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Abstract 

Human health and environmental problems related to particulate matter emission from 

vehicles has become a topic of research interest in recent years. These airborne particles can 

not only be directly inhaled, but are also present as suspended and deposited particles on 

paved areas and roadside soils. Here we report on magnetic studies, scanning electron 

microscopy, x-ray energy dispersive spectroscopy and chemical analyses of vehicle-derived 

particles collected from both primary sources and as deposited particles on roads and soils. 

Preliminary results, recently published by the authors, have revealed that the magnetic signal 

of such particles is controlled by a magnetite-like phase with magnetic grain size ranging 

between 0.1 µm and 5 µm. An enrichment of some trace elements: Ba, Cr, Cu, Zn and Pb was 

also found. In this study we focus on SEM and EDS complementary studies of magnetic 

extracts. SEM observations showed small individual particles or spherulites, small aggregates 

in the form of chains or clusters, large aggregates of spherules, flake-like bodies, fibre-like 

particles, sheet-like particles, irregular debris and large particle agglomerates, i.e. a wide 

variety of shapes. Grain size distribution is also in agreement with magnetic grain size 

estimations. Additionally the following elements: C, O, Na, Mg, Al, Si, S, K, Ca, V, Ba, Ti, 

Cr, Mn, Fe, Cu, Zn and Pb were detected by EDS analysis. 

Keywords: atmospheric pollution, diesel/gas soot, magnetic proxies, PM vehicle emissions, 

wear particles 
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1 Introduction 

Vehicle emissions are seen as a significant pollution source in urban areas, comprising 

particles formed in the engine and wear particles from tyres and brake materials. Such 

emissions include different size fractions from sub-micron to micron, including: ultrafine 

particles (<30 nm, 30-100 nm) formed in the engine, the exhaust pipe or immediately after 

emission; fine particles (0.1-2 µm) formed by chemical reactions or other processes and 

coarse mode particles (>2 µm) formed by the mechanical abrasion of road surface, tyre and 

brake materials (Palmgren et al., 2003). 

In terms of aerodynamic diameter, the particulate matter (PM) can also be classified as fine 

particles (<2.5 m), inhalable particles (<10 m) and total suspended particles (<30 or 100 

m). These particles not only impact on environments, but can also be deeply inhaled and are 

therefore dangerous to human health. According to Rizzio et al. (1999), grains <4.6 µm are 

especially dangerous to humans as they can be inhaled into the bronchial region, while even 

more harmful are grains <1.1 µm which can be deposited in the alveoli. Some studies have 

shown that long-term exposure to these particles can lead to respiratory and cardiovascular 

diseases (e.g. Pope et al., 2002; Knutsen et al., 2004; Knox, 2006; Pope and Dockery 2006). 

Different authors (Flanders, 1994; Kasper et al., 1999; Abdul-Razzaq and Gautam, 2001; Kim 

et al., 2007) have reported the presence of magnetic particles in the PM of vehicle emissions. 

These magnetic particles are not only important because of their relationship with heavy 

metals but also because of their adverse influence on human health. Such magnetic particles 

can be inhaled and absorbed in human tissues, which has potential implications for many 

biomedical issues, including human exposure to the strong static magnetic field used in 

magnetic resonance imaging, as well as to weaker fields produced by electric power systems 

and cell phones (Kirschvink et al., 1992). The presence of magnetite in tissues can also cause 

severe tissue damage, as considerable heat is induced – magnetic thermoablation – when an 
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alternating magnetic field is applied. This process has not only heat-induced but also 

cytotoxic effects (Hilger et al., 2003). 

Although articles concerning traffic-related magnetic monitoring have increased recently 

(Amereih et al., 2005; Zhang et al., 2006; Kim et al., 2007; Maher et al., 2008), there remains 

a scarcity of magnetic studies of primary sources, such as PM emissions from exhaust pipes 

(Lu et al., 2005) or wear particles from the brake systems of vehicles. Such information is not 

only useful for basic knowledge of primary emissions, but also for the identification of 

different contamination sources from vehicles and their influence. 

Preliminary results focussing on magnetic and chemical studies have recently been published 

by Marié et al. (2010). In this study, we present results from another tollbooth site, 

concentrating on the magnetic properties of primary pollutants generated by vehicles, as well 

as on scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDS) 

studies of magnetic extracts in the investigation of morphologies and associated trace 

elements. 

2 Methods and sampling 

2.1 Sampling 

Samples were collected from the exhaust pipes of several vehicles with gasoline and diesel-

powered engines, as well as from their brake systems. Samples were also collected from road-

deposited sediments in tollbooth areas (Maipu, M and Samborombon, SB) and from roadside 

soils along Autovia 2 (Buenos Aires province, Argentina) during two sampling campaigns. 

