SRR is suitable to be used as acoustic barriers in certain ranges
of frequencies.

The band structures shown in the lower panel of Figure 9.3 (lower panel)
predict a BG centred in 515 Hz, meaning that there is no propagation in the
Γ X direction through the periodic array for this range of frequencies (blue
dotted line). In the IL of the SCAB made of the absorbent SRR, shown in the
upper panel of Figure 9.3 (red line), one can observe the corresponding peak
of the multiple scattering. From the values of the IL of the SCAB, it seems
that the absorbing material introduces a base line of attenuation and that the
peak of multiple scattering appears over this base line of attenuation.

The resonant effect in a SC made of rigid SRR introduces an attenuation band
in the low frequency range (ν =220 Hz), below the BG, as the band structures
predict it in the low panel of Figure 9.3 (see blue dotted lines). However
the corresponding peak appearing in the IL spectra for the SCAB made of
the absorbent SRR, is shifted in frequency to the lower frequencies. This
interesting effect is produced because the absorbent covering becomes part
of the resonator increasing the wall thickness and producing a shifting of the
resonance frequency. To prove this, the band structures of a SC made of
rigid SRR with the same dimensions as the corresponding absorbent SRR has
been calculated. The red lines in the lower panel of Figure 9.3 shows the
results of this calculation. One can observe that the attenuation band due to
the resonance effect predicted by the band structures is reproduced in the IL
spectrum. This interesting result can be used as a design tool that could be
exploited to attenuate other near ranges of frequencies. One could use several
thickness of absorbent covering in order to improve the attenuation properties
of the SCAB.

Then, the IL of a SCAB is characterized mainly by three properties: i) the
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attenuation shows a high attenuation base line comparable with the one pre-
dicted by Maekawa for a classical barriers; ii) The structures preserve the
properties of the periodicity, meaning that, it preserves the BG although the
absorbing covering is surrounding the scatterers; iii) The resonances of each
scatterer are also preserved in the structure. Then, multiple scattering, reso-
nances and absorption co-exist in the same structure without negative inter-
ference between them.

9.2.1.2 Dependence of the IL on the number of rows and on the inci-
dence direction

Up to now, the main characteristics of attenuation properties in a SCAB made
of absorbent SRR have been observed. However, both the dependence on the
mass law and the dependence on the incident direction are important aspects
of the attenuation devices. In this Section the IL for several structures with
different number of scatterers and different incident directions is analysed.

The structures analysed in this Section present the same size as in the previous
Section, 4a× 4a. Four structures from 1 to 4 rows in square lattice for two
different angles of incidence (the two symmetry directions of the periodicity
of the structure, 0◦ and 45◦) have been chosen for the analysis.

Figure 9.4 shows the results of the dependence of the IL on both the number
of cylinders and on the angle of incidence. Blue, green, cyan and red lines
represent the IL of the structures made of 1, 2, 3 and 4 rows respectively. In
the upper panel, Figure 9.4 shows the IL for the ΓX direction (0◦), whereas
the lower panel analyses the IL for the ΓM direction (45◦). To compare the
results, the band structure for the rigid SRR with the same dimensions as the
absorbent SRR is shown in the middle panel of Figure 9.4.

The attenuation level shown in both, ΓX and ΓM directions depends on the
number of scatterers. The greater the number of rows, the higher IL. Obvi-
ously, this result is in agreement with the mass law. However, it does not seem
obvious that the multiple scattering and the resonance phenomena continue to
present the same properties as the rigid SRR when the absorbent material is

231



CHAPTER 9. ENGINEERING AND DESIGN OF SONIC CRYSTALS

Figure 9.4: Dependence of the IL of a SCAB made of absorbent SRR on the number
of rows and on the incidence direction. Blue line, green, cyan and red lines present
the IL of the structures made of 1, 2, 3 and 4 rows respectively. Upper panel: IL for
the ΓX direction (0◦). Lower panel: IL for the ΓM direction (45◦). Middel panel:
Band structure for the rigid SRR with the same dimensions than the absorbent SRR.
Red lines are the band structures for the rigid SRR with r = 0.14 m.

introduced. One can observe that the multiple scattering and the resonant phe-
nomenon are also increased with the number of absorbent SRR. In both ΓX
and in ΓM we can observe how the resonance peak increases with the number
of the absorbent SRR. Moreover, the same behaviour can be observed with
the multiple scattering peak, of course, this peak only appears in the struc-
tures with three and four rows.
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10
Concluding remarks

The main conclusions of the work are summarized in this Chapter and a con-
cise explanation of the future work is also presented.

