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We study real (massive) antisymmetric tensors of rank two in holographic models of QCD based
on the gauge/string duality. Our aim is to understand in detail how the AdS/CFT correspondence
describes correlators with tensor currents in QCD. To this end we study a set of bootstrapped corre-
lators with spin-1 vector and tensor currents, imposing matching to QCD at the partonic level. We
show that a consistent description of this set of correlators yields a very predictive picture. For in-
stance, it imposes strong constraints on infrared boundary conditions and precludes the introduction
of dilatonic backgrounds as a mechanism to achieve linear confinement. Additionally, correlators
with tensor currents turn out to be especially sensitive to chiral symmetry breaking, thus offering an
ideal testing ground for genuine QCD effects. Several phenomenological consequences are explored,
such as the nontrivial interplay between 1+− states and conventional 1−− vector mesons.

PACS numbers: 11.25.Tq, 11.10.Kk, 11.25.Wx

I. INTRODUCTION

The original AdS/CFT conjecture by Malda-
cena [1] has played a pivotal role to study strongly
coupled systems through their duality with super-
gravity theories at a large number of colors. In re-
cent years there have been attempts to extend the
gauge/string duality to incorporate genuine QCD
effects such as confinement and chiral symmetry
breaking. Incorporating such effects is subject to
a certain degree of arbitrariness, and the AdS/CFT
correspondence can only be used as a guiding princi-
ple. However, the phenomenological success of such
models is quite remarkable, especially with vector
mesons [2].
In this paper we want to extend this analysis to

antisymmetric tensors of rank two. There are two
main motivations to pursue this program. The first
comes from QCD: while Jµ = q̄γµq is the paradig-
matic current to create spin-1 vector mesons, the
antisymmetric tensor current Jµν = q̄σµνq is also
known to generate spin-1 states, not only the con-
ventional 1−− vector mesons but also the more ex-
otic 1+− mesons. Therefore, the study of antisym-
metric currents not only provides a description of
1+− mesons, but also involves a nontrivial interplay
with 1−− mesons. Such interplay has been studied
in QCD by a simultaneous analysis of the two-point
correlators ΠV V , ΠV T and ΠTT [3, 4]. This simulta-
neous analysis is highly constraining, and we would
like to understand whether simple holographic set-
tings with the AdS/CFT correspondence can offer a
satisfactory description of these correlators.
A more formal motivation comes from the gravity

side. The spectrum of compactified d = 10 type-
II B supergravity on AdS5 typically contains mas-

sive rank two antisymmetric tensors [5]. Massive
2-forms have already been studied in the context of
the AdS/CFT correspondence [6, 7]. In this work
we want to examine their role in holographic models
of QCD.
According to the AdS/CFT dictionary, p-forms

with five-dimensional masses m coupled to currents
with conformal dimension ∆ satisfy

m2 = (∆− p)(∆ + p− d) . (1)

Following the AdS/CFT prescription for correlators
developed in [8, 9], the on-shell fields on the grav-
itational side are to be identified with the sources
of the gauge theory currents. However, in order to
bring the AdS/CFT correspondence closer to QCD
one needs further ingredients, e.g., fields in the fun-
damental representation and a mechanism for chi-
ral symmetry breaking. The former can be ac-
complished through embeddings of probe branes, as
shown in [10], while the latter has been studied in
several nonsupersymmetric backgrounds [11, 12] and
most successfully realized in [13].
In this paper we will lean on the previous results

but follow a more phenomenological approach, in the
spirit of [2]. There it was shown that a 1-form mass-
less field on the gravity side stands as the natural
candidate to study processes involving the QCD con-
served current Jµ = q̄γµq. Likewise, we argue that
a 2-form field, due to its antisymmetric nature, is
to be naturally associated with the tensor current
Jµν = q̄σµνq. In the following we will show that this
assignment leads to consistent results. However, the
first thing to realize is that, as can be inferred from
Eq. (1), we will be dealing with massive 2-form fields.
This is consistent with the fact that the tensor cur-
rent is not conserved in QCD but implies that, in
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contrast to the vector case, all degrees of freedom of
the 2-form will be physical. As we will discuss later
on in detail, this will have far-reaching phenomeno-
logical consequences.

Throughout the paper we will be working with
a minimal action for 1- and 2-forms, namely that
containing only the five-dimensional kinetic terms.
Therefore, there will be no coupling between vec-
tor and antisymmetric tensors in the gravity side,
and it is not clear a priori how the mixed correlator
ΠV T can be generated from the holographic point of
view. We will see that holography provides a very
natural scenario for this interplay between QCD cur-
rents even starting with uncoupled p-forms in five di-
mensions. At the same time, mixed correlators such
as ΠV T turn out to be particularly sensitive to chi-
ral symmetry breaking effects. However, such effects
are more subtle than in correlators like ΠAA or ΠAP ,
which contain the pion pole. None of the correla-
tors considered in this work contains the pion pole,
and yet they signal the breaking of chiral symme-
try. Our aim in this paper is to stick to the simplest
five-dimensional Lagrangian and explore where and
when the correlators require chiral symmetry break-
ing effects to appear. As is well-known, conformal
symmetry needs to be broken to account for chi-
ral symmetry breaking, typically through nontrivial
boundary conditions in the infrared. We show that
such infrared boundary conditions are strongly con-
strained, and therefore correlators with tensor cur-
rents turn out to be an ideal theoretical laboratory
to understand how to implement chiral symmetry
breaking in AdS/CFT.

However, within the set of correlators considered,
not all the requested chiral symmetry breaking ef-
fects can be introduced through infrared boundary
conditions: changes in the bulk are also needed. In
this paper we show that the impact of these changes
can be effectively described by slightly modifying the
conventional AdS/CFT prescription for correlators.

This paper is organized as follows: in Sec. II we
will apply the AdS/CFT prescription to 2-form fields
in AdS space with a compact fifth dimension. In
Sec. III we compare the results obtained with the
ones from 1-forms, paying special attention to the
role played by gauge invariance. Section IV is de-
voted to the phenomenological analysis: correlators
are defined and the issue of boundary conditions is
discussed. In Sec. V we discuss the matching to
QCD and the low energy limit of the correlators,
providing predictions for low energy parameters and
assessing issues like lowest meson dominance. Con-
clusions are given in Sec. VI. An interesting result of
our analysis is that, quite generally, consistency with
generic properties of QCD precludes the presence of
dilaton fields in the action. This implies that in or-
der to achieve Regge behavior in holographic QCD,

the introduction of a dilaton field does not provide
a consistent picture. This is discussed in the Ap-
pendix.