For sampling sites and further details, the readers are referred to Marié et al. (2010). 

Each sample was carefully collected using plastic scrapers and tools to avoid contamination. 

Among the sediments, scraped samples were identified as CM (collected from the Maipu 

tollbooth area), SM (collected from the Maipu vehicle braking/accelerating area) and RSB 
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(collected from the Samborombon tollbooth area), while swept sediments samples were 

classified as LM (from Maipu) and LSB (from Samborombon). Soil samples were identified as 

MP (collected from roadside soils between Maipu and Mar del Plata City), and samples 

collected from primary pollution sources (vehicles) as diesel, gas (PM collected from vehicle 

exhaust emissions) and brake (wear particles generated from brake materials). 

2.2 Methods 

Magnetic measurements were carried out in the palaeomagnetic laboratory of the IFAS-

UNCPBA (Tandil, Argentina). Several rock-magnetic measurements were done, including 

magnetic susceptibility () and anhysteretic and isothermal remanent magnetisation (ARM 

and IRM). As detailed in Marié et al. (2010), magnetic susceptibility measurements were 

carried out using a magnetic susceptibility meter (MS2, Bartington Instruments Ltd) 

connected to the MS2B dual frequency sensor (470 and 4700 Hz). ARM was imparted by 

superimposing a DC field of 90 μT to an AF of 100 mT, using a partial ARM (pARM) device 

attached to a shielded demagnetizer (Molspin Ltd). IRM (acquisition and backfield) studies 

were carried out with an ASC Scientific model IM-10-30 pulse magnetizer. The remanent 

magnetisation after each step for ARM and IRM studies was measured by a Molspin Ltd. 

Minispin fluxgate spinner magnetometer. Several related magnetic parameters, ratios and 

plots were obtained and analysed: mass-specific magnetic susceptibility (χ); anhysteretic 

susceptibility (ARM); ARM/ ratio; saturation of IRM (SIRM); S-ratio (-IRM-300mT/SIRM); 

remanent coercivity (Hcr) and SIRM/ ratio. 

Some samples were homogenised, quartered and prepared for chemical analysis. To eliminate 

any organic matter, samples were chemically disaggregated with 10% H2O2, heated to 80º C, 

stirred and dispersed in an ultrasonic bath. Analysis of total elemental composition was 

carried out after total acid digestion with HF (48%) in a microwave oven. The analytical 

methods are described in detail in Navas and Machín (2002). Samples were analysed for the 
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following 17 elements: Li, K, Na, Mg, Ca, Sr, Ba, Cr, Mn, Fe, Co, Ni, Cu, Al, Zn, Cd and Pb. 

Analyses were performed by optic emission spectrometry using an inductively-coupled 

plasma ICP-OES (solid state detector). Concentrations, obtained after three measurements per 

element, are expressed in mg/kg. Detection limits for the trace elements are: Cr: 45 ppb; Cu, 

Zn and Pb: 55 ppb; Co: 40 ppb; Ni: 60 ppb and Cd: 25 ppb. The Tomlinson pollution load 

index (PLI, Tomlinson et al., 1980) was also calculated using these element determinations. 

This index indicates to what extent a sample exceeds the heavy metal content for natural 

environments. PLI is defined as the nth root of the multiplication of concentration factors 

(CFk), i.e. 

n

n

k
kCFPLI ∏

1=

= , where CFk is the ratio of the content of each heavy metal (CHM,k) to 

the baseline value (Cbaseline,k) (the lowest concentration values detected for each heavy metal 

in the study area). 

Several samples were also prepared for the analysis of magnetic extracts, for which they were 

examined by SEM using a JEOL JSM-6460LV microscope. Magnetic extraction for 

representative samples was performed using a hand magnet; the dry (sieved) material fraction 

was then dispersed and separated from the non-magnetic fraction. Before SEM observation, 

each specimen was prepared with a thin coating of Au/Pd. The composition was finally 

analyzed by EDS investigation. The system used was an EDAX Genesis XM4 - Sys 60, 

equipped with Multichannel Analyzer EDAX mod EDAM IV, Sapphire Si(Li) detector and 

Be Super Ultra Thin Window running EDAX Genesis version 5.11 software. 

3 Results and discussion 

3.1 Magnetic parameters 
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Analysis of magnetic parameters suggests that the magnetic signal of vehicle-derived 

emissions is controlled by a ferrimagnetic phase, especially that of magnetite-like minerals 

(Table 1). Such a conclusion can be drawn from the high S-ratio (>0.90) and Hcr values (6.1-

39.8 mT) belonging to the range of magnetite (Peters and Dekkers, 2003). These parameters 

show similar values for gas and diesel samples, while brake samples have higher S-ratio and 

lower Hcr values. Values of scraped, swept and soil samples vary only slightly, with mean 

Hcr values of about 36 mT, 34 mT and 35 mT, respectively. 

