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Abstract. Itis now 50 years since the first papers describing the useatéddilar Dynamics (MD)
were published by Alder and Wainright, and since then, togretvith Monte Carlo (MC) tech-
nigues, MD has become an essential tool in the theoretiadiystf materials properties at finite
temperatures. In its early days, MD was used in combinatidtim simple yet general models, such
as hard spheres or Lennard-Jones models of liquids, systeink, though simple, were neverthe-
less not amenable to an analytical statistical mechanmeatrhent. Nowadays, however, MD is most
frequently used in combination with rather sophisticatextlals, ranging all the way between em-
pirical force fields to first-principles methods, with thenadf describing as accurately as possible
any given material. From a computational aid in statistivathanics and many-body physics, MD
has evolved to become a widely used tool in physical chemistndensed matter physics, biology,
geology and materials science. The aim of this course is sorthe the basic algorithms of MD,
and to provide attendees with the necessary theoretichbbawnd in order to enable them to use
MD simulations in their research work. Also, examples ofdilse of MD in different scientific dis-
ciplines will be provided, with the aim of illustrating thieet many possibilities and the wide spread
use of MD simulation techniques in scientific research today
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1. INTRODUCTION

As a scientific tool for the study of condensed matter, Compsimulation really started
in the 1950s with the development of the first sufficiently poial computers. The two
main families of simulation techniques, Monte Carlo (MC)theals [1] and Molecular
Dynamics (MD) methods [2], were described for the first timehat decade. During
the second half of the XX century, Computer Simulation mdtghbave established
themselves as a mature and powerful research tool in coedenatter and molecular
physics and chemistry, and are at present slowly but steaxiiending their usefulness
and applicability to other, more challenging areas suchiasdical systems and soft
condensed matter.

The aim of this series of lectures is to provide an introductio MD techniques,
illustrating the power of these simulation tools. The mélof the material to be covered

1 Dedicated to my teachers and mentors C. R. A. Catlow and MillanGin recognition of an unpayable
debt.
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will be the following. First | will discuss, in very generarms, the aims and usefulness
of Computer Simulation, and in particular MD methods, asteas | see it. A self-
contained and to-the-point description of MD will be prastd Next, some historical
background of MD will be reviewed, although inevitably wellwiot do justice to the
extensive literature on this topic that has been publishved the last five decades! In
actual fact, | will just mention a few landmark papers, whiohmy own (admittedly
personal) view are of key importance in the history of MD. iilvee will move into
the practical aspects of performing MD simulations, howrtiegrate the equations of
motion, how to simulate bulk systems, etc. | will also makeea@eneral comments on
the different approaches used to model the interactionsdagt atoms and molecules,
discussing some examples of potentials, and we will alsoafeenative approaches
involving electronic structure calculations. After albthintroductory material, we will
get slightly more technical, and discuss how standard MDbsaaxtended to simulate
systems in contact with a thermal bath, emulating the canditof constant temperature,
or to simulate systems in which the volume and/or cell-shilyjotuate in such a way as
to reproduce conditions of constant pressure. lllusteaixamples of these different
techniques will be provided along the way. We will wrap upimsbme discussions on
the possible shortcomings and limitations of MD, and attetoguesstimate some of
the developments we are likely to see in the future, whickitably will attempt to
ameliorate some of those limitations.

Much of the material presented here (though not all) has keen from standard
references about computer simulation, and can be found thenore detail, together
with lots of useful references to the literature. Standaxtithooks on atomistic computer
simulation are those of Allen and Tildesley [3], Frenkel &mdit [4] and Thijssen [5],
which | recommend for more details on the topics discusseel he

2. MOLECULAR DYNAMICSIN A NUTSHELL

In a nutshell, MD consists of numerically solving the classiequations of motion for
a collection of atonvs For doing this, three basic ingredients are necessartlyfivee
must have some law describing the mutual interactions letee atoms in the system,
from which we can calculate, given the atomic positionsabeociated potential energy,
the forces on the atoms, and if necessary the stress on tharm@mwalls. This law
is in general unknown, but it can be approximated with défgrdegrees of accuracy
(and realism) by a force field, or it can be modelled by meansl@dtronic structure
calculations, which can also be done at different levelfiebty. Secondly, we need an
algorithm to integrate numerically the equations of mofienthe atoms in the system.
Over the years many different schemes have been put foreadbing this. Thirdly and
finally, in order to solve the equations of motion, the intggm scheme needs to be fed
with some valid initial conditions, i.e. initial positiormsd velocities for all atoms in the
system. With these three basic ingredients, one is set fésrp@ng MD simulations.
Before going into describing these different ingrediemtssomewhat more detail

2 Here the wordatomis used in a lose sense to refer indistinctly to atoms, iorentire molecules



below, it is worthwhile to pause for a moment and consider wwhyay be useful to
perform an MD simulation, and what can be extracted from ithWuch a simulation,
we are emulating, i.e. simulating in an approximate way, rded dynamics of the
system under study, and in so doing we can keep track of thegdaf individual
atoms in an incredibly detailed way; so much so that one cailyefeel like Big
Brother among the atoms. In this way MD simulations can hslpougain new insight
into important processes taking place at the atomic and cultzle level, an insight
which is often impossible to obtain purely from experimerds these rarely have
sufficient resolution. Furthermore, when performing siatioins, one can easily prepare
the conditions (temperature, pressure, atomic configuragitc.) at will, and has a level
of control over them that is much greater than is usually iptsg experiments.

Aside from the numerical approximations involved in theegration of the equations
of motion, there are two basic approximations inherent in BMDulations. The first
one is that we assume that atoms behave like classicalesnhiii. they obey Newton’s
equations of motion. How much an approximation this is degeon the particular
system under study, and on the actual conditions in whighsithulated. One can expect
this approximation to be crude for light atoms at low tempees, but in general it is not
a bad approximation. In this respect it is fortunate thatmadly quantum effects on the
atomic dynamics are relatively small, except in a few naadamples such as liquid
He, and other light atoms. For those cases where quantuctséfannot be neglected,
one should use the Path Integral approach [6] or some simid#nod.

The other key approximation is the model used to describéntieeactions between
the atoms in the system. It is clear that only through a sefiity realistic description of
those interactions one has any chance of getting usefuleiadble information on the
atomic processes taking place in the system. On the othel; ifaame wants to address
generic questions about a particular class of systems asdv density gases, or liquid
metals, say, one probably does not need to describe a partexample of such systems
with a very accurate potential; it will be sufficient to useengric model that captures
the essential features, the defining physics, of that pdaticlass of systems. To be too
specific in this case can actually be counterproductive dsdure the general picture.
It is therefore important to find the right level of descristifor the particular problem
at hand.

This nutshell description may give you the idea that MD is@insolving Newton’s
equations for atoms and molecules. But in reality MD is mudarerthan this: one can
design rather artificial-looking forms of MD, which nevestass serve a useful purpose,
such as simulating a system under conditions of constargdgature and/or constant
pressure (see section 7), something that is not possible tbyda straightforward
solution of the standard equations of motion, or one can aoerthe physical dynamics
of ions with a fictitious dynamics of electronic wave functsp which makes possible
the effective realisation of atomic dynamics from first piples (the so-called Car-
Parrinello method, see section 6). In essence, MD is extyepmverful and flexible,
and far from being a simple numerical recipe for integrathgyequations of motion for
atoms and molecules.



3. SOME HISTORY

Itis no surprise that the two most fundamental methodokfgiesimulating condensed
matter systems, namely Monte Carlo (MC) and Molecular DyisartMD) made their
first appearance in the 1950s. At this time the first computgiginally available only
for classified military research, were made available terggsts in the US, and the pos-
sibility of performing fast automated calculations was igtiately seen to have great
potential for problems in statistical mechanics, for examiver since the first publica-
tion describing the MD technique, by Alder and Wainright {)2]L957, applications of
the technique have been growing in number, and nowadays MD extensively used
research tool in disciplines which include physics, chémisnaterials science, biology
and geology.