II. 2-FORMS IN ADS/QCD

The objects we are interested in are generic p-
form fields in the supergravity side, which will be
described by the following action:

S = κ

∫

AdS5

Tr
[

dH ∧ ∗dH +m2H ∧ ∗H
]

, (2)

which satisfies d∗H = 0. The integral above is over
(4 + 1) dimensions, and we will adopt the setting
where the fifth dimension is finite and delimited by
two boundary branes at y = ǫ→ 0 and y = ym, y be-
ing the fifth dimension coordinate. Our conventions
for the AdS metric are the usual ones:

ds2 = gMNdx
MdxN =

1

y2
(−dy2+ηµνdxµdxν) , (3)

with ηµν mostly negative. We also include an overall
factor κ in the action, which in principle could be
determined from a more fundamental string theory.
In this paper we will be mainly interested in 2-

forms, i.e., H = HMNdx
MdxN , HMN = H

(a)
MN

λa

2 .
According to the AdS/CFT correspondence, the
bulk to boundary propagator of every field in the
gravity side corresponds to a current in the gauge
theory side. As discussed in the Introduction, a nat-
ural candidate for a rank two antisymmetric current
in QCD is Jµν = q̄σµνq, and therefore we will iden-
tify Hµν(ǫ) as the source of Jµν . It is well-known
that in QCD Jµν can generate 1+− mesons through

〈0| Jµν | bn(p, λ)〉 = ifBnεµνηρǫ
η

(λ) p
ρ , (4)

a representative candidate being the b1(1235) state.
However, Jµν can also generate 1−− mesons through
a nonzero f⊥

V n, defined as

〈0| Jµν | ρn(p, λ)〉 = if⊥
V n(ǫ

(λ)
µ pν − ǫ(λ)ν pµ) . (5)

One can understand this duplicity of states in the fol-
lowing way: σµν has 6 degrees of freedom, which can
describe two massive spin-1 states. Since σµνγ5 =
i
2ǫµνλρσ

λρ, the states should have opposite parity.
Note the analogy with the electric and magnetic
fields inside the Faraday tensor.
Since 1−− states can also be generated by Jµ =

q̄γµq, in order to be consistent we should also in-
clude 1-forms in our analysis. In the literature it is
common to interpret Jµν as the generator of longi-
tudinal ρ mesons, while Jµ creates the conventional
(transverse) ρ mesons.
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In components the action (2) for 2-form fields
reads

S2 = 2κ

∫

d5x
√
gTr

[

−1

2
∂LHMN∂

MHLN

+
1

4
∂LHMN∂

LHMN − m2

4
HMNH

MN

]

,(6)

and the equations of motion become

1√
g
∂A

[√
g∂LHMNΣABCLMN

]

+m2HMNg
BMgCN = 0 ,

(7)
where

ΣABCLMN = gALgBMgCN + gAMgBNgCL

−gAMgBLgCN . (8)

The consistency condition d∗H = 0 can be expressed
in components as

∂A

[√
gHMN (gAMgNS − gANgMS)

]

= 0 . (9)

Since HMN is completely antisymmetric, it has
d(d+ 1)/2 degrees of freedom, where d is the space-
time dimension. Therefore, through Kaluza-Klein
reduction the 10 degrees of freedom of HMN split
into a field Hµν with 6 components and another field
H5µ with the remaining 4. Schematically,

HMN =









Hµν H5µ

Hµ5 0









. (10)

The equations of motion expressed in terms of the
fields Hµν and Hµ5 read

− ∂ρ∂νH5ρ +

(

�+
m2

y2

)

H5ν = ∂y∂
ρHρν , (11)

∂ρ(∂νHρµ − ∂µHρν)−
(

∂2y +
1

y
∂y −�− m2

y2

)

Hµν

=
1

y
∂y

[

y(∂νH5µ − ∂µH5ν)
]

. (12)

Similarly, it can be shown that the consistency con-
dition amounts to the following relations

∂µHµ5 = 0 ,

H5ν − y∂yH5ν + y∂ρHρν = 0 . (13)

The previous results can be shown to be in agree-
ment with the ones reported in [7].
Let us look first at Eqs. (11). Using the consis-

tency relations above, the Hµν field can be removed

altogether and one obtains the following differential
equation for the H5µ field:

(

∂2y − 1

y
∂y −�+

1−m2

y2

)

H5λ = 0 . (14)

If the two-form is to be associated with the QCD
tensor current Jµν , application of Eq. (1) immedi-
ately leads to m2 = 1. In this case, the previous
equation has the solution

H5λ(q, y) = y
[

bJ1(qy) + Y1(qy)
]

H
(0)
5λ , (15)

where q is the conjugate momentum of x and H
(0)
5λ

and b are initial conditions to be determined later
on.
We will see in Sec. III that Eq. (14) with m2 = 1

is also the equation of motion for a massless vector
field Vµ. This coincidence is a direct consequence
of dimensional reduction in pure AdS spaces, as we
will show in the Appendix, and will be extremely
important in the interpretation of H5µ in terms of
QCD currents.
Having solved the equation of motion for H5µ we

can now turn our attention back to Eq. (12) to deter-
mine Hµν . Using again the consistency conditions,
the equation can be cast as

(

∂2y +
1

y
∂y −�− m2

y2

)

Hρλ =
2

y
(∂ρH5λ − ∂λH5ρ) .

(16)
Notice that no decoupling has been achieved this
time and Hµν depends on H5µ. The general solution
can be expressed as

Hρλ(q, y) = hρλ(q, y) + h̄ρλ(q, y) , (17)

where hρλ is the homogeneous solution, given by

hρλ(q, y) =
[

b′J1(qy) + Y1(qy)
]

H
(0)
ρλ , (18)

and the particular solution h̄ρλ depends on the field
H5µ. Knowing the solution for H5µ from the previ-
ous section, one can plug it in and solve the differ-
ential equation. The solution is given by

h̄ρλ(q, y) = H
(0)
5α

iπy2

2ǫ

qρη
α
λ − qλη

α
ρ

bJ1(qǫ) + Y1(qǫ)
[

G2,2
3,5

(

ξ,
1

2

∣

∣

∣

∣

∣

0, 12 ,− 1
2

0, 1,−1,−1,− 1
2

∣

∣

∣

∣

∣

)

(

Y1(ξ)− bJ1(ξ)√
π

)

+b Y1(ξ)
{

J2
1 (ξ)− J0(ξ)J2(ξ)

}

−J1(ξ)
{

Y 2
1 (ξ)− Y0(ξ)Y2(ξ)

}

]

, (19)

where ξ = qy and G2,2
3,5 is a Meijer G function.
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Having solved the equations of motion for both
Hµν and H5µ fields one can now plug the on-shell
fields back in the action. Only a boundary term
survives, namely

S2 =
κ

4

∫

d4x

{

√
gH

(a)
MN∂PH

(a)
RQΣ

RPQM5N

}ym

ǫ

,

(20)
which in terms of Hµν and H5µ can be expressed as

S2 = −κ
4

∫

d4x
[

yHµν(a)(∂yH
(a)
µν −∂µH

(a)
5ν +∂νH

(a)
5µ )
]

∣

∣

∣

∣

∣

ym

ǫ

.

(21)
According to the AdS/CFT dictionary, the previous
action is the generating functional for the correlators
in the gauge theory side.