Although the grain size-dependent parameters (SIRM/ and ARM/ ratio) show differences 

among samples, magnetic grain size estimations reveal in all samples the presence of fine 

particles (0.1-5 µm) that can be inhaled. Diesel and gas samples show higher values of the 

aforementioned parameters than brake samples, hence a trend to a finer magnetic grain size is 

concluded for soot samples. Among the remaining classes, scraped samples trend to a coarser 

size than swept and soil samples. 

The concentration-dependent parameters (χ, ARM and SIRM) of gas and brake samples are 

very high (about three times those of sediment/soil samples), which is expected for these 

kinds of sample. Contrastingly, parameters of diesel samples are lower than gas and brake 

samples. Among sediment and soil samples, the highest magnetic concentration values were 

seen in scraped sediments and the lowest in soil samples (Table 1). 

3.2 Elemental analysis 

Chemical analyses (Table 1) show variability between the different samples and an 

enrichment of some trace elements – such as Ba, Cr, Cu, Co, Zn and Pb – that is associated 

with traffic pollution. Since these elements are present naturally in the environment, the 

contribution of wind-borne particles from soils should be considered. The obtained values for 

the different elements are all above baseline values (Table 1), which were defined from 

studies of regional soils - Typic, Vertic and Aquic Argiudolls, Typic Natraqualfs, Mollic 
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Natrudalfs, Typic Natraquolls, Typic Natrudolls - according to Lavado et al. (2004) and 

Chaparro et al. (2004). Besides this background source, metal-based additives are also present 

in fuels and lubricating oils. For example, Ba in diesel fuel is used as a smoke suppressant, 

Mn is used as an anti-knock agent, while Zn, Ca, Mg and other metal-based additives are used 

to minimize the damaging effect of residual complexes - after combustion, metal complexes 

may remain as deposits in an engine combustion chamber - in engine wear and corrosion 

(Huhn et al., 1995; Lim et al., 2007). 

High concentrations of Ba, Cr, Cu, Zn and Pb were found in sediment and soil samples from 

Samborombon and Maipu, surpassing corresponding baseline values by between three and 

thirteen times (Table 1). Although soils may be influenced by different pollution sources 

(industrial activities, agrochemical products used in agriculture, untended waste dumps and 

urban activities), the nearest examples of these are located far from the study site. Therefore 

vehicle-derived emissions are the only likely pollution sources in this area (soils and 

tollbooth) and as such elemental abundances can be interpreted as a direct consequence of this 

particular anthropogenic activity. These elements have previously been reported in other 

traffic-related studies (Weckwerth, 2001; Wang et al., 2003; Lin et al., 2005). In contrast, 

concentrations of Cd (with the exception of brake and scraped samples) and Co are below 

baseline values, at 0.8 mg/kg and 34.8 mg/kg, respectively. 

For these samples, Cr, Cu, Zn and Cd values show a similar trend to magnetic concentration. 

Conversely, Ba, Co and Pb values display the opposite, with samples showing the highest 

metal content having the lowest magnetic concentration. It is worth mentioning that Pb 

concentrations are the highest of any metal in the soil samples. This is an interesting, since 

soil Pb concentration is not only higher than that of brake samples, but also than scraped and 

swept samples. One possible explanation may be linked to a decrease in the lead content of 

fuel during recent years. Swept and scraped sediments represent relatively recent 
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contributions, while soils may contain the metal input over a longer time scale, i.e. including 

contributions from previous years of leaded fuel usage. The metal, once it is deposited in the 

soil can be less mobile and may accumulate on the surface, being retained, dissolved in soil 

solution or fixed by adsorption or precipitation. 

Concentrations of Cr, Cu, Zn and Cd are much higher in brake samples than in sediment/soil 

samples. This result is expected, since brake samples represent collection from a primary 

pollution source. 

Trace element enrichment can also be appreciated from the PLI (PLI~ 1 for unpolluted 

samples), a measure of the central tendency of the heavy metal data. These values are shown 

in Table 1. Although they are higher for scraped (between 2.7 and 4.3) than for swept 

(between 1.4 and 3.6) and soil samples (between 1.9 and 3.1), PLI values of brake samples 

are by far the highest, by one order of magnitude (11.6-14.9). 

3.3 SEM and EDS analysis 

SEM observations of magnetic extracts from the primary pollution sources are illustrated in 

Figs. 1, 2 and 3. Such pollutants, namely PM emission of gasoline/diesel-powered vehicles 

and wear particles generated from brake materials, were studied to confirm the presence of 

different elements. 