In the early days of MD, covering mostly the 1960s and 70stgblenique was mostly
used as an aid in statistical mechanics. For the largestpare was no attempt to model
realistic systems, but rather the focus was on simple, genavdel systems such as
hard spheres or the Lennard-Jones fluid. The aim was not sb toacldress questions
concerning specific systems, but rather to learn abouteefgmilies of systems, e.g.
simple liquids. In time, models grew in complexity and inithéegree of specificity.
Empirical (i.e. derived from experimental information) dets began to be developed
for specific classes of systems, such as the CHARMM [7] or ANRHB] force fields
for organic and biological molecules, the ionic potenti@ls oxide materials [9], the
embedded atom potentials for metals [10], or the bond-omugwired potentials for
covalent materials [11].

At the same time, new methodological developments weregbeanried out. Since
MD consists basically of integrating the classical equeatiof motion for the atoms
or molecules of a system, it was implicitly accepted that Miuld only be used to
simulate systems in microcanonical conditions, i.e. ctow of constant number of
particles, N, constant volume, V, and constant energy, ks Was somewhat limiting,
as experiments are most often conducted on samples whictotiglated, but in ther-
mal and/or mechanical contact with their surroundings. el@w, in an influential paper,
Andersen [12] demonstrated that new, more general formstbuld be devised. An-
dersen introduced two new tools, known as the Andersen thetarhand the Andersen
barostat, which, as their name indicates, serve the pugdasmtrolling the temperature
and the pressure during the simulation, respectively.dtiae 7 we will discuss the de-
tails of Andersen’s thermostat and barostat; for now letuss jlemark that particularly
the idea of the barostat has proved to be very influential énstibosequent history of
MD. In essence, Andersen introduced a new variable into yinamics of the system,
namely the system’s volume, with an associated velocitgtaifius mass, and a poten-
tial energy term depending on the external pressure. Thaeddynamics of atoms and
volume proposed by Andersen ensured that the system sathplésoenthalpic (con-
stant enthalpy) ensemble, which is useful for analysing bmsvsystem may react to
an externally imposed pressure. Andersen showed that timdircing a small number
of additional fictitious degrees of freedom (the volume) @swossible construct a new
dynamics which effectively achieved the same effect as loagiphe system to the in-
finitely many degrees of freedom of a reservoir. As pointetadnove, this idea was to
prove extremely influential.



Shortly after Andersen’s paper was published, Nosé [13)vskdhat the introduction
of an additional fictitious variable coupled to the atomiadgics could be done in such
a way as to obtain sampling in the canonical (constant teatyper) ensemble. Contrary
to the thermostat already introduced by Andersen [12], vhitects the atomic dynam-
ics in a stochastic way, Nosé’s thermostat is fully detersticn Nosé’s approach, as later
modified by Hoover [14], has now become perhaps the most cartynsed scheme for
performing MD simulations in the canonical ensemble.

The constant-pressure scheme of Andersen, originallyeseed for the simulation
of bulk fluids, was not generally applicable to crystallimdids, because only volume,
and not shape fluctuations were considered. Parrinello atuh@&n [15] generalised
the method of Andersen by incorporating the components efldktice vectors of
the simulation cell as new fictitious dynamical variabldsjst making possible the
observation of solid-solid phase transitions in MD simiglas. This scheme also made
possible the study of systems under non-hydrostatic stassitions.

Andersen’s barostat and Nosé’s thermostat proved that M® pedentially much
more than simply a scheme for solving the equations of mdtioa collection of atoms
isolated from the rest of the universe. By adequately ina@iing appropriately de-
signed fictitious variables, these developments showedtbee general and experimen-
tally relevant statistical ensembles could be sampled tBaintroduction of fictitious
variables was soon to be found to have even wider possésilith 1985, i.e. only 5 years
after Andersen’s barostat had been introduced, Car anthBior[16] demonstrated a
new use of fictitious dynamical variables. In their seminapgr, Car and Parrinello
showed for the first time that it was possible to perform abarvD, i.e. MD in which
the forces on the atoms are not extracted from an empiriceg ficeld, but rather from a
full blown first principles electronic structure calcutati This combination of methods
has been given the name first principles molecular dynarkies0D), also known aab
initio molecular dynamics (AIMD).

Before Car and Parrinello’s paper, FPMD had been regardesissstially impossible
mostly due to the computational cost involved in performangme-consuming elec-
tronic structure calculation for each time step of an MD datian, i.e. thousands or
even tens of thousands of times. Computers were simply sbefeough for the task in
1985. However, Car and Parrinello showed that with a clavieoduction of new ficti-
tious variables, the cost of FPMD could be brought down $iicamtly, so much so as to
make it a realistic undertaking, even with the computersiefday. Briefly, Car and Par-
rinello’s idea consisted of bringing electrons and ionsustemeously into the picture,
but in a very unusual and imaginative way. Just as in conveatiforce-field MD, ions
moved subject to the forces acting on them, but these foarege oot from an empirical
potential, but from their mutual (coulombic) interacti@md from their interaction with
the valence electron density around them. Car and Paoif@inulated their FPMD
in the context of density functional theory (DFT) [17, 18}rdmalism. Within this for-
malism, the electron density is obtained from a series afadled Kohn-Sham orbitals,
which are the solutions of a Schrédinger-like equation Kbken-Sham equation. These
orbitals must be obtained for the given ionic configurati@fiobe the total energy of
the system and the forces of the ions can be calculated, angrttess is considerably
more costly than any calculation based on force fields. BllyicKkohn-Sham orbitals
are represented by means of some basis set of appropriateerc functions, such as



atomic-like orbitals, or plane-waves, the latter beingipatarly convenient in the case
of periodic systems. Then, solving the electronic striecpunoblem consists of finding
the appropriate expansion coefficients for the relevantrkK8ham orbitals in terms of
the basis set functions. The break-through of Car and Rdloiwas to incorporate the
expansion coefficients of the Kohn-Sham orbitals in termihefbasis functions as fic-
titious dynamical variables, with associated fictitiousss®s. By choosing these masses
appropriately (set to values much smaller than those ofdhs)j the Kohn-Sham or-
bitals evolve much more rapidly than the ions, and as a restdgime is established
in which the orbitals adapt quasi-instantaneously to thaparatively slow change in
the ionic positions. This is the Born-Oppenheimer appr@tion again, but in a new,
imaginative setting.

The achievement of Car and Parrinello served the purposekifiy up the scientific
community to the fact that FPMD was indeed viable, and soonynggoups world-
wide began to perform FPMD simulations, either directly éagimg the Car-Parrinello
scheme, or alternative ones. Throughout the 1990s andeahiary, FPMD has now be-
come a relatively standard tool, with an impressive showcdspplications. This is not
to say that FPMD has completely supplanted the simpler, moppeoximate force-field
based MD; far from it. There are many problems that remainctwilenging to tackle
via FPMD, either because the system is too large, too comptdxecause it cannot be
modelled accurately enough with DFT. In such cases empiocee fields continue to
be the only viable option, and this is likely to remain theecas some time to come.

Up to here what is now the history of MD, according to an adedit personal view.
As for future developments, well, as the saying goes, magnedictions is extremely
difficult (especially about the future!), but at the end aktbhapter | will try to sum-
marise what we can already begin to see, or guess, for thevedyashort term future of
MD.

4. MD: BASIC TECHNIQUES

In this section we are going to review some practical asp#d#tD simulations, such as
how to integrate numerically the classical equations ofiomthow to deal with infinite
systems, how to start and run a simulation, and how to an#igseesults.