10.1 Conclusions

The work reported in this Ph.D. Thesis can be divided into two main parts:
(i) The study of vacancies and the optimization of the SC by means of the
generation of vacancies and (ii) the design of scatterers with added acoustical
properties. Finally, both parts were applied together in order to develop the
application of SC as attenuation devices, especially as acoustic barriers. The
following conclusions have been obtained:

10.1.1 Defects in sonic crystals

• From the theoretical point of view, an extension of the plane wave ex-
pansion (EPWE) in the case of both complete SC and SC with vacancies
have been presented. This methodology allows us to analyse the inverse
problem k(ω) and, as such, the complex band structures in SC.

• The analysis of the complete SC by means of the EPWE introduces
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a new perspective in the understanding of the BG: frequency regimes
where no real k exists, meaning the ranges of frequencies in which only
the modes characterized by a complex wave vector are excited inside
the crystal. Thus, for the frequencies inside the BG, the modes present
evanescent behaviour. We have proven that these modes present, inside
the crystal, an exponential-like decay characterized by a complex value
of the first Bloch vector. The agreement between measurements and
theoretical predictions is very good. For the specific SC analysed, the
EPWE predicts a value for the imaginary part of the first harmonic of
the wave number, Im(k) =−5.6 m−1; and by fitting an exponential de-
cay, aebx, the experimental value obtained is b = Im(k) =−5.60±1.45
m−1. This procedure could be used to determine the effective thickness
of filtering devices based on SC to achieve a determined attenuation
level.

• Apart from the evanescent nature of the modes inside the BG with neg-
ative complex Bloch vectors, the evanescent behaviour of a localized
mode inside the SC was also observed. From both the analytical pre-
dictions and the experimental results one can conclude that localized
modes present evanescent behaviour outside the cavity with the same
exponential-like decay as waves with the same frequency inside the BG
impinging over a complete SC. Due to the local breaking of periodicity,
the physical situation is very different between the complete SC and the
SC with point defects, but it can be concluded that the medium observed
by the localized wave trapped inside the cavity formed by the vacancy
is topologically equivalent to the one observed by the wave itself when
it tries to pass through a complete SC from the outside.

• EPWE with supercell approximation allows us to study the evanes-
cent behaviour of modes inside SC with multipoint defects. Localized
modes in multipoint defects in SC are mainly characterized by three
properties: the splitting of frequencies, the symmetry of the vibrational
patterns and the evanescent behaviour inside the crystal. Here, without
any loss of generality, all the properties of the localized modes in a SC
with a double point defect have been analysed.
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The splitting produced by the generation of a double point defect shows
the effects in both the real and the imaginary band structures. From the
imaginary complex band structure we observe that the localized modes
present different values for the imaginary part of k, meaning that each
mode has a different decay rate inside the crystal (different evanescent
behaviour). This property was experimentally observed by fitting the
exponential decay for each localized mode inside the crystal. The sym-
metry of the vibrational patterns in double point defect was also anal-
ysed in the Ph.D. Thesis by means of MST calculation and experimental
data. The novel experimental evidence presented in this work show the
symmetric and antisymmetric vibrational patterns in SC with double
point defects. These data are in very good agreement with the analyti-
cal calculations.

These interesting results could be used to determine the thickness of the
periodic medium around the point defect in order to find a localization
or to produce a passing mode. In this sense, the results are the basis for
the correct understanding of the design of narrow filters and waveguides
based on periodic structures with single or multi-point defects.

• The physical properties of SC with the N-point defects are well char-
acterized by the EPWE, however in the case of N random point defects
one cannot use EPWE for the analysis of the resulting structure due
to the high level of breaking of the periodicity. Here, a novel multi-
objective optimization technique based on genetic algorithms (epsilon
variable multi-objective genetic algorithm (ev-MOGA)) working to-
gether with multiple scattering theory (MST) were used. The method-
ology can be highly parallelizable and the computational time was dras-
tically reduced using a master-slave architecture. This procedure was
used to generate N random point defects in a starting SC in order to ob-
tain Quasi-ordered structures (QOS): structures obtained by generating
N-point defects in a complete SC that presents optimum values of two
objective functions based on both the mean pressure level and the mean
deviation of the pressure in a predetermined range of frequencies. QOS
consist of nonperiodic and random distribution of vacancies in a com-
plete starting SC thus, some parts of the system show the initial period-
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icity of the SC, in such a way that, after removing an important number
of scatterers (around 40%), the resultant structure is non-periodical but
locally preserves the periodicity of the original lattice of the complete
starting SC.