The results obtained from magnetic extracts of diesel samples are shown in Fig. 1 and Table 

2. SEM analysis indicates the presence of agglomerates of small particles. The enlarged 

images reveal ultrafine and fine particles (<1 m), which is in agreement with the grain size 

distribution and basic morphologies of diesel emissions (Berube et al., 1999). These particles 

were composed of: small individual particles or spherulites (~30 nm); small aggregates in the 

form of chains or clusters; large aggregates of spherules (1-2 m) and flake-like bodies (0.5-

2.5 m). The observed grain sizes shown in Fig. 1 are also consistent with those estimated 

using the King’s plot (0.1-5 m) in this study. It is worth mentioning that EDS analysis 
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indicates a predominance of C, with lower proportions of O, Mg, Al, S, Fe, Cu and Zn (Table 

2; major elemental contributions for each area highlighted). A higher proportion of iron 

should be expected (for magnetic extracts), but the carbon results can be explained by the 

high production of carbonaceous primary particles in diesel combustion, especially as carbon 

covers the surface of iron oxides (Kasper et al., 1999; Yao et al., 2009). 

SEM images obtained from gas samples (PM from gasoline-powered engines) can be 

observed in Fig. 2. These show larger agglomerates (than found in diesel samples) of 

spherulites and irregular particles, as well as spherules of about 10 m with aggregates of 

smaller flake-like particles (<2 m). These results are in agreement with the magnetic 

analysis (Table 1). EDS analysis shows the dominance of C, O and Fe and to a lesser extent, 

Na, Si, P, S, Ca, Fe and Zn. Other elements were also detected, but in lower amounts (Table 

2). Most of these elements have also been reported in previous studies by other authors (e.g.: 

Geller et al., 2006; Vouitsis et al., 2009). 

Results from the remaining primary pollution source, the magnetic extracts of brake samples, 

are shown in Fig. 3. These SEM studies indicate the presence of wear particles of varied grain 

size and morphology: fibre-like particles; sheet-like particles; irregular debris and large 

particle agglomerates. The enlarged images show agglomerates of micron-sized particles with 

aggregates of smaller particles. Such a grain size distribution correlates with magnetic grain 

size estimation (see Table 1), as well as with a previous study of wear particles by Mosleh et 

al. (2004), who found a bimodal size distribution of 350 nm and 2-15 m. As can be seen in 

Fig. 3, there are also larger particle agglomerates (>15 m) that may be produced by wear 

debris entrapped at a sliding interface. Most debris can be attributed to friction, delamination 

and fatigue wear (Mosleh et al., 2004). Micron-sized particles with a high content of Fe, Ba, 

C, O, Al, Si and S were found by EDS analysis (Table 2; major elemental contributions for 

each area are highlighted). It is worth mentioning that Mg, Al, Cu, Zn and Cr were detected in 



11 

minor concentrations. These elements are consistent with typical brake materials and wear 

particles reported in the literature (e.g. Mosleh et al., 2004; Chan and Stachowiak, 2004). 

Since road and soil-deposited pollutants are of interest in this study, SEM of magnetic 

extracts from scraped sediments, swept sediments and soil samples was also carried out. The 

corresponding micrographs are shown in Figs. 4, 5 and 6. 

Fig. 4 shows micrographs obtained from scraped sediment samples from the Samborombon 

(lower right) and Maipu sites. Large particles with well-defined edges (probably of lithogenic 

origin), particles of irregular morphology and agglomerates consisting of particles of a variety 

of shapes and sizes are observed. These agglomerates are formed by irregular particles, flake-

like aggregates and rounded (spheroidal) particles of different grain sizes (20-10 m and 

<10 m). EDS results show high concentrations of C, O, Al, Si, K and Fe. From Table 2, it is 

apparent that the particle with well-defined edges (zone l in Fig. 4) has a lower concentration 

of C and O and a higher concentration of Al, Si and K than the other particles. The presence 

of other relevant elements, such as Na, Mg, S, Ca, Ti, Ba, Mn, Cu, Zn and Cr, was also 

detected. 