III. COMPARISON WITH VECTOR FIELDS

In order to understand better the significance of
the results found in the previous section, it is in-
structive at this point to work out the action for a

vector field VM = V
(a)
M

λa

2 . Equation (2) for 1-forms
reads, in components,

S1 = λ

∫

d5x
√
g Tr

[

−1

2
FMNF

MN +m2VNV
N

]

= −λ
∫

d5x
√
g Tr

[

∂MVN∂
MV N

−∂MVN∂NVM +m2VNV
N
]

.(22)

If VM is to be associated with the current Jµ = q̄γµq,
straightforward application of Eq. (1) gives that
m2 = 0. This means that VM is a gauge field in
5-dimensions, and as such a gauge fixing procedure
is needed. For instance, one could work in the axial
gauge and set V5 = 0 from the beginning, as is done
in [2]. We will eventually impose the axial gauge
condition, but for the time being it will be useful to
keep m2 6= 0 and V5 6= 0 all through the analysis.
The equations of motion applied to Eq. (22) read

1√
g
∂A

[√
g∂MVN (gAMgBN−gANgBM )

]

= m2VNg
BN ,

(23)
while the consistency condition d∗V = 0, in compo-
nents, takes the form

∂A

[√
gVMg

MA
]

= 0 . (24)

Splitting VM into Vµ and V5 the equations of motion
read

(

�− m2

y2

)

V5 = ∂y∂µV
µ , (25)

(

∂2y − 1

y
∂y −�+

m2

y2

)

Vµ = y∂y

(

1

y
∂µV5

)

−∂µ∂νV ν ,

(26)
which can be shown to be in agreement with [7, 14].
Similarly to what happened in the 2-form case,

the equations of motion for Vµ and V5 are coupled,
but using the consistency condition d∗V = 0, which
in components can be expressed as

3V5 − y∂yV5 + y∂µV
µ = 0 , (27)

they get decoupled for the V5 component. The result
is

(

∂2y − 3

y
∂y −�+

3 +m2

y2

)

V5 = 0 , (28)

while Eq. (26) takes the form

(

∂2y − 1

y
∂y −�+

m2

y2

)

Vµ =
2

y
∂µV5 . (29)

Notice that Eqs. (28) and (29) above have the same
structure as Eqs. (14) and (16). In particular, V5
adds a particular solution to the differential equation
for Vµ just like H5µ does to Hµν .
The structure of the resulting action is also very

similar for vector and tensor fields. For the former
one finds:

S1 =
λ

2

∫

d4x

{

√
gV

(a)
M ∂PV

(a)
R

(

gPMgR5−gP5gRM
)

}ym

ǫ

,

(30)
or, in terms of Vµ and V5:

S1 =
λ

2

∫

d4x
1

y
V µ(a)(∂yV

(a)
µ − ∂µV

(a)
5 )

∣

∣

∣

∣

∣

ym

ǫ

, (31)

which indeed has the same structure as Eq. (21).
If we now impose that m2 = 0, Eq. (28) becomes

the equation for a massive scalar with m2 = −3, i.e.,
coupled to a Dirac current J = q̄q [8]. However, the
very existence of this field would be in serious con-
flict with QCD, something that can be most easily
seen at the level of the action. Inspection of Eq. (31)
reveals the presence of two correlators: a quadratic
term in Vµ, which generates the vector correlator
ΠV V , and a mixed term. The physical interpreta-
tion of V5 is a priori unclear, but as a scalar field
the mixed coupling between Vµ and V5 should ac-
count for the ΠSV correlator. However, this correla-
tor is experimentally found to be zero from analyses
on hadronic tau decays [15], something that can be
understood from QCD in the combined chiral and
large-Nc limits. In holography, this cancellation is
naturally achieved thanks to gauge invariance: V5
can be cancelled and any contribution to Πµ

SV is for-
bidden, in full compliance with QCD.
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Let us investigate the consequences of V5 = 0 a
bit further. The required cancellation of V5 reduces
the vector equation to the form

(

∂2y − 1

y
∂y −�

)

V µ = 0 , (32)

whose solution is

Vλ(q, y) = y
[

bJ1(qy) + Y1(qy)
]

V
(0)
λ . (33)

Equation (32) is to be compared with Eq. (14) for
theH5µ field. Notice that indeed when HMN is asso-
ciated with the QCD tensor current Jµν , an immedi-
ate consequence is that H5µ satisfies the equation of
a massless vector field. Like V5, H5µ does not have
an obvious interpretation in terms of QCD currents.
However, unlike V5, it can not be removed by ap-
pealing to gauge symmetry, and therefore it must
have a physical effect.
Direct inspection of Eq. (21) shows that there are

two potential correlators. Since Hµν can be asso-
ciated with the tensor current, the term quadratic
in Hµν will naturally generate the tensor correlator
ΠTT . The nature of the coupling between Hµν and
H5µ is reminiscent of the one between Vµ and V5
and suggests that one should naturally identify the
mixed term with ΠV T . This correlator is zero in a
conformal theory of quarks, but sensitive to chiral
symmetry breaking effects. Therefore, its nonvan-
ishing signals the breaking of chiral symmetry and
is demanded by QCD. As we will see later on, in the
large-Nc limit ΠV T is saturated by the exchange of ρ
mesons. Therefore, the fact that Vµ and H5µ are de-
scribed by the same equation of motion is crucial to
have a viable phenomenological description of ΠV T .
We have thus found a remarkable property of holo-

graphic AdS models: H5µ is the vector generator for
ΠV T , just as Vµ was the vector generator for ΠV V .
This way holography can account for mixed corre-
lators without actually mixing p-forms in the five-
dimensional action. For consistency, the only thing
one has to make sure is that no double-counting
takes place, which is guaranteed by the absence of a
quadratic term in H5µ in the action. Note that this
picture crucially depends on the fact that V5 = 0,
which is supported by gauge invariance. Most in-
terestingly, as we show in the Appendix, the picture
is consistent only in AdS space without (nontrivial)
dilaton fields. Thus, one immediate consequence is
that dilaton-based mechanisms to implement linear
confinement in vector mesons [16] will fail to account
for ΠV T .
Having understood the structure and interplay of

vectors and antisymmetric tensors, we can now turn
to the study of the phenomenological aspects of its
associated correlators.

IV. PHENOMENOLOGICAL
APPLICATIONS

In the following we will concentrate on the charged
SU(2) flavor currents Jµ = ūγµd and Jµν = ūσµνd.
Alternatively, Ja

µ = q̄γµλ
aq and Ja

µν = q̄σµνλ
aq with

a flavor spurion λa = λ1 + iλ2.
We define the tensor correlator as

ΠTT
µν;αβ(q) = i

∫

d4x eiq·x〈 0 |T { Jµν(x)J†
αβ(0) }| 0 〉

= Π−
TT (q

2)Fµν;αβ
− +Π+

TT (q
2)Fµν;αβ

+ ,

(34)

where in the second line we have decomposed it in
terms of parity-even and parity-odd scalar invari-
ants. The tensor structures F±

µν;αβ are given by

Fµν;αβ
− = qµqβηνα + qνqαηµβ − qµqαηνβ − qνqβηµα ,

Fµν;αβ
+ = − εµνσρ εαβγτ ησγ qρ qτ

= Fµν;αβ
− (q) + q2

(

ηµαηνβ − ηµβηνα
)

. (35)

and can be shown to be parity projectors. In the
following it will prove convenient to define the cor-
relator Π±

TT ≡ Π+
TT − Π−

TT , which is the simplest
order parameter of chiral symmetry breaking in the
tensor sector, very similar to its counterpart ΠLR ≡
ΠV V −ΠAA in the vector/axial-vector sector.
We will also consider the vector correlator

ΠV V
µν (q) = i

∫

d4x eiq·x〈 0 |T { Jµ(x)J†
ν (0) }| 0 〉

= (qµqν − q2ηµν)ΠV V (q
2) , (36)

and the mixed correlator

ΠV T
µ;νρ(q) = i

∫

d4x eiq·x〈 0 |T { Jµ(x)J†
νρ(0) }| 0 〉

= i (qρηµν − qνηµρ)ΠV T (q
2) . (37)

According to the AdS/CFT correspondence, the cur-
rents appearing in the previous set of correlators
are in one to one correspondence with on-shell fields
evaluated on the UV brane. Therefore, given the
action for vector and tensor fields,

S =

∫

d4x

[

λ

2

{

1

y
V µ(a)∂yV

(a)
µ

}

−κ
4

{

yHµν(a)(∂yH
(a)
µν − ∂µH

(a)
5ν + ∂νH

(a)
5µ )
}

]∣

∣

∣

∣

∣

ym

ǫ

,

(38)

one can readily obtain two-point correlators by dif-
ferentiating with respect to the sources.
Close to the origin, a generic p-form φ behaves like

φ(ǫ, q) = ǫd−∆−pφ(0)(q) + · · · (39)
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where φ(0) are identified as gauge theory sources [9].