• Simple GA showed the evidence of the possibility to obtain attenuation
bands in a predetermined range of frequencies. evMOGA improve the
results showing that the QOS produce an attenuation zone around the
optimization point due to the optimized multiple scattering in the QOS
that produces an negative interference around the optimized point and
for the whole optimized range of frequencies.

• The Pareto front, using the optimization factor (O f ), was revealed as an
easy and intuitive technique to decide the optimal structure in the case
of the two objective functions.

• The analysis of QOS to obtain ranges of both attenuated and focalized
frequencies in a point behind the structure was carried out here. Dif-
ferent strategies in the creation of defects were used for the exhaustive
search of QOS: symmetry X, symmetry Y, symmetry XY and no sym-
metry.

For the objective functions considered in this work, the enhancement of
the focalization properties of the QOS is similar for all the considered
symmetries of generation of vacancies. However, in the case of at-
tenuation devices, we showed that the generation of random vacancies
without any symmetry in a SC produces QOS with the best attenuation
properties among the other symmetries considered in the work. The
optimization process reveals that the best results have always been ob-
tained considering a random step in the optimization process, being the
optimized solution independent of the search path, if this random step
is considered.

• Several parameters were introduced for the characterization of the QOS.
Among them, the Asymmetry (A) is very important because it gives
information about the level of asymmetry of a QOS, meaning how the
vacancies are distributed inside the crystal. It has been found that 40%
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of vacancies randomly generated with a value of the Asymmetry of 60%
produces the QOS with the best attenuation properties. The generation
of vacancies following this procedure generate structures that produce
double attenuation level than compared to the starting SC.

10.1.2 Intrinsic properties of the scatterers

• Apart from the generation of vacancies in SC, one can consider scatter-
ers with intrinsic acoustical properties in order to improve the overall
properties of the periodic systems, adding new acoustic effects differ-
ent from those generated by the periodicity phenomenon. In this work
we investigate four types of scatterers: balloons, split ring resonators
(SRR), elastic-acoustic scatterers (U-profiles) and absorbent SRR.

• Experimental results show that balloons containing a blend of air and
helium present a resonant behaviour and they are soft enough not to
produce distortion in the overall effect due to the periodicity of the SC.
Interesting results were obtained from the analysis of the IL produced
by two different SC consecutively placed, one made of balloons and the
other one made of rigid cylinders. The acoustical phenomena gener-
ated by both systems, balloons producing resonances and rigid scatter-
ers producing Bragg’s scattering, appear together. This fact means that
mixed structures can be used to get an enhancement of the attenuation
bands.

• Split ring resonators (SRR) have been extensively analysed in the lit-
erature in the recent years, however in all cases the geometrical shape
accomplishes some conditions, in such a way that the SRR can be anal-
ysed as a Helmholtz resonator. Thus, when the wall thickness, the
length of the neck or the aperture of the resonator are big enough, then
the resonator cannot be treated as a Helmholtz resonator and the de-
sign of the scatterers should be done using different techniques. In this
work the design of a SC with SRR was done by solving the scatter-
ing and the eigenvalue problems. The resonance frequency of the SRR
calculated using the Helmholtz formula is far from both the one numer-
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ically predicted using FEM and the one experimentally measured. The
scattering and the eigenvalue problems of a SC made of SRR are in very
good agreement with measurements. The predicted frequency is in very
good agreement with the experimental results including in the cases of
a change in the number of resonators and different incident directions
of the wave. The strong attenuation bands at the resonant frequencies
represent a higher performance with respect to the SC made of rigid
scatterers. Moreover, because of the simplicity of the design of SRR,
they can be used to design custom-tailored SC.