The SEM and EDS analyses of swept sediments from the Samborombon site (LSB samples) 

are displayed in Fig. 5 and Table 2. The micrographs show particles of varied grain size, with 

differing morphologies. Some are large (~10-30 m and higher) ellipsoidal and pear-like 

bodies with high Fe, O, C, Ti and Ba contents (e.g. areas p and q in Fig. 5). Large particles 

with well-defined edges are also Fe-rich (zone r in Fig. 5), but have higher concentrations of 

O and Si. Contrastingly, sub-micron and micron-sized particles are observed in the form of 

spherules and agglomerates of smaller particles. It is possible to observe in one of the 

enlarged images that large agglomerates with a grain size of ~5 m consist of sub-micron 

irregular particles and spherulites: most of these are fused and occur at surface level. The 

second enlarged image allows the identification of spherules of about 4 m (Fig. 5, lower 
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right) and smaller agglomerates of irregular particles (<1-5 m) added to larger ones. From 

EDS analysis, the small spherules are Fe-rich and contain moderate levels of C, O, Ti, V, Ba 

and Mn (area t in Fig. 5). In contrast, the small agglomerates show a balanced concentration 

of C, O and Fe, as well as the minor presence of Al, Si, Ti, Ba, and Pb (zone u in Fig. 5). 

Micrographs and elemental compositions of soil samples are shown in Fig. 6 and Table 2. 

Large micron-sized particles with spheroid-like morphologies (about 100 m) and aggregates 

of very small particles are observed. The larger particles contain high levels of C, O and Fe, 

as well as lower amounts of Al, Si, K, Ca, Ti, Ba, Mn Cu and Zn (zones w and x in Fig. 6). 

Other large particles with well-defined edges and a fibre-like shape can be discerned in zones 

v and y (Fig. 6), respectively. The former have higher concentrations of Fe than the spheroidal 

bodies, but the latter fibre-like particles show the highest concentration of Fe (Table 2; major 

elemental contributions for each area are highlighted). These are probably brake material-

derived wear particles (see Fig. 3 and 6). 

In the enlarged images we can observe agglomerates consisting of small irregular particles. 

Some of these occur as large flake-like bodies (area z in Fig.6) with a high concentration of C, 

O, Al, Si and Fe and minor amounts of Na, Mg, K, Ca, Ti, Mn, Cu and Zn. Most aggregates 

of sub-micron and micron-sized particles are found attached to large particles. The elemental 

composition of zone za (Fig. 6) shows a balanced concentration of C, O, Si and Fe, as well as 

minor levels of other elements (see Table 2; major elemental contributions for each area are 

highlighted). 

4 Conclusions 

Results of rock-magnetic parameters and their analyses suggest that the magnetic signal of 

vehicle-derived emissions is controlled by a magnetite-like phase. Although all samples show 

similar magnetic behaviour, it is possible to differentiate them according to magnetic 
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concentration and features-dependent parameters. Concentration-dependent parameters from 

sediments and soils show a clear trend, with higher values for scraped sediments, intermediate 

values for swept sediments and lower values for soils. In terms of primary sources, brake 

samples show the highest values of concentration parameters, with diesel samples the lowest 

(lower even than sediments and soils). Magnetic grain size estimations are in most samples 

below 5 µm, finer (0.1-1 µm) for soot samples. This presence of fine particles is significant 

because they can be inhaled and therefore have adverse human health effects. 

Chemical analysis yielded high concentrations of Ba, Cr, Cu, Zn and Pb for sediment and soil 

samples, reaching up to thirteen times baseline values. Such elemental abundance can 

therefore be interpreted as reflecting an anthropogenic contribution from vehicle-derived 

emissions. In addition, metal enrichment can also be appreciated from the PLI. Here the 

highest values belonged to brake samples (up to 15.0), while scraped sample PLI values are 

higher than those of swept and soil samples. 

Observations made by SEM showed small individual particles or spherulites, small aggregates 

in the form of chains or clusters, large aggregates of spherules, flake-like bodies, fibre-like 

particles, sheet-like particles, irregular debris and large particle agglomerates (i.e. a wide 

variety of shapes), with grain sizes in agreement with magnetic estimations. Additionally, 

nineteen elements were detected by EDS analysis. Among them, C, O, and Fe were the main 

components followed by Na, Mg, Al, Si, S, K, Ca, Ti, Ba, Mn, Zn, Cr and Pb. 

The present study is useful not only for improving our basic knowledge of primary emissions 

and their magnetic monitoring, but also for the identification of pollution sources and their 

influence on the human population. PM vehicle-derived emissions comprise a wide variety of 

metals, toxic elements and also magnetic particles that have an adverse influence on human 

health. The consequences of these inhalable pollutants include, among others, allergic 

sensitization, severe tissue damage, pulmonary diseases and cardiovascular toxicity. 
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Figure and table captions 

Table 1. Magnetic properties, elemental composition and the PLI (Tomlinson index) of 

material from primary sources (diesel/gas soot, wear particles from brake materials), 

sediments and soil samples. 

Table 2. EDS results for magnetic extracts. The letters a-zb correspond to different areas and 

zones studied on the micrographs (see Fig. 1-6). The highest concentrations of five elements 

for each area/zone (column) are shown in bold type. 