The previous prescription would however fail to
properly account for the known high-energy QCD
behavior of both ΠV T and Π±

TT . In particular, ac-

cording to (39), Π±
TT would be predicted to diverge

logarithmically, as dictated by conformal invariance.
However, QCD predicts Π±

TT to converge instead like
q−6. This is not so surprising bearing in mind that
both ΠV T and Π±

TT are, after all, pure manifesta-
tions of chiral symmetry breaking and hence com-
pletely unrelated to conformal invariance. This fail-
ure to describe ΠV T and Π±

TT therefore can be seen
as a manifestation that conformal invariance and
chiral symmetry breaking are not compatible when
it comes to the description of direct order parame-
ters. The breakdown of the AdS/CFT recipe thus
points at the necessity of nonperturbative physics
away from the conformal limit.

In what follows we will show that instead the
phenomenologically-motivated prescription

Vµ(ǫ, p) = V (0)(p) + · · · ,
Hµν(ǫ, p) = H(0)

µν (p) + · · · ,
H5µ(ǫ, p) = H

(0)
5µ (p) + · · · , (40)

indeed complies with the fundamental requirements
of QCD. Insofar as it is motivated by phenomenology
our prescription should be interpreted as an effective
ad hoc way to account for the nonconformal aspects
that define ΠV T and Π±

TT , namely chiral symme-
try breaking but also more general nonperturbative
phenomena. In particular, our prescription should
capture the fact that the tensor current Jµν , unlike
the vector Jµ, has a nonperturbative dimension dif-
ferent from the conformal one. This is to be expected
given that Jµν is not conserved and therefore ∆ 6= 3
at strong coupling.

In the following it will prove convenient to split

the fields asHµν(p, y) = H̄(p, y)H
(0)
µν (p), H5ν(p, y) =

Ĥ(p, y)H
(0)
5ν (p) and Vµ(p, y) = V̂ (p, y)V

(0)
µ (p). Ac-

cordingly, the UV boundary conditions in (40) de-

mand that H̄(p, ǫ) = Ĥ(p, ǫ) = V̂ (p, ǫ) = 1.

Differentiating twice the action with respect to

V
(0)
µ one obtains Πµν

V V . Likewise, Π
µν;ρλ
TT is obtained

by differentiating twice with respect to H
(0)
µν , while

Πµν;λ
V T requires H

(0)
µν and H

(0)
5ρ . The results one finds

are

ΠV V
µν (q) = i

δ2

δV
(0)
µ δV

(0)
ν

S

= −2λ

q2

[1

y
V̂ (q, y)∂yV̂ (q, y)

]

∣

∣

∣

∣

∣

ym

ǫ

(qµqν − q2ηµν) ,

ΠV T
µ;νρ(q) = i

δ2

δV
(0)
µ δH

(0)
νρ

S

= −κ
2

[

yĤ(q, y)H̄(q, y)
]

∣

∣

∣

∣

∣

ym

ǫ

i (qρηµν − qνηµρ) ,

ΠTT
µν;λρ(q) = i

δ2

δH
(0)
µν δH

(0)
λρ

S

= − κ

2q2

[

yH̄(q, y)∂yH̄(q, y)
]

∣

∣

∣

∣

∣

ym

ǫ

(ηµληνρ − ηνληµρ) .

(41)

By comparing with Eqs. (34), (36) and (37) the
scalar invariants take the form

ΠV V (q
2) = −2λ

q2

[1

y
V̂ (q, y)∂yV̂ (q, y)

]

∣

∣

∣

∣

∣

ym

ǫ

,

ΠV T (q
2) = −κ

2

[

yĤ(q, y)H̄(q, y)
]

∣

∣

∣

∣

∣

ym

ǫ

,

Π±
TT (q

2) = − κ

2q2

[

yH̄(q, y)∂yH̄(q, y)
]

∣

∣

∣

∣

∣

ym

ǫ

.

(42)

Note that because of the structure of the action,
only the combination Π±

TT , which is proportional to
the metric, can be extracted. In principle nothing
can be inferred directly from Π+

TT and Π−
TT alone.

This is unlike the vector case, where still only the
metric piece is accessible but gauge symmetry fills
in the missing longitudinal piece.
Let us now discuss the choice of boundary con-

ditions. On the UV brane, the fields have to com-
ply with the prescription of Eq. (40), i.e., H̄(p, ǫ) =

Ĥ(p, ǫ) = V̂ (p, ǫ) = 1. On the IR brane there is
more freedom, and the usual approach is to choose
boundary conditions such that there is no infrared
contribution to the correlators [2]. However, this
approach is valid unless one is dealing with order
parameters of spontaneous chiral symmetry break-
ing (SχSB). For such quantities, perturbation the-
ory cancels to all orders and one is left with pure
nonperturbative effects, which signal the breaking of
chiral symmetry. The physical intuition behind the
UV brane is that it encodes conformality, while the
IR brane is responsible for mimicking confinement
and chiral symmetry breaking. Roughly speaking,
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the UV brane is perturbative while the IR brane
is nonperturbative. The correlators ΠV T and Π±

TT

turn out to be order parameters of chiral symmetry
breaking, and therefore one expects its holographic
expressions to come mainly from the IR brane.

Let us check all this by examining the UV and
IR brane contributions to the different correlators.
Given the solutions for Ĥ(q, y) and H̄(q, y) found in
Sec. II, we can work out their behavior close to the
UV boundary, with the result

Ĥ(q, y) = V̂ (q, y) = 1− q2y2

4

[

πb + log

(

q2

µ2

)]

+ · · ·

H̄(q, y) =
y2

ǫ2
− y

ǫ
+ 1 +

q2y2

4

[

πb′ + log

(

q2

µ2

)]

+i
πq

2
qρH

(0)
5λ [H

(0)
ρλ ]−1y2

[

log

(

q2

µ2

)

− 2
√
π

{

G2,0
1,3

(

0,
1

2

∣

∣

∣

∣

∣

− 1
2

0, 1,−1

∣

∣

∣

∣

∣

)

−G2,1
2,4

(

0,
1

2

∣

∣

∣

∣

∣

1
2 ,− 1

2

0, 1,−1,− 1
2

∣

∣

∣

∣

∣

)}]

,

(43)

where b and b′ are q-dependent functions which de-
pend on the boundary condition on the IR brane
(y = ym). Since we want H5µ and Vµ to describe
the same physical states, they should have the same
boundary conditions, and therefore the same b pa-
rameter.

Now we can plug the previous expressions into
Eqs. (42). For the vector correlator, the result is
well-known and reads [17]

ΠV V (q
2) = −λ

[

log
q2

µ2
− π

Y0 (ζ)

J0 (ζ)

]

, (44)

where ζ = qym. Since ΠV V is not an order pa-
rameter, the usual strategy is to cancel a potential
contribution from the IR brane by choosing suit-
able boundary conditions. It is easy to see that
∂yV̂ (q, ym) = 0 precisely satisfies this requirement.
This choice fixes b = −Y0(ζ)/J0(ζ), whose explicit
expression has already been used in Eq. (44).