• Scatterers made of soft material (Low Density Polyethylene foam, LDPE
foam) combining elastic and cavity resonances were also studied here.
The elastic resonance produces a vibration of the walls of the scatter-
ers introducing an attenuation band in the range of low frequencies be-
low both the attenuation peak produced by the cavity resonance and the
Bragg peak. This resonance was explained by analysing the vibrations
of an elastic beam, both analytically and numerically. Moreover the res-
onant frequency is easy to design because it depends on the geometrical
parameters of the scatterers. The complex geometry of the scatterers
was performed numerically in order to analyse both the scattering and
the eigenvalue problems of a SC made of these scatterers. The agree-
ment between the experimental results and the numerical calculations
are very good. These scatterers open the possibility to create periodic
arrangements of resonant scatterers designed with different geometrical
shapes in order to attenuate a wide range of frequencies. Following the
rules of the design of these scatterers, one can generate tunable reso-
nances to produce stop bands at the desired range of frequencies.

• The properties of a SC made of the presented elastic-acoustic resonant
scatterers were derived in a brief discussion on the homogenization of
the structure. The analysis of the behaviour of these systems in the
subwavelength regime was done following the formalism of the elec-
tromagnetic materials. With this formalism, one can observe the neg-
ative response of the effective parameters of the system near the reso-
nance frequency. The dispersion relation obtained using these effective
parameters is in good agreement with the measurements and with the
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numerical predictions.

10.1.3 Combining physical phenomena

• The combination of the scattering and the acoustic properties of the
scatterers was analysed in the last part of this Ph.D. Thesis. On the one
hand mixed structures of rigid and resonant structures were analysed.
Interesting results show that it is possible to increase the attenuation
bands of the SC made with scatterers embedded in air by using mixed
structures made of rigid scatterers and soft resonators. As an example,
the distribution of vacancies in a QOS was filled by balloons forming a
mixed structure that sums both physical effects to create a full attenu-
ation band in a predetermined range of frequencies. The advantage of
these systems is that one can choose both the range of resonant frequen-
cies by electing the resonator and the range of attenuated frequencies
using multiple scattering, because the QOS are the resultant structure
of an optimization process.

• Finally a SC made of scatterers presenting a hard core, an absorbent
covering and a resonant cavity is proposed as an alternative to the clas-
sical acoustic barriers. The insertion loss produced by this type of struc-
tures present the sum of the three different physical phenomena: scat-
tering, absorption and resonances. The periodicity of the structure was
designed to produce a BG around 500 Hz and the cavity of the scatterer
was designed to produce a resonance peak around 210 Hz. Both atten-
uation peaks are shown in the structure over a high attenuation baseline
produced by the covering of absorbing material. An interesting result
is that the covering material becomes part of the resonant cavity shift-
ing the resonance to lower frequencies. The produced IL was compared
with the Maekawa predictions for the rigid panel (classical acoustic bar-
rier). The results indicate that the proposed SC present an average at-
tenuation similar to the one produced by classical noise barriers. The
acoustic attenuation of this SC presents both ranges of frequencies with
better attenuation and ranges of frequencies with worse acoustic atten-
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uation than the barrier. However the easy control of the sound propa-
gation properties of the SC is an advantage with respect to the classical
structures.

10.2 Future work

The analysis of the QOS produced very interesting results, but several im-
provements have to be developed in the future. Until now, the optimization of
the attenuation adn focalization properties in a range of frequencies in a point
behind for the normal incidence on the structure has been studied. However,
it would be interesting to improve the same properties in a zone behind the
structure for several angles of incidence. This procedure requires intensive
developments in the multi-objective optimization algorithm used. One pos-
sibility consists of considering two objective functions for each point of the
surface to be optimized and several objective functions to take into account
the behaviour of the acoustical properties from an overall point of view in the
surface. Thus, the number of objective functions could be high, therefore the
Pareto Fronts could be multidimensional and the decision techniques would
have to be improved.

From a fundamental point of view, very recent works have presented the de-
sign of 2D, isotropic, disordered photonic crystals with complete BGs block-
ing all directions and polarizations [Torcuato03, Florescu09, Zachary09]. In
these works, the notion of hyperuniformity has a particular importance. The
hyperuniformity characterizes the local fluctuations in the volume fraction.
Interesting results show that hyperuniformity, combined with uniform local
topology and short-range geometric order, can explain how complete pho-
tonic BGs are possible without long-range translational order. The immediate
question is: can QOS be characterized by the hyperuniformity? or is the
Asymmetry parameter defined in this PhD Thesis a special case of hyperuni-
formity? These characterization could be useful to produce distinct classes of
materials with novel phononic properties.