4.1. Integrating the equations of motion

Much has been written about how to integrate the equatiomsation of a dynam-
ical system most effectively and accurately. This is mordasane of applied mathe-
matics [19] than of physics (although some methods haveyaplgysical inspiration),
therefore we are not going to go in depth here. | just want twige a simple recipe,
which will be useful in most cases that we are likely to endeun

The classical equations of motion have the general form

q=G(p,q), p=F(p,q), (1)



whereG(p,q) = dH/dp andF(p,q) = —dH/dq, andH is the Hamiltonian, which in
the standard case is given by

2
%:Zﬁwm (2)

whereq; represents the coordinates of atgnandp; is its conjugate momentum. The
recipe which we will use is known as tlgeneralised leapfrogand is summarised as
follows. First, we advance the momenta in time half a timp digen, with the momenta
at half time step we move the coordinates forward in time hylldime step, recalculate
the forces at the new positions, and with these new forcesraeé the momenta to full
time step. The algorithm is symbolically written down as:

p(t+At/2) = p(t)+AtF[p(t+At/2),q(t)]/2,

q(t+At) = q(t) +At{G[p(t+At/2),q(t)] + 3)
G[p(t+At/2),q(t+At)]}/2,

Pt+At) = p(t-+At/2)+AF[p(t+At/2),q(t+At))],

wherelt is the time step. For the simple case of a separable Hanahanich as that of
Eq. (2), the generalised leapfrog algorithm reduces to:

At oU
p(t-+08/2) = p(t) =% 5o (1),
q(t+At) = q(t)+Atp(t+At/2), (4)
At oU
p(t+At) = p(t+At/2)—§a—q(t+At),

which is known simply as the leapfrog algorithm. Using E4$répeatedly, one can map
out a trajectory from specified initial conditions (cooralies and momenta of all atoms
in the system). Provided the time st#@&pis sufficiently small, this scheme conserves the
energy reasonably accurately, and is time reversible gasdbations of motion are. The
generalised leapfrog (and therefore the leapfrog) is ateuo second order ifit.

The classical equations of motion have many properties,hiélwthe most obvious
one is time reversibility, but there are other ones. A palady important symmetry is
that known asimplecticityor simplecticnessConsider the following sum of infinitesi-
mal areas:

S 5ri x 3p;, (5)

where the sum extends over all degrees of freedom of thersystad the deltas imply
infinitesimally short vectors centred at each position arman@ntum. It can be easily
shown that this infinitesimal area is a constant of motionlasgical mechanics. It is
important that any numerical scheme for integrating theadquos of motion respects
as many as possible of the intrinsic properties of the egoatdf motion; the more of
such properties that are respected, the greater the geartrat we will have that the



numerical solution found will resemble a physically cotreajectory. The generalised
leapfrog scheme described above is time reversible andesttng and due to this it is
particularly stable. A more in-depth discussion of thesaés can be found in the book
by Sanz-Serna and Calvo [19].

There are many other schemes for integrating numericadlyetfuations of motion,
and excellent discussions can be found in the literaturel,[&], but the generalised
leapfrog will suffice as an example for us, and turns out torieeaf the best schemes in
the market anyway.

4.2. Periodic boundary conditions

Frequently one is confronted with the need to study a syspenpdic or not, which
contains large numbers of atoms or molecules, where largasnef the order oNa,
Avogadro’s number. Naturally, we cannot deal with suchdangimbers, so we must
resort to some computational tricks in order to emulate &egysn these conditions.
The trick used in this case is referred toeiodic boundary condition§”BC), and
consists of assuming that the simulation box (i.e. the baxaining the atoms in the
simulation) is surrounded by identical copies of itself ind&rections. In the simulation
of periodic systems the simulation box is typically a (sQpelt with the periodicity of
the system. If the simulation does not involve studying theasnics of the system (as
when we do a structural relaxation) then there is no appration involved in the use of
PBC, unless we are doing an electronic structure calculaitiowhich case care has to
be taken in order to sample the electronic states in regibtiedrillouin zone beyond
thel™ point to ensure the convergence of the calculdtitihhowever, we are interested
in the dynamics of the system, the use of PBC involves an appsation, even if the
system is periodic. Adopting PBC implies assuming thatedigalic images of atoms in
the central simulation box move in exactly the same way.

In a liquid, or in an amorphous solid, the use of PBC imposearaficial symmetry,
the consequences of which can be subtle. Further limitaoise in the study of defects
and impurities in solids: the use of PBC generally implieat tbne is considering a
large concentration of the defect or impurity under consitien, since we cannot
always make the simulation box as large as we would like duféoccomputational
cost involved in doing so. Furthermore, there are certamdkiof defects that cannot be
easily accommodated in a periodic cell. This happens waglodations. In such cases
one has to include two dislocations of opposite sign so timat tan both be included
within a periodic cell, or renounce to the use of PBC altogeth

Another consideration when using PBC is that long-rangaauations have to be dealt
with appropriately. Electrostatic forces have such a loangge that it is necessary to in-
clude the contribution of far-away periodic images of thawdation box on the atoms
contained in the central simulation box in order to get megtuil results. Simply trun-
cating electrostatic interactions beyond a certain cusoffude, and generally frowned

3 The discussion of this very important point is however st electronic structure calculations, and
we will not discuss it here; see e.q. [20].



FIGURE 1. Periodic Boundary Conditions; illustration in two dimemsi The simulation box is high-
lighted at the centre, and is surrounded by periodic imaf#sedf.

upon. Several ways have been described in the literaturedbwith long-range in-
teractions. Perhaps the most popular procedure is thatoddevald, known as Ewald
Summation. | will not go into details here, but | would like describe the basic idea.
The problem with electrostatic interactions is that termsrder 1/r decay very slowly
with r, the interatomic distance. The Ewald summation methodistsnsf splitting this
term as follows:

1 erflar) erfc(ar)

" + r ’ (6)

r r

where erf is the error function, erfc is the complementargrefunction, anda is a
parameter. The idea is that the first term on the rhs of Eq.g6)e shown to be short-
ranged in reciprocal space, where it can be easily evalpatetilikewise, the second
term is short-ranged in real space. The parametes chosen so that an optimal split
between the real-space sum and the reciprocal-space sunaisex.

A final consideration concerning PBC is the following. PB@ aruseful device for
calculating the energy and its derivatives (forces andsé®, see below) as if the atoms
of the system were indeed in an infinite system, or at leafitmiitly far away from any
surface to notice its presence. However, in general it isemired, nor is it desirable,
to modify the positions of the atoms as they move so that thielyeain the central
simulation box, particularly if one is interested in momitg the diffusion or other
dynamical properties of the system. So, when using PBC, alcelates the total energy



and the forces on the atoms as if all atoms were relocatectinghtral simulation box,
regardless of their actual position in space, but they arenoved back to the simulation
box if during the simulation they drift out of it.

4.3. Derivatives of thetotal energy

In order to integrate the equations of motion for the atonmstituting the system, we
must be able to obtain the forces, i.e. the derivatives ofdted energy with respect to
the atomic positions:

fi = —DriEtot, (7)

whereE;q is the total energy of the system. In the standard case, tle¢i&ienergy does
not depend on the atomic positions, and so only the deratithe potential energy
has to be considered.

Another useful derivative of the total energy, needed if wmighes to calculate the
pressure of the system, or conduct a constant pressureasiomu(constant pressure
simulations will be discussed in section 7, is the stress.stress is also useful because
it can be related with the elastic constants of a crystal. Jthess is defined as the
derivative of the total energy with respect to the composeftthe strain tensor. The
strain, &, defines infinitesimal distortions of the simulation boxr Egample, consider
that the simulation box (not necessarily cubic or orthorbimnis defined by the three
vectorsay, with a = 1,2, 3. Then, a distortion of the simulation box defined by theiistra
tensore will lead to new cell vectorsl, given by

a, =ag + ) £qpap- (8)
B

Because a distortion of the cell will cause the distancewdr atoms and the angles
between bonds in the cell to change, such a distortion clsathgdotal energy, and that
change is given to first order by the stress, defined as

_ OBt

Uaﬁ = 0$aﬁ . (9)

Note that in this definition we have dropped a minus sign, abttie stress is not minus
the derivative of the total energy with respect to the stidiith this definition, a negative
applied stress is tensile, while a positive applied stregompressive, resulting in an
intuitive convention.