Fig. 1. Diesel samples (magnetic extracts) observed by SEM. Additional trace element 

information was obtained by EDS analysis. EDS analysis of different areas is shown (a and 

b). The lower micrographs  are enlarged views. 

Fig. 2. Gas samples (magnetic extracts) observed by SEM. Additional trace element 

information was obtained by EDS analysis of different zones and areas (c, d and e). The 

micrograph on the lower right is an enlarged view. 

Fig. 3. Brake samples (magnetic extracts) observed by SEM. Additional trace element 

information was obtained by EDS analysis. The micrograph on the lower left is an enlarged 

view. The EDS analysis of different areas and zones are shown (f, g, h, i, j and k). 

Fig. 4. Scraped sediments samples (magnetic extracts) observed by SEM. Additional trace 

element information  (for areas and zones l, m, n and o) was obtained by EDS analysis.  

Fig. 5. Swept sediments samples (magnetic extract) observed by SEM. Additional trace 

element information s was obtained by EDS analysis for areas and zones p, q, r, s, t and u. 

The lower micrographs are enlarged views. 

Fig. 6. Soil samples (magnetic extract) observed by SEM. Additional trace element  

information was obtained by EDS analysis of areas and zones v, w, x, y, z, za and zb. The 

micrograph on the lower right is an enlarged view. 



Table 1
_________________________________________________________________________________________________________________________________________________________________

Variable Primary Sources(vehicles) Scraped sediments Swept sediments Soils

Diesel Gas Brake SM‐CM RSB LM LSB MP

n mean (sd) n mean (sd) n mean (sd) n mean (sd) n mean (sd) n mean (sd) n mean (sd) n mean (sd)

[min; max] [min; max] [min; max] [min; max] [min; max] [min; max] [min; max] [min; max]

_________________________________________________________________________________________________________________________________________________________________

 [10‐8 m3 kg‐1] 11 298.3 (307.5) 7 1107 (763.3) 4 15819 (10360) 24 502.8 (153.4) 12 415.3 (104.5) 10 324.2 (71.8) 14 364.6 (74.5) 10 234.0 (69.4)

[2.4; 903.6] [402.1; 2486] [5826; 26601] [302.9; 1037.0] [186.3; 571.9] [221.4; 484.1] [127.4; 462.4] [130.7; 338.8]

ARM  [10‐6 A m2 kg‐1] 11 358.5 (297.4) 7 1606 (736.3) 4 13783 (4732) 24 620.7 (101.7) 12 584.6 (85.3) 10 414.8 (136.4) 14 569.6 (60.1) 10 495.4 (100.9)

[18.2; 907.5] [834.9; 3078] [8197; 18594] [435.0; 926.7] [442.3; 702.4] [273.0; 745.7] [479.6; 693.4] [345.7; 693.6]

SIRM [10‐3 A m2 kg‐1] 11 26.2 (26.8) 7 134.9 (80.0) 4 884.6 (356.1) 24 48.3 (14.9) 12 41.2 (17.0) 10 39.3 (11.7) 14 46.3 (9.7) 10 27.5 (7.7)

[1.2; 73.6] [41.3; 269.1] [569.6; 1201] [33.2; 111.5] [16.3; 71.7] [24.3; 64.8] [16.3; 54.7] [15.4; 42.9]

 Hcr  [mT] 11 33.1 (8.6) 7 31.0 (5.4) 4 17.4 (14.0) 24 36.0 (2.1) 12 36.2 (2.0) 10 34.4 (2.2) 14 34.0 (1.0) 10 35.2 (2.5)

[23.1; 55.0] [21.6; 36.4] [6.1; 35.5] [31.9; 39.1] [32.9; 39.3] [31.7; 39.8] [32.4; 36.7] [32.3; 38.7]

 S‐ratio [dimensionless] 11 [0.91; 1.00] 7 [0.96; 1.00] 4 [0.96; 1.00] 24 [0.92; 0.98] 12 [0.90; 0.97] 10 [0.93; 0.98] 14 [0.90; 0.97] 10 [0.92; 0.97]

 SIRM/[kA/m] 11 14.5 (12.1) 7 13.8 (6.3) 4 6.7 (2.5) 24 9.7 (0.9) 12 9.9 (3.0) 10 12.0 (1.2) 14 12.7 (1.1) 10 12.1 (3.0)

[3.9; 47.4] [7.3; 23.2] [4.5; 10.0] [7.7; 12.6] [4.0; 14.5] [10.0; 14.4] [10.9; 14.5] [8.1; 18.6]

ARM/[dimensionless] 11 3.4 (2.4) 7 2.7 (1.2) 4 1.5 (0.8) 24 1.7 (0.3) 12 1.6 (0.3) 10 1.7 (0.3) 14 2.5 (1.7) 10 3.1 (1.0)