Let us now turn our attention to ΠV T and Π±
TT .

It is straightforward to realize that for ΠV T the
UV brane contribution identically vanishes, while for
Π±

TT one obtains κ/2q2, which is certainly satisfac-
tory. If the conventional prescription of Eq. (39)
were used instead, ΠV T would go like a constant
while Π±

TT would diverge logarithmically, in sheer
conflict with QCD. This again expresses the fact that
Eq. (39) misses the chiral symmetry breaking nature
of both correlators.

The previous results have to be in agreement with
QCD, in particular for large Euclidean momentum.

The expressions from QCD there read

lim
q2→∞

ΠV V (q
2) = − Nc

12π2
log

(−q2
µ2

)

+O
(

1

q4

)

,

lim
q2→∞

Π+
TT (q

2) = − Nc

24π2
log

(−q2
µ2

)

+O
(

1

q4

)

,

lim
q2→∞

Π−
TT (q

2) = − Nc

24π2
log

(−q2
µ2

)

+O
(

1

q4

)

,

(45)

where the logarithmic pieces come from the pertur-
bative quark-gluon loop contribution, while sublead-
ing pieces in inverse powers of momentum encode the
nonperturbative contributions in the OPE.
On the other hand, ΠV T is given by

lim
q2→∞

ΠV T (q
2) =

2〈ψ̄ψ〉
q2

+
2gs
3

〈ψ̄σµνGµνψ〉
q4

+O
(

1

q6

)

,

(46)
i.e., it is entirely proportional to nonperturbative
chiral symmetry breaking vacuum condensates.
The correlator Π±

TT is also an order parameter,
but quite different in nature. It is the difference be-
tween two logarithmically divergent correlators and
satisfies superconvergent relations similar to the ones
discovered by Weinberg for the V −A correlator [18].
One can show that

lim
q2→∞

Π±
TT (q

2) ∼ 〈ψ̄ψ〉2
q6

. (47)

Now we can compare the previous QCD high-
energy information to the one coming from holog-
raphy. In the deep Euclidean, Eq. (44) becomes a
pure logarithm

lim
q2→−∞

ΠV V (q
2) = −λ log −q2

µ2
, (48)
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and upon comparison with the parton model loga-
rithm in QCD, one concludes that

λ =
Nc

12π2
. (49)

Therefore no IR brane contribution is required.
However, for ΠV T a contribution from the IR brane
is needed, otherwise the correlator vanishes identi-
cally. Any nontrivial IR brane information will play
the role of chiral symmetry breaking effects. Notice
that for consistency with the vector case we need to
impose that ∂yĤ(q, ym) = 0 and therefore only the
IR boundary condition for H̄(q, y) is left unspecified.
There are two natural choices, namely

(a) ∂yH̄(q, ym) = ρ(q) (Neumann) ,

(b) H̄(q, ym) = ρ(q) (Dirichlet) ,

where ρ(q) is an arbitrary analytic function which in
general will be momentum-dependent.
The first option leads to

H̄(q, ym) =
2ρ(q)

q

J1(ζ)

J0(ζ)− J2(ζ)
, (50)

and can be readily excluded, because ΠV T would
then acquire double poles at J0 and single poles at
J2.
A more viable scenario if offered by a Dirichlet

boundary condition. Setting H̄(q, ym) = ρ(q), it is
easy to show that

∂yH̄(q, ym) =
q

2
ρ(q)

J0(ζ)− J2(ζ)

J1(ζ)
. (51)

On the other hand, close to the IR brane, Ĥ takes
the form

Ĥ(q, ym) = −1

2
πζ

[

Y1(ζ)−
J1(ζ)Y0(ζ)

J0(ζ)

]

. (52)

Using the previous equations it is easy to show that
the correlators are expressible as

ΠV T (q
2) = −κ

2
ymH̄(q, ym)Ĥ(q, ym)

=
κπ

4
y2mρ(q)

[

Y1(ζ)−
J1(ζ)Y0(ζ)

J0(ζ)

]

(53)

and

Π±
TT (q

2) =
κ

2q2

[

1− ymH̄(q, ym)∂yH̄(q, ym)
]

=
κ

4q2

[

2 + ζρ2(q)
J2(ζ)− J0(ζ)

J1(ζ)

]

.

(54)

Note that indeed the infrared boundary term ρ(q)
triggers chiral symmetry breaking.

One can now compare the previous expressions
with the form of the correlators in the large-Nc limit
of QCD, which are given by (ξn ≡ f⊥

V n/fV n) [4]

ΠV V (q
2) =

∞
∑

n

f2
V n

− q2 +m2
V n

,

Π+
TT (q

2) =

∞
∑

n

f2
Bn

− q2 +m2
Bn

+
Λ3

q2
,

Π−
TT (q

2) =

∞
∑

n

ξ2n
f2
V n

− q2 +m2
V n

− Λ3

q2
,

ΠV T (q
2) =

∞
∑

n

ξn
f2
V nmV n

− q2 +m2
V n

, (55)

with decay constants defined as

〈0| Jµ| ρn(p, λ)〉 = fV nmV nǫ
(λ)
µ ,

〈0| Jµν | ρn(p, λ)〉 = if⊥
V n(ǫ

(λ)
µ pν − ǫ(λ)ν pµ) ,

〈0| Jµν | bn(p, λ)〉 = ifBnεµνηρǫ
η

(λ) p
ρ . (56)

Notice that the infrared Dirichlet boundary condi-
tion for H̄ guarantees that ΠV T has simple poles
located at the zeros of J0(ζ), exactly like ΠV V does.
Therefore we see that the interpretation of such poles
as ρ meson masses is consistent.

Note also that the presence of a nontrivial bound-
ary condition in the IR brane induces a shift in the
poles of Π±

TT , which now seat at the zeros of J1(ζ).
This is especially welcome in order to account for
the parity-even 1+− mesons, as will be shown in the
next section.

V. NUMERICAL ANALYSIS

The strategy we will follow is to match our holo-
graphic expressions at high energies to the parton
model results from QCD and provide predictions for
the particle spectrum, i.e., masses and decay con-
stants, and also low-energy parameters from Chiral
Perturbation Theory. This, in particular, will allow
us to examine the issue of lowest meson dominance.

A. High-energy matching

Let us start with the decay constants for the ρ
meson. Its expressions are easily obtained from the
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residues of the correlators as follows:

f2
V n = 2mV nRes

{

ΠV V (qym)
}∣

∣

∣

q=mV n

=
Ncζ0,n
6πy2m

Y0(ζ0,n)

J1(ζ0,n)
,

fV nf
⊥
V nmV n = 2mV nRes

{

ΠV T (qym)
}∣

∣

∣

q=mV n

= −κρ(ζ0,n)
π

2ym
ζ20,nY0(ζ0,n) ,

(57)

where ζ0,n = mV nym, i.e., the n-th zero of J0. Note
that in the first line we already used Eq. (49) and
therefore matching with QCD has already been en-
sured for ΠV V . The form of f⊥

V n should then guar-
antee the right matching for both Π−

TT and ΠV T . As
was shown in Ref. [4], it is convenient to define the
ratio ξn = f⊥