From Eg. (8) we see that the strain is a tensor with dimensgsntomponents.
Furthermore, we are only interested in symmetric straiades) because any asymmetric
strain tensor involves rotation as well as distortion of tiedl. Rigid rotations of the
system are not interesting, however (at least in the abseheaternal fields), and
complicate the dynamics, so, in practise, we will always twecerned with symmetric
strain tensors, and, for the same reasons, the stress tililsdso be symmetric.



4.4. Start-up of an MD simulation

Imagine that you have written an MD code, which integratesatpuations of motion
for a given model, and everything works correctly. You arevoa position to perform
a simulation. How does one start? Typically, one needs &rgjazonfiguration of the
system. For a crystal, the perfect lattice will serve theppsae, although one can use
also a slightly distorted version of the lattice (in factstimay have some advantages in
achieving the thermalisation of the system; see below)aHiguid the initial configura-
tion may be less obvious. In this case one can start withiadatonfiguration known to
be unstable at the temperature of the simulation, and haetits will evolve rapidly
toward configurations typical of the liquid phase.

As well as coordinates, one needs to generate initial vigcior the atoms. The
almost universally adopted choice is to generate randowciteds sampled from the
Maxwell-Boltzmann distribution defined for the desired parature of the simulation.
These may need to be corrected, so that the centre of magssyfdtem has zero velocity
(this avoids the drift of the system as the simulation prdsgeln the case of finite
systems it is also useful to avoid the rotation of the systeynensuring that its total
angular momentum is zero.

Generally, one wishes to conduct a simulation at a given ézatpre. However, even
if one generates initial velocities sampling from the MakviBoltzmann distribution
corresponding to the desired temperature, the evolutitimodystem will drive the tem-
perature to other values, such that its average over thdaiomrun will not in general
coincide with (or even be near) the desired temperatures fippens essentially be-
cause the starting atomic positions are not necessarilgistent with the desired tem-
perature. It is therefore necessary to drive the systemitiogtarting conditions to other
conditions, compatible with the desired temperature. ©generally done by scaling
the velocities during an initial period of the simulatiospally referred to athermalisa-
tion or equilibration Each atomic velocity is scaled by a fact@Text/ Tinst, WhereTingt
is theinstantaneousemperature (see below), afgy is the desired equilibrium tem-
perature. This scaling will slowly drive the system towanrd tlesired conditions; it can
be done every time step of the equilibration period, or e¥@mnytime steps. Obviously,
this tampering with the velocities results in a lack of eyergnservation. The dynam-
ics is thus artificial, and only serves the purpose of pregatthe system in conditions
from which the real simulation can start. Therefore, nolimfation obtained during this
period is useful, and should not be included in the subseurelysis of results.

How long should the equilibration period be really dependstiee nature of the
simulated system, but also on practical consideratiormts) as the cost involved. Ideally,
one should run the equilibration period for long enough s the system has lost any
“memory” of its initial conditions, and is fully at equilibrm at the desired temperature.
Once this is achieved, the average temperature should Be tdo(usually not more
than a few degrees away from) the desired temperature.dfdiees not happen, then
obviously the equilibration period was not sufficiently ¢gpn



5. ANALYSING THE RESULTS

MD simulations can produce a wealth of information, randiogn the time evolution
of the coordinates and velocities of individual atoms toeotho called “collective”
properties such as the temperature, pressure, and so dms Isettion we review the
standard magnitudes that are monitored during an MD simnoulat

5.1. Temperature

The temperature in a simulation can be calculated direobiy fthe standard expres-
sion from statistical mechanics relating it to the kinetieryy of the atoms. This ex-
pression is

2
Tinst = g—kBEkim (10)
whereEyi, is the kinetic energy at the present tigés the number of degrees of freedom
of the system andélg is Boltzmann’s constant. This expression givesitteantaneous
temperature of the simulation. This value will be differabtlifferent time steps; really
only its average value over the length of the simulation geneaningful value to the
temperature:

<T>= % ;Tinst(n), (11)

where the sum extends over all time steps (or a subset) ofiindagion, N. Only if
an appropriate equilibration period has been undertakérdoé¢he actual simulation
(see 4.4 above) will one have that the temperature of thelation will be close to the
desired target temperature, is€T >~ Tiarget.

5.2. Pressure

The pressure is another useful magnitude to monitor thraugimulation. Its average
value will provide information on the mechanical state af #ystem, i.e. if the system
is compressed or expanded with respect to its equilibriulmme at the temperature of
the simulation. The instantaneous pressure of the systgivas by

1
Plnst:pkBT‘i‘W<.zfij 'rij>v (12)

i<]

wherep is the number density, is the volumef;; is the pair force between atornand
j, andrij is the distance vector. This expression is actually onlidvial the case of pair
interactions, and must be generalised in more complicatadets. Like in the case of
the temperature, only the average valueR >, makes sense, as the valueRpg; will
fluctuate strongly in time.



If it is desired to perform the simulation at a pre-specifieglsgure, one has to adjust
the volume of the simulation cell in such a way that the averpgessure has the
desired value. This usually requires performing severaitssimulations. The average
pressure is a smooth function of the simulation volume, ss usually sufficient to
find two volumes which give average pressures which bradietdesired pressure,
and then use linear interpolation to obtain the volume whioluld correspond to the
desired average pressure. This procedure is simple if theesbf the simulation box
is fixed, as is the case in a liquid, or in a solid where no phesssition is expected.
However, if the crystal shape is complicated or unknown arprit is probably more
desirable to conduct a variable-shape MD simulation atteogressure, which allows
the system to dynamically adopt volume and shape to the raestifable values at the
conditions of the simulation. These are called constaesgure MD simulations, and
will be discussed in section 7.

5.3. Structure

Even though at finite temperatures the atoms of the systelhmevier be at rest, the
system will have a definite structure. Let us consider thmataensity of the system at
each point in spac@(r). We can write such a density as the following thermal average

p(r) =< _ic‘i(r —ri)>. (13)

If the system is crystalline or amorphous at the conditidithe simulation,o(r) will
peak at the average positions of the atoms, and will fall % Values close to zero

at interstitial regions, which will be visited infrequentby the atoms. If, on the other
hand, the system is fluid, them(r) should be constant everywhere, and equal to the
bulk density. In the crystalline caggr) will have the periodicity of the lattice and the
system will possess so-called long-range order. But evéireiystem is amorphous or
fluid, it will possess short-range order, and it will be imtgting to characterise it. Two
quantities are frequently used to achieve this, known asatthial distribution function
and thebond-angle distribution functian

5.3.1. Radial distribution function

The radial distribution function (RDF) is constructed asstdgram of the distances
between an atom and its neighbours during the simulatiosugng that we are dealing
with a one-component system, all atoms are equivalent, e DF is then averaged
over all atoms. Suppose that we want to calculate the RDkdlp calledg(r), in the
rangerg to rmax 10 do so, we divide this range into a number of equally spaegdents
of lengthdr, and add a 2 in the appropriate segment ofgfre histogram for each pair
of atoms separated by a distamamrresponding to that segment. Such a histogram will
diverge for large distances, since the probability of figdiwo atoms separated by
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FIGURE 2. Radial distribution function calculated for Pb using thepétical potential due to Cleri and
Rosato [21]. Results are shown for the solid fcc phase at 588dKfor the liquid at 700 K, both at zero
pressure.

whenr is large grows very rapidly, so it is customary calculgte) as the probability of
finding two atoms separated by distamaelative to the probability of finding two atoms
at the same distance in the ideal gas of the same densityrdingao this definition,
g(r) should tend to 1 asbecomes large.