[0.4; 9.0] [1.1; 3.9] [1.0; 2.7] [1.0; 2.1] [1.1; 2.4] [1.2; 2.3] [1.7; 8.3] [1.6; 4.2]

mag. Grain size* [m] 11 [0.1; 5] 7 [0.2; 5] 4 [1; 5] 24 [1; 5] 12 [1; 5] 10 [1; 5] 14 [1; 5] 10 [0.2; 1]

Ba [mg/kg]  ‐‐ ‐‐ ‐‐ ‐‐ 2 231.0 (163.2) 7 366.8 (41.2) 3 389.9 (9.3) 5 434.9 (205.6) 5 350.6 (18.6) 10 411.2 (131.6)

[115.5; 346.4] [309.4; 423.1] [379.1; 395.3] [279.5; 793.8] [325.5; 376.4] [251.6; 595.3]

Cr  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 268.5 (69.5) 7 52.8 (4.5) 3 50.2 (11.6) 5 42.0 (7.8) 5 48.2 (6.3) 10 38.0 (5.4)

[219.3; 317.6] [45.0; 58.5] [38.8; 61.9] [33.4; 54.0] [43.1; 57.7] [27.7; 46.9]

Cu  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 15541 (20466) 7 116.2 (35.2) 3 143.3 (61.8) 5 129.4 (126.3) 5 138.4 (56.3) 10 29.2 (7.3)

[1070; 30013] [76.7; 186.2] [87.0; 209.4] [24.2; 333.8] [50.9; 195.6] [17.8; 42.2]

Zn  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 6962 (3527) 7 303.9 (48.8) 3 348.9 (93.9) 5 157.0 (85.9) 5 191.3 (20.5) 10 155.5 (34.1)

[4468; 9457] [244.9; 392.9] [244.0; 425.3] [82.0; 295.7] [159.7; 214 [118.5; 221.6]

Co  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 8.0 (3.7) 7 7.8 (1.1) 3 7.3 (1.1) 5 4.5 (1.2) 5 8.7 (2.7) 10 8.9 (1.1)

[5.4; 10.6] [6.0; 9.2] [6.2; 8.4] [2.9; 5.7] [6.5; 12.9] [6.9; 10.2]

Cd  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 10.6 (5.0) 7 1.3 (0.4) 2 0.2 (0.0) 5 0.8 (0.2) 1 0.0 (0.0) 4 0.2 (0.2)

[7.0; 14.1] [0.9; 1.9] [0.1; 0.2] [0.6; 1.1] [0.0] [0.1; 0.5]

Pb  [mg/kg] ‐‐ ‐‐ ‐‐ ‐‐ 2 184.3 (136.5) 7 124.1 (15.2) 3 132.5 (32.7) 5 92.5 (36.8) 5 129.1 (43.5) 10 246.1 (103.8)

[87.8; 280.7] [106.0; 153.0] [98.0; 163.2] [56.2; 150.3] [100.8; 205.9] [154.8; 461.1]

PLI** [dimensionless] ‐‐ ‐‐ ‐‐ ‐‐ [11.6; 14.9] 7 [2.7; 3.3] [2.8; 4.3] [1.4; 2.9] [2.8; 3.6] [1.9; 3.1]

_________________________________________________________________________________________________________________________________________________________________

*estimated from King's plot; **the PLI was calculated using 6 toxic elements (Ba, Cr, Cu, Zn, Co and Pb), their corresponding baseline values (in mg/kg) are: 110.0; 11.1; 12.8; 44.5; 34.8 and 18.7 





Table 2
__________________________________________________________________________________________________________________________________________________________________________________________________________

Element Primary sources (vehicles) Scraped sediments Swept sediments Soils

Diesel Gas Brake

a b c d e f g h i j k l m n o p q r s t u v w x y z za zb

[Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %] [Wt %]

__________________________________________________________________________________________________________________________________________________________________________________________________________

C 85.58 80.78 63.78 53.99 68.48 16.32 39.09 24.27 21.32 19.01 18.96 7.88 37.58 54.59 56.89 9.93 4.51 6.33 5.10 2.38 15.84 15.64 26.52 11.76 9.06 33.55 22.19 5.81

O 3.94 3.03 17.14 13.54 9.83 14.18 8.95 17.85 20.46 3.96 28.03 2.20 18.22 14.09 22.00 18.71 6.90 30.80 3.55 0.67 17.15 4.51 16.40 25.51 3.56 15.18 16.09 24.37

Na 0.04 0.07 0.26 2.21 1.55 0.34 0.07 0.28 0.34 0.22 0.59 0.23 0.11 0.76 0.30 0.28 0.17 0.00 0.19 0.08 0.60 0.17 0.29 0.25 0.14 0.43 0.19 0.07