V n/fV n. Since only ρ mesons propa-
gate in both ΠV V and Π−

TT , matching to the parton
model only depends on the ratio between the log-
arithmic coefficients given in Eq. (45). Explicitly,
Ref. [4] found

lim
n→∞

ξn ∼ (−1)n−1

√
2

, (58)

where the pattern of sign alternation is a direct con-
sequence of ΠV T being an order parameter, i.e.,
there have to be cancellations to comply with the
high-energy falloff of Eq. (46).
It should be emphasized that Eq. (58) is a generic

result and should be fulfilled by any model of large-
Nc QCD. Notice however that Eq. (58) is just an
asymptotic statement for large excitation numbers
and low and middle energies are therefore beyond
its scope. Based on a sum rule analysis, the au-
thors of Ref. [4] suggested that the pattern should
hold all the way down to low energies. This is also
suggested by the lattice results on ξρ [19]. The holo-
graphic model we are describing here should provide
a particular realization of those patterns for all en-
ergy scales.
Combining Eqs. (57) it is straightforward to ob-

tain

ξn =
f⊥
V n

fV n

= − 3

Nc

κρ(ζ0,n)π
2y2mJ1(ζ0,n) . (59)

Several comments are in order. First of all, note that
since J1(ζ0,n) is positive for odd n and negative for
even n, the pattern of sign alternation in Eq. (58) is
automatically fulfilled and is predicted to hold at all
energies (we are assuming that ρ(q) is monotonic).
Geometrically, fV n is related with the second deriva-
tive of the wavefunction at the origin and the sign
pattern can be linked to the number of nodes of the
wavefunction. On the contrary, f⊥

V n is linked to the

IR brane ρ(q) function and the sign is independent
of the number of nodes.
Second, parton model matching imposes stringent

constraints on the combination κρ(q). Notice for
instance that ρ(q) =ct. is incompatible with QCD:
since

lim
n→∞

J1(ζ0,n) = 0 , (60)

this implies that f⊥
V n would eventually go to zero,

and no matching to the parton model logarithm
could be achieved. Since J1(ζ0,n) ∼ 1/

√
n and

ζ0,n ∼ n, one needs the combination
√

ζ0,nJ1(ζ0,n)
to obtain a finite asymptotic limit. At the same time
ρ(q) has to be regular at the origin, and therefore the
simplest possibility is to choose

ρ(q) = ρ0 + ρ1
√
qym , (61)

where ρ0 and ρ1 are dimensionless parameters. With
the previous ansatz Eq. (59) becomes

lim
n→∞

|ξn| = γ∞κρ1
3π2

Nc

y2m =
1√
2
, (62)

where γ∞ is defined as

lim
n→∞

√

ζ0,nJ1(ζ0,n) ≡ lim
n→∞

γn = 0.797885 ≡ γ∞ .

(63)
Therefore, κ (actually the combination κρ1) is pre-
dicted to be

|κρ1| =
Nc

3
√
2π2γ∞y2m

. (64)

We now turn our attention to the decay constants
for the 1+− states. Recall that the holographic pre-
scription only gives information on the combination
Π±

TT . Nevertheless, since Π+
TT = Π±

TT + Π−
TT , it

is straightforward to write down the expression for
the decay constants. Note however that the previ-
ous equation implies the existence of 1+− states as
poles of both J0 and J1. In the following we will

denote them by m
(0)
Bn and m

(1)
Bn respectively. The

expressions for the associated decay constants f
(0)
Bn

and f
(1)
Bn are

[

f
(1)
Bn

]2

= 2m
(1)
BnRes

{

Π±
TT (q

2)
}∣

∣

∣

q=m
(1)
Bn

,

[

f
(0)
Bn

]2

= 2mV nRes
{ (f⊥

V n)
2

q2 −m2
V n

}∣

∣

∣

q=mV n

,(65)

where everything is known on the right-hand side.

By inspection, the residues for J0 are exactly f
(0)
Bn =

f⊥
V n, and therefore m

(0)
Bn = mV n. In other words,

there is a degeneracy of states with opposite parity.
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These states are therefore responsible for the par-
ton model logarithms found in both Π+

TT and Π−
TT .

Therefore, the remaining states m
(1)
Bn should have

residues in such a way that Π±
TT does not acquire

logarithms.
The spectrum of bn particles is therefore predicted

to be doubly dense with respect to the ρn meson
one. Half the spectrum is completely degenerate
with vector mesons and the rest has no impact at the
partonic level (at most, it can contribute to higher
dimension OPE condensates). Explicitly, one finds

[

f
(1)
Bn

]2

= κ[ρ(ζ1,n)]
2 , (66)

where ζ1,n are the zeros of J1.

This pattern for the spectrum of ΠTT is a genuine
prediction of holography. This is the only consis-
tent way to take into account: (a) the logarithmic
divergences of both Π+

TT and Π−
TT while (b) their

difference Π±
TT being an order parameter of chiral

symmetry breaking.
The spectrum therefore looks like

mV n = m
(0)
Bn =

ζ0,n
ym

,

m
(1)
Bn =

ζ1,n
ym

. (67)

Setting mρ = 775 MeV, one finds that ym = 3.103
GeV−1. The first states for both families are then
predicted to be

mρ = 775 MeV ; mb1 = 1235 MeV ,

mρ′ = 1779 MeV ; mb1′ = 2261 MeV ,

mρ′′ = 2789 MeV ; mb1′′ = 3279 MeV .

(68)

Notice that the ρn − Bn splitting is entirely deter-
mined by the distance between the zeros of J0 and
J1, and that b1 is in excellent agreement with the
experimental value, mb1 = 1229 ± 3 MeV [20]. In-
terestingly, the same splitting is found between ρn
and axial 1++ states when chiral symmetry is in-
troduced through boundary conditions [21]. There-
fore, it seems that holography predicts 1++ and 1+−

states to be degenerate. This is not unnatural tak-
ing into account that both states are parity partners
of the ρ meson in ΠLR and Π±

TT . Unfortunately,
this prediction is hard to test: the PDG reports a
promisingmb1 = 1229±3 MeV and ma1 = 1230±40
MeV, but while the b1 can be considered a narrow
state (Γb1 = 150 MeV ∼ Γρ), the a1 is much broader
(Γa1 ∼ 250−600 MeV). This is obviously due to the
fact that their main decay channels are b1 → ωπ and
a1 → 3π, and therefore b1 has a strong phase space
suppression.

0 2 4 6 8 10
0.707

0.708

0.709

0.710

0.711

0.712

0.713

n

ÈΞnÈ

FIG. 1: |ξn| for the first 10 resonance states (blue dots)
compared to its asymptotic value (solid line).