In Fig. (2) a typical RDF function obtained from a simulatiamshown for the
particular case of solid and liquid Pb. As can be seen, the RRE&ro at short distances,
reflecting the exclusion volume around a given atom; it theswg rapidly to reach
a maximum at the nearest neighbour distance, falling dovainag a first minimum,
which can be followed by other (smaller) maxima and minimiagrooothly evolve to its
large-distance limit of 1. The volume integral of the RDF1raero to the first minimum
after then nearest neighbour peak gives the number of fiighbeurs of each atom, i.e.
the average coordination of atoms through the simulation:

I'min
Ne = 47100 / rPg(r)dr, (14)
0

wherepg is the bulk density.
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FIGURE 3. Bond-angle distribution function for liquid Na, calculdtaesing ab initio simulations [22].

5.3.2. Bond-angle distribution function

Since the RDF gives a distribution of distances between sitaihdoes not have
any angular resolution. Therefore, in order to completepticture of the short-range
environment of atoms in the simulation, it is frequent tocoddte what is called the
Bond-angle distribution, or BAD. The BAD is exactly what mame implies, i.e. a
distribution of the bond-angles, or actually, the cosinthefbond angles, found between
an atom and its first shell of neighbours, taken two by twohlite atom in question
forming the apex of the bond angle. A typical example of thadangle distribution
found from a simulation is shown in Fig. (3), calculated fiquid Na.

5.4. Dynamics

The power of MD simulation as compared to MC is that it alsovjgtes information
on the dynamics of the system, not just the structure. Theuyes of a system can
be regarded from many angles: firstly, there is atomic motidnch can be vibrational
around the equilibrium sites of atoms in a solid, or hoppiranT one site to another,
or even diffusive. But we also have the so-called collectiyaamics, such as density
fluctuations, sound, or viscous flow. Much could be writterd(has indeed been written,
see for example [23]) about all these forms of dynamics amd teostudy them. But
here we are going to limit ourselves to the most frequent kihdynamical analysis,
that related to diffusive motion.
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FIGURE 4. Mean-squared displacements of Pb at different tempeatust before (500 K, left panel)
and after melting (700 K, right panel) has taken place. Thediffusive behaviour of the solid phase, and
the diffusive behaviour of the liquid phase can be clearlyrapiated. Taken from the simulations reported
in [24].

5.4.1. Mean-squared displacements

In order to answer the questiblow much does an atom move from its initial position
in a given time t"dne can calculate the averaged mean-squared displacefiSiiy,
given by

Yori(t+to) —ri(to) |2

<O -rOF >= 3 5 FEEREE (15)

0

where we have calculated the average taking advantage d@d¢héhat different time
originstp can be taken\, being the number of such time origins, and since all atoms of
the same species are equivalent, we can also average owerAhesxample of MSDs
as obtained from a typical simulation is illustrated in Kig).

MSDs are important because they provide information on hoid-fike a system is.
In Fig. (4) we show examples of how the MSD look in a systeml{is particular case
Pb) before and after the system has melted. It can be seenhiiathe system is in the
solid phase, the MSD are flat, having zero slope at all timésdny short ones. This is
because in the solid atoms don’t travel large distancegdbaer oscillate around their
equilibrium positions. The amplitude of those oscillagas related to the saturation
value of the MSDs at long times. On the other hand, if the sys$$an the liquid phase,
atoms can move and diffuse through the system. In this cas®l8Ds grow with time
having a well-defined slope, which is related with the difumscoefficient:

6Dt +b =< |r(t) —r(0)]> >, (16)

whereb is a constant, anD is the diffusion constant of the system. If there is more than
one species of atoms in the system, one can define a diffusitstant for each species
by generalising the above expression. For the particulamgie illustrated in Fig. (4),



one obtains a value of D equal ta2 10-2cn¥/s, very close to the experimental value
of 2.0 x 10~°cm?/s found just after melting has taken place.

5.4.2. Velocity auto-correlation function

The last magnitude we will discuss is that of the velocityoaotrelation func-
tion (VAF). The VAF is defined as follows:

VAF(t) =< v(t)-v(0) >, (17)

and is calculated from a simulation following the same salmesifor the MSD given in
Eqg. (15) above. It is also frequent to work with the normali$&F, defined by

_<v(t)-v(0) >
< v(0)-v(0) >’

VAF(t) (18)

In actual fact, the VAF also provides information on the wkfivity of the different
species in the system, as it is linked with the diffusion ¢ansthrough the following
relation:

D= %/Ow < v(t)-v(0) > dt. (19)

The VAF is really telling us how much time it takes for an atamthe system to
“forget” its original velocity at time zero, through coliens with other atoms in the
system. It starts at a positive large value, equal to 1 in #se of thevVAF, and has an
oscillating behaviour, falling more or less exponentiatlyzero as time increases. The
Fourier transform of the VAF is given by

VAF (@) = 711 /0 cog{wt)VAF (t)dt, (20)

and is related to the phonon density of states through
VAF (w) 0 VDOS(w)e Fhw, (21)

where VDOSw) is the vibrational density of states at frequensyande F? s the
corresponding Boltzmann factor for that frequengy= (kgT)™1).

5.5. Summary

In this section we have discussed some of the practical tspeperforming an MD
simulation, ranging from the numerical integration of tlygiations of motion to how to
deal with infinite systems, and how to start up the simulatiéa have also discussed
some of the typical properties that one analyses duringter ah MD simulation has



been performed, and how this analysis provides informabiorihe properties of the
system. Really, we have only skimmed the surface. There shrmore to say about
how to perform simulations and how to analyse the results wecan discuss in these
notes, but at least | hope that you have got the basics, anoudarfrom here if needed.

6. MODELLING INTERACTIONSIN ATOMIC SYSTEMS

A key issue in any for of modelling atomistic systems, be itrbgans of MD, MC,
or any other technique, is the representation of the intiewas between the atoms or
molecules that make up the system. Ultimately, these ictierss are the result of the
subtle interplay of electrons and nuclei. This interplap gave rise to a wide variety
of behaviours; some systems display a covalent type of ngneihile others would be
better described as ionic, although more generally thatsit is intermediate between
these two extremes. Yet in other systems neither of thederpattakes place; rather,
one has a metallic behaviour, where a significant portionhef ¢lectrons are free
to move through the entire system, without being associtaies particular atom or
bond. The opposite extreme to this is that of noble gasestemtlectrons are tightly
attached to individual atoms, adopting a closed-shelteda structure. To complicate
matters further, several of these widely different behars@an be displayed by one and
the same system at different temperature and/or pressuaditioms. For example, at
ambient conditions, silicon is known to adopt the diamomndcstire, which is a covalent
semi-conductor. But upon raising the temperature beyeh@70 K silicon melts, and
in so doing it becomes metallic. Likewise, upon applyingsgree at fixed temperature,
the diamond structure eventually undergoes a phase imnsit the so-calle3-Sn
structure, which is also metallic.

In general, we can find two different approaches to desgithia interactions between
atoms and molecules in a system. The first one is to employ sameof potential, i.e.

a (in general complicated) function which depends on thetixe interatomic positions
(distances and angles) and on a series of parameters whishbauitted in order
to reproduce as closely as possible some relevant propetithe system, such as a
crystal structure, elastic or vibrational properties, étcthis approach the electronic
structure is obviated; rather one attempts to account $oeffects with the potential
function. The second approach involves retaining the pgadfithe system as composed
by electrons and nuclei, and to obtain the energetics ofytbie as well as the forces
on the atoms from a quantum mechanical treatment of theretectstructure, either at
the semi-empirical level or through a fully first-principlé&reatment. This approach is
theoretically more sound, but obviously more expensive.

The first approach is usually termed teepirical potentialapproach. The name
makes reference to the fact that in general the form of thenpiatl isad hog i.e. there is
no underlying guiding principle as to what the mathematsgiression of the potential
should be, beyond the fact that it should be repulsive attshistances, attractive at
intermediate ones and decay to zero at infinite separatiasd refers to the fact that
the potential has a series of disposable parameters thatbhadgted, traditionally to
empirical information on the system, though lately it isweommon to parametrise
potentials to results obtained with more accurate thezaietialculations, usually based



on electronic structure calculations. To give an exhaastview of the different types
of potentials used in the literature would be a daunting,téekbeyond the scope of
what only aims to be an introduction to MD. Rather, | will jusame a few common
examples, and refer the interested reader to the apprefiterature.