On the other hand, the extended plane wave expansion allows us to analyse
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the behaviour of the imaginary values of the wave vector inside the crystal for
frequencies inside the BG. Intensive work should be done to obtain more con-
clusions about the influence of the evanescence on the propagation of waves
inside the crystal. Can the evanescent behaviour of the waves inside the BG
produce some kind of diffraction?

The optimization of the scatterers with additional properties has recently been
receiving an increasing interest, and new materials as well as new geometrical
shapes can be developed and analysed. Motivated by the recent work of Yang
et al. [Yang08] a supperscatterer could be developed to be used in the periodic
system in such a way that the conjunction of the scatterers and the periodicity
of the array would presents wide and high attenuation peaks.

When using cylinders as scatterers in a 2D system, one can consider that the
system is infinitely long in the third dimension. However, this approximation
is very different in certain experimental situations. For example, it would be
interesting to know the diffraction produced at the end of the finite cylinders
and how it influences the scattering. Also, the scatterers are sometimes placed
over a ground that could introduce some effects in the overall behaviour of SC.
In this sense, it would be very interesting to know the effect of the different
kinds of grounds.

The exploitation of both the periodicity and the properties of the scatterers
show potential application of these systems for the control of noise propaga-
tion. Although this work has solved several interesting problems, intensive
research needs to be done to develop the necessary technology in order to
use these systems as efficient attenuation devices, like for example, acoustic
barriers.
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A
Appendix: Addition theorems

One of the most important tools in the multiple scattering theories is the ad-
dition theorems. They are used to transform one expansion over some point
in space into a similar expansion over a different point. In this appendix we
show some important two dimensional addition theorems for cylindrical co-
ordinates.

We consider two origins, i and j. Let �rk be the position vector of a general
point P with respect to k, for k = i, j. Let �ri j be the position vector of i with
respect to j, so that �r j =�ri+ �ri j. Let �rk = (rk cosθk,rk sinθk) with k = i, j and
�ri j = (ri j cosθi j),ri j sinθi j. See Figure A to observe a schematic view of all of
these vectors and angles. In the Appendix Jn and Hn are the n-th order Bessel
and Hankel functions of first kind respectively.
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Figure A.1: Notation used for the addition theorems.

Neumann’s additional theorem

Jm(kr j) =
n=+∞

∑
n=−∞

(−1)nJn(kri j)Jn(kri)eın(θi−θi j) (A.1)

=
n=∞

∑
n=0

εn(−1)nJn(kri j)Jn(kri)cos(n(θi −θi j)), (A.2)

where ε0 = 1 and εn = 2 for n > 0.
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Graf’s additional theorem for Jm(kr)eımθ

For m = 0,±1,±2, . . ., we have

Jm(kr j)eımθ j =
n=+∞

∑
n=−∞

Jn(kri j)eınθi j Jm−n(kri)eı(m−n)θi (A.3)

=
n=+∞

∑
n=−∞

Jm−n(kri j)eı(m−n)θi j)Jn(kri)eınθi . (A.4)

Graf’s additional theorem for H(1)
m (kr)eımθ

For m = 0,±1,±2, . . ., we have

Hm(kr j)eımθ j =
n=+∞

∑
n=−∞

Hm−n(kri j)eı(m−n)θi j Jn(kri)eınθi (A.5)

for ri < ri j, and

Hm(kr j)eımθ j =
n=+∞

∑
n=−∞

Jm−n(kri j)eı(m−n)θi jHn(kri)eınθi (A.6)

for r1 > ri j.





B
Appendix: Computational time

multiple scattering theory

The computational time of the calculation of the acoustic pressure by means
of the multiple scattering theory (MST) obviously depends on several param-
eters. First of all, it depends on the computer in which the calculation is run
and on the program used to make the simulation.

We programmed MST using the matrix formulation of the problem in MAT-
LAB 2007a. We performed the simulations in this Appendix in a standard
Centrino Due Core personal computer platform, we specifically used a HP
Compaq nx9420 laptop with 1Gb of RAM.

We calculated the computational time for a fixed frequency at a point in space.
We changed the number of cylinders from 2 to 300. In Figure B.1, we repre-
sent the computational time measured by the computer as well as its quadratic
and cubic fits. We can observe that the time presents a cubic behaviour.
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Figure B.1: Computational time of the pressure calculation by means of MST. Blue
points represent the computational time measure by the computer. Blue line (Red
Lie) represents a quadratic (cubic) fit. The residuals of both fits are also plotted in the
Figure.