B. Low-energy predictions

In the previous section we have fixed κρ1 from
requirements at high energies. At this point the
only parameter left is ρ0, which is intrinsically a low-
energy quantity. In order to estimate its magnitude
we can use the value for ξρ, which has been deter-
mined in lattice simulations to be ξρ ∼ 0.72 [19].
Using Eq. (64), ξρ can be expressed as

ξρ =
1√
2

γ1
γ∞

− 3

Nc

κρ0π
2y2mJ1(ζ0,1) . (69)

The first term above already gives ξρ ∼ 0.713 and
therefore ρ0 ∼ 0 to a very good approximation (actu-
ally, if it not zero altogether, it has to be unnaturally
fine-tuned: ρ0/ρ1 ∼ 0.04). In the following we will
assume that ρ0 = 0, which leads to simplifications in
the expressions we have found so far. In particular,

ξn =
1√
2

γn
γ∞

, (70)

whose values are plotted in Fig. 1. Notice that par-
ton model matching naturally leads to quasiconstant
ξn. Furthermore, one can write

[

f
(1)
Bn

]2

=
ρ1ζ1,n

3
√
2π2γ∞y2m

Nc , (71)

where ρ1 is expected to be a constant of O(1).
Let us now turn our attention to the low-energy

parameters appearing in the correlators. At low en-
ergies, Π±

TT and ΠV T are parametrized by

lim
q2→0

ΠV T (q
2) = −χ0〈ψ̄ψ〉+ · · · ,

lim
q2→0

Π±
TT (q

2) = −χT 〈ψ̄ψ〉
q2

+ · · · , (72)
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where χ0 and χT are interpreted as magnetic sus-
ceptibilities. Such susceptibilities are low-energy pa-
rameters akin to the Gasser-Leutwyler Li parame-
ters. Its realization as low-energy parameters in a
chiral Lagrangian can be found in [22].
In order to obtain a prediction for χ0 in our holo-

graphic model, one needs to take the low-energy
limit of Eq. (53). Using that

lim
q2→0

Ĥ(q, ym) = 1 ,

lim
q2→0

H̄(q, ym) = ρ0 ,

lim
q2→0

∂yH̄(q, ym) =
ρ0
ym

, (73)

one finds the simple expression:

κ

2
ymρ0 = χ0〈ψ̄ψ〉 . (74)

In order to determine χT one needs to extract the
residue at the origin for Π±

TT . Notice that indeed

besides the poles at J1, Π
±
TT in Eq. (54) has an ex-

tra pole at the origin, which matches the 1/q2 term
present in the large-Nc representation of correlators
given in Eqs. (55). Extraction of the residue leads
to

− κ

3
= χT 〈ψ̄ψ〉 , (75)

so that knowledge of κ could lead to a prediction for
χT . For instance, one could estimate it using the
sum rule value for the b1(1235) meson, fb1 ≃ 180
MeV [23]. Then

κ ≃ (101MeV)2; ρ1 ≃ 0.91 , (76)

and

χT ≃ 0.22GeV−1 . (77)

An interesting thing to notice is that, since there is
no such 1/q2 term for Π±

TT at high energies, there has
to be a cancellation between χT and the resonance
contribution. The situation is qualitatively similar
to what happens with the pion pole in ΠLR, where
in order to avoid unwanted 1/q2 terms in the OPE
one has to impose that

∫ ∞

0

dt

t

1

π
ImΠLR(t) = 0 , (78)

which is the celebrated first Weinberg sum rule [18].
Quite commonly, especially in sum rule applications,
the previous expression is cast as

NV
∑

n

f2
V n −

NA
∑

n

f2
An − f2

π = 0 . (79)

Note however that the previous expression is valid
only if the sum over resonances commutes with the
large-q2 expansion. In general this is not a valid
manipulation, and certainly not in the limit of large
number of colors [24].
A similar superconvergence relation holds for the

tensor case, and can be written as

∫ ∞

0

dt

t

1

π
ImΠ±

TT (t) = 0 , (80)

which, if the spectrum were finite, could be ex-
pressed as

NB
∑

n

f2
Bn −

NV
∑

n

ξ2nf
2
V n − 2Λ3 = 0 , (81)

with 2Λ3 = −χT 〈ψ̄ψ〉.

C. A note on lowest meson dominance (LMD)

Note that ρ0 = 0, inferred in the previous sec-
tion from lattice results on ξρ, opens an intriguing
scenario, namely χ0 = 0. Different estimates of χ0

exist in the literature, from QCD sum rules to anal-
yses based on the triangle anomaly in the VVA cor-
relator [25]. Here we will focus on a reassessment of
methods based on QCD sum rules, where one works
at the level of resonance contributions to χ0. In the
large-Nc limit,

χ0〈ψ̄ψ〉 = −
∞
∑

n

f2
V n

mV n

ξn , (82)

which is well-defined as long as the infinite sum ex-
ists. In our case, this is guaranteed by construction.
The contribution of the first few states is (see

Fig. 2)

χ0 = χ
(1)
0 + χ

(2)
0 + χ

(3)
0 + χ

(4)
0 + · · ·

= 2.300− 2.317 + 2.319− 2.320 + · · · ,
(83)

and therefore ρ-dominance does not hold. Notice
that this alternating quasiconstant pattern was to be
expected: ξn is quasiconstant while f2

V n ∼ mV n ∼ n
and therefore resonance contributions do not get
suppressed. The eventual cancellation of χ0 is ex-
pressed as an Abel series. However, if one were to
extract χ0 only knowing the first state, one would
conclude that χ0 ∼ 2.3 GeV−2, and the same answer
would hold as long as only odd terms were kept in
the analysis. χ0 would then not only appear to be
nonzero, but LMD would seem to be satisfied to a
high degree.
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FIG. 2: Values of χ
(n)
0 for the two different scenarios dis-

cussed in the main text: blue dots with |χ(n)
0 | ∼ 2.3 cor-

respond to Eq. (83) while red ones, decreasing as 1/
√
n,

correspond to Eq. (91). LMD is not a good approxi-
mation in either case, even though the red dots are a
convergent sequence.

Failure of LMD in ΠV T therefore seems to be re-
lated to the logarithmic ultraviolet behavior of Π−

TT .
This is at least the conclusion in large-Nc QCD.
However, there are reasons to believe that this failure
is quite generic. Consider, for the sake of illustra-
tion, the case when ρ(q) = ρ0. The interesting thing
of this toy scenario is that now χ0 6= 0, ξn vanishes
asymptotically and therefore Π−

TT is ultraviolet fi-
nite. One would expect that this smooth ultraviolet
behavior (smoother than QCD) is a much favorable
scenario for LMD to hold.

In this new scenario there will still be two sets
of 1+− particles sitting at the zeros of J0 and J1.
The former will still satisfy the degeneracy condition

f
(0)
Bn = f⊥

V n, but now

[

f⊥
V n

]2
=

3π3ζ0,n
2Nc

(κρ0ym)2J1(ζ0,n)Y0(ζ0,n) , (84)

whereas the latter are given by

[

f
(1)
Bn

]2

= κρ20 . (85)

The free parameters of this model are κ and ρ0,
which can be determined from the lattice value for
ξρ:

ξρ = − 3

Nc

κρ0π
2y2mJ1(ζ0,1) ≃ 0.72 , (86)

and the sum rule estimate for the decay constant of
the b1(1235) vector meson. This eventually leads to

κ ≃ (81MeV)2; ρ0 ≃ −2.22 , (87)

and using Eq. (74) one immediately finds (for typical
values of the quark condensate)

χ0 =
κρ0ym

2〈ψ̄ψ〉 ≃ 1.45GeV−2 . (88)

The expression for χT can be found again by ex-
tracting the residue of Π±

TT at the origin. The result
is

κ

3
(ρ20 − 1) = χT 〈ψ̄ψ〉 , (89)

and therefore

χT ≃ −0.55GeV−1 . (90)

Given the value for χ0, we can again test LMD
by computing the contribution of each single state.
The result is (see Fig. 2)

χ0 = χ
(1)
0 + χ

(2)
0 + χ

(3)
0 + χ

(4)
0 + · · ·

= 2.32− 1.54 + 1.23− 1.06 + · · ·
(91)

Although the first contribution is certainly bigger
than the remaining ones, LMD does not apply.
The series is actually poorly convergent and for in-
stance one needs 60 iterations to reach a 10% accu-
racy. Therefore, even in this favorable scenario (cer-
tainly more favorable than in the real QCD case)
ρ-dominance is not a good approximation.