It is customary to assume that the total potential energynadtamic system in the
absence of external fields can be written as a series of thre for

U:ZVz(ri,r,-)-i— Z(Vg(ri,rj,rk)-i— Va(risrj i) +..., (22)
] i, i1kl

whereV, represents the energy of interactions of pairs of atamshat of triads, and
so on. In practice this series is rarely taken beyond the santaming theV/, terms, and
frequently it is truncated after the first or second sums.

Although much work has been done with discontinuous paenguch as hard
spheres, here we will focus on continuous potentials. Ofe¢hperhaps the simplest,
though still extensively used, is the Lennard-Jones piatiemthich takes the form

w2 (2)'] 2

The potential is characterised by two parameters, namelyhich has dimensions of
energy, and which determines the minimum value of the piate@nd o, which has
dimensions of length, and is related to the position of thaimum. The first term
in the squared brackets of Eq. (23) causes the potential tstrbagly repulsive at
short distances, while the second term has the typical foqpected for dispersion-
type interactions, which decay a§. This potential has been frequently used to model
e.g. noble gases, and in such a case it is an example of a moddlich Eqg. (22)
is truncated after the first sum. Eq. (23) is frequently udsd & describe non-bonded
type interactions (i.e. interactions between atoms theanhat linked by a chemical bond)
in more complex molecular systems.

Covalent systems generally have a more complex bondingewhieractions are not
only distance dependent but also directional. Severalnpiate have been put forward
for such systems, out of which perhaps the best well knowrharge of Stillinger and
Weber [25] for silicon, and that of Tersoff [11], also forisdn, but which has been
parametrised also for carbon. Both potentials have beeamsxely used for modelling
covalent materials, and have inspired the formulation ofensophisticated models. For
example, the Tersoff [11] potential has the following exgsien:

u=3 33 felt) [1a(r) by )] (24)

where fr(rij) = Aije”‘iirii and fa(rij) = —Bjje Hifi are repulsive and attractive pair
potentials, respectively, and the paramefg[sBij, Ajj andp;j depend on the chemical
species of atomsand j. It would appear from Eq. (24) that this model is a pair-wise
potential, but this is not so. The third-body dependencdefpotential is contained in
thebj; term, which is a function o8 jx, the angle defined by the vectors connecting one



atom with every possible pair of its neighbours. The parasaton for silicon is such
that a tetragonal arrangement of each atom’s neighbouappabpriate first-neighbour
distances, minimises the energy. In the case of carbonpadesinimum at 120allows
the obtain also the single-layer graphite structure (geaph

Potentials have also been developed for metallic systeuts, as the Embedded
Atom Model (EAM) and its derivations, or the Cleri and Rosgtb] potential. In these
models there is also an environment dependence of the it it is not so strongly
directional as in the case of covalent materials. This mdded many of its kind, is
based on the observation that the energetics of d-band sretllargely dictated by
the width and centre of gravity of the d-band density of stgteDOS), but are fairly
insensitive to its detailed shape. Since the width of the@BSDs proportional tq /1,
where i, is the second moment of the d-DOS, guglcan be related to the hopping
integrals of the Hamiltonian, the idea is then to write dowe binding energy of the
system as an expression reminiscent of this. Cleri and B¢&&} proposed to use

1/2
_ [Z nze—2Q(fij/ro—1)] 7 (25)
J

wheren plays the role of a hopping integral, anglis the nearest-neighbour distance.
The binding energy is complemented by a pairwise repulsieegy of the form

El — ZAe—p("ij/ro—l). (26)
]

The total potential energy of the systef#,, is then given as the sum over all atoms
of Egs. (25) and (26) above. This model has been paramefosedseries of metals,
including Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb [21].

Organic and biological molecules are frequently simulated potentials of the form

Uu = kbondd d0 kangle(6 60
bc%ds anZ

+ Z Keorsion[1 +cogny — )] +

torsions

el

where the first term is a sum over the bonds, the energy of wkichodelled by a
harmonic spring or some similar potential (e.g. a Morse mitaf. The second term
accounts for bond-angle vibrations, also modelled by a barospring on the deviation
from the equilibrium angle. The third term describes dilat@ngles, and involves
sequences of four atoms linked by three adjacent bonds. 8dteddrm encompasses
the energy of interaction between pairs of atoms that aredinettly bonded, and it
includes a Lennard-Jones type potential (see above) andlar@b term to account for
the electrostatic interaction between charged ions. Batesimilar to that of Eq. (27)
form the core of such programs as CHARMM [7] and AMBER [8].

+ﬂ}, @7)

I’ij



Tight-Binding (TB) models occupy the middle ground in thesippum of models for
materials simulation, between the extremes of empiricéels and first-principles
methods. TB models, unlike empirical potentials, do inoogpe a description of the
electronic structure, although they do so at a much morelstigpand approximate
level than first-principles methods. In TB models the mattiments of the electronic
Hamiltonian are not evaluated rigorously from the Hamiléonoperator and a chosen
basis set, but rather are assumed to have a certain parsedetitependence on the
interatomic distances. This makes the cost of construthiagnatrix representation of
the TB Hamiltonian rather small, while it is a significant paf the calculation in first-
principles methods. However, this is at the cost of assuraigyen form of the matrix
elements, which may be physically sound, but is ultimaéelyhog just as the form of
an empirical potential is. In spite of this, TB models havedree extremely popular
in materials modelling [26], due to their combination of medological simplicity and
comparative accuracy. We will not go into details on theedtdht TB models; interested
readers may find details of these techniques in severalwepapers [26, 27] and
books [20, 28].

As discussed in Section 3, one of the landmarks in compui@ticondensed matter
physics was the development of first-principles MD by Car Badrinello [16] (CP).
These authors obviated the need to employ a potential foeftiogl the atomic interac-
tions by means of an empirical potential. Rather, the pakebergy and its derivatives
were directly obtained from first-principles electronisture calculation. Specifically,
CP formulated FPMD within the context of Density Functiombeory (DFT). DFT was
formulated in the 1960s by Kohn and collaborators. Hohenbed Kohn [17] demon-
strated that the energy of an ensemble of electrons moviag iexternal field, and in
particular the field generated by the nuclei or ions, is awaiginctional of the electron
density, and furthermore, that this functional adopts ammim value when the electron
density is that corresponding to the ground state. Subséigu&ohn and Sham [18]
showed that the electronic structure problem could be oéstan independent particle
problem in which the wave functions of each particle obey lar&dinger-like equation
of the form

{—%DZ—FVKS(O] Wi = &, (28)

wherey andg; are the particle wave functions and energies, respectartvksis the
Kohn-Sham potential, given by

n(r’) OExc[n(r)]
r—r’| on[r]

Vi) = Veu(r) + [ d1, (29)
Here the first term on the rhs is the potential of interactiathwhe ions or nuclei,
the second term is the potential due to the electrostaterantion with the electron
density, and the last term is the exchange-correlatiompiateTo cut a long story short,
the Kohn-Sham orbitals must be obtained by self-consistantving Eqgs. (28) (note
that ks depends on thej orbitals through the density(r) = 25; | i(r) |?). Once
the Kohn-Sham equations have been solved, the total erferggs and stress can be
obtained, and used in a conventional MD simulation. In otdesolve Egs. (28), it is



customary to expand the orbitals as a linear combination of basis functions, like so:

Wi = Zci,kfﬂo (30)

where different choices of basis functiopsexist. The problem then is reformulated
into finding out the coefficients of the expansian,. This can be done by any of a
number of techniques [20]. Let’s imagine starting an MD dation from an atomic
configuration for which the; x coefficients in Eq. (30) had been previously obtained.
For such a configuration the total energy and forces on the &a available once
the electronic structure problem is solved, so one can ussetforces to perform a
conventional MD step on the ions. Once the ions move, howavprinciple one would
have to go back and solve the electronic problem all ovemadait CP proposed to do
something different: they showed that it is possible to rpooate thec; x expansion
coefficients as fictitious classical variables in the dyra@mivith adequately chosen
fictitious masses. Thus one ends up with a combined dynarhicsand wave function
coefficients. This looks very strange indeed, but it is irt faeery clever trick: with a
suitable choice of fictitious masses for thg coefficients and a a small enough time
step, it is possible to arrange things in such a way that tmeuatycs of theg;  follows
closely the Born-Oppenheimer surface, or in other wordsgithautomatically adapt to
the slowly varying ionic configuration, giving wave funat®that are very close to the
Kohn-Sham ground state for the current ionic configuratidgre fictitious masses of the
Ci x heed to be small enough so that their dynamics is faster tiarof the ions; this
in turn imposes a smaller time step than would be required &iable dynamics of the
ions with a conventional force field, but the gain is that oas thone away with the force
field altogether!