C
Appendix: multiple scattering of
arrays of cylinders covered with

absorbing material

In this Appendix we briefly present the multiple scattering of a 2D array of
scatterers made of a rigid core covered with a layer of absorbing material.
The interior rigid core is a cylinder with a radius rin, and the covering of the
absorbing material has a thickness of t, so that the external radius is rext =
rin + t. Figure C.1 represents a transversal view of the scatterer.

Figure C.1: Transversal view of the absorbent scatterer. A rigid core is covered with
a layer of porous material.
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Absorbing materials usually present a complex impedance, Zc(ω) and propa-
gation constant, kc(ω), both being frequency dependent. The formalism has
been obtained independently from the expression used to model the absorbing
material.

In this case, an acoustic source transmitting monochromatic waves is placed
at point �rs, some distance from the system of scatterers. For the sake of sim-
plicity, without compromising generality, we approximate the acoustic source
as a line source located at origin, i. e. �rs =�0. The acoustic wave emitted by
such a source follows the Equation in cylindrical coordinates:

P(�r) = ıπH0(kr), (C.1)

where H0 is the zero−th order Hankel function of the first kind. The solution
represents a line source located at origin.

The incident wave over i-th cylinder is:

Pi
in(�r) =

∞

∑
n=−∞

Bi
nJn(k|�r−�ri|)eınφ�r−�ri . (C.2)

On the other hand, the scattered wave produced by i-th cylinder is:

Pi
sc(�r,�ri) =

∞

∑
n=−∞

ıπAi
nH(1)

n (k|�r−�ri|)eınφ�r−�ri , (C.3)

where Hn is the n−th order Hankel function of the first kind, and Jn is the
n−th order Bessel function of the first kind.

The wave on the interior of the absorbing material of i-th cylinder is:

Pi
int(�r,�ri) =

∞

∑
n=−∞

Ai
n(X

i
nH(1)

n (kc(ω)|�r−�ri|)

+Y i
nJn(kc(ω)|�r−�ri|))eınφ�r−�ri . (C.4)

.
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Then, the exterior wave outside the i-th cylinder is:

Pext(�r,�ri) =
∞

∑
n=−∞

Bi
nJn(k|�r−�ri|)eınφ�r−�ri

+
∞

∑
n=−∞

ıπAi
nH(1)

n (k|�r−�ri|)eınφ�r−�ri . (C.5)

Due to the scatterers considered in this Appendix, the problem presents two
different kinds of boundary conditions. In the wall of the core, one can con-
sider a rigid wall, i.e, Neumann Boundary conditions. However, in the ab-
sorbing material-host medium interface, one should consider the continuity
of the pressure and the velocity. Thus, the boundary conditions in the rigid
wall, Γ, inside i-th scatterer is:

∂Pi
int

∂n
|Γi = 0 (C.6)

and the boundary conditions in the exterior interface of the scatterer are,

pi
ext |∂Ω j = pi

int |∂Ω j (C.7)
Zc(ω)kc(ω)

k0

∂pext

∂n
|∂Ωi =

∂pint

∂n
|∂Ω j (C.8)

where ∂Ω j is the boundary of the i-th scatterer, k0 is the wave number in the
host medium, kc(ω) and Zc(ω) are the propagation constant and the impedance
of the absorbing material of the scatterer i.

By applying the boundary condition C.6, we can obtain a simple relation be-
tween coefficients Xi

n and Y i
n:

Y i
n = Xi

nT i
n (C.9)

T i
n =−

H �
n(kc(ω)ri

in)

J�n(kc(ω)ri
in)

. (C.10)

where the prime as superscript represents the derivative with respect to the
normal of the surface as in Chapter 3.
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Finally, applying the boundary conditions at the ∂Ω interfaces, we get:

Bi
n = ıπZi

nAi
n, (C.11)

where,

Zi
n =− f (ω)H �

n(kri
out)−Hn(kri

out)

f (ω)J�n(kri
out)− Jn(kri

out)
, (C.12)

f (ω) = Z(ω)k(ω)
k

Hnkc(ωri
out)+TnJn(kc(ω)ri

out)

H �
nkc(ωri

out)+T i
nJ�n(kc(ω)ri

out)
. (C.13)

C.1 Numerical test

When SC are made of scatterers of complex geometrical shapes, an analytical
solution following similar methodologies as the ones shown in this Appendix
could not be possible. In this situation, the finite element method (FEM) or
finite difference time domain (FDTD), can be good alternatives to solve the
problem. In this Section we test the solution obtained using the commercial
package of FEM, COMSOL 3.5, in the case of rigid cores covered by absorb-
ing material.