VI. CONCLUSIONS

We have studied rank two antisymmetric tensors
in holographic models of QCD within the AdS/CFT
correspondence. Rank two tensors are naturally
identified with the tensor QCD current Jµν = q̄σµνq,
which can generate both 1−− and 1+− states. While
the latter are genuine states generated by Jµν , the
former can also be described by the vector current
Jµ = q̄γµq. Therefore, interference between Jµν and
Jµ is to be expected. A convenient way to study
this mixing is to examine the set of correlators ΠV V ,
ΠV T and ΠTT . A simultaneous analysis of them
strongly constraints the spectrum of spin-1 mesons,
as already noticed in generic four-dimensional anal-
yses [4].
One of the advantages of holographic QCD models

over four-dimensional ones is that one starts from a
Lagrangian formulation. Therefore, one expects the
whole set of correlators to show up naturally and
provide a self-consistent picture. In this paper we
have shown in detail how this interplay is realized in
holographic models.
It is not obvious how a correlator like ΠV T can be

generated starting from the free action for 2-forms
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in five dimensions. However, we have seen that such
mixing arises naturally in the process of compacti-
fication. Quite generally, given a p-form in five di-
mensions, a (p− 1)-form is always dynamically gen-
erated by dimensional reduction and realized as the
fifth component of the p-form. Those dimensionally-
reduced fields couple to the original p-form and ac-
count for mixed correlators. Quite remarkably, they
come out with the right mass assignments to be
consistent with AdS/CFT: the scalar component of
a dimensionally-reduced massless 1-form is a scalar
with m2 = −3, while the vector component of a
dimensionally-reduced massive 2-form is a massless
1-form. Therefore, mixed correlators in holography
are natural side-products of four-dimensional com-
pactification. It is worth noting that if the initial p-
form happens to be massless, then gauge symmetry
can be used to remove the mixed correlator. This
for instance happens for ΠSV because V5 can be
gauged away. However, H5µ can not be regarded
as a gauge artifact and ΠV T actually turns out to
be nonvanishing, in accord with QCD. This identi-
fication, however, crucially depends on the metric
being pure AdS without dilaton fields. Therefore,
dilaton-based mechanisms in the spirit of [16], de-
signed to display linear confinement in the vector
meson spectrum, fail to provide an acceptable phe-
nomenological description of ΠV T .

Another interesting point to notice is that those
mixed correlators are order parameters of sponta-
neous chiral symmetry breaking. As such, their main
contribution should naturally come from the infrared
brane. Nontrivial boundary conditions on the in-
frared brane are therefore required, which are some-
how related to the existence of a quark condensate.
Chiral symmetry breaking is therefore triggered by
infrared boundary effects.

However, we have seen that this is not the full
story. The holographic computation of ΠTT is not
free of subtleties. In particular, a direct computa-
tion can only be made on the chiral symmetry break-
ing correlator Π±

TT . The AdS/CFT prescription fails
to reproduce the right high-energy behavior for this
object, implying that conformal invariance needs to
be broken beyond infrared boundary terms. Ideally,
one should understand how chiral symmetry break-
ing should be implemented at a Lagrangian level.
Instead, in this paper we have made the observation
that an ad hoc modification of the prescription re-
stores agreement with QCD. While this is not fully
satisfactory from a formal standpoint, it is certainly
enough for phenomenological purposes.

Using this phenomenologically-motivated pre-
scription, we have found that the scenario displayed
by holography successfully predicts the presence of
1−− states in ΠV V and ΠV T . In particular, the reso-
nance contributions to ΠV T form an alternate series,

in compliance with sum rule analyses and general
expectations from QCD [4]. 1+− states contribute
to ΠTT and are predicted to be doubly dense with
respect to 1−− with masses sitting at the zeros of
both J0 and J1. Half of this spectrum is therefore
degenerate with 1−− and the other half with the 1++

states in the scenario studied in [21]. Additionally,
since the decay constants f⊥

V n and fBn are predicted
to be proportional to the infrared boundary value,
if chiral symmetry were exact they would vanish al-
together. In other words, in the limit of unbroken
chiral symmetry, tensor currents do not couple to
spin-1 particles.
Finally, we have assessed lowest meson dominance

in the determination of the low-energy parameter
χ0, which is of interest in the hadronic light-by-light
scattering contribution to the (g − 2)µ. Our results
seem to indicate that such assumption is unlikely to
work for ΠV T .
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Appendix A: (Im)possibility of holographic
linear confinement with dilaton backgrounds

We start from the generic action

S = κ

∫

AdS5

e−Φ(y)Tr
[

dH ∧ ∗dH +m2H ∧ ∗H
]

,

(A1)
with the general metric

ds2 = gMNdx
MdxN = e2A(y)(−dy2 + ηµνdx

µdxν) ,
(A2)

and allowing for a dilatonic term Φ(y) with a non-
trivial profile in the fifth dimension [16].
The equations of motion for the 2-form field H5µ

can be worked out directly from Eq. (7) with the
replacement

√
g →

√

ĝ =
√
g e−Φ(y) ,

√
g = e5A(y) . (A3)

In this generic case, the consistency condition d∗H =
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0 is expressed as:

∂µHµ5 = 0 ,

∂µHµν = e−A∂y(e
AH5ν) , (A4)

which can only depend on the metric, as expected.
The first equation of motion, Eq. (11), is also

dilaton-independent and takes the form

(�+m2e2A)H5ν −∂ν∂αH5α−∂y∂αHαν = 0 , (A5)

from which the equation for H5µ can be extracted.
Since neither Eq. (A5) nor the consistency condi-
tions (A4) depend on the dilaton, it is immediate to
conclude that for 2-forms linear confinement cannot
be achieved through dilatonic backgrounds. Recall
that this is unlike the 1-form component Vµ, whose
equation of motion does depend on Φ(y) [16]. The
identification we made of the H5µ field as a vector
field satisfying the same equation as Vµ clearly re-
quires a flat dilaton profile, Φ(y) = φ.
Let us now look at a different issue, namely the

most general subset of metrics consistent with the
requirement that Vµ and H5µ obey the same equa-
tion of motion.
Setting V5 = 0 and using ∂µV

µ = 0, the equation
for Vµ is

�Vµ − e−A∂y

(

eA∂yVµ

)

= 0 , (A6)

whereas the equation for H5µ, using the consistency
conditions, reduces to

(�+m2e2A)H5µ − ∂y

(

e−A∂y(e
AH5µ)

)

= 0 . (A7)

After some algebra, one can show that the previous
equations can be cast as

(

∂2y + e−A
(

∂ye
A
)

∂y −�

)

Vµ = 0 ,
(

∂2y + e−A
(

∂ye
A
)

∂y −�

−m2e2A + ∂y(e
−A∂ye

A)
)

H5µ = 0 .

(A8)

Therefore, the wanted metrics satisfy the differential
equation

∂y

(

e−A∂ye
A
)

= e2A . (A9)

With the change of variables ξ = e−A one gets

(∂yξ)
2 − ξ∂2yξ = 1 , (A10)

and the hyperbolic character of the equation is man-
ifest. Its solution is

ξ(y) =
sinh (ay + b)

a
. (A11)

Notice that pure AdS, i.e., e2A = 1
y2 , is recovered

when b = 0 = a. For any other choice of parameters,
e2A is exponentially damped.

To summarize, if consistency between ΠV V , ΠV T

and ΠTT is to be preserved, linear confinement in
holographic models of QCD cannot be achieved with
dilaton fields.
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