Another consideration to take into account is that the dyoamf thec; x must be
subject to the constraints of orthonormality of the Kohra®lorbitals, i.e.

Zci*’kch: dj, (31)

where §; is the Kroneker delta. There are standard techniques fdonp@ing MD
subject to constraintswhich can be applied to impose Eq. (31) at each time step.
Imposing such constraintdlf of them, whereN is the number of Kohn-Sham orbitals)
isa gignificant bottle-neck of FPMD, as this carries a compomal cost that grows as
O(N?).

There are many intricacies in CPMD and DFT calculations,ciwhie cannot cover
here in any detail, but fortunately all this is extensivebgdmented in the literature (see
e.g. [20, 29, 30, 31]). Suffice it to say that FPMD in the CP flavand in others is now
a fairly standard and frequently used simulation technidues still computationally
very demanding compared to MD based on force fields, but tleisaaffordable in
many cases, thanks in part to the continuing improvemenigofrighms and numerical
techniques, and to the ever increasing tendency of compaveer.

4 Two well-known algorithms for imposing constraints are #tecalledrattle and shakemethods. We
will not discuss them here, but interested readers will filblefccounts in refs. [3, 4].



7. BEYOND THE MICROCANONICAL (NVE) ENSEMBLE

Let us now briefly discuss how MD has been extended beyoncodaonical condi-
tions, so as to simulate systems in mechanical and thermgcowith their surround-
ings. As mentioned in Sec. 3, the first work to consider thesibd#y of performing
MD simulations in conditions of constant pressure was thanaersen [12]. Andersen
proposed to couple the dynamics of the atoms with that of thewe,Q, of the system,
in such a way that they would be both described by the follguiagrangian:

1 : 1
Landerserr= 5 > MQY2G7 =% (Q7°,{q}) + 5MaQ? — Pex. (32)
1

The first two terms here are the usual kinetic and potentiaiggnof the atoms, but now
rewritten in such a way as to make their dependence on thenodidi the system explicit.
Note that instead of the usual Cartesian positions for thsajr;, we have now used the
scaled, or lattice, coordinatesg,= Q~1/3r;, which are more convenient in this case. The
third and fourth terms in Eq. (32) above correspond to theticrand potential energies
for the volume, which is now itself a dynamical variabi, is the thermostat fictitious
mass, anPey; is the external pressure which is exerted on the systeme Malume was
to stay fixed, its kinetic energy would be zero (no volume motue), and the volume
potential energy would be constant. In this ca&gqersenfeduces to the conventional
microcanonical Lagrangian for the atoms. However, whenvtiteme is free to move,
it will react to the external pressure, increasing or desirgpas dictated by the pressure
and the combined dynamics of atoms and volume. The volumleewéintually settle
and oscillate around an average value, which will be the meame for the imposed
external pressure. It is easy to make the transition fronLdgrangian formulation of
Eq. (32) to the Hamiltonian form, by simple application oéthsual rules of classical
mechanics [32], with momenta defined as

0%
Pi = e (33)
and defining the Hamiltonian function
H =" 0i-pi—Z. (34)
|

It is a useful exercise for the reader to transform Eq. (32Hamiltonian form and
then use the generalised leapfrog scheme discussed in dbidim a constant pressure
integration algorithm.

Andersen’s approach only considers volume fluctuatioasthe size of the simulation
box is allowed to change, but its shape is constrained to iremzbic. This is ok
for liquids, but for crystalline solids it is actually restive. If a undergoes a phase
transition to another solid phase, it will in general changeonly its cell volume, but
also its shape. In order to account for such situationsjritdls and Rahman [15, 33]
generalised the method of Andersen with the following Lagran:

1 . : 1 oty
Zpr= 3 > mgiH' - HGi — % (a,H) +§MHTF(HtH) — PexiV. (35)
I



This can be seen to be somewhat similar to Andersen’s Lagnangq. (32), though
there are some differences. The key difference is that nstead of the volume, the
cell degrees of freedom are the components of the vectomsinigfihe shape of the
simulation box. These vectors can be arranged into a matrighwis labelled a$l; the
Cartesian coordinates of the atoms are- Hg;. In Eq. (35) a fictitious kinetic energy
term which now includes the kinetic energy of each of theasttor components. There
are several subtleties here, not least the fact that thedicdidynamics of the cell in the
formulation of Parrinello and Rahman allows not only for tteformation of the cell,
but also for changes in its orientation in space. This isagast rather inconvenient
in simulations, as one would have to somehow distinguistvéeh the motion of the
atoms which is intrinsically due to the atomic dynamics, #mat which results from
cell rotation. There are cures for this, but we do not needtern ourselves with such
technicalities here [34, 35]. Again, it is possible to trfans) Eq. (35) to Hamiltonian
form, to obtain the equations of motion from the Hamiltoniand with them derive an
algorithm for their numerical integration using the getiseal leapfrog scheme. This
would be a recommended exercise for anyone who wants to ketamiliar with MD
techniques.

In his famous paper, Andersen [12] proposed not only a wayettbpm simulations
in conditions of constant pressure (i.e. the isobaricadizapic, or NPH ensemble), but
also in conditions of constant temperature (canonical of ldksemble). His strategy to
attain canonical sampling consisted of selecting an ataamatom, and changing its ve-
locity to a new value, selected from the Maxwell-Boltzmaimstribution corresponding
to the desired temperature of the simulation. This procepgated at regular intervals,
was shown to sample the canonical ensemble, and is now krewndersen’s thermo-
stat. However, there is one key difference between And&rpencedure for sampling at
constant pressure and that for constant temperature, srtat while the first one is de-
terministic (i.e. the barostat obeys a certain equationation), Andersen’s thermostat
Is stochastic. In this sense it is a bit like introducing edjents of MC into MD. This is
not a bad thing in itself, provided one is not interested andiinamical properties of the
system, such as transport properties. If this is, howekercase, one must be aware of
the fact that the stochastic nature of Andersen’s therma#fftects the dynamics of the
atoms, and will cause an artificially rapid loss of coherendheir dynamics. In other
words, the VAF (see 5.4.2) will decay faster than it woulderttise do, and this clearly
affects the value of e.g. the diffusion coefficient [see B§)]. In general, if you are in-
terested in obtaining dynamical information of the studigstem, my recommendation
would be to avoid the use of thermostats and other artifadgig;h may affect the dy-
namics of the atoms in the system, and to stick to NVE samplihg is not to say that
thermostats and barostats are not useful; far from it! the@enany situations in which
one is not really interested in the atomic dynamics, and iitlvbne needs to simulate
systems in conditions of constant pressure and/or temperdh such cases the use of
these artful devices is highly recommended.