The model introduces the Delany-Bazley model as the type of damping in
the domain of the absorbent material. Moreover the numerical domain is
surrounded by a PML region in order to avoid reflections of the boundaries.

We compare our numerical and analytical results with the ones previously
obtained by Umnova et al. in their work of 2006 [Umnova06]. An array of 7
by 3 scatterers in a square array with lattice constant a =1.5 cm is analysed
in this Section. The scatterers present a rigid core with an inner radius of
rin =0.635 cm and the thickness of the wollen felt is t = 0.175 cm, thus the
exterior radius of the scatterer is rout =0.98 cm. The source is placed 1.5 m
away from the crystal and the receiver is at 3 cm away from the crystal. The
disposition is the same as in Figure 9 of reference [Umnova06].
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Figure C.2: IL of a finite SC made of absorbent scatterers of size 7a × 3a with
a =0.015m in the direction of incidence ΓX. Blue line represents the results obtained
using FEM model and red dashed line represents the IL obtained using MST with
absorbent boundary conditions.

Figure C.2 shows the IL obtained using both models FEM model (blue line)
and MST with absorbing boundary conditions (red dashed line). One can
observe that both models represent the same behaviour of the IL. All the at-
tenuation peaks appear at the same positions in both models except those at a
very high frequency. This discrepancy could be produced by the size of the
mesh in FEM model. The agreement with the results shown in the work of
Umnova et al. is very good.

Thus, we are confident with our two approaches and we will use them in our
study of periodic systems made of absorbent scatterers.





D
Appendix: Vibration of an elastic

beam

Equation 8.1 can be solved by means of the separation of variable technique.
Then, we can separate the temporal part of the Equation, by obtaining the next
spatial Equation,

∂4X(x)
∂x4 − k4

nX(x) = 0 (D.1)

To solve this Equation we present the boundary conditions of the problem.
We consider that the elastic bar has a free end and the other end is fixed. The
fixed end must have zero displacement and zero slope due to the clamp. The
free end cannot have a bending moment or a shearing force. Then,

x = 0 =⇒
�

X(0) = 0
∂X(0)

∂x = 0

x = L =⇒
�

∂2X(L)
∂x2 = 0

∂3X(L)
∂x3 = 0.

The general solution for D.1 is a combination of sines, cosines and hyperbolic
sines and cosines. The application of the boundary condition and considering
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that the dynamic solution for the displacement must be equal to the static
solution at time t=0, we can find,

Xn(x) =
1
2
(cos(knx)− cosh(knx))+

1
2

��
−cos(knL)− cosh(knL)

sin(knL)+ sinh(knL)

�
(sin(knx)− sinh(knx))

�
.

Considering that the elastic bar starts its vibration when is displaced of its
resting point, the displacement can be expressed [voltera65]

v(x, t) = Xn(x)An cos(ωnt), (D.2)

where

An =
−4PL

EIλmk4
n(sin(knL)eKnL + e2knL −1)

((3sin(knL)(e2knL +1)− ((2(knL)3)eknL)+

cos(knL)(3− (knL)3(e2knL +1))−3e2knL).

P is the applied force in the free end perpendicularly to the long side of the
elastic bar.
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Propagating and evanescent properties of double-point defects in Sonic
Crystals.
New Journal of Physics, 12, 083024, (14 pp.), 2010

2. Romero-Garcı́a, V.; Sánchez-Pérez, J.V.; Garcia-Raffi, L.M.
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Raffi. Evanescent modes in sonic crystals: Complex dis-
persion relation and supercell approximation. J. Appl.
Phys., 108:044907, 2010.

[Rubio97] C. Rubio, J.V. Sánchez-Pérez, R. Martı́nez-Sala, and
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C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, and
F. Gálvez. Sound attenuation by a two-dimensional array of
rigid cylinders. Phys. Rev. Lett., 80(24):5325–5328, 1998.

[Sanchis01] L. Sanchis, F. Cervera, J. Sánchez-Dehesa, J. V. Sánchez-
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