Mg 0.00 0.40 0.13 1.40 0.95 3.42 0.24 0.89 3.36 0.92 1.00 0.38 0.91 0.56 0.46 0.69 0.32 2.28 0.23 0.05 0.71 0.15 0.62 1.51 0.11 0.24 0.74 0.82

Al 0.03 0.40 0.67 0.87 0.25 2.12 2.57 1.46 1.69 2.00 6.26 8.30 4.37 3.84 3.11 1.97 0.93 1.71 0.80 0.29 2.30 0.69 3.16 2.80 0.21 2.01 4.64 1.11

Si 0.09 0.14 1.65 0.73 0.31 4.43 3.05 2.89 5.26 4.39 18.64 26.75 13.51 12.12 8.99 2.14 1.66 3.05 1.17 0.22 4.36 1.47 8.90 4.10 0.63 5.40 11.31 2.76

Pd* 1.66 1.74 0.91 1.45 1.78 2.21 1.32 1.00 1.79 1.00 2.71 5.85 3.35 2.61 1.47 2.10 1.13 1.17 0.24 0.11 0.72 2.26 2.61 2.38 2.35 1.68 1.95 2.30

P 0.05 0.13 0.27 1.46 3.12 0.09 0.02 0.03 0.00 0.09 0.06 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.11 0.08 0.09 0.07 0.08 0.20

S 0.40 0.48 3.81 1.22 1.48 6.65 7.36 7.88 1.81 2.16 0.10 0.22 0.28 0.07 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.06 1.30 0.06 0.15 0.08

K 0.00 0.04 0.08 0.00 0.00 0.95 0.46 0.18 1.28 0.78 1.24 13.56 1.69 0.74 0.81 0.15 0.42 0.00 0.13 0.08 0.50 0.11 1.32 0.22 0.09 0.50 0.87 0.11

Ca 0.07 0.13 3.50 0.84 3.81 0.26 0.00 0.69 0.96 1.72 2.41 0.00 1.50 1.42 0.67 0.54 0.32 0.06 0.50 0.22 0.97 0.16 1.87 0.32 0.08 1.47 1.80 0.12

Ti 0.04 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.22 0.45 0.25 0.11 7.91 20.23 0.16 4.05 5.91 2.36 0.11 1.56 5.17 0.14 0.76 0.48 15.72

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.07 0.05 0.70 0.85 0.48 0.00 0.30 0.33 0.00 0.00 0.00 0.21

Ba 0.00 0.00 0.00 0.00 0.00 9.82 6.93 31.81 1.88 7.44 0.00 0.51 0.15 0.00 0.00 0.00 6.31 0.00 0.74 2.21 1.94 0.00 1.04 0.00 0.00 0.00 0.00 0.00

Mn 0.06 0.16 0.05 0.22 0.00 0.47 0.26 0.00 0.29 0.47 0.25 0.38 0.19 0.12 0.04 0.76 1.06 0.00 0.55 0.47 0.04 0.32 0.00 0.17 1.06 0.21 0.19 0.82

Fe 0.40 0.85 0.50 9.29 1.21 21.46 16.88 3.41 23.45 51.43 8.87 1.95 4.85 1.62 1.22 40.85 48.58 44.75 67.77 81.04 32.59 59.34 15.63 32.96 68.16 14.04 28.06 35.95

Cu 0.12 0.29 0.11 0.47 0.00 4.09 4.43 0.45 0.98 0.57 0.33 0.34 0.48 0.23 0.08 0.27 0.16 0.39 0.00 0.00 0.00 0.52 0.14 0.12 0.43 0.53 0.16 0.33

Zn 0.15 0.34 0.30 4.33 1.36 1.73 0.21 0.51 1.96 0.18 0.00 0.52 0.77 0.33 0.12 0.62 0.40 0.45 0.37 0.00 0.00 0.75 0.19 0.44 0.48 0.32 0.69 0.42

Sb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cr 0.06 0.10 0.02 0.16 0.00 0.00 0.00 0.00 0.00 1.20 0.16 0.95 0.00 0.09 0.00 0.15 0.72 0.27 0.10 0.15 0.13 0.23 0.00 0.07 0.26 0.00 0.10 0.12

Au* 7.33 11.56 6.78 7.82 5.87 11.46 8.11 6.41 13.16 2.46 9.83 29.76 11.60 6.50 3.62 12.55 6.09 8.53 13.82 5.26 16.47 13.50 19.28 11.75 11.85 23.53 10.31 8.69

Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00

__________________________________________________________________________________________________________________________________________________________________________________________________________
* For the specimen preparation, a Au/Pd coating was deposited
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