Andersen’s paper was the starting point of a plethora oerbfit methods to allow
MD to sample other ensembles. Among these, a key developmaarthat of Nosé [13],
who proposed a new thermostat to achieve canonical samgliogtrary to that of
Andersen, though, Nosé’s thermostat has the peculiaribenfg deterministic, instead



of stochastic. Nosé proposed the following Lagrangian,
1 ) 1 .
A= Estzriquémssz—U({r})—ngTextIns, (36)
|

whereg is the number of degrees of freedom of the systiegis Boltzmann’s constant,
sis the thermostgpositionvariable,mg is its associated fictitious mass, ang is the
temperature at which we desire the system to be. For oncejiwmigs the opportunity
of proposing an exercise for the reader, and give direcyHhmiltonian function for
the Nosé thermostat; this is

p? :
IRy = ZW'SZ-I—U({r})-l-;?SIS'i‘QkBText'nS, (37)

where the atomic momenta ape = ms?i, and similarly,ps = mss. | will, however,
suggest to the reader to derive equations of motion from Madt#Emiltonian Eq. (37).
Then, it will be seen that the force acting on the thermostgbroportional to the
difference between the kinetic energy of the atoms andyia@qy:/2; in words, what
this means is that the thermostat variabis going to increase when the kinetic energy
grows to values above that correspondinddg, and the opposite will happen when the
kinetic energy is below the target value. In this way, onaieesthat the average kinetic
energy of the system, during a sufficiently long run, willrespond to the correct value
at Text. Not only this, but it can actually be shown that because efdmosen form of
the potential energy for the thermostat in Egs. (36) and, 8&)dynamics of the atoms
samples the canonical ensemble, under the usual assuropgayodicity.

The thermostat variablein Eq. (36) is actually a time-scaling factor. Theal time
of the simulation is actually given by

t dt
treaI:/O @7 (38)

which means that the actual length of the time step variesmgltihe simulation. This
is somewhat inconvenient, particularly if one wishes tagkdte time dependent prop-
erties of the system. Motivated by this, Hoover [14] modifiéasé’s original formula-
tion through a change of variables which resulted in a schiemehich the length of
the time step is constant. The resulting scheme is frequeeférred to in the litera-
ture as the Nosé-Hoover thermostat. There is one small cawtethis, though, which
is perhaps of little practical significance, but it is wortbntmenting. Hoover’s mod-
ifications amounted to a non-canonical (non-Hamiltoniaapsformation of Eq. (37),
and as a result of this the method looses its Hamiltoniarcstre. This means that
the Nosé-Hoover equations of motion cannot be derived frddamiltonian, and as a
consequence, one cannot use the generalised leapfrog estberhtain an integration
algorithm. This is not such a serious problem, becausenaltiee integration schemes
can be used which do not rely on having a Hamiltonian stredtsee e.g. [4]).

In more recent times Bonett al. [36] have shown that it is indeed possible to refor-
mulate the Nosé thermostat by means of a canonical tranafanm(thus respecting the



underlying Hamiltonian structure), a transformation whie designed to counteract the
troublesome time scaling implicit in Nosé’s original forfation. They did this by using
a so-called Poincaré transformation, resulting in a new iianian given by:

e = S —Ho), (39)

whereHg is a constant, anHy is given by Eq. (37). Because this is a Hamiltonian, one
can use the generalised leapfrog scheme, and this would beaosnmended option for
canonical sampling MD.

The use of new variables such as the barostats and thersdsetissed above has
been called thextended system approachhese extended variables are designed in
such a way that they emulate the effect of having the systeedl in contact with
its surroundings, i.e. with an essentially infinite numb&degrees of freedom. It is
quite remarkable that one can do this with just a few addatiolegrees of freedom. But
in introducing these artificial variables one must assiglieato their corresponding
fictitious massesnin andmg in Egs. (32) and (36), respectively]; the dynamics of the
extended variables and to some extent that of the atoms dafystem do depend on
the values chosen for these fictitious masses, and somegtahiheir values may be
necessary in order to achieve sensible results. The vafusmgoage properties are in
general not very sensitive to the valuesmf andm; their choice should be guided by
an efficiency of sampling, while at the same time trying teetfiminimally the dynamics
of the atoms.

Finally, before leaving this section, let us remark thathbéindersen [12] and
Nosé [13] considered sampling the isothermal-isobaric BT Mnsemble by simulta-
neously coupling the system to a thermostat and a barodta.cbmbination is also
considered by Sturgeon and Laird [37] and Hernandez [35].

8. PROBLEMS, CHALLENGES, ..., AND ALL THAT!

It would not be fair to conclude these introductory notes db ithout making some
comments about the limitations of MD, which indeed exist angl not few. The most
obvious one is the issue of time scales. Depending on thé d&wehich you model
your system (first-principles or empirical force field) MD ynlae limited to time scales
ranging from a few pico-seconds to up to a few nano-secondaost. Yet many
processes of chemical and physical interest happen overstiades which can be many
orders of magnitude larger than this (slow diffusion praoidein solids, dynamics of
glassy or polymer systems, or protein folding, to name bwvg,fand straightforward
MD simply can get you nowhere in such cases. In recent yeatsy ¥nd others have
developed several techniques to try to address this prqlsiech as Hyperdynamics [38,
39], Temperature-accelerated dynamics [40] or the Péralidica method [41].

One of the reasons why the time scale that can be coverediisdis related to the
computational cost involved in calculating the energy amdds necessary to perform
MD simulations. It has been recently suggested [42] thatiaflg designed neural
networks may be trained to predict with sufficient accur&eyanergetics and forces of a
given system after being fed with a sufficient training dateobtained from simulations.
This could potentially reduce significantly the cost of peniing accurate simulations,



and thus also extend the length of time scales accessiliiesudh simulations. However,
this methodology is still rather new, and its full potentsalet to be demonstrated.

MD is ultimately a sampling technique, like MC, with the addgonus of provid-
ing dynamical information, at the extra cost of calculatthg forces. Systems with
complicated energy landscapes are inherently more prabiero sample adequately,
so special care has to be taken in such cases. In such systenmay have to wait
for a long time for the dynamics to explore the configuratipace. To ameliorate this
problem, Parrinello and co-workers have proposed the tgakrknown as metadynam-
ics [43, 44]. In this technique, a dynamical trajectory ikdwed which is discouraged
from visiting regions of configuration space that have ayelaeen visited by adding a
Gaussian potential of a pre-specified height and width tb gaited point. In this way
potential energy minima are gradually filled up, facilitafithe escape of the system
from such trapping funnels, and improving the configuraipace sampling.

Yet another challenge for MD is the issue of varying lengtalss. In many systems,
the phenomena under observation cover many differenthesagties. A typical example
of this is crack propagation, where a material is loade@gsed) until a crack tip forms
and starts to propagate in the material. Close to the crpckhiemical bonds are being
broken, and atoms strongly rearrange. A bit further awasnftoe tip the material may
be severely deformed, but without bonds being actually émoland yet further away
the atomic positions may hardly deviate from those in thégoecrystal. To model such
systems directly at the atomistic level requires extrentelge simulation cells, soon
growing into six orders of magnitude figures and beyond. Rokling such problems
effectively it is necessary to treat different length ssad¢ different levels of theory,
effectively embedding a quantum mechanical descriptiotheftip crack into a force
field description for the atoms a certain distance away frioectack. This in turn must
be matched at some point with a continuum mechanics deserjpalid for large length
scales. A similar situation is encountered e.g. in enzyenathctions, where the active
site of the protein and the reactants must be described aarsw mechanical level,
while the rest of the protein and perhaps the solvent (tylgieater) may be accounted
for at a lower level of theory.

To summarise, both challenges and exciting times lie ahedjn particular, and
simulation in general, are very open fields, in constantugianh, and responding to the
new issues which are continuously being raised by expetahprogress in the physics
and chemistry of materials and by nanotechnology. | haveaubtthat very exciting
times lie ahead in this field, a field full of opportunities famfolding a productive and
fulfilling career in science.
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